JP3860590B2 - ガスセンサ及び窒素酸化物センサ - Google Patents

ガスセンサ及び窒素酸化物センサ Download PDF

Info

Publication number
JP3860590B2
JP3860590B2 JP2004275283A JP2004275283A JP3860590B2 JP 3860590 B2 JP3860590 B2 JP 3860590B2 JP 2004275283 A JP2004275283 A JP 2004275283A JP 2004275283 A JP2004275283 A JP 2004275283A JP 3860590 B2 JP3860590 B2 JP 3860590B2
Authority
JP
Japan
Prior art keywords
gas
space
measured
oxygen
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004275283A
Other languages
English (en)
Other versions
JP2004354400A5 (ja
JP2004354400A (ja
Inventor
伸秀 加藤
邦彦 中垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2004275283A priority Critical patent/JP3860590B2/ja
Publication of JP2004354400A publication Critical patent/JP2004354400A/ja
Publication of JP2004354400A5 publication Critical patent/JP2004354400A5/ja
Application granted granted Critical
Publication of JP3860590B2 publication Critical patent/JP3860590B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、例えば、車両の排気ガスや大気中に含まれるO2、NO、NO2、SO2、CO2、H2O等の酸化物や、CO、CnHm等の可燃ガスを測定するガスセンサ及び窒素酸化物センサに関する。
従来より、燃焼ガス等の被測定ガス中のNOxを測定する方法として、RhのNOx還元性を利用し、ジルコニア等の酸素イオン導伝性の固体電解質上にPt電極及びRh電極を形成したセンサを用い、これら両電極間の起電力を測定するようにした手法が知られている。
しかしながら、そのようなセンサは、被測定ガスである燃焼ガス中に含まれる酸素濃度の変化によって起電力が大きく変化するばかりでなく、NOxの濃度変化に対して起電力変化が小さく、そのためにノイズの影響を受けやすいという問題がある。
また、NOxの還元性を引き出すためには、CO等の還元ガスが必須になるところから、一般に、大量のNOxが発生する燃料過少の燃焼条件下では、COの発生量がNOxの発生量を下回るようになるため、そのような燃焼条件下に形成される燃焼ガスでは、測定ができないという欠点があった。
前記問題点を解決するために、被測定ガス存在空間に連通した第1の内部空所と該第1の内部空所に連通した第2の内部空所にNOx分解能力の異なるポンプ電極を配したNOxセンサと、第1の内部空所内の第1のポンプセルでO2濃度を調整し、第2の内部空所内に配された分解ポンプでNOを分解し、分解ポンプに流れるポンプ電流からNOx濃度を測定する方法が、例えば特許文献1に明らかにされている。
更に、特許文献2には、酸素濃度が急変した場合でも第2の内部空所内の酸素濃度が一定に制御されるように、第2の内部空所内に補助ポンプ電極を配したセンサ素子が明らかにされている。
特開平8−271476号公報 特開平9−113484号公報
ところで、ガスセンサを自動車エンジン等の内燃機関の排気系に取り付けて前記内燃機関を駆動させた場合、通常は、図32の実線aに示すように、酸素濃度の変化に応じてセンサ出力が0を基点として比例的に変化するが、特定の運転条件においては、実線bに示すように、センサ出力が全体的にシフトアップすることが判明した。
一般に、自動車エンジンの排気ガスの全圧力は、図33に示すように、一定の静圧と排気圧の脈動によって生じる動圧からなり、該動圧の変動周期は、エンジンの爆発周期と同期しているが、センサ出力がシフトアップする原因を調査した結果、排気圧の脈動分(=動圧)が静圧に対して大きいときにシフトアップが生じることがわかった。
即ち、図34に示すように、動圧と静圧との比(動圧/静圧)に対するセンサ出力のシフト量を測定した結果、動圧/静圧が約25%以下の場合は、シフト量はほぼ0であるが、動圧/静圧が約25%を超えた段階からシフト量が比例的に増加することがわかった。
従って、動圧が大きくなると、第1空間での主ポンプでの酸素ポンピング量と被測定ガス中の酸素濃度との相関性がどうしても悪くなり、この第1空間での酸素濃度の乱れは、第1空間に連通する第2空間での酸素濃度の制御及びNOx検知部である検出電極での測定精度の劣化を引き起こすおそれがある。
本発明はこのような課題を考慮してなされたものであり、被測定ガス中に発生する排気圧の脈動の影響を回避することができ、検出電極での測定精度の向上を図ることができるガスセンサ及び窒素酸化物センサを提供することを目的とする。
本発明に係るガスセンサは、外部空間における被測定ガス中の被測定ガス成分の量を測定するガスセンサであって、少なくとも、前記外部空間に接する固体電解質と、前記固体電解質内部に形成された内部空所と、前記外部空間からガス導入口を介して所定の拡散抵抗の基に前記被測定ガスを導入するためのスリットで形成された拡散律速手段と、前記内部空所の内外に形成された内側ポンプ電極と外側ポンプ電極を有し、かつ、前記外部空間から導入された前記被測定ガスに含まれる酸素を前記電極間に印加される制御電圧に基づいてポンピング処理するポンプ手段とを具備したガスセンサにおいて、前記拡散律速手段の断面形状を形成する1因子の寸法を、10μm以下にして構成する。
前記ポンプ手段での限界電流値Ipは、以下の限界電流理論式で近似される。
Ip≒(4F/RT)×D×(S/L)×(POe−POd)
なお、Fはファラデー定数(=96500A/sec)、Rは気体定数(=82.05cm3・atm/mol・K)、Tは絶対温度(K)、Dは拡散係数(cm2/sec)、Sは拡散律速手段の断面積(cm2)、Lは拡散律速手段の通路長(cm)、POeは拡散律速手段の外側における酸素分圧(atm)、POdは拡散律速手段の内側における酸素分圧(atm)を示す。
そして、この発明は、前記限流電流理論式における拡散律速手段の断面積Sの形成因子を規定するものであり、特に、断面積Sを形成する寸法の1因子を10μm以下にするものである。
この場合、拡散律速手段における壁面抵抗によって排気圧の脈動(=動圧)が減衰され、具体的には、動圧と静圧との比(動圧/静圧)が25%以下のレベルにまで減衰するため、動圧の変動によるセンサ出力のシフトアップ現象を有効に抑圧することができる。
