JP2011241688A - 車載エンジン制御装置 - Google Patents

車載エンジン制御装置 Download PDF

Info

Publication number
JP2011241688A
JP2011241688A JP2010112048A JP2010112048A JP2011241688A JP 2011241688 A JP2011241688 A JP 2011241688A JP 2010112048 A JP2010112048 A JP 2010112048A JP 2010112048 A JP2010112048 A JP 2010112048A JP 2011241688 A JP2011241688 A JP 2011241688A
Authority
JP
Japan
Prior art keywords
voltage
circuit
boost
switching element
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010112048A
Other languages
English (en)
Other versions
JP4960476B2 (ja
Inventor
Tomohiro Kimura
友博 木村
Mitsutaka Nishida
充孝 西田
Osamu Nishizawa
理 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010112048A priority Critical patent/JP4960476B2/ja
Priority to CN201010550428.5A priority patent/CN102242679B/zh
Priority to DE102010050724.5A priority patent/DE102010050724B4/de
Publication of JP2011241688A publication Critical patent/JP2011241688A/ja
Application granted granted Critical
Publication of JP4960476B2 publication Critical patent/JP4960476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Dc-Dc Converters (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】燃料噴射用電磁弁を駆動する複数の電磁コイルに対し、急速給電を行うための昇圧回路に於いて、車載バッテリの過電流抑制と昇圧回路の発熱分散を行う。
【解決手段】この発明による車載エンジン制御装置に於いて、急速給電を行うための高圧コンデンサ163は、第一、及び第二の昇圧制御回路160a、160bによって交互に断続駆動される第一及び第二の誘導素子161a、161bから第一、及び第二の充電ダイオード162a、162bを介して交互に充電され、一方の誘導素子が車載バッテリ101から励磁されている期間に他方の誘導素子が蓄積された電磁エネルギーを高圧コンデンサ163へ放出して、励磁電流
の同時通電が行われないように構成され、交互動作の最小周期は、第一、及び第二のタイマ回路90a、90bによって規制され、運転開始時の誤動作が防止される。
【選択図】図1

