JP2011209280A - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
JP2011209280A
JP2011209280A JP2011049954A JP2011049954A JP2011209280A JP 2011209280 A JP2011209280 A JP 2011209280A JP 2011049954 A JP2011049954 A JP 2011049954A JP 2011049954 A JP2011049954 A JP 2011049954A JP 2011209280 A JP2011209280 A JP 2011209280A
Authority
JP
Japan
Prior art keywords
gas sensor
solid electrolyte
detection
electrolyte body
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011049954A
Other languages
English (en)
Other versions
JP5638984B2 (ja
Inventor
Seiji Oya
誠二 大矢
Shin Yoshida
慎 吉田
Hiroko Yamada
裕子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011049954A priority Critical patent/JP5638984B2/ja
Priority to US13/045,223 priority patent/US8747634B2/en
Priority to DE102011005367A priority patent/DE102011005367A1/de
Publication of JP2011209280A publication Critical patent/JP2011209280A/ja
Application granted granted Critical
Publication of JP5638984B2 publication Critical patent/JP5638984B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

【課題】煤の昇華温度より低温となる固体電解質体の露出部をガラス被膜で絶縁し、ガス濃度の検出性能の劣化を抑制したガスセンサを提供する。
【解決手段】ガスセンサ素子及びガスセンサ素子を囲む保持部を備えたガスセンサであって、ガスセンサ素子は測定ガスが導入される間隙を有する検出素子と、検出素子に積層され発熱部を有するヒータとを備え、間隙は第1固体電解質体及び第2固体電解質体の間に形成され、検出素子は、第1固体電解質体と1対の第1ポンプ電極とを有し間隙内の酸素の汲み出し汲み入れを行う第1酸素ポンプセルと、第2固体電解質体と検知電極と基準電極とを有し第1酸素ポンプセルを制御する酸素濃度検知セルと、を有し、検出素子の表面であって、且つ検出素子の積層方向に沿う側面のうち、検出素子の長手方向に沿って保持部の先端から検知電極の少なくとも一部に至る領域が、ガラス転移点が700℃を超えるガラス被膜で被覆されている。
【選択図】図2