そして、前記構成において、前記拡散律速手段の断面形状が少なくとも1つの横型のスリットで形成されている場合は、前記1因子を前記スリットの縦方向の長さにしてもよい。また、前記拡散律速手段の断面形状が少なくとも1つの縦型のスリットで形成されている場合は、前記1因子を前記スリットの横方向の長さにしてもよい。
また、前記構成において、前記ガス導入口と拡散律速手段との間に緩衝空間を設けるようにしてもよい。通常、外部空間における排気圧の脈動によってガス導入口を通じて酸素がセンサ素子に急激に入り込むことになるが、この外部空間からの酸素は、直接処理空間に入り込まずに、その前段の緩衝空間に入り込むことになる。つまり、排気圧の脈動による酸素濃度の急激な変化は、緩衝空間によって打ち消され、内部空所に対する排気圧の脈動の影響はほとんど無視できる程度となる。
その結果、処理空間におけるポンプ手段での酸素ポンピング量と被測定ガス中の酸素濃度との相関性がよくなり、測定用ポンプ手段あるいは濃度検出手段での測定精度の向上が図られることになると同時に、内部空所を例えば空燃比を求めるためのセンサとして兼用させることが可能となる。
また、前記構成において、前記ガス導入口と前記内部空所(処理空間)との間に目詰まり防止部と緩衝空間とをシリーズに設け、前記目詰まり防止部の前面開口で前記ガス導入口を構成し、前記目詰まり防止部と前記緩衝空間の間に、前記被測定ガスに対して所定の拡散抵抗を付与する拡散律速部を設けるようにしてもよい。
この場合、外部空間の被測定ガス中に発生する粒子物(スート、オイル燃焼物等)が緩衝空間の入り口付近にて詰まるということが回避され、より高精度に所定ガス成分を測定することが可能となり、高精度な状態を長期にわたって維持できるようになる。
また、前記構成において、前記ポンプ手段で、前記内部空所に導入された前記外部空間からの被測定ガスに含まれる酸素をポンピング処理して、前記内部空所(処理空間)における酸素分圧を前記被測定ガス中の所定ガス成分が分解され得ない所定の値に制御するようにしてもよい。
また、前記ポンプ手段にてポンピング処理された後の被測定ガス中に含まれる所定ガス成分を触媒作用及び/又は電気分解により分解させ、該分解によって発生した酸素をポンピング処理する測定用ポンプ手段とを具備し、前記測定用ポンプ手段のポンピング処理によって該測定用ポンプ手段に流れるポンプ電流に基づいて前記被測定ガス中の前記所定ガス成分を測定するようにしてもよい。
あるいは、前記ポンプ手段にてポンピング処理された後の被測定ガス中に含まれる所定ガス成分を触媒作用により分解させ、該分解によって発生した酸素の量と基準ガスに含まれる酸素の量との差に応じた起電力を発生する酸素分圧検出手段とを具備し、前記酸素分圧検出手段にて検出された起電力に基づいて前記被測定ガス中の前記所定ガス成分を測定するようにしてもよい。
次に、本発明は、外部空間における被測定ガス中の窒素酸化物成分の量を測定する窒素酸化物センサであって、少なくとも、前記外部空間に接する酸素イオン伝導性固体電解質からなる基体と、前記固体電解質内に形成され、前記外部空間と連通した第1の内部空所と、所定の拡散抵抗の下に前記被測定ガスを前記第1の内部空所へ導入するためのスリットで形成された第1の拡散律速手段と、前記第1の内部空所内外に形成された第1の内側ポンプ電極と第1の外側ポンプ電極を有し、かつ、前記外部空間から導入された前記被測定ガスに含まれる酸素を前記電極間に印加される制御電圧に基づいてポンピング処理して、前記第1の内部空所内の酸素分圧を実質的にNOが分解され得ない所定の値に制御する主ポンプ手段と、前記第1の内部空所と連通した第2の内部空所と、所定の拡散抵抗の下に前記第1の内部空所内でポンピング処理された雰囲気を前記第2の内部空所へ導入するためのスリットで形成された第2の拡散律速手段と、前記第2の内部空所内外に形成された第2の内側ポンプ電極と第2の外側ポンプ電極を有し、かつ、前記第1の内部空所から導入された前記雰囲気中に含まれるNOを触媒作用及び/又は電気分解により分解させ、該分解によって発生した酸素をポンピング処理する測定用ポンプ手段とを具備し、前記測定用ポンプ手段のポンピング処理によって該測定用ポンプ手段に流れるポンプ電流に基づいて前記被測定ガス中の窒素酸化物の量を測定する窒素酸化物センサにおいて、少なくとも、1つの拡散律速手段の断面形状を形成する1因子の寸法を、10μm以下にして構成する。
これにより、拡散律速手段における壁面抵抗によって排気圧の脈動(=動圧)が減衰され、具体的には、動圧と静圧との比(動圧/静圧)が25%以下のレベルにまで減衰するため、動圧の変動によるセンサ出力のシフトアップ現象を有効に抑圧することができる。
また、本発明は、外部空間における被測定ガス中の窒素酸化物成分の量を測定する窒素酸化物センサであって、少なくとも、前記外部空間に接する酸素イオン伝導性固体電解質からなる基体と、前記固体電解質内に形成され、前記外部空間と連通した第1の内部空所と、所定の拡散抵抗の下に前記被測定ガスを前記第1の内部空所へ導入するためのスリットで形成された第1の拡散律速手段と、前記第1の内部空所内外に形成された第1の内側ポンプ電極と第1の外側ポンプ電極を有し、かつ、前記外部空間から導入された前記被測定ガスに含まれる酸素を前記電極間に印加される制御電圧に基づいてポンピング処理して、前記第1の内部空所内の酸素分圧を実質的にNOが分解され得ない所定の値に制御する主ポンプ手段と、前記第1の内部空所と連通した第2の内部空所と、所定の拡散抵抗の下に前記第1の内部空所内でポンピング処理された雰囲気を前記第2の内部空所へ導入するためのスリットで形成された第2の拡散律速手段と、前記第2の内部空所内外に形成された第2の内側測定電極と第2の外側測定電極を有し、かつ、前記第1の内部空所から導入された前記雰囲気中に含まれるNOを触媒作用により分解させ、該分解によって発生した酸素の量と基準ガスに含まれる酸素の量との差に応じた起電力を発生する酸素分圧検出手段とを具備し、前記酸素分圧検出手段にて検出された起電力に基づいて前記被測定ガス中の窒素酸化物の量を測定する窒素酸化物センサにおいて、少なくとも、1つの拡散律速手段の断面形状を形成する1因子の寸法を、10μm以下にして構成する。
この場合も、拡散律速手段における壁面抵抗によって排気圧の脈動(=動圧)が減衰され、具体的には、動圧と静圧との比(動圧/静圧)が25%以下のレベルにまで減衰するため、動圧の変動によるセンサ出力のシフトアップ現象を有効に抑圧することができる。
以上説明したように、本発明に係るガスセンサ及び窒素酸化物センサによれば、被測定ガス中に発生する排気圧の脈動の影響を回避することができ、検出電極での測定精度の向上を図ることができる。
以下、本発明に係るガスセンサを例えば車両の排気ガスや大気中に含まれるO2、NO、NO2、SO2、CO2、H2O等の酸化物や、CO、CnHm等の可燃ガスを測定するガスセンサに適用したいくつかの実施の形態例を図1A〜図31を参照しながら説明する。