Description

この発明は、内燃機関の燃料噴射用電磁弁を高速駆動するために、車載バッテリから昇圧された高電圧を電磁弁駆動用の電磁コイルに瞬時給電し、車載バッテリの電圧によって開弁保持制御を行なうようにした車載エンジン制御装置に関し、特には改良された昇圧回路の構成に関するものである。
多気筒エンジンの各気筒に設けられて燃料噴射用電磁弁を駆動するための複数の電磁コイルに対し、クランク角センサに応動するマイクロプロセッサによって開弁時期と開弁期間を順次選択設定されるようにした燃料噴射制御装置に於いて、電磁コイルの過電圧駆動によって急速開弁するための昇圧回路には様々な工夫がなされている。
例えば、下記の特許文献1「燃料噴射弁の制御装置」によれば、車載バッテリである主電源の電圧を昇圧する補助電源と、補助電源から電磁ソレノイドに急速給電する第一の開閉素子と、主電源から電磁ソレノイドに持続給電すると共にON/OFF制御して保持給電を行う第二の開閉素子と、これらの給電電流を遮断する第三の開閉素子と、上記給電を制御する制御手段とを備え、補助電源の出力電圧の最小値を主電源の電圧の最大値より大きな値に設定し、急速給電中は補助電源の昇圧動作を停止することによって、バッテリの電圧変動があっても安定した燃料噴射ができ、開閉素子や補助電源の異常に対して待避運転が可能な燃料噴射弁の制御装置が提供されている。
尚、特許文献1に於いて、昇圧回路に相等する補助電源は、インダクタンス素子である誘導素子を備え、この誘導素子には主電源から励磁用開閉素子と電流検出抵抗とを介して給電がなされ、励磁用開閉素子の開路により誘導素子に蓄積された電磁エネルギーがダイオードを介してコンデンサに放出され、コンデンサには高電圧が充電されるように構成されている。
また、下記の特許文献2「誘導負荷駆動装置及びその駆動方法」によれば、所定時間内に同一の誘導負荷を複数回駆動し、この駆動を繰り返して行なう誘導負荷駆動装置に於いて、エネルギーを蓄積して高電圧に昇圧し、この高電圧を上記同一の誘導負荷に所定時間以内に交互に印加してそれぞれ負荷電流を高速に立ち上げる複数の昇圧回路と、この複数の昇圧回路で負荷電流を立ち上げ後に上記同一の誘導負荷に所定電圧を印加し、負荷電流を所定電流に保持する保持電流出力回路と、上記複数の昇圧回路及び保持電流出力回路の各出力が交互に上記同一の誘導負荷に接続されるように切り換えられる複数のスイッチ手段と、この複数のスイッチ手段を所定の順序で切り換える制御ロジック回路とを備え、前記同一誘導負荷に所定時間以内に複数回流す電流の立ち上げ時間を高速化した誘導負荷駆動装置が開示されており、昇圧回路の大型化を伴わずに同一の誘導負荷を所定時間内に複数回駆動できると共に、駆動初期の負荷電流の立ち上がりを高速にできる誘導負荷駆動装置及びその駆動方法が提供されている。
特開2004−232493号公報(図1、要約、段落[0017]) 特開平10−073059号公報(図1、要約)
前記の特許文献1による燃料噴射弁の制御装置は、エンジンの高速回転時に於いて必要とされる高頻度な昇圧変換動作に伴って、電子基板上に搭載された誘導素子及び当該誘導素子の励磁電流を断続駆動する開閉素子における発生熱が局部的に過大となる問題があると共に、高頻度な昇圧変換動作を必要としない低速回転時に於いても誘導素子の励磁電流が大きく、エンジンの寒冷始動時におけるバッテリの過電流負担が大きい問題点がある。
一方、前記特許文献2による誘導負荷駆動装置では、誘導素子と開閉素子と高圧コンデンサとを含む第一の昇圧回路と、当該第一の昇圧回路と同等に構成された第二の昇圧回路を備え、必要とされる多大な昇圧電力を分担生成することによって過大な局部発熱は抑制されるようになっているが、誘導負荷を第一の高圧コンデンサに接続するのか、第二の高圧コンデンサに接続するのかを選択する切換スイッチが必要となり、高圧・大電流のパワートランジスタが余分に必要となって大型高価となる問題点があると共に、一対の昇圧回路が同期制御されていないので大きな励磁電流が時間的に重なりあうと、車載バッテリの過電流負担が増加し、エンジンの寒冷始動が困難となる問題点がある。
この発明の目的は、電子基板に搭載される誘導素子と開閉素子の過大な局部発熱を防止すると共に、車載バッテリに対する過電流負担を軽減することができる車載エンジン制御装置を提供することである。
本願の第一の発明による車載エンジン制御装置は、
多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイルに対する開閉制御回路と昇圧回路とマイクロプロセッサとを備えた車載エンジン制御装置であって、
前記昇圧回路は、第一の昇圧制御回路によって断続励磁される第一の誘導素子と、当該第一の誘導素子と直列接続された第一の充電ダイオードと、第二の昇圧制御回路によって断続励磁される第二の誘導素子と、当該第二の誘導素子と直列接続された第二の充電ダイオードと、前記第一、及び第二の誘導素子の電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオードを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサを備え、
前記開閉制御回路は、車載バッテリと前記複数の電磁コイルの全体との間に接続された一つの低圧開閉素子と、当該低圧開閉素子と直列接続された逆流阻止ダイオードと、前記高圧コンデンサと前記複数の電磁コイルの全体との間に接続された一つの高圧開閉素子と、前記複数の電磁コイルの個別の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサによって導通時期と導通期間が設定される選択開閉素子を備え、前記高圧開閉素子によって急速給電が行われると共に、前記低圧開閉素子によって開弁保持制御が行われ、
前記第一、及び第二の昇圧制御回路は、前記第一、及び第二の誘導素子に対する励磁電流のピーク値が同時に重複しないように、当該第一、及び第二の誘導素子を交互に同期して励磁すると共に、交互励磁の周期を所定の最小時間以上とするためのタイマ回路を包含している、
ことを特徴とするものである。
また、本願の第二の発明による車載エンジン制御装置は、
多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイルに対する開閉制御回路と昇圧回路とマイクロプロセッサとを備えた車載エンジン制御装置であって、
前記昇圧回路は、第一の昇圧制御回路によって断続励磁される第一の誘導素子と、当該第一の誘導素子と直列接続された第一の充電ダイオードと、第二の昇圧制御回路によって断続励磁される第二の誘導素子と、当該第二の誘導素子と直列接続された第二の充電ダイ
オードと、前記第一、及び第二の誘導素子の電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオードを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサを備え、
前記開閉制御回路は、車載バッテリと前記複数の電磁コイルの全体との間に接続された一つの低圧開閉素子と、当該低圧開閉素子と直列接続された逆流阻止ダイオードと、前記高圧コンデンサと前記複数の電磁コイルの全体との間に接続された一つの高圧開閉素子と、前記複数の電磁コイルの個別の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサによって導通時期と導通期間が設定される選択開閉素子を備え、
前記高圧開閉素子によって急速給電が行われると共に、前記低圧開閉素子によって開弁保持制御が行われ、
前記第一、及び第二の昇圧制御回路は、前記第一、及び第二の誘導素子に対する励磁電流のピーク値が同時に重複しないように、当該第一、及び第二の誘導素子を交互に同期して励磁すると共に、運転開始直後の一時期に於いては一方の昇圧用開閉素子を開路して、他方の昇圧用開閉素子の断続動作によって前記高圧コンデンサに対する充電が行われ、
前記他方の昇圧用開閉素子を制御する昇圧制御回路は、当該昇圧用開閉素子の開路時間を所定の最小時間以上とするためのタイマ回路を包含している、
ことを特徴とするものである。
更に、本願の第三の発明による車載エンジン制御装置は、
多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイルに対する開閉制御回路と昇圧回路とマイクロプロセッサとを備えた車載エンジン制御装置であって、
前記昇圧回路は、第一の昇圧制御回路によって断続励磁される第一の誘導素子と、当該第一の誘導素子と直列接続された第一の充電ダイオードと、第二の昇圧制御回路によって断続励磁される第二の誘導素子と、当該第二の誘導素子と直列接続された第二の充電ダイオードと、前記第一、及び第二の誘導素子の電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオードを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサを備え、
前記開閉制御回路は、車載バッテリと前記複数の電磁コイルの全体との間に接続された一つの低圧開閉素子と、当該低圧開閉素子と直列接続された逆流阻止ダイオードと、前記高圧コンデンサと前記複数の電磁コイルの全体との間に接続された一つの高圧開閉素子と、前記複数の電磁コイルの個別の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサによって導通時期と導通期間が設定される選択開閉素子を備え、
前記高圧開閉素子によって急速給電が行われると共に、前記低圧開閉素子によって開弁保持制御が行われ、
前記第一、及び第二の昇圧制御回路は、前記第一、及び第二の誘導素子に対する励磁電流のピーク値が同時に重複しないように、タイマ回路によって設定された所定の時間差を於いて当該第一、及び第二の誘導素子を順次同期して励磁する、
ことを特徴とするものである。
以上のとおり、本願の第一の発明による車載エンジン制御装置は,燃料噴射用電磁弁を駆動する電磁コイルに対して急速給電を行うための昇圧回路が、一つの高圧コンデンサと第一・第二の誘導素子を備え、第一・第二の昇圧制御回路によって交互に昇圧充電を行うようになっている。
従って,一方の誘導素子が高圧コンデンサへの充電動作を行っている期間に他方の誘導素子に対する励磁が行われるので,昇圧回路に対する給電電流が平均化されて,車載バッテリに対する過電流負担が軽減されると共に、昇圧回路における発生熱も分散される効果がある。
また、交互励磁の周期が所定値未満とならないので、高圧コンデンサの充電開始時期に
おいて昇圧制御回路が誤動作するのを防止することができる効果がある。
また、本願の第二の発明による車載エンジン制御装置は、燃料噴射用電磁弁を駆動する電磁コイルに対して急速給電を行なうための昇圧回路が,一つの高圧コンデンサと第一・第二の誘導素子を備え、第一・第二の昇圧制御回路によって交互に昇圧充電を行うようになっていると共に,運転開始直後の一時期においては、最小遮断時間が規制された一方の昇圧回路のみを有効にするようになっている。
従って、一方の誘導素子が高圧コンデンサへの充電動作を行っている期間に他方の誘導素子に対する励磁が行われるので,昇圧回路に対する給電電流が平均化されて、車載バッテリに対する過電流負担が軽減されると共に、昇圧回路における発生熱も分散される効果があると共に、車載バッテリの電圧が低い寒冷始動時において、車載バッテリに対する負荷電流をさらに抑制して、エンジンの始動を容易化することができる効果がある。
更に、本願の第三の発明による車載エンジン制御装置は、燃料噴射用電磁弁を駆動する電磁コイルに対して急速給電を行なうための昇圧回路が、一つの高圧コンデンサと第一・第二の誘導素子を備え、第一・第二の昇圧制御回路によって所定の時間差をおいて順次同期して昇圧充電を行うようになっている。
従って、一対の誘導素子に対するピーク電流の通電時期が重ならないので、昇圧回路に対する給電電流が平均化されて、車載バッテリに対する過電流負担が軽減されると共、昇圧回路における発生熱も分散される効果がある。
また、車載バッテリの発生電圧が低下しているときには、第一・第二の誘導素子の励磁電流が所定の目標値に到達するまでの励磁時間が長くなるが、所定の時間差をおいて順次駆動した場合には同時励磁の時間帯が発生して、効率よく高圧コンデンサを充電することができる効果がある。
この発明の実施の形態1による車載エンジン制御装置に於ける全体回路を示すブロック図である。 この発明の実施の形態1による車載エンジン制御装置に於ける制御回路の一部分の詳細を示すブロック図である。 この発明の実施の形態1による車載エンジン制御装置の動作を説明するタイムチャートである。 この発明の実施の形態1による車載エンジン制御装置に於ける動作を説明するフローチャートである。 この発明の実施の形態2による車載エンジン制御装置に於ける全体回路を示すブロック図である。 この発明の実施の形態2による車載エンジン制御装置に於ける制御回路の一部分の詳細ブロック図である。 この発明の実施の形態2による車載エンジン制御装置の動作を説明するフローチャートである。 この発明の実施の形態3による車載エンジン制御装置に於ける全体回路を示すブロック図である。 この発明の実施の形態3による車載エンジン制御装置に於ける制御回路の一部分の詳細を示すブロック図である。
実施の形態1.
(1)構成の詳細な説明
以下この発明の実施の形態1による車載エンジンの制御装置について説明する。図1は、この発明の実施の形態1による車載エンジン制御装置に於ける全体回路を示すブロック
図である。図1に於いて、車載エンジン制御装置100Aは、マイクロプロセッサ110を主体
として構成され、電気負荷群105の一部である燃料噴射用電磁弁の電磁コイル107を過励磁制御するための昇圧回路160Aと開閉制御回路170とを内蔵している。
まず、前記車載エンジン制御装置100Aの外部に接続されているものとして、車載バッテリ101は制御電源スイッチ102を介して車載エンジン制御装置100Aに対して主電源電圧Vbaを供給するようになっている。制御電源スイッチ102は、図示しない電源スイッチが閉路
したことによって閉路し、当該電源スイッチが開路したことによって所定の遅れ時間を於いて開路する電磁リレーの出力接点となっている。
車載バッテリ101は、また、負荷電源スイッチ106を介して車載エンジン制御装置100Aに対して負荷駆動電圧Vbbを供給するようになっており、負荷電源スイッチ106はマイクロ
プロセッサ110からの指令によって付勢される電磁リレーの出力接点となっている。
オンオフセンサ103は、例えばエンジン回転速度を検出するための回転センサ、燃料噴
射タイミングを決定するためのクランク角センサ、車速を検出するための車速センサなどの開閉センサであったり、アクセルペダルスイッチ、ブレーキペダルスイッチ、サイドブレーキスイッチ、変速機のシフトレバー位置を検出するシフトスイッチなどの手動操作スイッチを包含している。
アナログセンサ104は、アクセルペダルの踏込み度合を検出するアクセルポジションセ
ンサ、吸気スロットルの弁開度を検出するスロットルポジションセンサ、エンジンに対する吸気量を検出するエアフローセンサ、排気ガスの酸素濃度を検出する排気ガスセンサ、エンジンの冷却水温センサ(水冷エンジンの場合)などのエンジンの駆動制御を行なうためのアナログセンサによって構成されている。
車載エンジン制御装置100Aによって駆動される電気負荷群105は、例えば点火コイル(
ガソリンエンジンの場合)、吸気弁開度制御用モータなどの主機類や、排気ガスセンサ用のヒータ、負荷給電用の電源リレー、エアコン駆動用の電磁クラッチ、警報・表示機器などの補機類の電気負荷によって構成されている。また、電気負荷群105の中の特定の電気
負荷である電磁コイル107は燃料噴射用電磁弁を駆動するためのものであり、複数の電磁
コイル107a〜107dは各気筒毎に設けられた後述の選択開閉素子によって順次切換接続されて多気筒エンジンの各気筒に対して燃料噴射を行うようになっている。
次に、車載エンジン制御装置100Aの内部構成として、マイクロプロセッサ110は例えば
フラッシュメモリである不揮発プログラムメモリ111A、演算処理用のRAMメモリ112、
不揮発データメモリ113、多チャンネルAD変換器114と協働するようになっている。定電圧電源回路120は車載バッテリ101から制御電源スイッチ102を介して給電されて、例えば
DC5Vの安定化電圧Vccを発生してマイクロプロセッサ110に給電する。
デジタル入力インタフェース回路130は、オンオフセンサ103とマイクロプロセッサ110
のデジタル入力ポートDINとの間に接続されて、電圧レベルの変換やノイズ抑制処理を行
うものであり、デジタル入力インタフェース回路130は主電源電圧Vbaから給電されて動
作するようになっている。アナログ入力インタフェース回路140は、アナログセンサ104とマイクロプロセッサ110のアナログ入力ポートAINとの間に接続されて、電圧レベルの変換やノイズ抑制処理を行うものであり、アナログ入力インタフェース回路140の一部は安定
化電圧Vccを電源として動作するようになっている。
出力インタフェース回路150は、マイクロプロセッサ110が発生する負荷駆動指令信号Driに応動して、特定の電気負荷である電磁コイル107を除外した電気負荷群105を駆動する
複数のパワートランジスタであり、当該出力インタフェース回路150は図示しない負荷電
源リレーの出力接点を介して車載バッテリ101から給電されるようになっている。
昇圧回路160Aは、インダクタンス素子である第一、及び第二の誘導素子161a、161bと、当該第一、及び第二の誘導素子161a、161bとそれぞれに直列接続された第一、及び第二の充電ダイオード162a、162bと、当該第一、及び第二の充電ダイオード162a、162bから充電される高圧コンデンサ163を備え、第一、及び第二の誘導素子161a、161bは、それぞれ第
一、及び第二の昇圧制御回路160a、160bによって断続励磁されるようになっている。開閉制御回路170は、低圧開閉素子171と高圧開閉素子172を包含し、高圧開閉素子172は昇圧回路160Aから昇圧電圧Vhを受けて、電磁コイル107に対して急速給電電圧を供給するようになっている。
また、低圧開閉素子171は車載バッテリ101から負荷駆動電圧Vbbを受けて、逆流阻止ダイオード173を介して電磁コイル107に接続され、持続給電電圧を供給する。マイクロプロセッサ110はオンオフセンサ103の中のクランク角センサの動作状態に応動して動作指令信号Drjを発生し、開閉制御回路170は動作指令信号Drjの発生にともなって低圧開閉素子171と高圧開閉素子172を閉路駆動する。その詳細は図2・図3によって後述する。
尚、マイクロプロセッサ110は、昇圧禁止信号INH0を発生し、当該昇圧禁止信号INH0は
エンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、昇圧回路160Aの作動を停止し、アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには前記昇圧回路160Aの作動を許可する信号であり、昇圧禁止信号INH0が昇圧禁止指令を発生しているときには、車載バッテリ101
から負荷電源スイッチ106と、第一の誘導素子161a及び第一の充電ダイオード162aの直列
回路、若しくは第二の誘導素子161b及び第二の充電ダイオード162bの直列回路を介して前記高圧コンデンサ163の充電が行われ、昇圧回路160Aが昇圧動作を開始する時点では、高
圧コンデンサ163の充電電圧は車載バッテリ101の電源電圧に等しくなっている。
次に、図1に於ける制御回路の一部分の詳細について説明する。図2は、この発明の実施の形態1による車載エンジン制御装置に於ける制御回路の一部分の詳細を示すブロック図である。図2に於いて、前述の昇圧回路160Aに含まれる第一の昇圧制御回路160aは、第一の昇圧用開閉素子164a、第一の電流検出抵抗165a、第一のゲート回路166a、第一の駆動抵抗167a、第一の電圧制御回路168aによって構成されており、第一の誘導素子161aは車載バッテリ101、負荷電源スイッチ106、第一の昇圧用開閉素子164a、第一の電流検出抵抗165aを通じて給電され、第一の昇圧用開閉素子164aが開路したときには第一の誘導素子161aに蓄積されていた電磁エネルギーを充電ダイオード162aを介して高圧コンデンサ163に放出するよう構成されている。
第一の電圧制御回路168aは、第一の電流比較回路81a、第一の電流基準電圧82a、第一の記憶回路83a、第一の論理和素子84a、分圧抵抗85・86、電圧比較回路87、判定基準電圧88、第一の内部ゲート回路89a、第一のタイマ回路90aによって構成されている。
前述の昇圧回路160Aに含まれる第二の昇圧制御回路160bも同様であり、第二の昇圧用開閉素子164b、第二の電流検出抵抗165b、第二のゲート回路166b、第二の駆動抵抗167b、第二の電圧制御回路168bによって構成されており、第二の誘導素子161bは車載バッテリ101
、負荷電源スイッチ106、第二の昇圧用開閉素子164b、第二の電流検出抵抗165bを通じて
給電され、第二の昇圧用開閉素子164bが開路したときには第二の誘導素子161bに蓄積されていた電磁エネルギーを充電ダイオード162bを介して高圧コンデンサ163に放出するよう
構成されている。
第二の電圧制御回路168bは、第一の電圧制御回路168aと同様に構成され、第二の電流比較回路81b、第二の電流基準電圧82b、第二の記憶回路83b、第二の論理和素子84b、第二の内部ゲート回路89b、第二のタイマ回路90bによって構成されているが分圧抵抗85・86、電圧比較回路87、判定基準電圧88は第一の電圧制御回路168aのみに設けられている。
尚、第一、及び第二の記憶回路83a・83bは例えば一対の論理素子を組み合わせたフリップフロップ回路であるか、又は比較増幅器の出力信号を正の入力端子に正帰還接続させて記憶動作を行うなどの公知の手段によって構成されていて、セット入力の信号電圧レベルが「H」(論理「1」)となるとセット出力の信号電圧レベルも「H」(論理「1」)となり、一旦セット出力の論理が「1」になるとセット入力の論理を「0」にしてもセット出力の論理は「1」を記憶して持続する。しかし、リセット入力の論理を「1」にするとセット出力の論理は「0」に復帰し、一旦セット出力の論理が「0」になるとリセット入力の論理を「0」にしてもセット出力の論理は「0」を持続するようになっており、セット出力の逆の論理がリセット出力となるように構成されている。
また、セット入力とリセット入力が共に論理「1」となると、リセット入力が優先するようになっていると共に、運転開始時の動作を確定するために、電源投入時に発生する図示しない短時間パルスによって第一の記憶回路83aをセットし、第二の記憶回路83bをリセットしておくことにより、第一、及び第二の記憶回路83a、83bが同時にセット出力を発生しないようになっている。
第一、及び第二のタイマ回路90a、90bは、駆動信号の電圧レベルが「H」(論理「1」)になると図示しない計時カウンタが動作を開始し、所定時間が経過するとタイムアップ出力の信号電圧レベルが「H」(論理「1」)となり、駆動信号が論理「0」になると計時カウンタの現在値はリセットされてタイムアップ出力も論理「0」に復帰する遅延動作瞬時復帰型の計時カウンタによって構成されている。
第一、及び第二の昇圧用開閉素子164a、164bは、第一、及び第二のゲート回路166a、166bの出力電圧レベルが「H」(論理「1」)であるときに、第一、及び第二の駆動抵抗167a、167bを介して通電駆動されるようになっている。しかし、第一、及び第二の電流検出抵抗165a、165bの両端電圧が第一、及び第二の電流基準電圧82a、82bの値以上のなると、第一、及び第二の電流比較回路81a・81bの出力によって第一、及び第二の記憶回路83a、83bがリセットされて、第一、及び第二の論理和素子84a、84bと第一、及び第二のゲート回路166a、166bを介して第一、及び第二の昇圧用開閉素子164a、164bが開路し、第一、及び第二の誘導素子161a、161bに蓄積されていた電磁エネルギーが第一、及び第二の充電ダイオード162a、162bを介して高圧コンデンサ163へ放出されるようになっている。
尚、第一、及び第二の電流基準電圧82a、82bの値は、目標励磁電流に比例した閾値電圧となっている。一方、第一の記憶回路83aは第二の記憶回路83bのリセット出力Rbから第
一の内部ゲート素子89aを介してセット駆動され、第一の内部ゲート素子89aは第一の記憶回路83aのリセット出力Raによって駆動される第一のタイマ回路90aの出力によって制御
されている。また、第二の記憶回路83bは第一の記憶回路83aのリセット出力Raから第二
の内部ゲート素子89bを介してセット駆動され、第二の内部ゲート素子89bは第二の記憶回路83bのリセット出力Rbによって駆動される第二のタイマ回路90bの出力によって制御さ
れている。
第一、及び第二のタイマ回路90a、90bは、第一、及び第二の記憶回路83a、83bがリセットされてから後述する所定の制限時間以内にあっては、一方の記憶回路が他方の記憶回路
のリセット出力によってセットされないようにするためのものとなっており、通常の動作状態にあってはこのタイマ回路の機能は無視して、一方の記憶回路がリセットされると他方の記憶回路がセットされ、各記憶回路は交互に反転動作するようになっている。
このようにして、第一、及び第二の昇圧用開閉素子161a、161bが、交互にON/OFF動作を繰返すことによって、高圧コンデンサ163の充電電圧が所定の目標高電圧に到達して、分
圧抵抗85、86による分圧電圧が目標とする昇圧電圧Vhに比例した値である所定の判定基
準電圧88を超過すると、電圧比較回路87と第一、及び第二の論理和素子84a、84bを介して第一、及び第二のゲート回路166a、166bの出力発生を停止して、第一、及び第二の昇圧用開閉素子164a、164bを開路するようになっている。
また、第一、及び第二のゲート回路166a、166bには、マイクロプロセッサ110が発生す
る昇圧禁止信号INH0が入力されていて、車載エンジンの停止中やエンジンの始動スイッチが開路されているときには第一、及び第二の昇圧用開閉素子164a、164bを開路しておくようになっている。
開閉制御回路170は、低圧開閉素子171、逆流阻止ダイオード173、高圧開閉素子172に加えて複数の電磁コイル107a〜107dの下流位置に直列接続された選択開閉素子174a〜174dと、電流検出抵抗176を備えており、選択開閉素子174a〜174dには電圧制限ダイオード175a〜175dが並列接続されているとともに、電磁コイル107a〜107dと選択開閉素子174a〜174dと電流検出抵抗176の直列回路に対して転流ダイオード177が並列接続されている。
従って、選択開閉素子174a〜174dのどれか一つである選択開閉素子174jが選択導通している状態で、低圧開閉素子171や高圧開閉素子172が開路した場合には、電磁コイル107a〜107dの一つである電磁コイル107jの励磁電流は選択開閉素子174jと低抵抗の電流検出抵抗176と転流ダイオード177を介して還流減衰するようになっている。しかし、選択開閉素子174jが開路したときには、電磁コイル107jの励磁電流は電圧制限ダイオード175jと電流検出抵抗176と転流ダイオード177を介して還流し、高速減衰するようになっている。
(2)作用・動作の詳細な説明
次に、以上のように構成されたこの発明の実施の形態1による車載エンジンの制御装置について、その動作を説明する。先ず、図1に於いて、図示しない電源スイッチが閉路されると、電源リレーの出力接点である制御電源スイッチ102が閉路して、車載エンジン制
御装置100Aに主電源電圧Vbaが印加される。その結果、定電圧電源回路120が例えばDC
5Vの安定化電圧Vccを発生してマイクロプロセッサ110が制御動作を開始する。
マイクロプロセッサ110は、オンオフセンサ103とアナログセンサ104の動作状態と、不
揮発プログラムメモリ111Aに格納された制御プログラムの内容に応動して負荷電源リレーを付勢して負荷電源スイッチ106を閉路すると共に、電気負荷群105に対する負荷駆動指令信号Driを発生し、電気負荷群105の中の特定の電気負荷である電磁コイル107a〜107dの
一つである電磁コイル107jに対して図3で後述する動作指令信号Drjを発生する。一方、昇圧回路160Aは第一、及び第二の昇圧用開閉素子164a、164bを交互に断続動作することによって高圧コンデンサ163を高圧充電する。
図3は、この発明の実施の形態1による車載エンジン制御装置の動作を説明するタイムチャートである。図3(A)は、マイクロプロセッサ110が定期的に発生する動作指令信
号Drjの論理レベルを示しており、動作指令信号Drjの論理レベルが「H」になると開閉制御回路170によって電磁コイル107jに対する通電制御が行われる。図3(B)は、高圧
開閉素子172が閉路駆動されて、電磁コイル107jに対して昇圧回路160Aによる昇圧電圧Vhが給電されている期間を論理レベル「H」として表現したタイムチャートである。
図3(C)は、低圧開閉素子171が閉路駆動されて、電磁コイル107jに対して負荷駆動
電圧Vbbが印加されている期間を論理レベル「H」として表現したタイムチャートであるが、高圧開閉素子172が閉路している期間では低圧開閉素子171から電磁コイル107jに対する励磁電流が流れることはない。また、電磁コイル107jの励磁電流を開弁保持電流に維持する過程では低圧開閉素子171が断続動作するようになっている。図3(D)は、選択開
閉素子174jが閉路駆動されて、選択された電磁コイル107jに対する通電が可能となっている期間を論理レベル「H」として表現したタイムチャートであるが、選択開閉素子174jが開路されると電磁コイル107jに対する励磁電流は急速減衰するようになっている。
図3(E)は、低圧開閉素子171・高圧開閉素子172・選択開閉素子174jの開閉動作に応動する電磁コイル107jの励磁電流の制御特性を示したタイムチャートであり、高圧開閉素子172が閉路して高圧コンデンサ163に充電されている高電圧が電磁コイル107jに印加され、励磁電流が増大し、やがて所定のピーク電流Iaに到達すると高圧開閉素子172が開路し、電磁コイル107jに流れていた励磁電流は低圧開閉素子171側に移行して、印加電圧は高圧の昇圧電圧Vhから負荷駆動電圧Vbbに切換わることによって励磁電流が減衰する。励磁電流が更に減少して所定の減衰判定電流Ib以下に減少すると低圧開閉素子171も一旦は開路するが、励磁電流を所定の開弁保持電流Ihを維持するように低圧開閉素子171が開閉動作を行うようになっている。しかし、動作指令信号Drjの論理レベルが「L」となることによって低圧開閉素子171と選択開閉素子174jが開路して、励磁電流は急速遮断されるようになっている。
図4は、この発明の実施の形態1による車載エンジン制御装置に於ける動作を説明するフローチャートである。図4に於いて、ステップ400は、マイクロプロセッサ110が燃料噴射制御動作を開始するステップである。続くステップ401は、アクセルペダル又はブレー
キペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は図示しない始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているかどうかを判定し、始動操作が開始されたか又は既にエンジンが回転中であればYESの判定を行ってステップ402cへ移行し、エンジン停止
中であってしかも始動スイッチも開路されている状態ではNOの判定を行ってステップ402aへ移行する昇圧禁止判定手段となるステップである。
尚、前記始動スイッチは運転手が操作するキースイッチであるか、又はアイドルストップ動作後の再始動に於いて自動的に閉路される始動制御スイッチのことである。ステップ402aでは昇圧禁止信号INH0を発生し、図2で示す第一、及び第二のケート回路166a、
166bを介して第一、及び第二の昇圧用開閉素子164a、164bを開路するステップである。
尚、第一、及び第二の昇圧用開閉素子164a、164bが開路されると、高圧コンデンサ163
は第一、及び第二の誘導素子161a、161bと第一、及び第二の充電ダイオード162a、162bを介して車載バッテリ101から充電され、高圧コンデンサ163の充電電圧は負荷駆動電圧Vbbに等しくなっている。
ステップ402cは、昇圧禁止信号INH0の信号電圧レベルを「L」(論理「0」)にしてからステップ403へ移行するステップである。ステップ403は、エンジン回転速度が所定の下限回転以上となっているかどうかを判定し、下限回転速度以上であればYESの判定を行っ
てステップ404cへ移行し、下限回転未満であればNOの判定を行ってステップ404aへ移行する燃料噴射開始判定手段となるステップである。
尚、ステップ401に於いて既にエンジンが自立回転をしていたときには、ステップ403はYESの判定を行い、ステップ401に於いて始動スイッチが閉路されていたときであって、ま
だクランク角センサによる燃料噴射の気筒順序が判別されていない低回転状態にあってはNOの判定が行われるようになっている。
ステップ404aは、動作指令信号Drjの信号電圧レベルを「L」(論理「0」)にして、燃料噴射を停止して動作終了行程405へ移行するステップである。ステップ404cは動作指
令信号Drjの信号電圧レベルを「H」(論理「1」)にして、燃料噴射を開始して動作終了行程405へ移行するステップである。動作終了行程405ではマイクロプロセッサ110は他
の制御動作を実行し、所定時間以内には動作開始ステップ400へ移行するようになってい
る。
次に、昇圧回路160Aの詳細を示す図2を参照しながら昇圧制御の詳細動作を説明する。先ず、第一、又は第二の昇圧用開閉素子164a、164bが閉路して、第一、又は第二の誘導素子161a、161bに励磁電流が流れ始めてから所定の目標電流Imに到達するまでの所要励磁
時間Tonは次の(2)式によって算出される。