Description

本発明は、例えば燃焼器や内燃機関等の燃焼ガスや排気ガスに含まれる酸素、NOx等の特定ガスの濃度を検出するガスセンサに関する。
従来から、例えばエンジンの排気管等の排気系に装着され、排気ガス中における特定ガス成分の濃度を検出するガスセンサとして、固体電解質体の表面に1対の電極を配置したセルを少なくとも1つ以上有する検出素子とヒータとを一体に積層したものが知られている。
このような構成のガスセンサにおいては、検出素子の側面に固体電解質体が露出しており、排気ガスに含まれる煤等の導電性物質が露出した固体電解質体に付着することがある。この場合、煤が付着した固体電解質体のうち、煤が焼失する温度(600℃程度)より低く、固体電解質体の酸素イオン伝導性が発現する温度となる部分(例えば、200〜600℃)では、煤によるリーク電流が生じ、ガス濃度の検出性能が劣化する。
そこで、ガスセンサ素子の使用時に600℃未満の温度状態となる固体電解質体の露出部に、アルミナを主成分とするペーストを塗布して絶縁する技術が開発されている(例えば、特許文献1参照)。
特開2006-250925号公報
しかしながら、アルミナペーストを印刷手法で固体電解質体に塗布すると、ピンホールが発生するため、固体電解質体の露出部に、開気孔の存在しない緻密な絶縁膜を形成するにはアルミナペーストを複数回塗布する必要があり、生産性の点で問題がある。
そこで、本発明は、固体電解質体の露出部のうち、煤が焼失する温度より低温となる部分をガラス被膜で絶縁し、ガス濃度の検出性能の低下を抑制したガスセンサを提供することを目的とする。
上記課題を解決するため、本発明のガスセンサは、長手方向に延び、先端側が被測定ガスに晒されるガスセンサ素子と、前記ガスセンサ素子の径方向外側を取り囲むと共に、当該ガスセンサ素子の先端側を自身の先端から突出させてなる金属製のケーシングと、前記ケーシングの内側に収容されると共に、前記ガスセンサ素子の径方向外側を取り囲む絶縁性の内部部材とを備えるガスセンサであって、前記ガスセンサ素子は、第1固体電解質体と、該第1固体電解質体に配置されると共に前記被測定ガスに晒される検知電極と、前記第1固体電解質体に配置され前記検知電極と対極となる基準電極と、からなる検出素子と、前記検出素子に積層され、前記検出素子の長手方向において、少なくとも検知電極と対応する位置に発熱部を有するヒータと、を備えており、前記検出素子の側面のうち、該検出素子の長手方向に沿って前記内部部材の先端から前記検知電極の少なくとも一部に至る領域が、ガラス転移点が700℃を超えるガラス被膜で被覆されており、前記検知電極が600℃以上かつ前記ガラス被膜のガラス転移点以下で制御されている。
このように、本発明では、ヒータで温度制御される検知電極よりも低温となり、検知電極よりも後端側であって、且つ検出素子の側面である位置が、ガラス被膜によって絶縁被覆されている。このため、被測定ガスに含まれる煤等の導電性物質が、固体電解質体のうち煤が焼失する温度よりも低く、固体電解質体の酸素イオン伝導性が発現する温度となる部分(例えば、200〜600℃となる部分)には付着せず、煤等の導電性物質によるリーク電流を防止してガス濃度の検出性能を維持することができる。なお、リーク電流とは、検出素子と金属製のケーシングとの間が、煤等の導電性物質により導通することをいう。
又、ガラス被膜を成膜するためのガラススラリーは、焼成された後の検出素子(ガスセンサ素子)に塗布され、その後検出素子(ガスセンサ素子)と共に焼成される。このガラススラリーは、焼成時であっても流動特性を示すため、レベリング性が良い。そのため、1回の塗布で開気孔(検出素子の側面に連通する孔)を無くすことができ、生産性が向上する。
さらに、同一温度で比較したときに、ガラス被膜はアルミナ被膜に比べて熱膨張係数が小さく、焼成時やガスセンサ使用時に、被覆対象である検出素子に歪を生じさせることが少ない。
また、ガラス皮膜のガラス転移点が700℃を超えていると、被測定ガスに含まれる煤等の導電性物質を焼失させることができる温度域である600℃以上に固体電解質体を加熱しても、ガラス皮膜が過冷却液体への転移による熱膨張増加を起こしてガラス皮膜に亀裂が生じたり、不純物(アルカリ金属元素,Pb,P,Zn等)との反応によるガラス溶融による崩壊が起きたりすることを防止できる。
また、検知電極が600℃以上かつガラス被膜のガラス転移点以下で制御されているので、固体電解質体の動作を安定させつつ、被測定ガスに含まれる煤等の導電性物質を焼失させることができる。さらに、ガラス被膜の転移点以下で制御されているため、ガラス被膜が本来の位置からずれる(ガラス被膜が軟化して流動する事により、本来形成されていた位置から移動する)ことを防止できる。
また、本発明のガスセンサは、長手方向に延び、先端側が被測定ガスに晒されるガスセンサ素子と、前記ガスセンサ素子の径方向外側を取り囲むと共に、当該ガスセンサ素子の先端側を自身の先端から突出させてなる金属製のケーシングと、前記ケーシングの内側に収容されると共に、前記ガスセンサ素子の径方向外側を取り囲む絶縁性の内部部材と、を備えるガスセンサであって、前記ガスセンサ素子は、前記ガスセンサ素子の外部と連通しつつ前記被測定ガスが導入される間隙を有する検出素子と、前記検出素子に積層され、前記検出素子の長手方向において、少なくとも検知電極と対応する位置に発熱部を有するヒータと、を備えており、前記間隙は、間隔を開けて積層される第1固体電解質体及び第2固体電解質体の間に形成され、前記検出素子は、前記第1固体電解質体と、該第1固体電解質体に配置されると共に一方が前記間隙内に露出する1対の第1ポンプ電極とを有し、前記間隙内の酸素の汲み出し汲み入れを行う第1酸素ポンプセルと、前記第2固体電解質体と、該第2固体電解質体に配置され前記間隙内に露出する前記検知電極と、該検知電極と対極となる基準電極とを有し、前記基準電極と前記検知電極との間で起電力が生ずる酸素濃度検知セルと、を有し、前記検出素子の側面のうち、該検出素子の長手方向に沿って前記内部部材の先端から前記検知電極の少なくとも一部に至る領域が、ガラス転移点が700℃を超えるガラス被膜で被覆されており、前記検知電極が600℃以上かつ前記ガラス被膜のガラス転移点以下で制御されているガスセンサ。
このように、本発明では、複数の固体電解質体を有する検出素子(ガスセンサ)において、ヒータで温度制御される検知電極よりも低温となり、検知電極よりも後端側であって、且つ検出素子の側面である位置が、ガラス被膜によって絶縁被覆されている。このため、被測定ガスに含まれる煤等の導電性物質が、固体電解質体のうち煤が焼失する温度よりも低く、固体電解質体の酸素イオン伝導性を発現する温度となる部分(200〜600℃となる部分)には付着せず、煤等の導電性物質によるリーク電流を防止してガス濃度の検出性能を維持することができる。なお、複数の固体電解質体を有する検出素子の場合、リーク電流とは、検出素子と金属製のケーシング間のリーク電流のみならず、固体電解質体間(第1固体電解質体と第2固体電解質体との間)が、煤等の導電性物質により導通することをいう。
又、ガラス被膜を成膜するためのガラススラリーは、焼成された後のガスセンサ素子に塗布され、その後ガスセンサ素子と共に焼成される。このガラススラリーは、焼成時であっても流動特性を示すため、レベリング性が良い。そのため、1回の塗布で開気孔(検出素子の側面に連通する孔)を無くすことができ、生産性が向上する。
さらに、同一温度で比較したときに、ガラス被膜はアルミナ被膜に比べて熱膨張係数が小さく、焼成時やガスセンサ使用時に、被覆対象である検出素子に歪を生じさせることが少ない。
また、ガラス皮膜のガラス転移点が700℃を超えていると、被測定ガスに含まれる煤等の導電性物質を焼失させることができる温度域である600℃以上に固体電解質体を加熱しても、ガラス皮膜が過冷却液体への転移による熱膨張増加を起こしてガラス皮膜に亀裂が生じたり、不純物(アルカリ金属元素,Pb,P,Zn等)との反応によるガラス溶融による崩壊が起きたりすることを防止できる。