第1の実施の形態に係るガスセンサ10Aは、図1A、図1B及び図2に示すように、ZrO2等の酸素イオン導伝性固体電解質を用いたセラミックスによりなる例えば6枚の固体電解質層12a〜12fが積層されて構成されたセンサ素子14を有する。
このセンサ素子14は、下から1層目及び2層目が第1及び第2の基板層12a及び12bとされ、下から3層目及び5層目が第1及び第2のスペーサ層12c及び12eとされ、下から4層目及び6層目が第1及び第2の固体電解質層12d及び12fとされている。
第2の基板層12bと第1の固体電解質層12dとの間には、酸化物測定の基準となる基準ガス、例えば大気が導入される空間16(基準ガス導入空間16)が、第1の固体電解質層12dの下面、第2の基板層12bの上面及び第1のスペーサ層12cの側面によって区画、形成されている。
そして、第2の固体電解質層12fの下面と第1の固体電解質層12dの上面との間には、被測定ガス中の酸素分圧を調整するための第1室18と、被測定ガス中の酸素分圧を微調整し、更に被測定ガス中の酸化物、例えば窒素酸化物(NOx)を測定するための第2室20が区画、形成される。
また、センサ素子14の先端に形成されたガス導入口22と前記第1室18は、第1の拡散律速部26を介して連通され、第1室18と第2室20は、第2の拡散律速部28を介して連通されている。
ここで、第1及び第2の拡散律速部26及び28は、第1室18及び第2室20にそれぞれ導入される被測定ガスに対して所定の拡散抵抗を付与するものである。第1の拡散律速部26は、図1Aに示すように、2本の横長のスリット30及び32にて形成されている。具体的には、この第1の拡散律速部26は、第2のスペーサ層12eの前端部分であって第2の固体電解質層12fの下面に接する部分に形成された横長の開口が第1室18まで同一の開口幅で形成されたスリット30と、第2のスペーサ層12eの前端部分であって第1の固体電解質層12dの上面に接する部分に形成された横長の開口が第1室18まで同一の開口幅で形成されたスリット32を有して構成されている。
この第1の実施の形態では、各スリット30及び32はほぼ同じ断面形状を有し、図1Aに示すように、縦方向の長さtaを10μm以下、横方向の長さtbを約2mmとしている。
第2の拡散律速部28も前記第1の拡散律速部26と同様の断面形状を有する2本の横長のスリット34及び36にて形成されている。第2の拡散律速部28のスリット34及び36内に、ZrO2等からなる多孔質体を充填、配置して、この第2の拡散律速部28の拡散抵抗が第1の拡散律速部26の拡散抵抗よりも大きくするようにしてもよい。第2の拡散律速部28の拡散抵抗は第1の拡散律速部26のそれよりも大きい方が好ましいが、小さくても問題はない。
そして、前記第2の拡散律速部28を通じて、第1室18内の雰囲気が所定の拡散抵抗の下に第2室20内に導入されることとなる。
また、前記第2の固体電解質層12fの下面のうち、前記第1室18を形づくる下面全面に、平面ほぼ矩形状の多孔質サーメット電極(例えばAu1%を含むPt・ZrO2のサーメット電極)からなる内側ポンプ電極40が形成され、前記第2の固体電解質層12fの上面のうち、前記内側ポンプ電極40に対応する部分に、外側ポンプ電極42が形成されており、これら内側ポンプ電極40、外側ポンプ電極42並びにこれら両電極40及び42間に挟まれた第2の固体電解質層12fにて電気化学的なポンプセル、即ち、主ポンプセル44が構成されている。
そして、前記主ポンプセル44における内側ポンプ電極40と外側ポンプ電極42間に、外部の可変電源46を通じて所望の制御電圧(ポンプ電圧)Vp1を印加して、外側ポンプ電極42と内側ポンプ電極40間に正方向あるいは負方向にポンプ電流Ip1を流すことにより、前記第1室18内における雰囲気中の酸素を外部空間に汲み出し、あるいは外部空間の酸素を第1室18内に汲み入れることができるようになっている。
また、前記第1の固体電解質層12dの下面のうち、基準ガス導入空間16に露呈する部分に基準電極48が形成されており、前記内側ポンプ電極40及び基準電極48並びに第2の固体電解質層12f、第2のスペーサ層12e及び第1の固体電解質層12dによって、電気化学的なセンサセル、即ち、制御用酸素分圧検出セル50が構成されている。
この制御用酸素分圧検出セル50は、第1室18内の雰囲気と基準ガス導入空間16内の基準ガス(大気)との間の酸素濃度差に基づいて、内側ポンプ電極40と基準電極48との間に発生する起電力V1を通じて、前記第1室18内の雰囲気の酸素分圧が検出できるようになっている。
検出された酸素分圧値は可変電源46をフィードバック制御するために使用され、具体的には、第1室18内の雰囲気の酸素分圧が、次の第2室20において酸素分圧の制御を行い得るのに十分な低い所定の値となるように、主ポンプ用のフィードバック制御系52を通じて主ポンプセル44のポンプ動作が制御される。
このフィードバック制御系52は、内側ポンプ電極40の電位と基準電極48の電位の差(検出電圧V1)が、所定の電圧レベルとなるように、外側ポンプ電極42と内側ポンプ電極40間のポンプ電圧Vp1をフィードバック制御する回路構成を有する。この場合、内側ポンプ電極40は接地とされる。
従って、主ポンプセル44は、第1室18に導入された被測定ガスのうち、酸素を前記ポンプ電圧Vp1のレベルに応じた量ほど汲み出す、あるいは汲み入れる。そして、前記一連の動作が繰り返されることによって、第1室18における酸素濃度は、所定レベルにフィードバック制御されることになる。この状態で、外側ポンプ電極42と内側ポンプ電極40間に流れるポンプ電流Ip1は、被測定ガス中の酸素濃度と第1室18の制御酸素濃度の差を示しており、被測定ガス中の酸素濃度の測定に用いることができる。
なお、前記内側ポンプ電極40及び外側ポンプ電極42を構成する多孔質サーメット電極は、Pt等の金属とZrO2等のセラミックスとから構成されることになるが、被測定ガスに接触する第1室18内に配置される内側ポンプ電極40は、測定ガス中のNO成分に対する還元能力を弱めた、あるいは還元能力のない材料を用いる必要があり、例えばLa3CuO4等のペロブスカイト構造を有する化合物、あるいはAu等の触媒活性の低い金属とセラミックスのサーメット、あるいはAu等の触媒活性の低い金属とPt族金属とセラミックスのサーメットで構成されることが好ましい。更に、電極材料にAuとPt族金属の合金を用いる場合は、Au添加量を金属成分全体の0.03〜35vol%にすることが好ましい。
また、この第1の実施の形態に係るガスセンサ10Aにおいては、前記第1の固体電解質層12dの上面のうち、前記第2室20を形づくる上面であって、かつ第2の拡散律速部28から離間した部分に、平面ほぼ矩形状の多孔質サーメット電極からなる検出電極60が形成され、この検出電極60を被覆するように、第3の拡散律速部62を構成するアルミナ膜が形成されている。そして、該検出電極60、前記基準電極48及び第1の固体電解質層12dによって、電気化学的なポンプセル、即ち、測定用ポンプセル64が構成される。