L×(Im/Ton)+R×Im=Vbb ・・・・・・(1)

∴Ton≒L×(Im/Vbb) ・・・・・・(2)

但し、Lは第一、及び第二の誘導素子161a・161bのインダクタンス[H]、Vbbは負荷駆動電圧(車載バッテリ101の発生電圧に相等)であり、第一、及び第二の誘導素子161a
、161bの内部抵抗Rは十分小さい値であって、R×Im<<Vbbとなっている。
また、第一、又は第二の昇圧用開閉素子164a、164bが開路して、第一、又は第二の誘導素子161a、161bに流れていた励磁電流が高圧コンデンサ163へ放出されるまでのまでの所
要放出時間Toffは次の(4)式によって算出される。

L×(Im/Toff)+R×Im=Vc−Vbb ・・・・・・(3)

∴Toff≒L×[Im/(Vc−Vbb)] ・・・・・・(4)

但し、Vcは高圧コンデンサ163の充電電圧であり、少なくとも1回以上の充電が行われていることによって充電電圧Vcの値は負荷駆動電圧Vbbを超過しているが、目標充電電
圧である昇圧電圧Vh以下の値となっている。
ここで、高圧コンデンサ163の充電電圧Vcが目標充電電圧である昇圧電圧Vhに略等し
くなっている通常状態に於いては、昇圧倍率K=Vh/Vbbとしたときに前述の(2)式と(4)式の関係から、次に(5)式の関係が成立する。

Toff=Ton/(K−1) ・・・・・・・・・・・・・・・・・(5)

例えば、Vbb=8〜16[V]、Vh=65[V]とすると、K-1=3〜7.1となるので、通常状態に於いてはToff<Tonの関係が成立している。従って、一方の記憶回路がセッ
トされて一方の誘導素子に励磁電流が流れている時間内には他方の記憶回路がリセットされて他方の誘導素子に流れていた励磁電流は高圧コンデンサ163に放出完了している。
一方、第一、及び第二の記憶回路83a、83bは、交互に反転動作を行っており、各記憶回路のセット出力時間とリセット出力時間は等しくTonとなっている。即ち、一方の記憶回路がセットされ一方の昇圧用開閉素子が閉路されて一方の誘導素子が励磁されているTon期間に於いて、他方の記憶回路がリセットされ他方の昇圧用開閉素子が開路されて他方の
誘導素子が高圧コンデンサ163を充電完了して待機し、一方の誘導素子の励磁完了を待っ
て次の反転動作に移行するようになっている。
次に、第一、及び第二のタイマ回路90a、90bの役割について説明する。第一、及び第二のタイマ回路90a、90bが駆動されてからタイムアップするまでの動作時間は、高圧コンデンサ163の充電電圧が昇圧電圧Vhに達する直前の状態で、第一、又は第二の誘導素子161a、161bに蓄積された電磁エネルギーが高圧コンデンサ163に放出するのに必要となる第一時間よりも長い時間であると共に、車載バッテリ101の電圧が最大値であるときに第一、又は第二の昇圧用開閉素子164a、164bが閉路してから第一、又は第二の誘導素子161a・161bに対する励磁電流が目標電流に到達するまでの第二時間よりは短い時間に設定されている。
前記第一時間は、(4)式に於いて、Vc≒Vhとしたときの最小Toffの値に相等し、
前記第二時間は(2)式に於いて、Vbb=Vbmaxとしたときの最小Tonの値に相等しており、第一時間<第二時間の関係にある。従って、高圧コンデンサ163の充電電圧Vcが所定の昇圧電圧Vhに接近した値となっている通常状態に於いては、第一、及び第二の誘導素
子161a、161bに蓄積された電磁エネルギーは確実に高圧コンデンサ163へ放出されると共
に、第一、及び第二の昇圧用開閉素子164a、164bによる第一、及び第二の誘導素子1651a
、161bの交互励磁の周期が、第一、及び第二のタイマ回路90a、90bの設定時間の影響を受けて変動することがなく、車載バッテリ101の発生電圧に比例した頻度で交互励磁される
ことになる。
一方、エンジンの始動開始に伴って昇圧禁止信号INH0が解除された直後に於いて、高圧コンデンサ163の充電電圧Vcが負荷駆動電圧Vbbの2倍の値以下であるときには、(4)式で示された所要放出時間Toffは、(2)式で示された所要励磁時間Tonよりも長い時
間となる。従って、高圧コンデンサ163の充電電圧Vcが車載バッテリ101の2倍の電圧に
満たない初期段階に於いて、車載バッテリ101からの第一、又は第二の誘導素子161a、161bに対する励磁電流の上昇率に比べて、第一、又は第二の誘導素子161a、161bからの高圧コンデンサ163に対する放電電流の減少率が小さい値となることによって、昇圧用開閉素子の開路期間に誘導素子の電流が十分減衰せず、昇圧用開閉素子の次の閉路期間に目標励磁電流に到達する時間が短縮されて、その結果として高圧コンデンサへの放電期間が更に短縮される悪循環が発生し、昇圧回路が誤動作する危険性がある。
しかし、第一、及び第二のタイマ回路90a、90bによって、第一、及び第二の記憶回路83a、83bがリセットされてから、第一、及び第二の記憶回路83a、83bが再びセットされるまでの最小時間が規制され、第一、及び第二の記憶回路83a、83bは少なくとも第一、及び第二のタイマ回路90a、90bによる設定時間Ta、Tb以上のリセット期間を有している。
その結果、第一、及び第二の昇圧用開閉素子164a、164bは、設定時間Ta、Tb以上の時間で必ず開路し、この最小開路期間Ta・Tbに於いて高圧コンデンサ163への電磁エネル
ギーの放出を行い、ここで減衰した励磁電流は第一、及び第二の昇圧用開閉素子164a、164bの閉路期間に於いて回復するように動作することになる。
高圧コンデンサ163の充電電圧Vcが上昇して、車載バッテリ101の電源電圧の2倍の値
を超過すると通常動作状態となり、通常動作状態に於いては所要励磁時間Tonよりも所要放出時間Toffの方が短い時間となり、第一、及び第二の昇圧用開閉素子164a・164bが閉
路したときには励磁電流はゼロまで減衰している。
(3)実施形態1の要点と特徴
以上の説明で明らかなとおり、この発明の実施の形態1による車載エンジン制御装置は