また、検知電極が600℃以上かつガラス被膜のガラス転移点以下で制御されている
ので、固体電解質体の動作を安定させつつ、被測定ガスに含まれる煤等の導電性物質を焼失させることができる。さらに、ガラス被膜の転移点以下で制御されているため、ガラス被膜が本来の位置からずれる(ガラス被膜が軟化して流動する事により、本来形成されていた位置から移動する)ことを防止できる。
前記検出素子は、前記間隙と連通されると共に、前記間隙において酸素の汲み出しまたは汲み入れが行われた前記被検出ガスが導入される測定室と、該測定室の一部に面する第3固体電解質体と、該第3固体電解質体上に配置された前記測定室内に一方が露出し、他方が前記測定室外に位置する一対の第2ポンプ電極とを備える第2酸素ポンプセルと、を有し、前記ガラス被膜には、開気孔が存在しないことが好ましい。
このように第1酸素ポンプセル、酸素濃度検知セルに加え、第2酸素ポンプセルをも有するガスセンサ素子では、第2酸素ポンプセルの一対の第2ポンプ電極に流れる電流が微小になる傾向がある。そのため、検出素子(固体電解質体)の側面に煤等の導電性物質が付着してリーク電流が流れた場合に、一対の第2ポンプ電極に流れる電流が比較的大きな影響を受けることになる。そこで、本発明では、このような3つのセルを有する検出素子の側面に対して開気孔が存在しないガラス被膜を形成することで、煤等の導電性物質の付着を防げ、一対の第2ポンプ電極に流れる電流にリーク電流の影響が及ぶのを抑制することができる。
前記ガラス被膜は、Li,Na,K,Rb,Cs,及びPbをそれぞれ3000質量ppm以下の割合で含むことが好ましく、より好ましくは、Li,Na,K,Rb,Cs,及びPbを合計で3000質量ppm以下の割合で含むと良く、さらに好ましくは、Li,Na,K,Rb,Cs,及びPbを全く含有しないほうが良い。
これらの元素の1つでも3000質量ppmを超えて含有されると、ガラス被膜の絶縁性及び耐熱性が低下する場合がある。これらの元素を全く含有しなければ、絶縁性及び耐熱性の低下が生じる可能性はより低下する。
前記ガラス被膜の先端部には、前記ガスセンサ素子表面と前記ガラス被膜表面とを外側から覆うように絶縁性セラミックス膜が形成されていることが好ましい。
このように、ガラス被膜の先端部を外側から絶縁性セラミックス膜で覆うことで、ガラス被膜の先端部からの剥離を防ぐ事が可能となる。
この発明によれば、固体電解質体の露出部のうち、煤が焼失する温度より低温となる部分をガラス被膜で絶縁しつつ被覆することで煤等の導電性物質が付着するのを抑制でき、ガス濃度の検出性能の低下を抑制することができる。
本発明の第1の実施形態に係るNOxセンサの長手方向に沿う断面図である。 NOxセンサ素子の斜視図である。 図2のA−A線に沿う断面図(各層の積層方向に沿った向きの断面図)であって、NOxセンサ素子の先端部に係る断面図である。 得られたガラス被膜及びアルミナ被膜の熱膨張係数の温度変化を示す図である。 本発明の第2の実施形態に係るNOxセンサの長手方向に沿う断面図である。 本発明の第2の実施形態に係るNOxセンサ素子の斜視図である。 本発明の第3の実施形態に係るNOxセンサ素子の斜視図である。
以下、本発明の実施形態について説明する。
以下、本発明の実施形態について説明する。
図1は本発明の第1の実施形態に係るガスセンサ(NOxセンサ)200の長手方向に沿う全体断面図、図2はNOxセンサ素子10の斜視図、図3は図2のA−A線に沿う(軸線方向に沿う)断面図であって、NOxセンサ素子10の先端部に係る断面図である。
図1において、NOxセンサ200は、排気管に固定されるためのねじ部139が外表面に形成された筒状の主体金具(特許請求の範囲の「ケーシング」に相当)138と、軸線方向(NOxセンサ200の長手方向:図中上下方向)に延びる板状形状をなすNOxセンサ素子(特許請求の範囲の「ガスセンサ素子」に相当)10と、NOxセンサ素子10の径方向周囲を取り囲むように配置される筒状のセラミックスリーブ106と、軸線方向に貫通するコンタクト挿通孔168の内壁面がNOxセンサ素子10の後端部の周囲を取り囲む状態で配置される絶縁コンタクト部材166と、NOxセンサ素子10と絶縁コンタクト部166との間に配置される6個の接続端子110(図1では、2個のみを図示)とを備えている。
主体金具138は、ステンレスから構成され、軸線方向に貫通する貫通孔154を有し、貫通孔154の径方向内側に突出する棚部152を有する略筒状形状に構成されている。この貫通孔154には、NOxセンサ素子10の先端部を自身の先端よりも突出させるように当該NOxセンサ素子10が配置されている。さらに、棚部152は、軸線方向に垂直な平面に対して傾きを有する内向きのテーパ面として形成されている。
なお、主体金具138の貫通孔154の内部には、NOxセンサ素子10の径方向周囲を取り囲む状態で環状形状のアルミナ製のセラミックホルダ151、粉末充填層153、156(以下、滑石リング153、156ともいう)、および上述のセラミックスリーブ106がこの順に先端側から後端側にかけて積層されている。これらのうち、最も先端側に位置し、NOxセンサ素子10の径方向外側を取り囲む絶縁性のセラミックホルダ151が、特許請求の範囲の「内部部材」に相当する。又、セラミックホルダ151の先端を符号151aで表す。
また、セラミックスリーブ106と主体金具138の後端部140との間には、加締めパッキン157が配置されており、セラミックホルダ151と主体金具138の棚部152との間には、滑石リング153やセラミックホルダ151を保持するための金属ホルダ158が配置されている。なお、主体金具138の後端部140は、加締めパッキン157を介してセラミックスリーブ106を先端側に押し付けるように、加締められている。この構成をとることにより、NOxセンサ素子10が排気ガス等の被測定ガスに晒された時にも、NOxセンサ素子10の表面であって且つセラミックホルダ151の先端面151aよりも後端側には、煤等の導電性物質が付着することはほとんどない。
一方、図1に示すように、主体金具138の先端側(図1における下方)外周には、NOxセンサ素子10の突出部分を覆うと共に、複数の孔部を有する金属製(例えば、ステンレスなど)二重のプロテクタである、外部プロテクタ142および内部プロテクタ143が溶接等によって取り付けられている。
そして、主体金具138の後端側外周には、外筒144が固定されている。また、外筒144の後端側(図1における上方)の開口部には、NOxセンサ素子10の6個の電極端子部220、221(図1では、2個のみを表示)とそれぞれ電気的に接続される6本のリード線146(図1では5本のみを表示)が挿通されるリード線挿通孔161が形成されたグロメット150が配置されている。
また、主体金具138の後端部140より突出されたNOxセンサ素子10の後端側(図1における上方)には、絶縁コンタクト部材166が配置される。なお、この絶縁コンタクト部材166は、NOxセンサ素子10の後端側の表面に形成される電極端子部220、221の周囲に配置される。この絶縁コンタクト部材166は、軸線方向に貫通するコンタクト挿通孔168を有する筒状形状に形成されると共に、外表面から径方向外側に突出する鍔部167が備えられている。絶縁コンタクト部材166は、鍔部167が保持部材169を介して外筒144に当接することで、外筒144の内部に保持される。
図2に示すようにNOxセンサ素子10は、第1固体電解質層11a、絶縁層14a、第2固体電解質層12a、絶縁層14b、第3固体電解質層13a、及び絶縁層14c、14dをこの順に積層した構造を有し、これらの層11a,14a,12a,14b,13a及び図示しない電極により検出素子20を構成している。さらに、第1固体電解質層11a上面に外側第1ポンプ電極11bが形成され、軸線方向Oにおいて外側第1ポンプ電極11bと重なる位置でかつ第2固体電解質層12a上面に検知電極12bが配置されている。なお、第1固体電解質層11a上面のうち、外側第1ポンプ電極11b以外の部分は、絶縁層で被覆されている。 又、検出素子20の下面にはヒータ50が積層され、全体としてNOxセンサ素子10を構成している。ヒータ50は、絶縁層14c,14d及び図示しない発熱部より構成される。なお、NOxセンサ素子10のより詳細な構成については、後述する。