前記検出電極60は、被測定ガス成分たるNOxを還元し得る金属とセラミックスとしてのジルコニアからなる多孔質サーメットにて構成され、これによって、第2室20内の雰囲気中に存在するNOxを還元するNOx還元触媒として機能するほか、前記基準電極48との間に、直流電源66を通じて一定電圧Vp2が印加されることによって、第2室20内の雰囲気中の酸素を基準ガス導入空間16に汲み出せるようになっている。この測定用ポンプセル64のポンプ動作によって流れるポンプ電流Ip2は、電流計68によって検出されるようになっている。
前記一定電圧(直流)電源66は、第3の拡散律速部62により制限されたNOxの流入下において、測定用ポンプセル64で分解時に生成した酸素のポンピングに対して限界電流を与える大きさの電圧を印加できるようになっている。
一方、前記第2の固体電解質層12fの下面のうち、前記第2室20を形づくる下面全面には、平面ほぼ矩形状の多孔質サーメット電極(例えばAu1%を含むPt・ZrO2のサーメット電極)からなる補助ポンプ電極70が形成されており、該補助ポンプ電極70、前記第2の固体電解質層12f、第2のスペーサ層12e、第1の固体電解質層12d及び基準電極48にて補助的な電気化学的ポンプセル、即ち、補助ポンプセル72が構成されている。
前記補助ポンプ電極70は、前記主ポンプセル44における内側ポンプ電極40と同様に、被測定ガス中のNO成分に対する還元能力を弱めた、あるいは還元能力のない材料を用いている。この場合、例えばLa3CuO4等のペロブスカイト構造を有する化合物、あるいはAu等の触媒活性の低い金属とセラミックスのサーメット、あるいはAu等の触媒活性の低い金属とPt族金属とセラミックスのサーメットで構成されることが好ましい。更に、電極材料にAuとPt族金属の合金を用いる場合は、Au添加量を金属成分全体の0.03〜35vol%にすることが好ましい。
そして、前記補助ポンプセル72における補助ポンプ電極70と基準電極48間に、外部の直流電源74を通じて所望の一定電圧Vp3を印加することにより、第2室20内の雰囲気中の酸素を基準ガス導入空間16に汲み出せるようになっている。
これによって、第2室20内の雰囲気の酸素分圧が、実質的に被測定ガス成分(NOx)が還元又は分解され得ない状況下で、かつ目的成分量の測定に実質的に影響がない低い酸素分圧値とされる。この場合、第1室18における主ポンプセル44の働きにより、この第2室20内に導入される酸素の量の変化は、被測定ガスの変化よりも大幅に縮小されるため、第2室20における酸素分圧は精度よく一定に制御される。
従って、前記構成を有する第1の実施の形態に係るガスセンサ10Aでは、前記第2室20内において酸素分圧が制御された被測定ガスは、検出電極60に導かれることとなる。
また、この第1の実施の形態に係るガスセンサ10Aにおいては、図1に示すように、第1及び第2の基板層12a及び12bにて上下から挟まれた形態において、外部からの給電によって発熱するヒータ80が埋設されている。このヒータ80は、酸素イオンの導伝性を高めるために設けられるもので、該ヒータ80の上下面には、第1及び第2の基板層12a及び12bとの電気的絶縁を得るために、アルミナ等の絶縁層82が形成されている。
前記ヒータ80は、第1室18から第2室20の全体にわたって配設されており、これによって、第1室18及び第2室20がそれぞれ所定の温度に加熱され、併せて主ポンプセル44、制御用酸素分圧検出セル50及び測定用ポンプセル64も所定の温度に加熱、保持されるようになっている。
次に、第1の実施の形態に係るガスセンサ10Aの動作について説明する。まず、ガスセンサ10Aの先端部側が外部空間に配置され、これによって、被測定ガスは、第1の拡散律速部26(スリット30及び32)を通じて所定の拡散抵抗の下に、第1室18に導入される。この第1室18に導入された被測定ガスは、主ポンプセル44を構成する外側ポンプ電極42及び内側ポンプ電極40間に所定のポンプ電圧Vp1が印加されることによって引き起こされる酸素のポンピング作用を受け、その酸素分圧が所定の値、例えば10-7atmとなるように制御される。この制御は、フィードバック制御系52を通じて行われる。
なお、第1の拡散律速部26は、主ポンプセル44にポンプ電圧Vp1を印加した際に、被測定ガス中の酸素が測定空間(第1室18)に拡散流入する量を絞り込んで、主ポンプセル44に流れる電流を抑制する働きをしている。
また、第1室18内においては、外部の被測定ガスによる加熱、更にはヒータ80による加熱環境下においても、内側ポンプ電極40にて雰囲気中のNOxが還元されない酸素分圧下の状態、例えばNO→1/2N2+1/2O2の反応が起こらない酸素分圧下の状況が形成されている。これは、第1室18内において、被測定ガス(雰囲気)中のNOxが還元されると、後段の第2室20内でのNOxの正確な測定ができなくなるからであり、この意味において、第1室18内において、NOxの還元に関与する成分(ここでは、内側ポンプ電極40の金属成分)にてNOxが還元され得ない状況を形成する必要がある。具体的には、前述したように、内側ポンプ電極40にNOx還元性の低い材料、例えばAuとPtの合金を用いることで達成される。
そして、前記第1室18内のガスは、第2の拡散律速部28を通じて所定の拡散抵抗の下に、第2室20に導入される。この第2室20に導入されたガスは、補助ポンプセル72を構成する補助ポンプ電極70及び基準電極48間に電圧Vp3が印加されることによって引き起こされる酸素のポンピング作用を受け、その酸素分圧が一定の低い酸素分圧値となるように微調整される。
前記第2の拡散律速部28は、前記第1の拡散律速部26と同様に、補助ポンプセル72に電圧Vp3を印加した際に、被測定ガス中の酸素が測定空間(第2室20)に拡散流入する量を絞り込んで、補助ポンプセル72に流れるポンプ電流Ip3を抑制する働きをしている。
そして、上述のようにして第2室20内において酸素分圧が制御された被測定ガスは、第3の拡散律速部62を通じて所定の拡散抵抗の下に、検出電極60に導かれることとなる。
前記主ポンプセル44を動作させて第1室18内の雰囲気の酸素分圧をNOx測定に実質的に影響がない低い酸素分圧値に制御しようとしたとき、換言すれば、制御用酸素分圧検出セル50にて検出される電圧V1が一定となるように、フィードバック制御系52を通じて可変電源46のポンプ電圧Vp1を調整したとき、被測定ガス中の酸素濃度が大きく、例えば0〜20%に変化すると、通常、第2室20内の雰囲気及び検出電極60付近の雰囲気の各酸素分圧は、僅かに変化するようになる。これは、被測定ガス中の酸素濃度が高くなると、第1室18の幅方向及び厚み方向に酸素濃度分布が生じ、この酸素濃度分布が被測定ガス中の酸素濃度により変化するためであると考えられる。
しかし、この第1の実施の形態に係るガスセンサ10Aにおいては、第2室20に対して、その内部の雰囲気の酸素分圧を常に一定に低い酸素分圧値となるように、補助ポンプセル72を設けるようにしているため、第1室18から第2室20に導入される雰囲気の酸素分圧が被測定ガスの酸素濃度に応じて変化しても、前記補助ポンプセル72のポンプ動作によって、第2室20内の雰囲気の酸素分圧を常に一定の低い値とすることができ、その結果、NOxの測定に実質的に影響がない低い酸素分圧値に制御することができる。