本願の請求項1に記載の発明に関連するものとして、
多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイル107a〜107dに対する開閉制御回路170と昇圧回路160Aとマイク
ロプロセッサ110とを備えた車載エンジン制御装置100Aであって、
前記昇圧回路160Aは、第一の昇圧制御回路160aによって断続励磁される第一の誘導素子161aと、当該第一の誘導素子161aと直列接続された第一の充電ダイオード162aと、第二の昇圧制御回路160bによって断続励磁される第二の誘導素子161bと、当該第二の誘導素子161bと直列接続された第二の充電ダイオード162bと、前記第一、及び第二の誘導素子161a・161bの電流遮断に伴う誘導電圧によって前記第一及び第二の充電ダイオード162a・162bを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサ163を備え、
前記開閉制御回路170は、車載バッテリ101と前記複数の電磁コイル107a〜107dの全体との間に接続された一つの低圧開閉素子171と、当該低圧開閉素子171と直列接続された逆流阻止ダイオード173と、前記高圧コンデンサ163と前記複数の電磁コイル107a〜107dの全体との間に接続された一つの高圧開閉素子172と、前記複数の電磁コイル107a〜107dの個別
の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサ110によって導通
時期と導通期間が設定される選択開閉素子174a〜174dを備え、
前記高圧開閉素子172によって急速給電が行われると共に前記低圧開閉素子171によって開弁保持制御が行われ、
前記第一、及び第二の昇圧制御回路160a、160bは、前記第一、及び第二の誘導素子161a、161bに対する励磁電流のピーク値が同時に重複しないように、当該第一、及び第二の誘導素子を交互に同期して励磁すると共に、交互励磁の周期を所定の最小時間以上とするためのタイマ回路90a、90bを包含している。
また、本願の請求項2に記載の発明に関連するものとして、
前記第一の昇圧制御回路160aは、前記第一の誘導素子161aと直列接続された第一の昇圧用開閉素子164aと電流検出抵抗165aと第一の電圧制御回路168aを備え、
前記第一の電圧制御回路168aは、前記第一の昇圧用開閉素子164aが閉路して、前記車載バッテリ101から前記第一の誘導素子161aに流れる励磁電流が所定の目標電流を超過した
ときに第一の記憶回路83aをリセットして前記第一の昇圧用開閉素子164aを開路し、
前記第二の昇圧制御回路160bは、前記第二の誘導素子161bと直列接続された第二の昇圧用開閉素子164bと電流検出抵抗165bと第二の電圧制御回路168bを備え、
前記第二の電圧制御回路168bは、前記第二の昇圧用開閉素子164bが閉路して、前記車載バッテリ101から前記第二の誘導素子161bに流れる励磁電流が所定の目標電流を超過した
ときに第二の記憶回路83bをリセットして前記第二の昇圧用開閉素子164bを開路し、
前記第一の記憶回路83aが前記第一の昇圧用開閉素子164aを開路したことに伴って、当
該第一の記憶回路83aがリセット状態となってからの経過時間を計測する第一のタイマ回
路90aが駆動されると共に、前記第二の記憶回路83bをセット駆動して前記第二の昇圧用開閉素子164bを閉路し、
前記第二の記憶回路83bが前記第二の昇圧用開閉素子164bを開路したことに伴って、当
該第二の記憶回路83bがリセット状態となってからの経過時間を計測する第二のタイマ回
路90bが駆動されると共に、前記第一の記憶回路83aをセット駆動して前記第一の昇圧用開閉素子164aを閉路し、
前記第一のタイマ回路90aがタイムアップするまでは前記第一の記憶回路83aに対するセット駆動は禁止され、前記第二のタイマ回路90bがタイムアップするまでは前記第二の記憶回路83bに対するセット駆動は禁止され、
前記高圧コンデンサ163の充電電圧が所定の昇圧電圧Vhに到達したことによって前記第一及び第二の昇圧用開閉素子164a・164bは開路される。
以上のとおり、本願の請求項2に記載の発明に関連し、第一、及び第二の昇圧制御回路は、第一、及び第二の電圧制御回路を備え、当該第一、及び第二の電圧制御回路は、第一、及び第二の記憶素子を交互に反転してセット/リセットすることによって第一、及び第二の昇圧用開閉素子を介して第一、及び第二の誘導素子を交互に励磁するようになっており、交互動作の周期は第一、及び第二のタイマ回路によって規制されると共に、高圧コンデンサの充電電圧が所定の昇圧電圧に到達したことによって第一、及び第二の昇圧用開閉素子は開路されるようになっている。
従って、一方の昇圧用開閉素子が閉路しているときには他方の昇圧用開閉素子が開路し、第一、及び第二の誘導素子に対して同時に励磁電流が流れないので、車載バッテリの過電流負担が軽減されると共に、昇圧回路における発生熱が過大とならない特徴がある。また、第一、及び第二のタイマ回路を設けたので、高圧コンデンサの充電電圧が所定の目標電圧である昇圧電圧Vhに到達するまでの初期段階であって、高圧コンデンサの充電電圧が車載バッテリの2倍の電圧に満たない過渡期間に於いて、車載バッテリからの第一、又は第二の誘導素子に対する励磁電流の上昇率に比べて、第一、又は第二の誘導素子からの高圧コンデンサに対する放電電流の減少率が小さい値となることによって、昇圧用開閉素子の開路期間に誘導素子の電流が十分減衰せず、昇圧用開閉素子の次の閉路期間に目標励磁電流に到達する時間が短縮されて、その結果として高圧コンデンサへの放電期間が更に短縮される悪循環が発生し、昇圧回路が誤動作するのを防止することができる特徴がある。
また、本願の請求項3に記載の発明に関連するものとして、
前記第一、及び第二のタイマ回路90a、90bが駆動されてからタイムアップするまでの動作時間は、前記高圧コンデンサ163の充電電圧が前記昇圧電圧Vhに達する直前の状態で、前記第一、又は第二の誘導素子161a、161bに蓄積された電磁エネルギーが前記高圧コンデンサ163に放出するのに必要となる第一時間よりも長い時間であると共に、
前記車載バッテリ101の電圧が最大値であるときに前記第一、又は第二の昇圧用開閉素
子164a、164bが閉路してから前記第一、又は第二の誘導素子161a、161bに対する励磁電流が目標電流に到達するまでの第二時間よりは短い時間に設定されている。
以上のとおり、本願の請求項3に記載の発明に関連し、第一、及び第二のタイマ回路のタイムアップ時間は、第一、及び第二の誘導素子が高圧コンデンサに対して電磁エネルギーを放出する最小時間よりも長く、車載バッテリによって目標電流まで励磁される最小時間よりは短い時間となっている。
従って、高圧コンデンサの充電電圧が所定の昇圧電圧に接近した値となっている通常状態に於いては、第一、及び第二の誘導素子に蓄積された電磁エネルギーは確実に高圧コンデンサへ放出されると共に、高圧コンデンサの充電電圧が車載バッテリの電源電圧の2倍の値以下である充電開始の初期状態に於いては昇圧回路の誤動作が防止され、初期状態を過ぎた後では第一、及び第二の昇圧回路による第一、及び第二の誘導素子の交互励磁の周期が第一、及び第二のタイマ回路の設定時間の影響を受けて変動することがなく、車載バッテリの発生電圧に比例した頻度で交互励磁される特徴がある。
尚、高圧コンデンサの放電頻度はエンジン回転速度に比例して高くなり、多くの充電エネルギーを必要とするが、エンジン回転速度が高いときは充電用発電機の出力も大きくなって車載バッテリの発生電圧も上昇し、高圧コンデンサへの充電頻度が増大する関係にあって、相互協調する特徴がある。
更に、本願の請求項4に記載の発明に関連するものとして、
前記マイクロプロセッサ110は、昇圧禁止信号INH0を発生し、
前記昇圧禁止信号INH0は、エンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、前記昇圧回路160Aの作
動を停止し、
アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには、前記昇圧回路160Aの作動を許可する信号であり、
前記昇圧禁止信号INH0が昇圧禁止指令を発生しているときには、車載バッテリ101から
負荷電源スイッチ106と、第一の誘導素子161a及び第一の充電ダイオード162aの直列回路
、若しくは第二の誘導素子161b及び第二の充電ダイオード162bの直列回路を介して前記高圧コンデンサ163の充電が行われ、前記昇圧回路160Aが昇圧動作を開始する時点では、前
記高圧コンデンサ163の充電電圧は前記車載バッテリ101の電源電圧に等しくなっている。
以上のとおり、本願の請求項4に記載の発明に関連し、昇圧回路の昇圧動作はマイクロプロセッサが発生する昇圧禁止信号によって制御され、エンジン停止中は昇圧動作が停止していても高圧コンデンサは車載バッテリの電源電圧まで充電され、始動操作が開始すると直ちに昇圧動作が開始し、運転中は昇圧動作を持続するようになっている。
従って、エンジン停止中に昇圧動作による電磁音が発生せず、また高圧コンデンサの高圧漏洩電流による損失が発生しない特徴がある。
また、始動操作が開始されるまでに高圧コンデンサは車載バッテリの電源電圧まで充電されていて、始動操作が開始されると直ちに昇圧動作が開始し、燃料噴射制御が必要となる所定の下限回転速度に達するまでに高圧コンデンサを目標電圧まで充電することができる特徴がある。
実施の形態2.
(1)構成の詳細な説明
次に、この発明の実施の形態2による車載エンジン制御装置について説明する。図5は、この発明の実施の形態2による車載エンジン制御装置に於ける全体回路を示すブロック図である。以下の説明では、実施の形態1に於ける図1との相違点を中心にして説明する。尚、各図に於いて同一符号は同一又は相当部分を示している。
図5に於いて、車載エンジン制御装置100Bは、マイクロプロセッサ110を主体として構成され、電気負荷群105の一部である燃料噴射用電磁弁の電磁コイル107を過励磁制御するための昇圧回路160Bと開閉制御回路170とを内蔵している。
車載エンジン制御装置100Bの外部には、図1のものと同様に車載バッテリ101が制御電
源スイッチ102と負荷電源スイッチ106を介して接続され、主電源電圧Vbaと負荷駆動電圧Vbbを供給するようになっている。また、オンオフセンサ103、アナログセンサ104、電気負荷群105が同様に接続され、電気負荷群105の中の特定の電気負荷である電磁コイル107
は燃料噴射用電磁弁を駆動するためのものであり、複数の電磁コイル107a〜107が各気筒
毎に設けられている。
次に、車載エンジン制御装置100Bの内部構成として、マイクロプロセッサ110は、例え
ば、フラッシュメモリである不揮発プログラムメモリ111B、演算処理用のRAMメモリ112、不揮発データメモリ113、多チャンネルAD変換器114と協働するようになっている。
定電圧電源回路120、デジタル入力インタフェース回路130、アナログ入力インタフェース回路140、出力インタフェース回路150、昇圧回路160B、開閉制御回路170は、図1のも
のと同様に接続されているが、昇圧回路160Bは昇圧回路160Aにおける第一、及び第二の昇圧制御回路160a、160bに代わって、第一、及び第二の昇圧制御回路260a、260bが使用されている。
また、マイクロプロセッサ110は、第一、及び第二の昇圧禁止信号INH1・INH2を発生し
、第一の昇圧禁止信号INH1はエンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、昇圧回路160Bを構成する第一の昇圧制御回路260aの作動を停止し、アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには前記昇圧回路160Bの作動を許可する信号である。
同様に、第二の昇圧禁止信号INH2はエンジンの始動操作が開始されてから、少なくとも自立回転を行うまでの期間に於いて、第二の昇圧制御回路260bの動作を停止し、第一の昇圧禁止信号INH1が発生していなければ第一の昇圧制御回路260aによって高圧コンデンサ163の充電を行うための指令信号である。
しかし、第一の昇圧禁止信号INH1と第二の昇圧禁止信号INH2によって、第一、及び第二の昇圧制御回路260a、260bの双方に対して昇圧禁止指令を発生しているときには、車載バッテリ101から負荷電源スイッチ106と、第一の誘導素子161a及び第一の充電ダイオード162aの直列回路、若しくは第二の誘導素子161b及び第二の充電ダイオード162bの直列回路を介して高圧コンデンサ163の充電が行われ、昇圧回路160Bが昇圧動作を開始する時点では、高圧コンデンサ163の充電電圧は前記車載バッテリ101の電源電圧に等しくなっている。
尚、第一の昇圧禁止信号INH1が発生すると、第一の昇圧制御回路260aと第二の昇圧制御回路260bの双方の昇圧動作を停止するようにしてもよい。
図6は、この発明の実施の形態2による車載エンジン制御装置に於ける制御回路の一部分の詳細ブロック図である。尚、図6について、図2のものとの相違点を中心にして説明する。図6に於いて、前述の昇圧回路160Bに含まれる第一の昇圧制御回路260aは、第一の昇圧用開閉素子164a、第一の電流検出抵抗165a、第一のゲート回路166a、第一の駆動抵抗167a、第一の電圧制御回路268aによって構成されており、図2における第一の電圧制御回路168aに代わって第一の電圧制御回路268aが使用されている。
第一の電圧制御回路268aは、第一の電流比較回路81a、第一の電流基準電圧82a、第一の記憶回路83a、第一の論理和素子84a、分圧抵抗85・86、電圧比較回路87、判定基準電圧88、内部ゲート回路89、タイマ回路90によって構成されていて、図2における第一の電圧制御回路168aに比べて内部ゲート回路89とタイマ回路90とが異なっている。
前述の昇圧回路160Bに含まれる第二の昇圧制御回路260bも同様であり、第二の昇圧用開閉素子164b、第二の電流検出抵抗165b、第二のゲート回路166b、第二の駆動抵抗167b、第二の電圧制御回路268bによって構成されており、図2における第二の電圧制御回路168bに代わって第二の電圧制御回路268bが使用されている。第二の電圧制御回路268bは、第一の電圧制御回路268aと同様に構成され、第二の電流比較回路81b、第二の電流基準電圧82b、第二の記憶回路83b、第二の論理和素子84b、によって構成されているが、分圧抵抗85・86、電圧比較回路87、判定基準電圧88、内部ゲート回路89、タイマ回路90は第一の電圧制御回路268aのみに設けられている。
尚、第一、及び第二の記憶回路83a・83bは、セット入力とリセット入力が共に論理「1」となると、リセット入力が優先するようになっていると共に、運転開始時の動作を確定するために、電源投入時に発生する図示しない短時間パルスによって第一の記憶回路83aをセットし、第二の記憶回路83bをリセットしておくことにより、第一、及び第二の記憶回路83a、83bが同時にセット出力を発生しないようになっている。
第一の記憶回路83aは、第二の記憶回路83bのリセット出力Rbから内部ゲート素子89を
介してセット駆動され、内部ゲート素子89は第一の記憶回路83aのリセット出力Raによって駆動されるタイマ回路90の出力によって制御されている。また、第二の記憶回路83bは
、第一の記憶回路83aのリセット出力Raから直接セット駆動され、第二の昇圧禁止信号INH2によってリセットされるようになっている。従って、マイクロプロセッサ110が第二の昇圧禁止信号INH2を発生しているときは、第二の記憶回路83bは常にリセット状態にあり、第二の昇圧用開閉素子164bは開路状態を維持している。
しかし、第一の昇圧禁止信号INH1が解除されると、第一の昇圧用開閉素子164aは、第一のゲート回路166aの出力電圧レベルが「H」(論理「1」)となって、第一の駆動抵抗167aを介して通電駆動され、第一の誘導素子161aに励磁電流が流れる。やがて、第一の電流検出抵抗165aの両端電圧が第一の電流基準電圧82aの値以上のなると、第一の電流比較回路81aの出力によって第一の記憶回路83aがリセットされて、第一の論理和素子84aと第一のゲート回路166aを介して第一の昇圧用開閉素子164aが開路し、第一の誘導素子161aに蓄積されていた電磁エネルギーが第一の充電ダイオード162aを介して高圧コンデンサ163へ放出されるようになっている。尚、第一の電流基準電圧82aの値は目標励磁電流に比例した閾値電圧となっている。
第一の記憶回路83aがリセットされると、タイマ回路90が駆動され、所定時間後には内
部ゲート回路89を介して第一の記憶回路83aが再びセットされ、第一の記憶回路83aのリセット出力Raが論理「0」となることによって第一の昇圧用開閉素子164aが再閉路することになる。
尚、内部ゲート回路89の他方の入力は第二の記憶回路83bのリセット出力Rbであり、当該リセット出力Rbは第二の昇圧禁止信号INH2によって論理「1」に維持されている。そ
の結果、第一の記憶回路83aは交互にセット/リセット動作を繰返し、第一の記憶回路83a
がリセットされて第一の昇圧用開閉素子164aが開路している時間は、タイマ回路90の設定時間に相等している。
従って、高圧コンデンサ163への充電が進行し、やがて充電電圧Vcが駆動電源電圧Vbbの2倍の値を超過すれば、第二の昇圧禁止信号INH2を解除しても制御動作は正常に進行するが、実際にはエンジン始動が完了してから第二の昇圧禁止信号INH2が解除されるようになっている。
少なくとも、高圧コンデンサ163への充電電圧Vcが駆動電源電圧Vbbの2倍の値を超過した後に、第二の昇圧禁止信号INH2が解除されると、第一の記憶回路83aのリセット出力
Raによって第二の記憶回路83bがセットされ、第二の記憶回路83bのリセット出力Rbが論理「0」になるので、たとえタイマ回路90がタイムアップしても第一の記憶回路83aはセ
ットされず、第二の誘導素子161bの励磁電流が所定の目標電流に達して第二の記憶回路83bがリセットされてから第一の記憶回路83aがセットされるようになっている。
このようにして、第一、及び第二の昇圧用開閉素子161a、161bが交互にON/OFF動作を繰返すことによって、高圧コンデンサ163の充電電圧が所定の目標高電圧を維持し、分圧抵
抗85、86による分圧電圧が目標とする昇圧電圧Vhに比例した値である所定の判定基準電
圧88を超過すると、電圧比較回路87と第一、及び第二の論理和素子84a・84bを介して第一、及び第二のゲート回路166a、166bの出力発生を停止して、第一、及び第二の昇圧用開閉素子164a、164bを開路するようになっている。
尚、第一、及び第二のタイマ回路90a、90bが駆動されてからタイムアップするまでの動作時間は、高圧コンデンサ163の充電電圧が前記昇圧電圧Vhに達する直前の状態で、第一、又は第二の誘導素子161a、161bに蓄積された電磁エネルギーが前記高圧コンデンサ163に放出するのに必要となる第一時間よりも長い時間であると共に、車載バッテリ101の電圧が最大値であるときに第一、又は第二の昇圧用開閉素子164a、164bが閉路してから第一、又は第二の誘導素子161a・161bに対する励磁電流が目標電流に到達するまでの第二時間よりは短い時間に設定されている。
(2)作用・動作の詳細な説明
次に、この発明の実施の形態2による車載エンジン制御装置について、その動作を説明する。先ず、図5に於いて、図示しない電源スイッチが閉路されると、電源リレーの出力接点である制御電源スイッチ102が閉路して、車載エンジン制御装置100Bに主電源電圧Vbaが印加される。その結果、定電圧電源回路120が例えばDC5Vの安定化電圧Vccを発
生してマイクロプロセッサ110が制御動作を開始する。
マイクロプロセッサ110はオンオフセンサ103とアナログセンサ104の動作状態と、不揮