ここで、第1固体電解質層11aが特許請求の範囲の「第1固体電解質体」に相当し、第2固体電解質層12aが特許請求の範囲の「第2固体電解質体」に相当する。
なお、本実施形態において使用される各固体電解質体は、全てC相、M相及びT相(立方晶、単斜晶及び正方晶)が混在する部分安定化ジルコニア焼結体よりなる。この場合、固体電解質体中のM相及びT相の一部は、M/T変態が発生する700〜1100℃において、体積変化を伴う単斜晶(M相)と正方晶(T相)との間で相変態を生じる。この時の固体電解質体の熱膨張係数の挙動は、後述する図4の「固体電解質体」のように、矢印のようなヒステリシスを示す。ここで、図4の「固体電解質体」の上側の線が常温から加熱する際の熱膨張係数の挙動、下側の線は高温の状態から冷やす際の熱膨張係数の挙動を示す。
従来のアルミナ被膜の熱膨張係数(図4の「従来側面コート」)は、冷却時の固体電解質体の熱膨張係数(図4の「固体電解質体」の下側の線)よりも大きい。このため、素子の冷却時にアルミナ被膜が素子側に引っ張られてクラックを生じやすく、アルミナ被膜は耐久性が低い。
一方、ガラス被膜の熱膨張係数(図4の「ガラス側面コート」)は、ガラス転移点以下の温度域では常に固体電解質体(図4の「固体電解質体」)の熱膨張係数よりも小さいため、検出素子の加熱及び冷却に伴う体積変化が起きても、ガラス被膜は常に圧縮される向きの力を受ける。ガラスやアルミナ等のセラミックは、引っ張り応力には弱いが圧縮応力には強い特性をもっているため、ガラス被膜は体積変化を生じても、クラックを生じにくく、耐久性が高くなる。
また、一時的に転移点以上の温度になったとしても、その温度域ではガラス粘度が下がって流動性を持つため、クラックを生じにくく、耐久性が高くなる。
図2において、検出素子20の側面(第1固体電解質層11a、第2固体電解質層12aの積層方向に沿った面であり、また、1つの固体電解質層でみたときの厚み方向に沿った面をいう)のうち、検出素子20の長手方向(軸線方向O)に沿ってセラミックホルダ151の先端151aから検知電極12b後端に至る領域Rが緻密質なガラス被膜30で被覆されている。特に、この実施形態では、領域Rを超えて先端側(検知電極12bの中央付近)及び先端151aより後端側までガラス被膜30が延びている。なお、セラミックホルダ151の先端151aは、外側第1ポンプ電極11b及び検知電極12bより後端側に位置する。
又、検出素子20とヒータ50は一体に積層されているので、通常、検出素子20とヒータ50とを区別せずにNOxセンサ素子10の側面のうち領域Rにガラス被膜30を被覆してもよい。本実施形態では、図2に示すように、検出素子20とヒータ50を含めたNOxセンサ素子10の側面の領域Rにガラス被膜30を形成している。なお、「積層方向」とは、検出素子20の各層11a〜13aを貫く方向であり、図2の上下方向である。
ガラス被膜30は、ガラス転移点が700℃を超えるガラスからなる。このガラスの組成は、SiO:40〜70wt%、アルカリ土類酸化物(MgO,CaO,SrO,及びBaOの群から選ばれる1種以上):合計10〜45wt%を少なくとも含む、非晶質ガラスを挙げることができる。ガラス被膜30のガラス転移点が700℃以下であると、後述するように検知電極12bの制御温度を600〜700℃としたとき、検知電極12b近傍の固体電解質層の温度が700℃付近となるので、ガラス被膜30が過冷却液体への転移を起こしてガラス被膜に亀裂が生じる、または不純物との反応によるガラス溶融による崩壊が生じるなど不安定となって耐熱性が低下する可能性がある。なお、ガラスの組成に含まれるアルカリ土類酸化物は、ガラス被膜30の絶縁性低下を抑えつつ、ガラススラリーの溶融性を改善する。
ガラス被膜30は、NOxセンサ素子10の側面に、ガラスの原料粉末と、その他成分(例えば焼結調整剤)とを混合分散したスラリーを塗布した後、所定温度(例えば900〜1400℃)で焼成して成膜することができる。ガラス成分を含むスラリー(ガラススラリー)は、塗布時のレベリング性が良く、ピンホールが生じ難いため、1回の塗布で開気孔のない膜が得られ、アルミナペーストの塗布より生産性が優れる。なお、ガラススラリーの焼成温度は、NOxセンサ素子10の焼成温度より低いため、NOxセンサ素子10を焼成して製造後にガラススラリーの塗布及び焼成を行う。
ガラス被膜30の厚みは特に制限されないが、NOxセンサ素子10の積層方向の厚みの1/10〜1/500程度とすることができる。
このように、NOxセンサ素子10(検出素子20)の側面であって少なくとも領域Rに相当する部分をガラス被膜30で被覆することで、ヒータ50で温度制御される検知電極12bより低温となり、検知電極12bよりも後端側で且つ検出素子20の側面である位置のすべてが絶縁被覆される。このため、排気ガスに含まれる煤等の導電性物質は固体電解質層11a〜13aの側面のうち、煤が焼失する温度よりも低く、固体電解質層の酸素イオン伝導性が発現する温度となる部分(200〜600℃となる部分)には直接付着せず、煤等の導電性物質によるリーク電流を防止してガス濃度(NOx濃度)の検出性能を維持することができる。
又、後述するように、同一温度で比較したときに、ガラス被膜はアルミナ被膜に比べて熱膨張係数が小さく、焼成時やガスセンサ使用時に、被覆対象であるNOxセンサ素子10(検出素子20)に歪を生じさせることが少ない。
なお、検知電極12bはヒータ50の発熱により各固体電解質層11a〜13aの活性温度付近に温度制御され、るので、検出素子20のうち検知電極12bよりも先端側に位置する部位では、煤が付着したとしても当該煤は焼失する。このため、検知電極12bよりも先端側は各固体電解質層11a〜13aの側面をガラス被膜30によって被覆する必要はない。又、検知電極12bより先端側では、ガラス被膜30のガラス転移点近傍の温度(700℃超)に到達する部分があるので、検出素子20の側面のうち700℃を超える部分にはガラス被膜30を被覆しないようにする。
従って、検知電極12bより先端側へのガラス被膜30の被覆領域を、NOxセンサ200が使用されるガスの温度や、検知電極12bより先端側の到達温度に応じて、ガラス転移点との兼ね合いで調整することが好ましい。
一方、NOxセンサ素子10(検出素子20)の側面のうち、セラミックホルダ151の先端151aより後端は、ガラス被膜30を被覆しなくてよいが、好ましくは、セラミックホルダ151の後端までガラス被膜30を被覆するとよい。この構成をとることで、セラミックホルダ151とNOxセンサ素子10との間に煤が侵入しても、NOxセンサ素子10に煤が付着することがなくなる。更に好ましくは、NOxセンサ素子10の径方向外側を取り囲む最も後端側の部材(図1の例ではセラミックスリーブ106)の後端より後端部分までガラス被膜を被覆するのがよい。ガラス被膜30の後端がセラミックホルダ151の先端151aとセラミックスリーブ106の後端との間に存在すると、当該ガラス被膜30の後端がガラス被膜30の被覆されている箇所と被覆されていない箇所との境目となって素子表面に段差が生じる。そして、この段差部分でNOxセンサ素子10を保持するようになるため、この段差に応力が集中して素子の折れの原因となる。しかしながら、セラミックスリーブ106よりも後端側までガラス被膜30が形成されていれば、NOxセンサ素子10を保持する部分は段差がなく平滑であるため、NOxセンサ素子10に部分的に応力が集中することは無く、素子折れが生じ難くなる。