そして、検出電極60に導入された被測定ガスのNOxは、該検出電極60の周りにおいて還元又は分解されて、例えばNO→1/2N2+1/2O2の反応が引き起こされる。このとき、測定用ポンプセル64を構成する検出電極60と基準電極48との間には、酸素が第2室20から基準ガス導入空間16側に汲み出される方向に、所定の電圧Vp2、例えば430mV(700℃)が印加される。
従って、測定用ポンプセル64に流れるポンプ電流Ip2は、第2室20に導かれる雰囲気中の酸素濃度、即ち、第2室20内の酸素濃度と検出電極60にてNOxが還元又は分解されて発生した酸素濃度との和に比例した値となる。
この場合、第2室20内の雰囲気中の酸素濃度は、補助ポンプセル72にて一定に制御されていることから、前記測定用ポンプセル64に流れるポンプ電流Ip2は、NOxの濃度に比例することになる。また、このNOxの濃度は、第3の拡散律速部62にて制限されるNOxの拡散量に対応していることから、被測定ガスの酸素濃度が大きく変化したとしても、測定用ポンプセル64から電流計68を通じて正確にNOx濃度を測定することが可能となる。
このことから、測定用ポンプセル64におけるポンプ電流値Ip2は、ほとんどがNOxが還元又は分解された量を表し、そのため、被測定ガス中の酸素濃度に依存するようなこともない。
ところで、通常、動圧と静圧との比(動圧/静圧)が約25%を超えた段階からシフト量が比例的に増加することとなるが(図34参照)、この第1の実施の形態に係るガスセンサ10Aにおいては、第1の拡散律速部26(スリット30及び32)の断面形状を形成する1因子である縦方向の長さtaを10μm以下にしている。
主ポンプセル44での限界電流値Ip1は、以下の限界電流理論式で近似される。
Ip1≒(4F/RT)×D×(S/L)×(POe−POd)
なお、Fはファラデー定数(=96500A/sec)、Rは気体定数(=82.05cm3・atm/mol・K)、Tは絶対温度(K)、Dは拡散係数(cm2/sec)、Sは第1の拡散律速部26(スリット30又は32)の断面積(cm2)、Lは第1の拡散律速部26(スリット30又は32)の通路長(cm)、POeは外部空間の酸素分圧(atm)、POdは第1室18の酸素分圧(atm)を示す。
そして、この第1の実施の形態に係るガスセンサ10Aは、前記限界電流理論式における第1の拡散律速部26(スリット30又は32)の断面積Sの形成因子を規定するものであり、特に、断面積Sを形成する寸法の1因子、この場合、縦方向の長さを、10μm以下にするものである。
これにより、第1の拡散律速部26における壁面抵抗によって排気圧の脈動(=動圧)が減衰され、具体的には、動圧と静圧との比(動圧/静圧)が25%以下のレベルにまで減衰するため、動圧の変動によるセンサ出力(測定用ポンプセルにおけるポンプ電流値Ip2あるいは主ポンプセルに流れるポンプ電流値Ip1)のシフトアップ現象を有効に抑圧することができる。
ここで、2つの実験例(便宜的に第1及び第2の実験例と記す)を示す。第1の実験例は、実施例と比較例において、被測定ガスの酸素濃度を変化させたときに、センサ出力がどのように変化するかを測定したものであり、第2の実験例は、実施例と比較例において、被測定ガスのNOx濃度を変化させたときに、センサ出力がどのように変化するかを測定したものである。
測定条件は、エンジンとして2.5Lのディーゼルエンジンを使用し、回転数を1000〜4000rpmとし、エンジン負荷を5〜20kgmとした。そして、回転数、エンジン負荷及びEGR開度を適宜変えてそのときのセンサ出力の変動も測定した。
実施例は、第1の実施の形態に係るガスセンサ10Aと同様に、図3A、図3B及び図4に示すように、第1の拡散律速部26を上下2本の横長のスリット30及び32(横方向の長さ2mm×縦方向の長さ10μm以下)で構成した場合を示し、比較例は、図5A、図5B及び図6に示すように、第1の実施の形態に係るガスセンサ10Aにおいて、第1の拡散律速部26を1本のスリット100(横方向の長さ0.2mm×縦方向の長さ0.2mm)で構成した場合を示す。
前記第1の実験例並びに第2の実験例の実験結果を図7及び図8(比較例)並びに図9及び図10(実施例)に示す。比較例は、図7及び図8に示すように、測定条件を変えることによって、センサ出力が変動し、特にエンジン負荷が高負荷側におけるセンサ出力の変動が著しいことがわかる。
これは、図11A及び図11Bの波形図に示すように、ガス導入口付近の排気圧の変動と第1室18の入口付近の排気圧の変動がほぼ同じになり、測定条件の変化に伴う排気圧の変動がセンサ出力に直接影響を及ぼしていると考えられる。
一方、実施例においては、図9及び図10に示すように、測定条件を変えてもセンサ出力は変動せず、酸素濃度並びにNOx濃度の変化に応じたセンサ出力を高精度に得ることができる。これは、図12A及び図12Bの波形図に示すように、ガス導入口付近の排気圧の変動が第1の拡散律速部26の壁面抵抗によって減衰されることから、第1室18の入口付近の排気圧の変動がガス導入口付近の排気圧の変動よりも小さくなるからと考えられる。
このように、第1の実施の形態に係るガスセンサ10Aにおいては、被測定ガス中に発生する排気圧の脈動の影響を回避することができ、測定用ポンプセル64での測定精度の向上を図ることができる。
次に、第1の実施の形態に係るガスセンサ10Aのいくつかの変形例、即ち、第1の拡散律速部26と第2の拡散律速部28の形状を主体にした変形例を図13A〜図30を参照しながら説明する。なお、図13A〜図30においては、図面の複雑化を避けるために電気回路系の図示を省略する。また、図1と対応するものについては同符号を付してその重複説明を省略する。
まず、第1の変形例に係るガスセンサ10Aaは、図13A、図13B及び図14に示すように、第1及び第2の拡散律速部26及び28がそれぞれ1本の横長のスリット110及び112にて形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分であって第1の固体電解質層12dの上面に接する部分に形成された横長の開口が第1室18まで同一の開口幅で形成されたスリット110を有して構成され、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であって第1の固体電解質層12dの上面に接する部分に形成された開口が第2室20まで同一の開口幅で形成されたスリット112を有して構成されている。この第1の変形例では、各スリット110及び112はほぼ同じ断面形状を有し、縦方向の長さtaを10μm以下、横方向の長さtbを約2mmとしている。
次に、第2の変形例に係るガスセンサ10Abは、図15A、図15B及び図16に示すように、第1及び第2の拡散律速部26及び28がそれぞれ1本の横長のくさび形スリット114及び116にて形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分であって第1の固体電解質層12dの上面に接する部分に形成された横長の開口の開口幅(縦方向の幅)が第1室18に向かって徐々に拡大して形成されたくさび形スリット114を有して構成され、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であって第1の固体電解質層12dの上面に接する部分に形成された横長の開口の開口幅が第2室20に向かって徐々に拡大して形成されたくさび形スリット116を有して構成されている。