発プログラムメモリ111Bに格納された制御プログラムの内容に応動して負荷電源リレー
を付勢して負荷電源スイッチ106を閉路すると共に、電気負荷群105に対する負荷駆動指令信号Driを発生し、電気負荷群105の中の特定の電気負荷である電磁コイル107a〜107dの
一つである電磁コイル107jに対して図3で前述した動作指令信号Drjを発生する。
図6に示す開閉制御回路170の動作は、前述の図3のタイムチャートで説明したとおり
である。一方、図6の昇圧回路160Bは、先ず第一の昇圧用開閉素子164aを断続動作することによって高圧コンデンサ163を高圧充電する。続いて、第一、及び第二の昇圧用開閉素
子164a・164bを交互に断続動作することによって高圧コンデンサ163を高圧充電状態を維
持する。
図7は、この発明の実施の形態2による車載エンジン制御装置の動作を説明するフローチャートである。図7に於いて、ステップ700は、マイクロプロセッサ110が燃料噴射制御動作を開始するステップである。続くステップ701aは、アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は図示しない始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているかどうかを判定し、始動操作が開始されたか又は既にエンジンが回転中であればYESの判定を行ってステップ701bへ移行し、エンジン停止中であ
ってしかも始動スイッチも開路されている状態ではNOの判定を行ってステップ702aへ移行する昇圧禁止判定手段となるステップである。
尚、前記始動スイッチは、運転手が操作するキースイッチであるか、又はアイドルストップ動作後の再始動に於いて自動的に閉路される始動制御スイッチのことである。
ステップ701bは、エンジンの回転速度が自立回転できる回転速度以上となったかどうかを判定し、自立回転可能であればYESの判定を行ってステップ702cへ移行し、自立回転で
きない回転速度であればNOの判定を行ってステップ702bへ移行する判定ステップである。ステップ702aでは第一、及び第二の昇圧禁止信号INH1、INH2を発生し、図6で示す第一、及び第二のケート回路166a、166bを介して第一、及び第二の昇圧用開閉素子164a、164bを開路するステップである。
尚、第一、及び第二の昇圧用開閉素子164a、164bが開路されると、高圧コンデンサ163
は第一、及び第二の誘導素子161a、161bと、第一、及び第二の充電ダイオード162a、162bを介して車載バッテリ101から充電され、高圧コンデンサ163の充電電圧は負荷駆動電圧Vbbに等しくなっている。
ステップ702bは、第一の昇圧禁止信号INH1の信号電圧レベルを「L」(論理「0」)に
し、第一の昇圧禁止信号INH1のみを解除してからステップ703へ移行するステップである
。ステップ702cは、第一、及び第二の昇圧禁止信号INH1、INH2の信号電圧レベルを「L」(論理「0」)にし、第一、及び第二の昇圧禁止信号INH1・INH2を共に解除してからステップ704bへ移行するステップである。
ステップ703は、エンジン回転速度が所定の下限回転以上となっているかどうかを判定
し、下限回転速度以上であればYESの判定を行ってステップ704bへ移行し、下限回転未満
であればNOの判定を行ってステップ704aへ移行する燃料噴射開始判定手段となるステップである。
尚、ステップ701aに於いて始動スイッチが閉路されていたときであって、まだクランク角センサによる燃料噴射の気筒順序が判別されていない低回転状態にあっては、ステップ703はNOの判定が行われるようになっている。
ステップ704aは、動作指令信号Drjの信号電圧レベルを「L」(論理「0」)にして、燃料噴射を停止して動作終了行程705へ移行するステップである。ステップ704bは、動作
指令信号Drjの信号電圧レベルを「H」(論理「1」)にして、燃料噴射を開始して動作終了行程705へ移行するステップである。動作終了行程705では、マイクロプロセッサ110
は他の制御動作を実行し、所定時間以内には動作開始ステップ700へ移行するようになっ
ている。
(3)実施形態2の要点と特徴
以上の説明で明らかなとおり、この発明の実施の形態2による車載エンジン制御装置は、
本願の請求項5に記載の発明に関連するものとして、
多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイル107a〜107dに対する開閉制御回路170と昇圧回路160Bとマイク
ロプロセッサ110とを備えた車載エンジン制御装置100Bであって、
前記昇圧回路160Bは、第一の昇圧制御回路260aによって断続励磁される第一の誘導素子161aと、当該第一の誘導素子161aと直列接続された第一の充電ダイオード162aと、第二の昇圧制御回路260bによって断続励磁される第二の誘導素子161bと、当該第二の誘導素子161bと直列接続された第二の充電ダイオード162bと、前記第一、及び第二の誘導素子161a、161bの電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオード162a、162bを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサ163を備えている。
前記開閉制御回路170は、車載バッテリ101と前記複数の電磁コイル107a〜107dの全体との間に接続された一つの低圧開閉素子171と、当該低圧開閉素子171と直列接続された逆流阻止ダイオード173と、前記高圧コンデンサ163と前記複数の電磁コイル107a〜107dの全体との間に接続された一つの高圧開閉素子172と、前記複数の電磁コイル107a〜107dの個別
の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサ110によって導通
時期と導通期間が設定される選択開閉素子174a〜174dを備え、
前記高圧開閉素子172によって急速給電が行われると共に、前記低圧開閉素子171によって開弁保持制御が行われ、
前記第一、及び第二の昇圧制御回路260a、260bは、前記第一、及び第二の誘導素子161a、161bに対する励磁電流のピーク値が同時に重複しないように、当該第一、及び第二の誘導素子を交互に同期して励磁すると共に運転開始直後の一時期に於いては一方の昇圧用開閉素子を開路して、他方の昇圧用開閉素子の断続動作によって前記高圧コンデンサに対する充電が行われ、
前記他方の昇圧用開閉素子を制御する昇圧制御回路は、当該昇圧用開閉素子の開路時間を所定の最小時間以上とするためのタイマ回路90を包含している。
以上のとおり、本願の請求項5に記載の発明に係る車載エンジン制御装置は、
燃料噴射用電磁弁を駆動する電磁コイルに対して急速給電を行なうための昇圧回路が、一つの高圧コンデンサと第一、及び第二の誘導素子を備え、第一、及び第二の昇圧制御回路によって交互に昇圧充電を行うようになっている。
従って、一方の誘導素子が高圧コンデンサへの充電動作を行っている期間に他方の誘導素子に対する励磁が行われるので、昇圧回路に対する給電電流が平均化されて、車載バッテリに対する過電流負担が軽減されると共に、昇圧回路における発生熱も分散される効果がある。
また、運転開始直後の一時期に於いては、最小遮断時間が規制された一方の昇圧回路のみを有効にしたので、高圧コンデンサの充電開始時期に於いて昇圧制御回路が誤動作するのを防止することができると共に、車載バッテリの電圧が低い寒冷始動時に於いて、車載バッテリに対する負荷電流をさらに抑制して、エンジンの始動を容易化することができる効果がある。
また、本願の請求項6に記載の発明に関連して、
前記マイクロプロセッサ110は、第二の昇圧禁止信号INH2を発生し、
前記第二の昇圧禁止信号INH2は、エンジンの始動操作が開始されてから、少なくとも自立回転を行うまでの期間に於いて、前記第二の昇圧制御回路260bの動作を停止し、第一の昇圧制御回路260aによって前記高圧コンデンサ163の充電を行うための指令信号であり、
前記第一の昇圧制御回路260aは、前記第一の誘導素子161aと直列接続された第一の昇圧用開閉素子164aと電流検出抵抗165aと第一の電圧制御回路268aを備えている。
前記第一の電圧制御回路268aは、前記第一の昇圧用開閉素子164aが閉路して、前記車載バッテリ101から前記第一の誘導素子161aに流れる励磁電流が所定の目標電流を超過した
ときに第一の記憶回路83aをリセットして前記第一の昇圧用開閉素子164aを開路し、
前記第二の昇圧制御回路260bは、前記第二の誘導素子161bと直列接続された第二の昇圧用開閉素子164bと電流検出抵抗165bと第二の電圧制御回路268bを備えている。
前記第二の電圧制御回路268bは、前記第二の昇圧用開閉素子164bが閉路して、前記車載バッテリ101から前記第二の誘導素子161bに流れる励磁電流が所定の目標電流を超過した
ときに第二の記憶回路83bをリセットして前記第二の昇圧用開閉素子164bを開路し、
前記第一の記憶回路83aは、前記第一の昇圧用開閉素子164aを開路したことに伴って、
前記第二の記憶回路83bをセット駆動して前記第二の昇圧用開閉素子164bを閉路し、
前記第二の記憶回路83bは、前記第二の昇圧用開閉素子164bを開路したことに伴って、
前記第一の記憶回路83aをセット駆動して前記第一の昇圧用開閉素子164aを閉路し、
前記第二の昇圧禁止信号INH2が昇圧禁止信号を発生すると、前記第二の記憶回路83bは
リセットされて第二の昇圧用開閉素子164bは開路状態となると共に、前記第一の記憶
回路83aにはタイマ回路90を介してセット指令が供給される。
前記タイマ回路90は、前記第一の記憶回路83aがリセットされたことによって駆動開始
し、所定の動作時間が経過してタイムアップしたことによって前記第一の記憶回路83aを
セット駆動して、前記第一の昇圧用開閉素子164aが閉路し、
前記高圧コンデンサ163の充電電圧が所定の昇圧電圧Vhに到達すると前記第一、及び第二の昇圧用開閉素子164a、164bは開路される。
以上のとおり、本願の請求項6に記載の発明に関連して、
第一、及び第二の昇圧制御回路は第一、及び第二の電圧制御回路を備え、
当該第一、及び第二の電圧制御回路は、第一、及び第二の記憶素子を交互に反転してセット/リセットすることによって第一、及び第二の昇圧用開閉素子を介して第一、及び第二の誘導素子を交互に励磁し、高圧コンデンサの充電電圧が所定の昇圧電圧に到達したことによって第一、及び第二の昇圧用開閉素子は開路されるようになっており、
運転開始時には第一の昇圧制御回路のみで高圧コンデンサの充電が行われるようになっている。
従って、一方の昇圧用開閉素子が閉路しているときには他方の昇圧用開閉素子が開路し、第一、及び第二の誘導素子に対して同時に励磁電流が流れないので、車載バッテリの過電流負担が軽減されると共に、昇圧回路における発生熱が過大とならない特徴がある。
また、運転開始時は第一の昇圧回路のみを用いて高圧コンデンサの充電を行うようにして、タイマ回路によって第一の昇圧用開閉素子の開路期間を確保するようにしたので、エンジン始動時のバッテリ負担が軽減されると共に、高圧コンデンサの充電電圧が所定の目標電圧である昇圧電圧Vhに到達するまでの初期段階であって、高圧コンデンサの充電電
圧が車載バッテリの2倍の電圧に満たない過渡期間に於いて、車載バッテリからの第一の誘導素子に対する励磁電流の上昇率に比べて、第一の誘導素子からの高圧コンデンサに対する放電電流の減少率が小さい値となることによって、昇圧用開閉素子の開路期間に誘導素子の電流が十分減衰せず、昇圧用開閉素子の次の閉路期間に目標励磁電流に到達する時間が短縮されて、その結果として高圧コンデンサへの放電期間が更に短縮される悪循環が発生し、昇圧回路が誤動作するのを防止することができる特徴がある。
また、本願の請求項7に記載の発明に関連して、
前記第一の昇圧制御回路260aが単独使用されている運転開始時に於いて、
前記タイマ回路90が駆動されてからタイムアップするまでの動作時間は、前記高圧コンデンサ163の充電電圧が前記昇圧電圧Vhに達する直前の状態で、前記第一の誘導素子161aに蓄積された電磁エネルギーが前記高圧コンデンサ163に放出するのに必要となる第一時
間よりも長い時間であると共に、
前記車載バッテリ101の電圧が最大値であるときに前記第一の昇圧用開閉素子164aが閉
路してから前記第一の誘導素子161aに対する励磁電流が目標電流に到達するまでの第二時間よりは短い時間に設定されている。
以上のとおり、本願の請求項7に記載の発明に関連して、
タイマ回路のタイムアップ時間は、第一の誘導素子が高圧コンデンサに対して電磁エネルギーを放出する最小時間よりも長く、車載バッテリによって目標電流まで励磁される最小時間よりは短い時間となっている。
従って、高圧コンデンサの充電電圧が所定の昇圧電圧に接近した値となっている通常状態に於いては、第一の誘導素子に蓄積された電磁エネルギーは確実に高圧コンデンサへ放出されると共に、
高圧コンデンサの充電電圧が車載バッテリの電源電圧の2倍の値以下である充電開始の初期状態に於いては、昇圧回路の誤動作が防止され、初期状態を過ぎた後では第一、及び第二の昇圧回路による第一、及び第二の誘導素子の交互励磁の周期がタイマ回路の設定時間の影響を受けて変動することがなく、車載バッテリの発生電圧に比例た頻度で交互励磁される特徴がある。
尚、高圧コンデンサの放電頻度はエンジン回転速度に比例して高くなり、多くの充電エネルギーを必要とするが、エンジン回転速度が高いときは充電用発電機の出力も大きくなって車載バッテリの発生電圧も上昇し、高圧コンデンサへの充電頻度が増大する関係にあって、相互協調する特徴がある。
実施の形態3.
(1)構成の詳細な説明
次に、この発明の実施の形態3による車載エンジン制御装置について説明する。図8は、この発明の実施の形態3による車載エンジン制御装置に於ける全体回路を示すブロック図である。以下、図8に基づいて、前述の図1、図5のもののとの相違点を中心にして説明する。尚、各図に於いて同一符号は同一又は相当部分を示している。
図8に於いて、車載エンジン制御装置100Cは、マイクロプロセッサ110を主体として構
成され、電気負荷群105の一部である燃料噴射用電磁弁の電磁コイル107を過励磁制御するための昇圧回路160Cと開閉制御回路170とを内蔵している。車載エンジン制御装置100Cの
外部には、図1のものと同様に車載バッテリ101が制御電源スイッチ102と負荷電源スイッチ106を介して接続され、主電源電圧Vbaと負荷駆動電圧Vbbを供給するようになってい
る。また、オンオフセンサ103、アナログセンサ104、電気負荷群105が同様に接続され、
電気負荷群105の中の特定の電気負荷である電磁コイル107は燃料噴射用電磁弁を駆動するためのものであり、複数の電磁コイル107a〜107が各気筒毎に設けられている。
次に、車載エンジン制御装置100Cの内部構成として、マイクロプロセッサ110は、例え
ばフラッシュメモリである不揮発プログラムメモリ111C、演算処理用のRAMメモリ112
、不揮発データメモリ113、多チャンネルAD変換器114と協働するようになっている。定電圧電源回路120、デジタル入力インタフェース回路130、アナログ入力インタフェース回路140、出力インタフェース回路150、昇圧回路160C、開閉制御回路170は図1のものと同
様に接続されているが、昇圧回路160Cは昇圧回路160Aにおける第一、及び第二の昇圧制御回路160a・160bに代わって、第一、及び第二の昇圧制御回路360a・360bが使用されている。
また、マイクロプロセッサ110は、第一、及び第二の昇圧禁止信号INH1・INH2を発生し
、第一の昇圧禁止信号INH1は、エンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、昇圧回路160Cを構成する第一の昇圧制御回路360aの作動を停止し、アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには、前記昇圧回路160Cの作動を許可する信号である。
同様に、第二の昇圧禁止信号INH2は、エンジンの始動操作が開始されてから、少なくとも自立回転を行うまでの期間に於いて、第二の昇圧制御回路360bの動作を停止し、第一の昇圧禁止信号INH1が発生していなければ第一の昇圧制御回路360aによって高圧コンデンサ163の充電を行うための指令信号である。
しかし、第一の昇圧禁止信号INH1と第二の昇圧禁止信号INH2によって、第一、及び第二の昇圧制御回路360a、360bの双方に対して昇圧禁止指令を発生しているときには、車載バッテリ101から負荷電源スイッチ106と、第一の誘導素子161a及び第一の充電ダイオード162aの直列回路、若しくは第二の誘導素子161b及び第二の充電ダイオード162bの直列回路を介して高圧コンデンサ163の充電が行われ、昇圧回路160Cが昇圧動作を開始する時点では、高圧コンデンサ163の充電電圧は前記車載バッテリ101の電源電圧に等しくなっている。尚、第一の昇圧禁止信号INH1が発生すると、第一の昇圧制御回路360aと第二の昇圧制御回路360bの双方の昇圧動作を停止するようにしてもよい。
図9は、この発明の実施の形態3による車載エンジン制御装置に於ける制御回路の一部分の詳細を示すブロック図である。以下、図9について、前述の図2のものとの相違点を中心にして説明する。図9に於いて、前述の昇圧回路160Cに含まれる第一の昇圧制御回路360aは、第一の昇圧用開閉素子164a、第一の電流検出抵抗165a、第一のゲート回路166a、第一の駆動抵抗167a、第一の電圧制御回路368aによって構成されており、図2における第一の電圧制御回路168aに代わって第一の電圧制御回路368aが使用されている。
第一の電圧制御回路368aは、第一の電流比較回路81a、第一の電流基準電圧82a、第一の記憶回路83a、第一の論理和素子84a、分圧抵抗85・86、電圧比較回路87、判定基準電圧88
、タイマ回路90cによって構成されていて、図2に於ける第一の電圧制御回路168aに比べ
てタイマ回路90cが異なっており内部ゲート回路を備えていない。
前述の昇圧回路160Cに含まれる第二の昇圧制御回路360bも同様であり、第二の昇圧用開閉素子164b、第二の電流検出抵抗165b、第二のゲート回路166b、第二の駆動抵抗167b、第二の電圧制御回路368bによって構成されており、図2における第二の電圧制御回路168bに代わって第二の電圧制御回路368bが使用されている。第二の電圧制御回路368bは、第一の電圧制御回路368aと同様に構成され、第二の電流比較回路81b、第二の電流基準電圧82b、第二の記憶回路83b、第二の論理和素子84b、によって構成されているが、分圧抵抗85、86、電圧比較回路87、判定基準電圧88、タイマ回路90cは第一の電圧制御回路368aのみに設けられている。
尚、第一、及び第二の記憶回路83a、83bは、セット入力とリセット入力が共に論理「1」となると、リセット入力が優先するようになっていると共に、運転開始時の動作を確定するために、電源投入時に発生する図示しない短時間パルスによって第一の記憶回路83aをセットし、第二の記憶回路83bをリセットしておくことにより、第一、及び第二の記憶回路83a、83bが同時にセット出力を発生しないようになっている。
第一の記憶回路83aは、当該第一の記憶回路83aのリセット出力Raからタイマ回路90cを介してセット駆動されるようになっている。また、第二の記憶回路83bは第一の記憶回路83aのリセット出力Raから直接セット駆動されるようになっている。マイクロプロセッサ110が第一の昇圧禁止信号INH1を発生しているときは、第一のゲート回路166aによって第一の昇圧用開閉素子164aは開路状態を維持するようになっている。
同様に、マイクロプロセッサ110が第二の昇圧禁止信号INH2を発生しているときは、第