ガラス被膜30を以下の方法で測定したとき、開気孔が存在しないことが好ましい。上記したように、ガラススラリーは塗布時のレベリング性が良いため、1回の塗布で開気孔(検出素子20の側面に連通する孔)を無くすことができ、複数回の塗布に比べて生産性が向上する。
開気孔の有無の測定方法:
(1)NOxセンサ素子10の側面にガラス被膜30を被覆した後、ヒータ50に通電し、第1固体電解質体12aの抵抗(インピーダンス)が100Ωとなるようにヒータ50の通電を制御する。そして、第1固体電解質体12aの抵抗が100Ωとなった時刻から600秒後に第2酸素ポンプセル13に流れる第2ポンプ電流Ip2(後述)を、オフセット値として測定する。
(2)次に、NOxセンサ素子10の側面(ガラス被膜30を含む)にカーボンを厚み1μm以上被覆(カーボンスプレー)する。このカーボン被膜は、粒径1μm以下のカーボン粒が10質量%以上存在することが必要である。
(3)カーボン被覆後のNOxセンサ素子10のオフセット値を(1)と同様にして測定し、カーボン被覆前後のオフセット値の差が0.03μA未満であれば、開気孔が存在しないと判定する。
ガラス被膜30は、Li,Na,K,Rb,Cs,及びPbをそれぞれ3000質量ppm以下の割合で含むか、これら元素を含まないことが好ましい。これらの元素の1つでも3000質量ppmを超えて含有されると、ガラス被膜30の絶縁性及び耐熱性が劣化する場合がある。なお、Li,Na,K,Rb,Cs,及びPbを含まないほうがより好ましいが(0ppm)、これらは不可避不純物として含まれる可能性がある。
ガラス被膜30は、Alを1〜50質量%含むことが好ましい。Alを1質量%以上含むと高温での絶縁性が向上し、Al粒子のアンカー効果により、耐熱性も向上する。但し、Alの含有量が50質量%を超えると、ガラスの流動性が低くなり、焼成時のレベリング性が低下してピンホールが生じる場合がある。
又、ガラス被膜30がPbを含まないと、耐熱性及び環境対策の点から好ましい。
また、ガラス被膜30は、非晶質ガラスにて構成されるものに限定されない。例えば、ガラススラリーに核形成剤(TiO,ZrO,Fe,V,NiO,Cr,Pt,及びAuの群から選ばれる1種以上)を2〜35質量%含有させると、スラリーを焼成後に結晶化して結晶化ガラスとなり、耐熱性が向上するので好ましい。結晶化ガラスとは、焼成前の状態では、DTA(示差熱分析)で吸熱反応であるガラス転移点を測定することができるが、焼成(例えば、900℃)することにより結晶化し、DTA(示差熱分析)で少なくとも焼成前の転移点と近い温度域(±100℃)では、吸熱反応が存在しなくなるものをいう。
核形成剤を含むガラスの組成としては、例えば、シリカ粉末:18質量%、アルカリ土類酸化物:23質量%、TiO(核形成剤) :23質量%、希土類酸化物:17質量%、ZnO:16質量%、B:3質量%が挙げられる。なお、希土類酸化物としては、La,Y,CeO,Pr11,Nd等が挙げられるが、好ましくはLaがよい。
次に、図3を参照し、NOxセンサ素子10の先端側の断面構造について説明する。
NOxセンサ素子10は、第1固体電解質層11a、絶縁層14a、第2固体電解質層12a、絶縁層14b、第3固体電解質層13a、及び絶縁層14c、14dをこの順に積層した構造を有する。間隔を開けて積層される第1固体電解質層11aと第2固体電解質層12aとの層間に検出室16が画成され、検出室16の左端(入口)に配置された第1拡散抵抗体15aを介して外部から被測定ガスGMが導入される。
検出室16のうち入口と反対端には第2拡散抵抗体15bが配置され、第2拡散抵抗体15bを介して検出室16の右側には、検出室16と連通する測定室18が画成されている。測定室18は、第2固体電解質層12aを貫通して第1固体電解質層11aと第3固体電解質層13aとの層間に形成されている。
ここで、検出室16が特許請求の範囲の「間隙」に相当する。
絶縁層14c、14dの間にはNOxセンサ素子10の軸線方向に沿って延びる長尺板状の発熱部50aが埋設されている。発熱部50aは検出素子20を活性温度に昇温させ、各固体電解質層11a〜13aの酸素イオンの伝導性を高めて動作を安定化させるために用いられる。
発熱部50aは絶縁層14c、14dで挟まれ、全体としてヒータ50を構成し、NOxセンサ200(NOxセンサ素子10)の長手方向(つまり、軸線方向O)において、発熱部50aは検知電極12bの対応する位置に少なくとも配置されている。ここで、「対応する位置」とは、NOxセンサ素子10の長手方向において、発熱部50aと検知電極12bの少なくとも一部が重なりを生じることをいう。つまり、発熱部50aと検知電極12bの少なくとも一部が重なりを生じていれば、ヒータ50により検知電極12bの温度を良好に制御出来るため、発熱部50aのその他の部分が検知電極12bの後端より後端側に位置したり、検知電極12bの先端より先端側に位置してもよい。検知電極12bの制御温度は、各固体電解質層11a〜13aの動作を安定させつつ、自身の表面に付着した煤を焼失させられるよう、例えば600〜700℃とするのが好ましい。なお、絶縁層14a〜14dはアルミナを主体とし、第1拡散抵抗体15a及び第2拡散抵抗体15bはアルミナ等の多孔質物質からなる。又、発熱部50aは白金等からなる。
第1酸素ポンプセル11は、酸素イオン伝導性を有するジルコニアを主体とする第1固体電解質層11aと、これを挟持するように配置された内側第1ポンプ電極11c及び対極となる第1対極電極(外側第1ポンプ電極)11bとを備え、内側第1ポンプ電極11cは検出室16に面している。内側第1ポンプ電極11c及び外側第1ポンプ電極11bはいずれも白金を主体とし、各電極の表面は多孔質体からなる保護層11e、11dでそれぞれ覆われている。内側第1ポンプ電極11c及び外側第1ポンプ電極11bが、特許請求の範囲の「1対の第1ポンプ電極」に相当する。
酸素濃度検出セル12は、ジルコニアを主体とする第2固体電解質層12aと、これを挟持するように配置された検知電極12b及び基準電極12cとを備え、検知電極12bは内側第1ポンプ電極11cより下流側で検出室16に面している。検知電極12b及び基準電極12cはいずれも白金を主体としている。
なお、絶縁層14bは、第2固体電解質層12aに接する基準電極12cが内部に配置されるように切り抜かれ、その切り抜き部には多孔質体が充填されて基準酸素室17を形成している。そして、酸素濃度検出セル12に予め微弱な一定値の電流を流すことにより、酸素を検出室16から基準酸素室17内に送り込み、基準電極12cの周囲を基準となる酸素濃度雰囲気にする。
第2酸素ポンプセル13は、ジルコニアを主体とする第3固体電解質層13aと、第3固体電解質層13aのうち測定室18に面した表面に配置された内側第2ポンプ電極13b及び対極となる第2対極電極(対極第2ポンプ電極13c)とを備えている。内側第2ポンプ電極13b及び対極第2ポンプ電極13cはいずれも白金を主体とする。
なお、対極第2ポンプ電極13cは、第3固体電解質層13a上における絶縁層14bの切り抜き部に配置され、基準電極12cに対向して基準酸素室17に面している。内側第2ポンプ電極13b及び対極第2ポンプ電極13cが、特許請求の範囲の「1対の第2ポンプ電極」に相当する。第3固体電解質層13aが特許請求の範囲の「第3固体電解質体」に相当する。
次に、NOxセンサ素子10の動作の一例について説明する。まず、エンジンが始動されて外部電源から電力の供給を受けると、公知の制御回路(図示せず)を介して発熱部50aが作動し、第1酸素ポンプセル11、酸素濃度検出セル12、第2酸素ポンプセル13を活性温度まで加熱する。そして、各セル11〜13が活性温度まで加熱されると、第1酸素ポンプセル11は、検出室16に流入した被測定ガス(排気ガス)GM中の過剰な酸素を内側第1ポンプ電極11cから第1対電極11bへ向かって汲み出す。
このとき、検出室16内の酸素濃度は、酸素濃度検出セル12の電極間にて生じる起電力(電極間電圧)Vsに対応したものとなるため、この電極間電圧Vsが一定電圧V1(例えば425mV)になるように第1酸素ポンプセル11に通電する第1ポンプ電流Ip1の流す方向及び電流の大きさを制御することにより、検出室16内の酸素濃度を所定の低酸素濃度に調整する。