この第2の変形例では、各くさび形スリット114及び116のそれぞれの前端における最小開口はほぼ同じ断面形状を有し、縦方向の長さtaが10μm以下、横方向の長さtbが約2mmとされている。
次に、第3の変形例に係るガスセンサ10Acは、図17A、図17B及び図18に示すように、第1の拡散律速部26が3本の横長のスリット118a、118b及び118cが互いに並列して形成されている点と、第2の拡散律速部28が1本の横長のスリット120で形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分であって第1の固体電解質層12dの上面に接する部分に互いに並列して形成された3本の横長の開口が第1室18までそれぞれ同一の開口幅で形成された3本のスリット118a、118b及び118cを有して構成され、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であって第1の固体電解質層12dの上面に接する部分に形成された1本の横長の開口が第2室20まで同一の開口幅で形成された1本のスリット120を有して構成されている。この第3の変形例では、各スリット118a、118b及び118c並びに120の縦方向の長さtaはそれぞれ10μm以下とされている。
次に、第4の変形例に係るガスセンサ10Adは、図19A、図19B及び図20に示すように、ガス導入口22と第1の拡散律速部26との間に空間部122と緩衝空間124とがシリーズに設けられ、該空間部122の前面開口がガス導入口22を構成し、該空間部122と緩衝空間124の間に、被測定ガスに対して所定の拡散抵抗を付与する第4の拡散律速部126を有している点で異なる。
第1の拡散律速部26並びに第2の拡散律速部28は、第1の実施の形態に係るガスセンサ10Aと同様に、それぞれ2本の横長のスリット30及び32並びに34及び36にて形成されている。
第4の拡散律速部126は、第2のスペーサ層12eにおける空間部122の終端部分であって第2の固体電解質層12fの下面に接する部分に形成された横長の開口が緩衝空間124まで同一の開口幅で形成されたスリット128と、第2のスペーサ層12eにおける空間部122の終端部分であって第1の固体電解質層12dの上面に接する部分に形成された横長の開口が緩衝空間124まで同一の開口幅で形成されたスリット130を有して構成されている。
次に、第5の変形例に係るガスセンサ10Aeにおいては、図21A、図21B及び図22に示すように、第1及び第2の拡散律速部26及び28がそれぞれ1本の縦長のスリット132及び134にて形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分であってその幅方向ほぼ中央に形成された縦長の開口が第1室18まで同一の開口幅で形成されたスリット132を有して構成され、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であってその幅方向ほぼ中央に形成された縦長の開口が第2室20まで同一の開口幅で形成されたスリット134を有して構成されている。この第5の変形例では、各スリット132及び134はほぼ同じ断面形状を有し、縦方向の長さtcが第2のスペーサ層12eの厚みと同じであり、横方向の長さtdが10μm以下とされている。
次に、第6の変形例に係るガスセンサ10Afは、図23A、図23B及び図24に示すように、第1及び第2の拡散律速部26及び28がそれぞれ1本の縦長のくさび形スリット136及び138にて形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分であってその幅方向ほぼ中央に形成された縦長の開口の開口幅(横方向の幅)が第1室18に向かって徐々に拡大して形成されたくさび形スリット136を有して構成され、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であってその幅方向ほぼ中央に形成された縦長の開口の開口幅(横方向の幅)が第2室20に向かって徐々に拡大して形成されたくさび形スリット138を有して構成されている。
この第6の変形例では、各くさび形スリット136及び138のそれぞれの前端における最小開口はほぼ同じ断面形状を有し、縦方向の長さtcが第2のスペーサ層12eの厚みと同じであり、横方向の長さtdが10μm以下とされている。
次に、第7の変形例に係るガスセンサ10Agは、図25A、図25B及び図26に示すように、第1の拡散律速部26が1本の平面ほぼ砂時計形のスリット140で形成され、第2の拡散律速部28が1本の縦長のスリット142で形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分に形成された横長の開口の開口幅(横方向の幅)が第1の拡散律速部26の奥行き方向ほぼ中央に向かって徐々に縮小して縦長のスリット144とされ、更に、このスリット144の開口幅(横方向の幅)が第1室18に向かって徐々に拡大して形成されたほぼ砂時計形のスリット140を有して構成されている。
一方、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であってその幅方向ほぼ中央に形成された縦長の開口が第2室20まで同一の開口幅で形成されたスリット142を有して構成されている。
この第7の変形例では、第1の拡散律速部26を構成する砂時計形のスリット140の最小開口(スリット144)と第2の拡散律速部28を構成するスリット142はほぼ同じ断面形状を有し、縦方向の長さtcが第2のスペーサ層12eの厚みと同じであり、横方向の長さtdが10μm以下とされている。
次に、第8の変形例に係るガスセンサ10Ahは、図27A、図27B及び図28に示すように、第1の拡散律速部26が5本の縦長のスリット146a〜146eが互いに並列して形成されている点と、第2の拡散律速部28が1本の縦長のスリット148で形成されている点で異なる。
具体的には、第1の拡散律速部26は、第2のスペーサ層12eの前端部分において互いに並列して形成された5本の縦長の開口が第1室18までそれぞれ同一の開口幅で形成された5本のスリット146a〜146eを有して構成され、第2の拡散律速部28は、第2のスペーサ層12eにおける第1室18の終端部分であってその幅方向ほぼ中央に形成された縦長の開口が第2室20まで同一の開口幅で形成された1本のスリット148を有して構成されている。この第8の変形例では、各スリット146a〜146e並びに148の横方向の長さtdはそれぞれ10μm以下とされている。
次に、第9の変形例に係るガスセンサ10Aiは、図29A、図29B及び図30に示すように、ガス導入口22と第1の拡散律速部26との間に空間部122と緩衝空間124とがシリーズに設けられ、該空間部122の前面開口がガス導入口22を構成し、該空間部122と緩衝空間124の間に、被測定ガスに対して所定の拡散抵抗を付与する第4の拡散律速部126を有している点で異なる。