二のゲート回路166bによって第二の昇圧用開閉素子164bは開路状態を維持するようになっている。しかし、第一の昇圧禁止信号INH1が解除されると、第一の昇圧用開閉素子164aは、第一のゲート回路166aの出力電圧レベルが「H」(論理「1」)となって、第一の駆動抵抗167aを介して通電駆動され、第一の誘導素子161aに励磁電流が流れる。やがて、第一の電流検出抵抗165aの両端電圧が第一の電流基準電圧82aの値以上のなると、第一の電流比較回路81aの出力によって第一の記憶回路83aがリセットされて、第一の論理和素子84aと第一のゲート回路166aを介して第一の昇圧用開閉素子164aが開路し、第一の誘導素子161aに蓄積されていた電磁エネルギーが第一の充電ダイオード162aを介して高圧コンデンサ163へ放出されるようになっている。尚、第一の電流基準電圧82aの値は目標励磁電流に比例した閾値電圧となっている。
第一の記憶回路83aがリセットされると、タイマ回路90cが駆動され、所定時間後には第一の記憶回路83aが再びセットされ、第一の記憶回路83aのリセット出力Raが論理「0」
となることによって第一の昇圧用開閉素子164aが再閉路することになる。その結果、第一の記憶回路83aは交互にセット/リセット動作を繰返し、第一の記憶回路83aがリセットさ
れて第一の昇圧用開閉素子164aが開路している時間はタイマ回路90cの設定時間に相等し
ている。
従って、高圧コンデンサ163への充電が進行し、やがて充電電圧Vcが駆動電源電圧Vbbの2倍の値を超過すれば、第二の昇圧禁止信号INH2を解除しても制御動作は正常に進行するが、実際にはエンジン始動が完了してから第二の昇圧禁止信号INH2が解除されるようになっている。
少なくとも、高圧コンデンサ163への充電電圧Vcが駆動電源電圧Vbbの2倍の値を超過した後に、第二の昇圧禁止信号INH2が解除されると、第一の記憶回路83aのリセット出力
Raによって第二の記憶回路83bがセットされ、第二の記憶回路83bのリセット出力Rbが論理「0」になるので、第二の昇圧用開閉素子164bが閉路して第二の誘導素子161bの励磁電流が供給され、やがて所定の目標電流に達して第二の記憶回路83bがリセットされて第二
の昇圧用開閉素子164bが開路するようになっている。
このようにして第一、及び第二の昇圧用開閉素子161a、161bが所定の時間差を於いて交互にON/OFF動作を繰返すことによって、高圧コンデンサ163の充電電圧が所定の目標高電
圧を維持し、分圧抵抗85、86による分圧電圧が目標とする昇圧電圧Vhに比例した値であ
る所定の判定基準電圧88を超過すると、電圧比較回路87と第一、及び第二の論理和素子84a、84bを介して第一、及び第二のゲート回路166a、166bの出力発生を停止して、第一、及び第二の昇圧用開閉素子164a、164bを開路するようになっている。
尚、タイマ回路90cが駆動されてからタイムアップするまでの動作時間は、車載バッテ
リ101の電圧が最大値であるときに第一、及び第二の昇圧用開閉素子164a、164bが閉路し
てから第一、及び第二の誘導素子161a、161bに対する励磁電流が目標電流に到達するまでの第二時間のバラツキ変動幅の範囲に設定されている。
(2)作用・動作の詳細な説明
次に、前述のように構成されたこの発明の実施の形態3による車載エンジン制御装置の作用・動作について、図1、図5のものとの相違点を中心にして説明する。先ず、図8に於いて、図示しない電源スイッチが閉路されると、電源リレーの出力接点である制御電源スイッチ102が閉路して、車載エンジン制御装置100Cに主電源電圧Vbaが印加される。
その結果、定電圧電源回路120が例えばDC5Vの安定化電圧Vccを発生してマイクロ
プロセッサ110が制御動作を開始する。マイクロプロセッサ110は、オンオフセンサ103と
アナログセンサ104の動作状態と、不揮発プログラムメモリ111Cに格納された制御プログ
ラムの内容に応動して負荷電源リレーを付勢して負荷電源スイッチ106を閉路すると共に
、電気負荷群105に対する負荷駆動指令信号Driを発生し、電気負荷群105の中の特定の電気負荷である電磁コイル107a〜107dの一つである電磁コイル107jに対して図3で前述した動作指令信号Drjを発生する。
図9は、この発明の実施の形態3による車載エンジン制御装置に於ける制御回路の一部分の詳細を示すブロック図である。図9に示す開閉制御回路170の動作は、前述の図3の
タイムチャートで説明したとおりである。また、図9に於ける昇圧回路160Cに供給される第一、及び第二の昇圧禁止信号INH1、INH2は、前述した図7のフローチャートで示すとおりマイクロプロセッサ110から発生する信号となっている。
図9に示す昇圧回路160Cに於いて、先ず、第二の昇圧禁止信号INH2のみが昇圧禁止状態であるときには、第一の電圧制御回路368aは第一の昇圧用開閉素子164aを断続動作することによって高圧コンデンサ163を高圧充電する。このときの、第一の昇圧用開閉素子164a
の開路期間はタイマ回路90cで設定された時間に相等している。続いて第一、及び第二の
昇圧禁止信号INH1・INH2が共に解除されると、第一、及び第二の昇圧用開閉素子164a・164bはタイマ回路90cによって設定された所定の時間差を於いて交互に断続動作することによって高圧コンデンサ163を高圧充電状態を維持する。
尚、タイマ回路90cが駆動されてからタイムアップするまでの動作時間は、車載バッテ
リ101の電圧が最大値であるときに、第一、及び第二の昇圧用開閉素子164a、164bが閉路
してから第一、及び第二の誘導素子161a、161bに対する励磁電流が目標電流に到達するまでの第二時間のバラツキ変動幅の範囲に設定されている。従って、車載バッテリ101の電
圧が最大値であるときには、第一、及び第二の昇圧用開閉素子164a、164bの開路期間と閉
路期間は同じ時間となり、一方が開路しているときには他方は閉路していることになる。
しかし、車載バッテリ101の電圧が低下しているときには、第一、及び第二の昇圧用開
閉素子164a、164bの閉路期間は、車載バッテリ101の電圧に反比例して長くなるのに対し
、開路期間はタイマ回路90cで設定された一定の時間となっている。その結果、第一、及
び第二の昇圧用開閉素子164a、164bはピーク電流の重複を回避するように時間差を於いて閉路し、双方の開閉素子が同時に閉路する重複通電期間が発生することになる。従って、車載バッテリ101の電圧が低いときであっても、速やかに高圧コンデンサ163を充電することができるようになっている。
(3)実施の形態3の変形例
以上の説明に於いて、第二の昇圧禁止信号INH2は、エンジンの始動開始から自立回転までの期間で昇圧禁止信号を発生するものとしたが、実際にはエンジンの最大回転速度の半分の回転速度以下の状態であれば昇圧禁止を行って於いても第一の昇圧制御回路のみの動作によって高圧コンデンサ163の電圧を所定値以上に維持することができるものである。
また、開閉制御回路170の高圧開閉素子172が閉路して、電磁コイル107jに対して急速給電を行っている期間には、第一、及び第二の昇圧禁止信号INH1、INH2又は昇圧禁止信号INH0を発生するようにしてもよいが、この発明によれば一対の誘導素子と一対の昇圧用開閉素子が使用されて、十分な充電能力を持っているので、急速給電中に於いても昇圧動作を持続して、高圧コンデンサ163の充電電圧の低下を最小限度に抑制することができる。
以上の説明に於いて、第一、及び第二のタイマ回路89a、89b、或いはタイマ回路90、90cで説明した各タイマ回路は、抵抗RとコンデンサCを組み合わせたRCタイマを想定して記載されているが、これらのRCタイマに代わって第一、及び第二の誘導素子161a、161bに対する励磁電流の減衰時間を測定して得られる遅延時間を適用することも可能である。この場合には、第一、及び第二の昇圧回路160a;260a;360a、160b;260b;360b内に設けられた第一、及び第二の電流検出抵抗165a、165bの接続位置を変更して、第一、及び第二の誘導素子161a、161bの正端子側に直列接続し、その両端電圧を差動増幅回路によって検出することによって第一、及び第二の誘導素子161a、161bに流れる励磁電流及び高圧コンデンサ163への放電電流を測定し、目標とする最大の励磁電流Imに達したときに第一、及び第二の開閉素子164a、164bを開路してから、例えばImx/2以下の電流に減衰した時点でタイムアップ出力を得るような比較回路を構成するのが効果的である。
(4)実施形態3の要点と特徴
以上の説明で明らかなとおり、この発明の実施の形態3による車載エンジン制御装置は、
本願の請求項8に記載の発明に関連するものとして、
多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイル107a〜107dに対する開閉制御回路170と昇圧回路160Cとマイク
ロプロセッサ110とを備えた車載エンジン制御装置100Cであって、
前記昇圧回路160Cは、第一の昇圧制御回路360aによって断続励磁される第一の誘導素子161aと、当該第一の誘導素子161aと直列接続された第一の充電ダイオード162aと、第二の昇圧制御回路360bによって断続励磁される第二の誘導素子161bと、当該第二の誘導素子161bと直列接続された第二の充電ダイオード162bと、前記第一、及び第二の誘導素子161a・161bの電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオード162a、162bを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサ163を備えている。
前記開閉制御回路170は、車載バッテリ101と前記複数の電磁コイル107a〜107dの全体との間に接続された一つの低圧開閉素子171と、当該低圧開閉素子171と直列接続された逆流
阻止ダイオード173と、前記高圧コンデンサ163と前記複数の電磁コイル107a〜107dの全体との間に接続された一つの高圧開閉素子172と、前記複数の電磁コイル107a〜107dの個別
の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサ110によって導通
時期と導通期間が設定される選択開閉素子174a〜174dを備え、
前記高圧開閉素子172によって急速給電が行われると共に前記低圧開閉素子171によって開弁保持制御が行われ、
前記第一、及び第二の昇圧制御回路360a、360bは、前記第一、及び第二の誘導素子161a、161bに対する励磁電流のピーク値が同時に重複しないように、タイマ回路90cによって設定された所定の時間差を於いて当該第一、及び第二の誘導素子を順次同期して励磁するようになっている。
以上のとおり、本願の請求項8に記載の発明に関連するこの発明の車載エンジン制御装置は、燃料噴射用電磁弁を駆動する電磁コイルに対して急速給電を行なうための昇圧回路が、一つの高圧コンデンサと第一、及び第二の誘導素子を備え、第一、及び第二の昇圧制御回路によって所定の時間差を於いて順次同期して昇圧充電を行うようになっている。
従って、一対の誘導素子に対するピーク電流の通電時期が重ならないので、昇圧回路に対する給電電流が平均化されて、車載バッテリに対する過電流負担が軽減されると共に、昇圧回路における発生熱も分散される効果がある。
また、車載バッテリの発生電圧が低下しているときには、第一、及び第二の誘導素子の励磁電流が所定の目標値に到達するまでの励磁時間が長くなるが、所定の時間差を於いて順次駆動した場合には同時励磁の時間帯が発生して、効率よく高圧コンデンサを充電することができる効果がある。
また、本願の請求項9に記載の発明に関連して、
前記第一の昇圧制御回路360aは、前記第一の誘導素子161aと直列接続された第一の昇圧用開閉素子164aと電流検出抵抗165aと第一の電圧制御回路368aを備え、
前記第一の電圧制御回路368aは、前記第一の昇圧用開閉素子164aが閉路して、前記車載バッテリ101から前記第一の誘導素子161aに流れる励磁電流が所定の目標電流を超過した
ときに第一の記憶回路83aをリセットして前記第一の昇圧用開閉素子164aを開路し、
前記第二の昇圧制御回路360bは、前記第二の誘導素子161bと直列接続された第二の昇圧用開閉素子164bと電流検出抵抗165bと第二の電圧制御回路368bを備えている。
前記第二の電圧制御回路368bは、前記第二の昇圧用開閉素子164bが閉路して、前記車載バッテリ101から前記第二の誘導素子161bに流れる励磁電流が所定の目標電流を超過した
ときに第二の記憶回路83bをリセットして前記第二の昇圧用開閉素子164bを開路し、
前記第一の記憶回路83aは、前記第一の昇圧用開閉素子164aを開路したことに伴って、
前記第二の記憶回路83bをセット駆動して前記第二の昇圧用開閉素子164bを閉路すると共
に、タイマ回路90cを駆動し、
前記タイマ回路90cは、前記第一の記憶回路83aがリセットされたことによって駆動開始し、所定の動作時間が経過してタイムアップしたことによって前記第一の記憶回路83aを
セット駆動して、前記第一の昇圧用開閉素子164aを閉路し、前記高圧コンデンサ163の充
電電圧が所定の昇圧電圧Vhに到達すると前記第一、及び第二の昇圧用開閉素子164a、164bは開路される。
以上のとおり、本願の請求項9に記載の発明に関連して、
第一、及び第二の昇圧制御回路は、第一、及び第二の電圧制御回路を備え、
当該第一、及び第二の電圧制御回路は、第一、及び第二の記憶素子を時間差を置いて順次セット駆動し、目標励磁電流に到達したことによってリセットすることによって第一、及び第二の昇圧用開閉素子を介して第一、及び第二の誘導素子を順次同期して励磁し、高圧コンデンサの充電電圧が所定の昇圧電圧に到達したことによって第一及び第二の昇圧用
開閉素子は開路されるようになっている。
従って、励磁開始時期の時間差を得るタイマ回路によって第一、及び第二の昇圧用開閉素子の開路期間を確保するようにしたので、高圧コンデンサの充電電圧が所定の目標電圧である昇圧電圧Vhに到達するまでの初期段階であって、高圧コンデンサの充電電圧が車
載バッテリの2倍の電圧に満たない過渡期間に於いて、車載バッテリからの第一、及び第二の誘導素子に対する励磁電流の上昇率に比べて、第一、及び第二の誘導素子からの高圧コンデンサに対する放電電流の減少率が小さい値となることによって、昇圧用開閉素子の開路期間に誘導素子の電流が十分減衰せず、昇圧用開閉素子の次の閉路期間に目標励磁電流に到達する時間が短縮されて、その結果として高圧コンデンサへの放電期間が更に短縮される悪循環が発生し、昇圧回路が誤動作するのを防止することができる特徴がある。
更に、本願の請求項10に記載の発明に関連するものとして、
前記タイマ回路90cが駆動されてからタイムアップするまでの動作時間は、前記車載バ
ッテリ101の電圧が最大値であるときに前記第一、及び第二の昇圧用開閉素子164a、164b
が閉路してから前記第一、及び第二の誘導素子161a、161bに対する励磁電流が目標電流に到達するまでの第二時間のバラツキ変動幅の範囲に設定されている。
このように、タイマ回路のタイムアップ時間は、車載バッテリによって目標電流まで励磁される最小時間に相当した時間となっている。
従って、車載バッテリの発生電圧が高いときには第一、及び第二の誘導素子は交互に励磁され、同時通電される時間帯は略ゼロとなるが、車載バッテリの発生電圧が低下しているときには重複通電期間が発生して、高圧コンデンサの充電所要時間が長くなるのを抑制することができる特徴がある。
また、本願の請求項11に記載の発明に関連して、
前記マイクロプロセッサ110は、第二の昇圧禁止信号INH2を発生し、
前記第二の昇圧禁止信号INH2は、エンジンの始動操作が開始されてから、少なくとも自立回転を行うまでの期間に於いて、前記第二の昇圧制御回路360bの動作を停止し、第一の昇圧制御回路360aによって前記高圧コンデンサ163の充電を行うための指令信号である。
このように、運転開始時には第一の昇圧制御回路のみで高圧コンデンサの充電が行われるようになっている。
従って、車載バッテリの電圧が低い寒冷始動時に於いて、車載バッテリに対する負荷電流を抑制して、エンジンの始動を容易化することができる特徴がある。
尚、エンジン始動時のようにエンジン回転速度が低いときには、燃料噴射頻度が低く、高圧コンデンサに対する充電時間は十分にあるので、一方の昇圧回路のみでも問題なく高圧コンデンサを充電することができるものである。
また、本願の請求項12に記載の発明に関連するものとして、
前記マイクロプロセッサ110は、更に、第一の昇圧禁止信号INH1を発生し、
前記第一の昇圧禁止信号INH1は、エンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、前記昇圧回路160B;160Cを構成する前記第一の昇圧制御回路260a;360a、又は当該第一の昇圧制御回路と前記第二の昇圧制御回路260b;360bの双方の作動を停止し、アクセルペダル又はブレーキ
ペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには前記昇圧回路160B;160Cの作動を許可する信号で
ある。
前記第一の昇圧禁止信号INH1又は当該第一の昇圧禁止信号INH1と前記第二の昇圧禁止信号INH2によって、前記第一、及び第二の昇圧制御回路260a・260b;360a・360bの双方に対
して昇圧禁止指令を発生しているときには、車載バッテリ101から負荷電源スイッチ106と、第一の誘導素子161a及び第一の充電ダイオード162aの直列回路、若しくは第二の誘導素子161b及び第二の充電ダイオード162bの直列回路を介して前記高圧コンデンサ163の充電が行われ、前記昇圧回路160B;160Cが昇圧動作を開始する時点では、前記高圧コンデンサ163の充電電圧は前記車載バッテリ101の電源電圧に等しくなっている。
以上のとおり、本願の請求項12に記載の発明に関連して、
昇圧回路の昇圧動作はマイクロプロセッサが発生する昇圧禁止信号によって制御され、エンジン停止中は昇圧動作が停止していても高圧コンデンサは車載バッテリの電源電圧まで充電され、始動操作が開始すると直ちに昇圧動作が開始し、運転中は昇圧動作を持続するようになっている。
従って、エンジン停止中に昇圧動作による電磁音が発生せず、また高圧コンデンサの高圧漏洩電流による損失が発生しない特徴がある。
また、始動操作が開始されるまでに高圧コンデンサは車載バッテリの電源電圧まで充電されていて、始動操作が開始されると直ちに昇圧動作が開始し、燃料噴射制御が必要となる所定の下限回転速度に達するまでに高圧コンデンサを目標電圧まで充電することができる特徴がある。
100A、100B、100C 電子制御装置
101 車載バッテリ
106 負荷電源スイッチ
107、107a、107b、107c、107d 電磁コイル
110 マイクロプロセッサ
160A、160B、160C 昇圧回路
160a、160b 第一、及び第二の昇圧制御回路
260a、260b 第一、及び第二の昇圧制御回路
360a、360b 第一、及び第二の昇圧制御回路
161a、161b 第一、及び第二の誘導素子
162a、162b 第一、及び第二の充電ダイオード
163 高圧コンデンサ
164a、164b 第一、及び第二の昇圧用開閉素子
165a、165b 第一、及び第二の電流検出抵抗
168a、168b 第一、及び第二の電圧制御回路
268a、268b 第一、及び第二の電圧制御回路
368a、368b 第一、及び第二の電圧制御回路
83a、83b 第一、及び第二の記憶回路
90a、90b 第一、及び第二のタイマ回路
90、90c タイマ回路
170 開閉制御回路
171 低圧開閉素子
172 高圧開閉素子
173 逆流阻止ダイオード
174a、174b、174c、174d 選択開閉素子
Vh 昇圧電圧
INH0 昇圧禁止信号
INH1、INH2 第一、及び第二の昇圧禁止信号