酸素濃度が調整された被測定ガスGNは測定室18に向かってさらに流れる。そして、第2酸素ポンプセル13に対して、被測定ガスGN中のNOxが酸素とN2に分解する程度の一定電圧Vp2(例えば450mV)を印加することにより、NOxが窒素と酸素に分解される。そして、NOxの分解により生じた酸素が測定室18から汲み出されるように、第2酸素ポンプセル13に第2ポンプ電流Ip2が流れることになる。この際、第2ポンプ電流Ip2とNOx濃度の間には略直線関係があるため、この第2ポンプ電流Ip2を検出することにより被測定ガス中のNOx濃度を検出することができる。
図5は本発明の第2の実施形態に係るガスセンサ(NOxセンサ)202の長手方向に沿う全体断面図、図6はNOxセンサ素子300の斜視図である。なお、第2の実施形態に係るガスセンサ202は、NOxセンサ素子300の構成が異なること以外は、第1の実施形態に係るガスセンサ200と同一であるので、同一構成部分を同一符号を付して説明を省略する。
NOxセンサ素子300においては、図6に示すように、検出素子20の表面であって、検出素子20の側面に加え、検出素子20の表裏面(上記側面と隣接する2面)にも領域Rを超えてガラス被膜32が被覆されている。
さらに、NOxセンサ素子300の先端側には、検出素子20(NOxセンサ素子300)表面とガラス被膜32の先端側表面とを外側から覆い、かつ検出素子20の先端を完全に覆うように多孔質状の絶縁性セラミックス膜42が形成されている。なお、ガラス被膜32は通気性が無いため、酸素ポンピングに影響しないよう電極11bを避けて形成されるが、絶縁性セラミックス膜42は多孔質(気孔率40%程度)で通気性があるため、電極11bを覆っても酸素ポンピングに影響を与えない。
このように、ガラス被膜32の先端部絶縁性セラミックス膜42で覆うことで、ガラス被膜32の先端部からの剥離を確実に防ぐ事が可能となるため、ガラス被膜32の耐久性が向上する。
図7は本発明の第3の実施形態に係るガスセンサ(NOxセンサ)が有するNOxセンサ素子310の斜視図である。なお、第3の実施形態に係るガスセンサは、NOxセンサ素子310の構成が異なること以外は、第1の実施形態に係るガスセンサ200と同一であるので、説明および図示を省略する。
NOxセンサ素子310においては、NOxセンサ素子300と同様、検出素子20の表面であって、検出素子20の側面に加え、検出素子20の表裏面(上記側面と隣接する2面)にも領域Rを超えてガラス被膜32が被覆されている。
さらに、NOxセンサ素子310の先端側には、検出素子20(NOxセンサ素子300)表面とガラス被膜32の先端部表面とを外側から覆うように多孔質状の絶縁性セラミックス膜44が形成されている。但し、絶縁性セラミックス膜44は、ガラス被膜32の先端部を覆っているものの、検出素子20(NOxセンサ素子310)の先端側は覆わず、電極11bの先端側を含む検出素子20の先端は露出している。
第3の実施形態においても、少なくともガラス被膜32の先端部が外側から絶縁性セラミックス膜44で覆われているため、ガラス被膜32の先端部からの剥離を防ぐ事が可能となり、ガラス被膜32の耐久性が向上する。
なお、上記した図5、図6の例では、ガラス被膜32がガスセンサ素子300,310の表裏面及び側面の4面をすべて覆い、かつガラス被膜32の先端部を覆うように絶縁性セラミックス膜42、44を形成しているが、図2の例のように、検出素子20の表裏面が絶縁層で被覆あるいは構成されている場合には、固体電解質層が露出する左右(2つ)の側面にのみガラス被膜30を被覆し、そのガラス被膜30の先端部上を絶縁性セラミックス膜にて覆ってもよい。
本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
例えば、上記実施形態においては、図3に示すように、内側第1ポンプ電極11cが臨む検出室16に検知電極12bが配置されているが、その代わりに、検出室16と別の室に検知電極12bが配置されていてもよい。このようなNOxセンサ素子構造は、例えば特開2004−354400号公報(図3)に記載されており、このNOxセンサ素子は固体電解質層が2層である。つまり、このNOxセンサ素子構造では、第2固体電解質体12aと第3固体電解質体13aとが共通となる。
同様に、第1固体電解質体11aと第3固体電解質体13aとが共通となるようなNOxセンサ素子構造であってもよい。
又、ガスセンサとしては、NOxセンサの他、酸素センサが挙げられる。
上記実施形態にて説明した構成を有するNOxセンサ素子の側面に、以下の組成のガラススラリーを、印刷乾燥後の膜厚が40μm(焼成後の厚みが20μm)となるようにスクリーン印刷で1回塗布した後、1000℃で焼成してガラス被膜を成膜した。なお、このガラス被膜のガラス転移点は750℃であった。なお、ガラススラリー及びガラス被膜の膜厚はレーザー膜厚径を用いて測定し、ガラス被膜のガラス転移点はDTA(示差熱分析)を用いて測定した。
ガラススラリーは、シリカ粉末:60質量%、アルミナ:20質量%、MgO:5質量%、CaO:15質量%からなるガラス粉末を湿式混合により分散して得た。なお、分散剤は、ブチルカルビトールを用いた。
比較として、アルミナ100質量%からなるスラリーを、上記と同様にしてアルミナシートに1回塗りした後、1500℃で焼成して成膜した。
それぞれ得られたガラス被膜及びアルミナ被膜について、以下の方法で開気孔の有無を測定したところ、アルミナ被膜はオフセット値が0.09μAとなり、開気孔が存在するとみなされた。一方、ガラス被膜はオフセット値が0.01μAとなり、開気孔が存在しないとみなされた。これより、ガラス被膜は1回塗りで開気孔の無い被膜が得られることが判明した。
開気孔の有無の測定方法:
(1)NOxセンサ素子の側面にガラス被膜を被覆した後、ヒータに通電し、第1固体電解質体の抵抗(インピーダンス)が100Ωとなるようにヒータの通電を制御する。そして、第1固体電解質体の抵抗が100Ωとなった時刻から600秒後の第2酸素ポンプセル13に流れる第2ポンプ電流Ip2の値を、オフセット値として測定する。
(2)次に、NOxセンサ素子の側面(ガラス被膜を含む)にカーボンを厚み1μm以上被覆(カーボンスプレー)する。このカーボン被膜は、粒径1μm以下のカーボン粒が10質量%以上存在することが必要である。
(3)カーボン被覆後のNOxセンサ素子のオフセット値を(1)と同様にして測定し、カーボン被覆前後のオフセット値の差が0.03μA未満であれば、開気孔が存在しないと判定した。
又、図4に、固体電解質層、得られたガラス被膜及びアルミナ被膜の熱膨張係数の温度変化を示す。同一温度で比較したときに、ガラス被膜はアルミナ被膜に比べて熱膨張係数が小さく、焼成時やガスセンサ使用時に、被覆対象である検出素子に歪を生じさせることが少ないことが判明した。なお、この熱膨張係数の測定には、TMA(熱機械分析装置)を用いた。また、この測定では、熱膨張係数を測定する際の試料として一定の大きさ、厚みを持ったバルク体を用いたが、複数の検出素子から、固体電解質体、得られたガラス被膜及びアルミナ被膜に相当する試料をそれぞれ削りだして測定しても良い。
10,300,310 NOxセンサ素子(ガスセンサ素子)
11 第1酸素ポンプセル
11a 第1固体電解質体
11b 第1ポンプ電極の他方
11c 第1ポンプ電極の一方
12 酸素濃度検知セル
12a 第2固体電解質体
12b 検知電極
12c 基準電極
13 第2酸素ポンプセル
13a 第3固体電解質体
13b 第2ポンプ電極の他方
13c 第2ポンプ電極の一方
16 間隙(検出室)
18 測定室
20 検出素子
30、32 ガラス被膜
42、44 絶縁性セラミックス膜
50 ヒータ
50a 発熱部
138 主体金具(ケーシング)
151 セラミックホルダ(内部部材)