第1の拡散律速部26及び第2の拡散律速部28は、第5の変形例に係るガスセンサ10Ae(図21A、図21B及び図22参照)と同様に、それぞれ1本の縦長のスリット132及び134にて形成されている。
第4の拡散律速部126は、第2のスペーサ層12eにおける空間部122の終端部分であってその幅方向ほぼ中央に形成された縦長の開口が緩衝空間124まで同一の開口幅で形成されたスリット150を有して構成されている。
前記第1〜第9の変形例に係るガスセンサ10Aa〜10Aiにおいては、第1の実施の形態に係るガスセンサ10Aと同様に、被測定ガス中に発生する排気圧の脈動の影響を回避することができ、測定用ポンプセル64での測定精度の向上を図ることができる。
特に、第4及び第9の変形例に係るガスセンサ10Ad及び10Aiにおいては、第1の拡散律速部26の前段に緩衝空間124を設けるようにしている。通常、外部空間における排気圧の脈動によってガス導入口22を通じて酸素がセンサ素子14に急激に入り込むことになるが、この外部空間からの酸素は、直接処理空間に入り込まずに、その前段の緩衝空間124に入り込むことになる。つまり、排気圧の脈動による酸素濃度の急激な変化は、緩衝空間124によって打ち消され、第1室18に対する排気圧の脈動の影響はほとんど無視できる程度となる。
その結果、第1室18における主ポンプセル44での酸素ポンピング量と被測定ガス中の酸素濃度との相関性がよくなり、測定用ポンプセル64での測定精度の向上が図られることになると同時に、第1室18を例えば空燃比を求めるためのセンサとして兼用させることが可能となる。
また、前記第4及び第9の変形例に係るガスセンサ10Ad及び10Aiにおいては、ガス導入口22と第1の拡散律速部26との間に空間部122と緩衝空間124とをシリーズに設け、空間部122の前面開口でガス導入口22を構成するようにしている。この空間部122は、外部空間の被測定ガス中に発生する粒子物(スート、オイル燃焼物等)が緩衝空間124の入口付近にて詰まることを回避するための目詰まり防止部として機能するものであり、これにより、測定用ポンプセル64において、より高精度にNOx成分を測定することが可能となり、高精度な状態を長期にわたって維持できるようになる。
上述の第1の実施の形態に係るガスセンサ10Aと第1〜第4の変形例に係るガスセンサ10Aa〜10Adは第1及び第2の拡散律速部26及び28を横長のスリットで構成し、第5〜第9の変形例に係るガスセンサ10Ae〜10Aiは第1及び第2の拡散律速部26及び28を縦長のスリットで構成するようにしているが、例えば第1の拡散律速部26を横長のスリットで構成し、第2の拡散律速部28を縦長のスリットで構成するようにしてもよいし、その逆の構成を採用するようにしてもよい。
また、第1及び第2の拡散律速部26及び28の形状はスリット形状でなくても、その断面積を構成する1因子が10μm以下であればよく、例えば昇華性ファイバを埋め込み、焼成後に直径10μm以下の円筒状の拡散律速部を構成しても同様の効果を得ることができる。
次に、第2の実施の形態に係るガスセンサ10Bについて図31を参照しながら説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。
この第2の実施の形態に係るガスセンサ10Bは、図31に示すように、第1の実施の形態に係るガスセンサ10A(図2参照)とほぼ同様の構成を有するが、測定用ポンプセル64に代えて、測定用酸素分圧検出セル160が設けられている点で異なる。
この測定用酸素分圧検出セル160は、第1の固体電解質層12dの上面のうち、前記第2室20を形づくる上面に形成された検出電極162と、前記第1の固体電解質層12dの下面に形成された前記基準電極48と、これら両電極162及び48間に挟まれた第1の固体電解質層12dによって構成されている。
この場合、前記測定用酸素分圧検出セル160における検出電極162と基準電極48との間に、検出電極162の周りの雰囲気と基準電極48の周りの雰囲気との間の酸素濃度差に応じた起電力(酸素濃淡電池起電力)V2が発生することとなる。
従って、前記検出電極162及び基準電極48間に発生する起電力(電圧)V2を電圧計164にて測定することにより、検出電極162の周りの雰囲気の酸素分圧、換言すれば、被測定ガス成分(NOx)の還元又は分解によって発生する酸素によって規定される酸素分圧が電圧値V2として検出される。
この第2の実施の形態に係るガスセンサ10Bにおいても、第1の拡散律速部26における壁面抵抗によって排気圧の脈動(=動圧)が減衰されるため、動圧の変動によるセンサ出力(測定用ポンプセルにおけるポンプ電流値)のシフトアップ現象を有効に抑圧することができる。その結果、被測定ガス中に発生する排気圧の脈動の影響を回避することができ、測定用酸素分圧検出セル160での測定精度の向上を図ることができる。
そして、この第2の実施の形態に係るガスセンサ10Bにおいても、第1〜第9の変形例に係るガスセンサ10Aa〜10Aiの構成を採用することができる。
前記第1及び第2の実施の形態に係るガスセンサ10A及び10B(各変形例を含む)では、測定すべき被測定ガス成分として酸素並びにNOxを対象としたが、被測定ガス中に存在する酸素の影響を受けるNOx以外の結合酸素含有ガス成分、例えばH2 OやCO2 等の測定にも有効に適用することができる。
例えばCO2やH2Oを電気分解して発生したO2を酸素ポンプで汲み出す構成のガスセンサや、H2Oを電気分解して発生したH2をプロトンイオン伝導性固体電解質を用いてポンピング処理するガスセンサにも適用させることができる。
なお、この発明に係るガスセンサ及び窒素酸化物センサは、上述の実施の形態に限らず、この発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
図1Aは第1の実施の形態に係るガスセンサの構成を示す正面図であり、図1Bはその平面図である。 図1BにおけるII−II線上の断面図である。 図3Aは第1及び第2の実験例で使用した実施例の構成を示す正面図であり、図3Bはその平面図である。 第1及び第2の実験例で使用した実施例の構成、特に、第1及び第2の拡散律速部の構成を抜き出して示す斜視図である。 図5Aは第1及び第2の実験例で使用した比較例の構成を示す正面図であり、図5Bはその平面図である。 第1及び第2の実験例で使用した比較例の構成、特に、第1及び第2の拡散律速部の構成を抜き出して示す斜視図である。 比較例において、測定条件を変えたときの酸素濃度に対するセンサ出力の変化を示す特性図である。 比較例において、測定条件を変えたときのNOx濃度に対するセンサ出力の変化を示す特性図である。 実施例において、測定条件を変えたときの酸素濃度に対するセンサ出力の変化を示す特性図である。 実施例において、測定条件を変えたときのNOx濃度に対するセンサ出力の変化を示す特性図である。 図11Aは比較例におけるガス導入口付近の排気圧の変動を示す波形図であり、図11Bは第1室の入口付近の排気圧の変動を示す波形図である。 