Claims (12)

  1. 多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイルに対する開閉制御回路と昇圧回路とマイクロプロセッサとを備えた車載エンジン制御装置であって、
    前記昇圧回路は、第一の昇圧制御回路によって断続励磁される第一の誘導素子と、当該第一の誘導素子と直列接続された第一の充電ダイオードと、第二の昇圧制御回路によって断続励磁される第二の誘導素子と、当該第二の誘導素子と直列接続された第二の充電ダイオードと、前記第一、及び第二の誘導素子の電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオードを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサを備え、
    前記開閉制御回路は、車載バッテリと前記複数の電磁コイルの全体との間に接続された一つの低圧開閉素子と、当該低圧開閉素子と直列接続された逆流阻止ダイオードと、前記高圧コンデンサと前記複数の電磁コイルの全体との間に接続された一つの高圧開閉素子と、前記複数の電磁コイルの個別の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサによって導通時期と導通期間が設定される選択開閉素子を備え、
    前記高圧開閉素子によって急速給電が行われると共に、前記低圧開閉素子によって開弁保持制御が行われ、
    前記第一、及び第二の昇圧制御回路は、前記第一、及び第二の誘導素子に対する励磁電流のピーク値が同時に重複しないように、当該第一、及び第二の誘導素子を交互に同期して励磁すると共に、交互励磁の周期を所定の最小時間以上とするためのタイマ回路を包含している、
    ことを特徴とする車載エンジン制御装置。
  2. 前記第一の昇圧制御回路は、前記第一の誘導素子と直列接続された第一の昇圧用開閉素子と電流検出抵抗と第一の電圧制御回路を備え、
    前記第一の電圧制御回路は、前記第一の昇圧用開閉素子が閉路して、前記車載バッテリから前記第一の誘導素子に流れる励磁電流が所定の目標電流を超過したときに第一の記憶回路をリセットして前記第一の昇圧用開閉素子を開路し、
    前記第二の昇圧制御回路は、前記第二の誘導素子と直列接続された第二の昇圧用開閉素子と電流検出抵抗と第二の電圧制御回路を備え、
    前記第二の電圧制御回路は、前記第二の昇圧用開閉素子が閉路して、前記車載バッテリから前記第二の誘導素子に流れる励磁電流が所定の目標電流を超過したときに第二の記憶回路をリセットして前記第二の昇圧用開閉素子を開路し、
    前記第一の記憶回路が前記第一の昇圧用開閉素子を開路したことに伴って、当該第一の記憶回路がリセット状態となってからの経過時間を計測する第一のタイマ回路が駆動されると共に、前記第二の記憶回路をセット駆動して前記第二の昇圧用開閉素子を閉路し、
    前記第二の記憶回路が前記第二の昇圧用開閉素子を開路したことに伴って、当該第二の記憶回路がリセット状態となってからの経過時間を計測する第二のタイマ回路が駆動されると共に、前記第一の記憶回路をセット駆動して前記第一の昇圧用開閉素子を閉路し、
    前記第一のタイマ回路がタイムアップするまでは前記第一の記憶回路に対するセット駆動は禁止され、
    前記第二のタイマ回路がタイムアップするまでは前記第二の記憶回路に対するセット駆動は禁止され、
    前記高圧コンデンサの充電電圧が所定の昇圧電圧Vhに到達したことによって前記第一
    、及び第二の昇圧用開閉素子は開路される、
    ことを特徴とする請求項1に記載の車載エンジン制御装置。
  3. 前記第一、及び第二のタイマ回路が駆動されてからタイムアップするまでの動作時間は、前記高圧コンデンサの充電電圧が前記昇圧電圧Vhに達する直前の状態で、前記第一、
    又は第二の誘導素子に蓄積された電磁エネルギーが前記高圧コンデンサに放出するのに必要となる第一時間よりも長い時間であると共に、前記車載バッテリの電圧が最大値であるときに前記第一、又は第二の昇圧用開閉素子が閉路してから前記第一、又は第二の誘導素子に対する励磁電流が目標電流に到達するまでの第二時間よりは短い時間に設定されている、
    ことを特徴とする請求項2に記載の車載エンジン制御装置。
  4. 前記マイクロプロセッサは、昇圧禁止信号を発生し、
    前記昇圧禁止信号は、エンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、前記昇圧回路の作動を停止し、アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには前記昇圧回路の作動を許可する信号であり、
    前記昇圧禁止信号が昇圧禁止指令を発生しているときには、車載バッテリから負荷電源スイッチと、第一の誘導素子及び第一の充電ダイオードの直列回路、若しくは第二の誘導素子及び第二の充電ダイオードの直列回路を介して前記高圧コンデンサの充電が行われ、前記昇圧回路が昇圧動作を開始する時点では、前記高圧コンデンサの充電電圧は前記車載バッテリの電源電圧に等しくなっている、
    ことを特徴とする請求項1又は請求項2に記載の車載エンジン制御装置。
  5. 多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイルに対する開閉制御回路と昇圧回路とマイクロプロセッサとを備えた車載エンジン制御装置であって、
    前記昇圧回路は、第一の昇圧制御回路によって断続励磁される第一の誘導素子と、当該第一の誘導素子と直列接続された第一の充電ダイオードと、第二の昇圧制御回路によって断続励磁される第二の誘導素子と、当該第二の誘導素子と直列接続された第二の充電ダイオードと、前記第一、及び第二の誘導素子の電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオードを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサを備え、
    前記開閉制御回路は、車載バッテリと前記複数の電磁コイルの全体との間に接続された一つの低圧開閉素子と、当該低圧開閉素子と直列接続された逆流阻止ダイオードと、前記高圧コンデンサと前記複数の電磁コイルの全体との間に接続された一つの高圧開閉素子と、前記複数の電磁コイルの個別の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサによって導通時期と導通期間が設定される選択開閉素子を備え、
    前記高圧開閉素子によって急速給電が行われると共に、前記低圧開閉素子によって開弁保持制御が行われ、
    前記第一、及び第二の昇圧制御回路は、前記第一、及び第二の誘導素子に対する励磁電流のピーク値が同時に重複しないように、当該第一、及び第二の誘導素子を交互に同期して励磁すると共に、運転開始直後の一時期に於いては一方の昇圧用開閉素子を開路して、他方の昇圧用開閉素子の断続動作によって前記高圧コンデンサに対する充電が行われ、
    前記他方の昇圧用開閉素子を制御する昇圧制御回路は、当該昇圧用開閉素子の開路時間を所定の最小時間以上とするためのタイマ回路を包含している、
    ことを特徴とする車載エンジン制御装置。
  6. 前記マイクロプロセッサは、第二の昇圧禁止信号を発生し
    前記第二の昇圧禁止信号は、エンジンの始動操作が開始されてから、少なくとも自立回転を行うまでの期間に於いて、前記第二の昇圧制御回路の動作を停止し、第一の昇圧制御回路によって前記高圧コンデンサの充電を行うための指令信号であり、
    前記第一の昇圧制御回路は、前記第一の誘導素子と直列接続された第一の昇圧用開閉素
    子と電流検出抵抗と第一の電圧制御回路を備え、
    前記第一の電圧制御回路は、前記第一の昇圧用開閉素子が閉路して、前記車載バッテリから前記第一の誘導素子に流れる励磁電流が所定の目標電流を超過したときに第一の記憶回路をリセットして前記第一の昇圧用開閉素子を開路し、
    前記第二の昇圧制御回路は、前記第二の誘導素子と直列接続された第二の昇圧用開閉素子と電流検出抵抗と第二の電圧制御回路を備え、
    前記第二の電圧制御回路は、前記第二の昇圧用開閉素子が閉路して、前記車載バッテリから前記第二の誘導素子に流れる励磁電流が所定の目標電流を超過したときに第二の記憶回路をリセットして前記第二の昇圧用開閉素子を開路し、
    前記第一の記憶回路は、前記第一の昇圧用開閉素子を開路したことに伴って、前記第二の記憶回路をセット駆動して前記第二の昇圧用開閉素子を閉路し、
    前記第二の記憶回路は、前記第二の昇圧用開閉素子を開路したことに伴って、前記第一の記憶回路をセット駆動して前記第一の昇圧用開閉素子を閉路し、
    前記第二の昇圧禁止信号が昇圧禁止信号を発生すると、前記第二の記憶回路はリセットされて第二の昇圧用開閉素子は開路状態となると共に、前記第一の記憶回路にはタイマ回路を介してセット指令が供給され、
    前記タイマ回路は、前記第一の記憶回路がリセットされたことによって駆動開始し、所定の動作時間が経過してタイムアップしたことによって前記第一の記憶回路をセット駆動して、前記第一の昇圧用開閉素子が閉路し、
    前記高圧コンデンサの充電電圧が所定の昇圧電圧Vhに到達すると、前記第一、及び第
    二の昇圧用開閉素子は開路される、
    ことを特徴とする請求項5に記載の車載エンジン制御装置。
  7. 前記第一の昇圧制御回路が単独使用されている運転開始時に於いて、
    前記タイマ回路が駆動されてからタイムアップするまでの動作時間は、前記高圧コンデンサの充電電圧が前記昇圧電圧Vhに達する直前の状態で、前記第一の誘導素子に蓄積さ
    れた電磁エネルギーが前記高圧コンデンサに放出するのに必要となる第一時間よりも長い時間であると共に、前記車載バッテリの電圧が最大値であるときに前記第一の昇圧用開閉素子が閉路してから前記第一の誘導素子に対する励磁電流が目標電流に到達するまでの第二時間よりは短い時間に設定されている、
    ことを特徴とする請求項6に記載の車載エンジン制御装置。
  8. 多気筒エンジンの各気筒に設けられた燃料噴射用電磁弁を駆動するために、当該電磁弁駆動用の複数の電磁コイルに対する開閉制御回路と昇圧回路とマイクロプロセッサとを備えた車載エンジン制御装置であって、
    前記昇圧回路は、第一の昇圧制御回路によって断続励磁される第一の誘導素子と、当該第一の誘導素子と直列接続された第一の充電ダイオードと、第二の昇圧制御回路によって断続励磁される第二の誘導素子と、当該第二の誘導素子と直列接続された第二の充電ダイオードと、前記第一、及び第二の誘導素子の電流遮断に伴う誘導電圧によって前記第一、及び第二の充電ダイオードを介して充電され、複数回の前記断続励磁によって所定の昇圧電圧Vhに充電される高圧コンデンサを備え、
    前記開閉制御回路は、車載バッテリと前記複数の電磁コイルの全体との間に接続された一つの低圧開閉素子と、当該低圧開閉素子と直列接続された逆流阻止ダイオードと、前記高圧コンデンサと前記複数の電磁コイルの全体との間に接続された一つの高圧開閉素子と、前記複数の電磁コイルの個別の電磁コイルに対してそれぞれ直列接続され、前記マイクロプロセッサによって導通時期と導通期間が設定される選択開閉素子を備え、
    前記高圧開閉素子によって急速給電が行われると共に、前記低圧開閉素子によって開弁保持制御が行われ、
    前記第一、及び第二の昇圧制御回路は、前記第一、及び第二の誘導素子に対する励磁電流のピーク値が同時に重複しないように、タイマ回路によって設定された所定の時間差を
    於いて当該第一、及び第二の誘導素子を順次同期して励磁する、
    ことを特徴とする車載エンジン制御装置。
  9. 前記第一の昇圧制御回路は、前記第一の誘導素子と直列接続された第一の昇圧用開閉素子と電流検出抵抗と第一の電圧制御回路を備え、
    前記第一の電圧制御回路は、前記第一の昇圧用開閉素子が閉路して、前記車載バッテリから前記第一の誘導素子に流れる励磁電流が所定の目標電流を超過したときに第一の記憶回路をリセットして前記第一の昇圧用開閉素子を開路し、
    前記第二の昇圧制御回路は、前記第二の誘導素子と直列接続された第二の昇圧用開閉素子と電流検出抵抗と第二の電圧制御回路を備え、
    前記第二の電圧制御回路は、前記第二の昇圧用開閉素子が閉路して、前記車載バッテリから前記第二の誘導素子に流れる励磁電流が所定の目標電流を超過したときに第二の記憶
    回路をリセットして前記第二の昇圧用開閉素子を開路し、
    前記第一の記憶回路は、前記第一の昇圧用開閉素子を開路したことに伴って、前記第二の記憶回路をセット駆動して前記第二の昇圧用開閉素子を閉路すると共に、タイマ回路を駆動し、
    前記タイマ回路は、前記第一の記憶回路がリセットされたことによって駆動開始し、所定の動作時間が経過してタイムアップしたことによって前記第一の記憶回路をセット駆動して、前記第一の昇圧用開閉素子を閉路し、
    前記高圧コンデンサの充電電圧が所定の昇圧電圧Vhに到達すると前記第一、及び第二
    の昇圧用開閉素子は開路される、
    ことを特徴とする請求項8に記載の車載エンジン制御装置。
  10. 前記タイマ回路が駆動されてからタイムアップするまでの動作時間は、前記車載バッテリの電圧が最大値であるときに前記第一、及び第二の昇圧用開閉素子が閉路してから前記第一、及び第二の誘導素子に対する励磁電流が目標電流に到達するまでの第二時間のバラツキ変動幅の範囲に設定されている、
    ことを特徴とする請求項9に記載の車載エンジン制御装置。
  11. 前記マイクロプロセッサは、第二の昇圧禁止信号を発生し、
    前記第二の昇圧禁止信号は、エンジンの始動操作が開始されてから、少なくとも自立回転を行うまでの期間に於いて、前記第二の昇圧制御回路の動作を停止し、第一の昇圧制御回路によって前記高圧コンデンサの充電を行うための指令信号である、
    ことを特徴とする請求項9に記載の車載エンジン制御装置。
  12. 前記マイクロプロセッサは、更に、第一の昇圧禁止信号を発生し、
    前記第一の昇圧禁止信号は、エンジンの始動用電動機を回転駆動するための始動スイッチが開路されているか、又はエンジンが自立回転していないときには、前記昇圧回路を構成する前記第一の昇圧制御回路又は当該第一の昇圧制御回路と前記第二の昇圧制御回路の双方の作動を停止し、アクセルペダル又はブレーキペダルの操作を検出するスイッチの状態変化を含む始動予兆信号の発生、又は前記始動スイッチが閉路されたことによって始動操作が開始されたことが検出されるか、若しくは現にエンジンが自立回転しているときには、前記昇圧回路の作動を許可する信号であり、
    前記第一の昇圧禁止信号又は当該第一の昇圧禁止信号と前記第二の昇圧禁止信号によって、前記第一、及び第二の昇圧制御回路の双方に対して昇圧禁止指令を発生しているときには、車載バッテリから負荷電源スイッチと、第一の誘導素子及び第一の充電ダイオードの直列回路、若しくは第二の誘導素子及び第二の充電ダイオードの直列回路を介して前記高圧コンデンサの充電が行われ、前記昇圧回路が昇圧動作を開始する時点では、前記高圧コンデンサの充電電圧は前記車載バッテリの電源電圧に等しくなっている、
    ことを特徴とする請求項6又は請求項11に記載の車載エンジン制御装置。
JP2010112048A 2010-05-14 2010-05-14 車載エンジン制御装置 Active JP4960476B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010112048A JP4960476B2 (ja) 2010-05-14 2010-05-14 車載エンジン制御装置
CN201010550428.5A CN102242679B (zh) 2010-05-14 2010-11-08 车载发动机控制装置
DE102010050724.5A DE102010050724B4 (de) 2010-05-14 2010-11-08 Fahrzeugmotor-Steuersystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112048A JP4960476B2 (ja) 2010-05-14 2010-05-14 車載エンジン制御装置