200 ガスセンサ

Claims (5)

  1. 長手方向に延び、先端側が被測定ガスに晒されるガスセンサ素子と、前記ガスセンサ素子の径方向外側を取り囲むと共に、当該ガスセンサ素子の先端側を自身の先端から突出させてなる金属製のケーシングと、前記ケーシングの内側に収容されると共に、前記ガスセンサ素子の径方向外側を取り囲む絶縁性の内部部材とを備えるガスセンサであって、
    前記ガスセンサ素子は、第1固体電解質体と、該第1固体電解質体に配置されると共に前記被測定ガスに晒される検知電極と、前記第1固体電解質体に配置され前記検知電極と対極となる基準電極と、からなる検出素子と、
    前記検出素子に積層され、前記検出素子の長手方向において、少なくとも検知電極と対応する位置に発熱部を有するヒータと、を備えており、
    前記検出素子の側面のうち、該検出素子の長手方向に沿って前記内部部材の先端から前記検知電極の少なくとも一部に至る領域が、ガラス転移点が700℃を超えるガラス被膜で被覆されており、前記検知電極が600℃以上かつ前記ガラス被膜のガラス転移点以下で制御されているガスセンサ。
  2. 長手方向に延び、先端側が被測定ガスに晒されるガスセンサ素子と、
    前記ガスセンサ素子の径方向外側を取り囲むと共に、当該ガスセンサ素子の先端側を自身の先端から突出させてなる金属製のケーシングと、前記ケーシングの内側に収容されると共に、前記ガスセンサ素子の径方向外側を取り囲む絶縁性の内部部材と、を備えるガスセンサであって、
    前記ガスセンサ素子は、前記ガスセンサ素子の外部と連通しつつ前記被測定ガスが導入される間隙を有する検出素子と、前記検出素子に積層され、前記検出素子の長手方向において、少なくとも検知電極と対応する位置に発熱部を有するヒータと、を備えており、
    前記間隙は、間隔を開けて積層される第1固体電解質体及び第2固体電解質体の間に形成され、
    前記検出素子は、
    前記第1固体電解質体と、該第1固体電解質体に配置されると共に一方が前記間隙内に露出する1対の第1ポンプ電極とを有し、前記間隙内の酸素の汲み出し汲み入れを行う第1酸素ポンプセルと、
    前記第2固体電解質体と、該第2固体電解質体に配置され前記間隙内に露出する検知電極と、該検知電極と対極となる基準電極とを有し、前記基準電極と前記検知電極との間で起電力が生ずる酸素濃度検知セルと、を有し、
    前記検出素子の側面のうち、該検出素子の長手方向に沿って前記内部部材の先端から前記検知電極の少なくとも一部に至る領域が、ガラス転移点が700℃を超えるガラス被膜で被覆されており、前記検知電極が600℃以上かつ前記ガラス被膜のガラス転移点以下で制御されているガスセンサ。
  3. 前記検出素子は、前記間隙と連通されると共に、前記間隙において酸素の汲み出しまたは汲み入れが行われた前記被検出ガスが導入される測定室と、該測定室の一部に面する第3固体電解質体と、該第3固体電解質体上に配置された前記測定室内に一方が露出し、他方が前記測定室外に位置する一対の第2ポンプ電極とを備える第2酸素ポンプセルと、を有し、
    前記ガラス被膜には、開気孔が存在しない請求項2記載のガスセンサ。
  4. 前記ガラス被膜は、Li,Na,K,Rb,Cs,及びPbをそれぞれ3000質量ppm以下の割合で含む請求項1〜3のいずれか記載のガスセンサ。
  5. 前記ガラス被膜の先端部には、前記ガスセンサ素子表面と前記ガラス被膜表面とを外側から覆うように絶縁性セラミックス膜が形成されている請求項1〜4のいずれか記載のガスセンサ。
JP2011049954A 2010-03-11 2011-03-08 ガスセンサ Active JP5638984B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011049954A JP5638984B2 (ja) 2010-03-11 2011-03-08 ガスセンサ
US13/045,223 US8747634B2 (en) 2010-03-11 2011-03-10 Gas-sensor
DE102011005367A DE102011005367A1 (de) 2010-03-11 2011-03-10 Gas-Sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010053926 2010-03-11
JP2010053926 2010-03-11
JP2011049954A JP5638984B2 (ja) 2010-03-11 2011-03-08 ガスセンサ

Publications (2)

Publication Number Publication Date
JP2011209280A true JP2011209280A (ja) 2011-10-20
JP5638984B2 JP5638984B2 (ja) 2014-12-10

Family

ID=44558914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049954A Active JP5638984B2 (ja) 2010-03-11 2011-03-08 ガスセンサ

Country Status (3)

Country Link
US (1) US8747634B2 (ja)
JP (1) JP5638984B2 (ja)
DE (1) DE102011005367A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250641A (ja) * 1988-08-12 1990-02-20 Nec Corp ダイレクトメモリアクセスコントローラによるデイジタル信号挿入方式
JP2014035221A (ja) * 2012-08-07 2014-02-24 Toyota Motor Corp 排ガスセンサ
WO2014091963A1 (ja) * 2012-12-10 2014-06-19 日本碍子株式会社 センサ素子及びガスセンサ
JP2015002319A (ja) * 2013-06-18 2015-01-05 日亜化学工業株式会社 発光装置とその製造方法
JP2015155887A (ja) * 2014-01-17 2015-08-27 日本特殊陶業株式会社 NOxセンサ
JP2016014659A (ja) * 2014-06-09 2016-01-28 日本碍子株式会社 センサ素子及びガスセンサ
US9297779B2 (en) 2012-08-07 2016-03-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas sensor
JP2018054544A (ja) * 2016-09-30 2018-04-05 日本特殊陶業株式会社 ガスセンサ
RU2692520C1 (ru) * 2018-07-17 2019-06-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Способ получения электропроводящих полимерных пленок на поверхности оксидных стекол для определения содержания оксидов азота в воздушной среде
JPWO2019189089A1 (ja) * 2018-03-30 2021-04-22 日本碍子株式会社 セラミック積層体及びガスセンサ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533426B2 (ja) * 2014-08-25 2019-06-19 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
US20180252670A1 (en) * 2017-03-03 2018-09-06 Ngk Spark Plug Co., Ltd. Mixed-potential-type sensor
US10739300B2 (en) * 2017-03-31 2020-08-11 Ngk Insulators, Ltd. Sensor element
WO2022180567A1 (en) * 2021-02-24 2022-09-01 Ssf Plastics India Private Limited A child-resistant closure with twin locking