Publications (2)

Publication Number Publication Date
JP2011241688A true JP2011241688A (ja) 2011-12-01
JP4960476B2 JP4960476B2 (ja) 2012-06-27

Family

ID=44859820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112048A Active JP4960476B2 (ja) 2010-05-14 2010-05-14 車載エンジン制御装置

Country Status (3)

Country Link
JP (1) JP4960476B2 (ja)
CN (1) CN102242679B (ja)
DE (1) DE102010050724B4 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462387B1 (ja) * 2013-04-18 2014-04-02 三菱電機株式会社 車載エンジン制御装置及びその制御方法
CN104747333A (zh) * 2015-03-11 2015-07-01 中国重汽集团济南动力有限公司 一种高压共轨喷油器的集成式驱动电路
JP6180600B1 (ja) * 2016-09-02 2017-08-16 三菱電機株式会社 車載エンジン制御装置
US9957933B2 (en) 2015-03-12 2018-05-01 Mitsubishi Electric Corporation In-vehicle engine control apparatus
JP2019056329A (ja) * 2017-09-21 2019-04-11 株式会社デンソー 噴射制御装置
CN110641249A (zh) * 2019-10-31 2020-01-03 广东美的制冷设备有限公司 一种车载空调的供电装置、车载空调及其控制方法
CN111757975A (zh) * 2019-01-28 2020-10-09 全球科技株式会社 电子发生装置、燃烧促进装置、移动体以及杀菌除臭装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852914B2 (ja) * 2012-03-30 2016-02-03 日立オートモティブシステムズ株式会社 電子制御装置
CN102679021B (zh) * 2012-05-12 2016-06-15 中国兵器工业集团第七0研究所 一种电磁阀驱动高效升压电路
CN103419662B (zh) * 2012-05-22 2015-11-25 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
JP5542884B2 (ja) * 2012-08-30 2014-07-09 三菱電機株式会社 車載エンジン制御装置
JP6353648B2 (ja) * 2013-12-10 2018-07-04 矢崎総業株式会社 半導体異常検出回路
FR3026503B1 (fr) * 2014-09-30 2016-12-30 Dav Dispositif et procede de commande pour vehicule automobile
EP3232038B1 (en) * 2014-12-08 2021-02-24 Hitachi Automotive Systems, Ltd. Fuel control device for internal combustion engine
DE102015211232A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Verfahren und Schaltung zum Erkennen einer offenen Leitung der Sinus-/Kosinus-Empfängerspule eines Resolvers
EP3339615B1 (en) * 2015-08-21 2020-11-25 Hitachi Automotive Systems, Ltd. Booster device for driving injector
KR101776403B1 (ko) * 2015-10-08 2017-09-07 현대자동차주식회사 환경차량용 배터리충전기의 운전 방법
EP3476680A1 (en) * 2017-10-24 2019-05-01 Volvo Car Corporation Method for heating an exhaust aftertreatment system and a hybrid vehicle adapted to heat an exhaust aftertreatment system
CN110461052A (zh) * 2019-07-03 2019-11-15 宁波安百利印刷有限公司 气雾递送装置的控制方法及其气雾递送装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234252A (ja) * 1996-03-01 1997-09-09 Sanyo Electric Co Ltd 低周波治療器
JPH1073059A (ja) * 1996-07-02 1998-03-17 Komatsu Ltd 誘導負荷駆動装置及びその駆動方法
JPH11141381A (ja) * 1997-11-04 1999-05-25 Honda Motor Co Ltd 電磁弁駆動回路
JP2004232493A (ja) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp 燃料噴射弁の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834204A1 (de) * 1998-07-29 2000-02-03 Delco Electronics Corp Schaltungsanordnung zur Ansteuerung eines elektromagnetischen Betätigungsorgans und Verfahren zum Betreiben einer derartigen Schaltungsanordnung
JP2003161193A (ja) * 2001-11-27 2003-06-06 Hitachi Ltd 自動車のインジェクタ駆動用昇圧回路
JP4156465B2 (ja) * 2003-08-04 2008-09-24 三菱電機株式会社 燃料噴射弁制御装置
JP2006348912A (ja) * 2005-06-20 2006-12-28 Denso Corp ピエゾインジェクタの駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234252A (ja) * 1996-03-01 1997-09-09 Sanyo Electric Co Ltd 低周波治療器
JPH1073059A (ja) * 1996-07-02 1998-03-17 Komatsu Ltd 誘導負荷駆動装置及びその駆動方法
JPH11141381A (ja) * 1997-11-04 1999-05-25 Honda Motor Co Ltd 電磁弁駆動回路
JP2004232493A (ja) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp 燃料噴射弁の制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462387B1 (ja) * 2013-04-18 2014-04-02 三菱電機株式会社 車載エンジン制御装置及びその制御方法
CN104747333A (zh) * 2015-03-11 2015-07-01 中国重汽集团济南动力有限公司 一种高压共轨喷油器的集成式驱动电路
US9957933B2 (en) 2015-03-12 2018-05-01 Mitsubishi Electric Corporation In-vehicle engine control apparatus
JP6180600B1 (ja) * 2016-09-02 2017-08-16 三菱電機株式会社 車載エンジン制御装置
DE102017105775A1 (de) 2016-09-02 2018-03-08 Mitsubishi Electric Corporation Fahrzeugmotor-Steuersystem
JP2018035784A (ja) * 2016-09-02 2018-03-08 三菱電機株式会社 車載エンジン制御装置
US10227943B2 (en) 2016-09-02 2019-03-12 Mitsubishi Electric Corporation Vehicle engine control system
DE102017105775B4 (de) * 2016-09-02 2020-02-06 Mitsubishi Electric Corporation Fahrzeugmotor-Steuersystem
JP2019056329A (ja) * 2017-09-21 2019-04-11 株式会社デンソー 噴射制御装置
CN111757975A (zh) * 2019-01-28 2020-10-09 全球科技株式会社 电子发生装置、燃烧促进装置、移动体以及杀菌除臭装置
CN110641249A (zh) * 2019-10-31 2020-01-03 广东美的制冷设备有限公司 一种车载空调的供电装置、车载空调及其控制方法
CN110641249B (zh) * 2019-10-31 2023-07-07 广东美的制冷设备有限公司 一种车载空调的供电装置、车载空调及其控制方法

Also Published As

Publication number Publication date
CN102242679B (zh) 2015-05-06
DE102010050724B4 (de) 2016-09-01
JP4960476B2 (ja) 2012-06-27
CN102242679A (zh) 2011-11-16
DE102010050724A1 (de) 2011-11-17

Similar Documents

Publication Publication Date Title
JP4960476B2 (ja) 車載エンジン制御装置
JP5542884B2 (ja) 車載エンジン制御装置
US8081498B2 (en) Internal combustion engine controller
JP5198496B2 (ja) 内燃機関のエンジンコントロールユニット
JP6104302B2 (ja) 車載エンジン制御装置
JP4871245B2 (ja) 内燃機関制御装置
US8649151B2 (en) Injector drive circuit
JP4859951B2 (ja) 車載エンジン制御装置
JP2015010555A (ja) 燃料噴射弁制御装置
US9014942B2 (en) Idling stop device and idling stop control method
JP6708189B2 (ja) 点火装置
KR20200020920A (ko) 점화 장치
CN104110316A (zh) 内燃发动机的控制装置
JP6708187B2 (ja) 点火装置
WO2015156391A1 (ja) 内燃機関用点火装置
JP6101853B2 (ja) 内燃機関の制御装置及び制御方法
JP5289417B2 (ja) 電子制御装置
JP6036909B2 (ja) 内燃機関の制御装置及び制御方法
JP5970771B2 (ja) アイドルストップ制御装置
JP6775630B1 (ja) 車載エンジン制御装置
JP5746102B2 (ja) 内燃機関の制御装置及び制御方法
JP6568260B2 (ja) 内燃機関の制御装置
JP2002180878A (ja) 電磁負荷の駆動装置
JP5692151B2 (ja) 車載電子制御装置
JP6337168B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4960476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250