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113550U (ja) * 1984-01-10 1985-08-01 日産自動車株式会社 酸素センサ
JPH01219662A (ja) * 1988-02-29 1989-09-01 Ngk Spark Plug Co Ltd 酸素検出素子の製造方法
JPH08220058A (ja) * 1995-02-17 1996-08-30 Tokyo Yogyo Co Ltd 酸素センサプローブ及びその製造方法
JPH08278278A (ja) * 1995-04-03 1996-10-22 Tokyo Yogyo Co Ltd 水素センサプローブ及びその製造方法
JPH0921782A (ja) * 1995-07-07 1997-01-21 Yazaki Corp 酸素濃度センサ
JP2000346827A (ja) * 1999-04-01 2000-12-15 Ngk Spark Plug Co Ltd ガスセンサ
JP2005195516A (ja) * 2004-01-08 2005-07-21 Ngk Spark Plug Co Ltd 積層型ガスセンサ素子及びその製造方法並びにそれを備えるガスセンサ
JP2006250925A (ja) * 2005-02-08 2006-09-21 Ngk Spark Plug Co Ltd ガスセンサ及びその製造方法
JP2007218893A (ja) * 2006-01-23 2007-08-30 Denso Corp ガスセンサ素子の製造方法
JP2009080111A (ja) * 2007-09-07 2009-04-16 Denso Corp ガス濃度検出素子及びその製造方法
JP2009115781A (ja) * 2007-10-17 2009-05-28 Ngk Spark Plug Co Ltd ガスセンサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377801A (en) * 1981-10-15 1983-03-22 Bendix Autolite Corporation Oxygen sensor for detecting the oxygen content of an internal combustion engine exhaust gas system
EP1041381B1 (en) 1999-04-01 2018-07-25 Ngk Spark Plug Co., Ltd. Gas sensor
JP3860590B2 (ja) 2004-09-22 2006-12-20 日本碍子株式会社 ガスセンサ及び窒素酸化物センサ
US8257564B2 (en) * 2004-11-30 2012-09-04 Ngk Spark Plug Co., Ltd. Gas sensor, and gas sensor manufacturing method
US7951277B2 (en) * 2005-02-08 2011-05-31 Ngk Spark Plug Co., Ltd. Gas sensor and method for manufacturing the same
DE102008032268A1 (de) * 2007-07-11 2009-01-15 NGK Spark Plug Co., Ltd., Nagoya-shi Ammoniakgassensor
JP5105488B2 (ja) * 2008-07-09 2012-12-26 日本特殊陶業株式会社 ガスセンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113550U (ja) * 1984-01-10 1985-08-01 日産自動車株式会社 酸素センサ
JPH01219662A (ja) * 1988-02-29 1989-09-01 Ngk Spark Plug Co Ltd 酸素検出素子の製造方法
JPH08220058A (ja) * 1995-02-17 1996-08-30 Tokyo Yogyo Co Ltd 酸素センサプローブ及びその製造方法
JPH08278278A (ja) * 1995-04-03 1996-10-22 Tokyo Yogyo Co Ltd 水素センサプローブ及びその製造方法
JPH0921782A (ja) * 1995-07-07 1997-01-21 Yazaki Corp 酸素濃度センサ
JP2000346827A (ja) * 1999-04-01 2000-12-15 Ngk Spark Plug Co Ltd ガスセンサ
JP2005195516A (ja) * 2004-01-08 2005-07-21 Ngk Spark Plug Co Ltd 積層型ガスセンサ素子及びその製造方法並びにそれを備えるガスセンサ
JP2006250925A (ja) * 2005-02-08 2006-09-21 Ngk Spark Plug Co Ltd ガスセンサ及びその製造方法
JP2007218893A (ja) * 2006-01-23 2007-08-30 Denso Corp ガスセンサ素子の製造方法
JP2009080111A (ja) * 2007-09-07 2009-04-16 Denso Corp ガス濃度検出素子及びその製造方法
JP2009115781A (ja) * 2007-10-17 2009-05-28 Ngk Spark Plug Co Ltd ガスセンサ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250641A (ja) * 1988-08-12 1990-02-20 Nec Corp ダイレクトメモリアクセスコントローラによるデイジタル信号挿入方式
JP2014035221A (ja) * 2012-08-07 2014-02-24 Toyota Motor Corp 排ガスセンサ
US9297779B2 (en) 2012-08-07 2016-03-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas sensor
US9528961B2 (en) 2012-08-07 2016-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas sensor
WO2014091963A1 (ja) * 2012-12-10 2014-06-19 日本碍子株式会社 センサ素子及びガスセンサ
EP2930503A4 (en) * 2012-12-10 2016-07-20 Ngk Insulators Ltd SENSOR ELEMENT AND GAS SENSOR
JPWO2014091963A1 (ja) * 2012-12-10 2017-01-05 日本碍子株式会社 センサ素子及びガスセンサ
US9871170B2 (en) 2013-06-18 2018-01-16 Nichia Corporation Light emitting device and method for manufacturing same
JP2015002319A (ja) * 2013-06-18 2015-01-05 日亜化学工業株式会社 発光装置とその製造方法
US10355173B2 (en) 2013-06-18 2019-07-16 Nichia Corporation Method for manufacturing light emitting device
JP2015155887A (ja) * 2014-01-17 2015-08-27 日本特殊陶業株式会社 NOxセンサ
JP2016014659A (ja) * 2014-06-09 2016-01-28 日本碍子株式会社 センサ素子及びガスセンサ
JP2018054544A (ja) * 2016-09-30 2018-04-05 日本特殊陶業株式会社 ガスセンサ
JPWO2019189089A1 (ja) * 2018-03-30 2021-04-22 日本碍子株式会社 セラミック積層体及びガスセンサ
JP7307718B2 (ja) 2018-03-30 2023-07-12 日本碍子株式会社 セラミック積層体及びガスセンサ
RU2692520C1 (ru) * 2018-07-17 2019-06-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Способ получения электропроводящих полимерных пленок на поверхности оксидных стекол для определения содержания оксидов азота в воздушной среде

Also Published As

Publication number Publication date
JP5638984B2 (ja) 2014-12-10
US8747634B2 (en) 2014-06-10
DE102011005367A1 (de) 2011-12-15
US20110220496A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5638984B2 (ja) ガスセンサ
US10247695B2 (en) Electrode for gas sensor, and gas sensor
JP6533426B2 (ja) ガスセンサ素子及びガスセンサ
US4559126A (en) Electrochemical device
JP5373837B2 (ja) ガスセンサ素子及びガスセンサ
US8591712B2 (en) Gas sensor element and gas sensor
JP4035555B2 (ja) ガスセンサ素子及びこれを用いたガスセンサ
JP6577408B2 (ja) ガスセンサ素子およびガスセンサ
JP2006153885A (ja) 混合ガスにおけるガス成分の濃度を突き止めるためのセンサエレメントおよび該センサエレメントの製造方法
US6936148B2 (en) Gas sensor element having at least two cells
WO2020246174A1 (ja) ガスセンサ素子の製造方法、ガスセンサ素子及びガスセンサ
JP5996981B2 (ja) ガスセンサ素子、及びガスセンサ
JP2004226171A (ja) 酸素濃度検出装置
US5773894A (en) Insulation layer system for the electrical isolation circuits
JP7339896B2 (ja) ガスセンサ
JP6650855B2 (ja) ガスセンサ
US10215726B2 (en) Sensor element for detecting at least one property of a measured gas in a measured gas chamber, and method for manufacturing the same
JP2008298781A (ja) 測定ガスの物理的な特性を測定するためのセンサ素子
JP3678747B2 (ja) 電流回路の電気的分離のための絶縁層系
JP2000097905A (ja) NOxガス濃度測定装置及びNOxガス濃度測定方法
KR20040099332A (ko) 절연재 및 가스 센서
WO2019054255A1 (ja) ガスセンサ素子およびガスセンサ
JP2020144087A (ja) センサ素子およびガスセンサ
JP4007892B2 (ja) ガスセンサ素子及びこれを用いたガスセンサ
KR20170073518A (ko) 측정 가스 챔버 내의 측정 가스의 적어도 하나의 특성을 검출하기 위한 센서 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5638984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250