図12Aは実施例におけるガス導入口付近の排気圧の変動を示す波形図であり、図12Bは第1室の入口付近の排気圧の変動を示す波形図である。 図13Aは第1の変形例に係るガスセンサの構成を示す正面図であり、図13Bはその平面図である。 図13BにおけるXIV−XIV線上の断面図である。 図15Aは第2の変形例に係るガスセンサの構成を示す正面図であり、図15Bはその平面図である。 図15BにおけるXVI−XVI線上の断面図である。 図17Aは第3の変形例に係るガスセンサの構成を示す正面図であり、図17Bはその平面図である。 図17BにおけるXVIII−XVIII線上の断面図である。 図19Aは第4の変形例に係るガスセンサの構成を示す正面図であり、図19Bはその平面図である。 図19BにおけるXX−XX線上の断面図である。 図21Aは第5の変形例に係るガスセンサの構成を示す正面図であり、図21Bはその平面図である。 図21BにおけるXXII−XXII線上の断面図である。 図23Aは第6の変形例に係るガスセンサの構成を示す正面図であり、図23Bはその平面図である。 図23BにおけるXXIV−XXIV線上の断面図である。 図25Aは第7の変形例に係るガスセンサの構成を示す正面図であり、図25Bはその平面図である。 図25BにおけるXXVI−XXVI線上の断面図である。 図27Aは第8の変形例に係るガスセンサの構成を示す正面図であり、図27Bはその平面図である。 図27BにおけるXXVIII−XXVIII線上の断面図である。 図29Aは第9の変形例に係るガスセンサの構成を示す正面図であり、図29Bはその平面図である。 図29BにおけるXXX−XXX線上の断面図である。 第2の実施の形態に係るガスセンサの構成を示す断面図である。 従来のガスセンサの酸素濃度に対するセンサ出力の変化を示す特性図である。 自動車エンジンの排気ガスの全圧力を示す説明図である。 動圧と静圧との比(動圧/静圧)に対するセンサ出力のシフト量を示す特性図である。
符号の説明
10A、10Aa〜10Ai、10B…ガスセンサ
14…センサ素子 18…第1室
20…第2室 22…ガス導入口
26…第1の拡散律速部 28…第2の拡散律速部
30、32、34、36A…スリット 44…主ポンプセル
64…測定用ポンプセル 72…補助ポンプセル
100、110、112…スリット 114、116…くさび形スリット
118a〜118c、120…スリット 122…空間部
124…緩衝空間 126…第4の拡散律速部
128、130、132、134…スリット
136、138…くさび形スリット 140…砂時計形のスリット
142、144、146a〜146e、148、150…スリット
160…測定用酸素分圧検出セル

Claims (10)

  1. 外部空間における被測定ガス中の被測定ガス成分の量を測定するガスセンサであって、少なくとも、
    前記外部空間に接する固体電解質と、
    前記固体電解質内部に形成された内部空所と、
    前記外部空間からガス導入口を介して所定の拡散抵抗のに前記被測定ガスを導入するための拡散律速手段と、
    前記内部空所の内外に形成された内側ポンプ電極と外側ポンプ電極を有し、かつ、前記外部空間から導入された前記被測定ガスに含まれる酸素を前記電極間に印加される制御電圧に基づいてポンピング処理するポンプ手段とを具備したガスセンサにおいて、
    前記拡散律速手段は、前記ガス導入口から前記内部空所に連通し、且つ、上下に並んだ2つのスリットを有し、
    前記2つのスリットの各断面形状を形成するそれぞれ1因子の寸法が、10μm以下であることを特徴とするガスセンサ。
  2. 請求項1記載のガスセンサにおいて、
    前記2つのスリットは、各断面形状がそれぞれ横型のスリットで形成され前記1因子は、前記2つのスリットにおけるそれぞれの縦方向の長さであることを特徴とするガスセンサ。
  3. 請求項1記載のガスセンサにおいて、
    前記2つのスリットは、各断面形状がそれぞれ縦型のスリットで形成され前記1因子は、前記2つのスリットにおけるそれぞれの横方向の長さであることを特徴とするガスセンサ。
  4. 請求項1〜3のいずれか1項に記載のガスセンサにおいて、
    前記ガス導入口と前記拡散律速手段との間に緩衝空間が設けられていることを特徴とするガスセンサ。
  5. 請求項4記載のガスセンサにおいて、
    前記ガス導入口と前記内部空所との間に目詰まり防止部と緩衝空間とがシリーズに設けられ、
    前記目詰まり防止部の前面開口で前記ガス導入口を構成し、
    前記目詰まり防止部と前記緩衝空間の間に、前記被測定ガスに対して所定の拡散抵抗を付与する拡散律速部が設けられていることを特徴とするガスセンサ。
  6. 請求項1〜5のいずれか1項に記載のガスセンサにおいて、
    前記ポンプ手段は、前記内部空所に導入された前記外部空間からの被測定ガスに含まれる酸素をポンピング処理して、前記内部空所における酸素分圧を前記被測定ガス中の所定ガス成分が分解され得ない所定の値に制御することを特徴とするガスセンサ。
  7. 請求項6記載のガスセンサにおいて、
    前記ポンプ手段にてポンピング処理された後の被測定ガス中に含まれる所定ガス成分を触媒作用及び/又は電気分解により分解させ、該分解によって発生した酸素をポンピング処理する測定用ポンプ手段とを具備し、
    前記測定用ポンプ手段のポンピング処理によって該測定用ポンプ手段に流れるポンプ電流に基づいて前記被測定ガス中の前記所定ガス成分を測定することを特徴とするガスセンサ。
  8. 請求項6記載のガスセンサにおいて、
    前記ポンプ手段にてポンピング処理された後の被測定ガス中に含まれる所定ガス成分を触媒作用により分解させ、該分解によって発生した酸素の量と基準ガスに含まれる酸素の量との差に応じた起電力を発生する酸素分圧検出手段とを具備し、
    前記酸素分圧検出手段にて検出された起電力に基づいて前記被測定ガス中の前記所定ガス成分を測定することを特徴とするガスセンサ。
  9. 外部空間における被測定ガス中の窒素酸化物成分の量を測定する窒素酸化物センサであって、少なくとも、
    前記外部空間に接する酸素イオン伝導性固体電解質からなる基体と、
    前記固体電解質内に形成され、前記外部空間と連通した第1の内部空所と、
    前記外部空間からガス導入口を介して所定の拡散抵抗の下に前記被測定ガスを前記第1の内部空所へ導入するための第1の拡散律速手段と、
    前記第1の内部空所内外に形成された第1の内側ポンプ電極と第1の外側ポンプ電極を有し、かつ、前記外部空間から導入された前記被測定ガスに含まれる酸素を前記電極間に印加される制御電圧に基づいてポンピング処理して、前記第1の内部空所内の酸素分圧を実質的にNOが分解され得ない所定の値に制御する主ポンプ手段と、
    前記第1の内部空所と連通した第2の内部空所と、
    所定の拡散抵抗の下に前記第1の内部空所内でポンピング処理された雰囲気を前記第2の内部空所へ導入するためのスリットで形成された第2の拡散律速手段と、
    前記第2の内部空所内外に形成された第2の内側ポンプ電極と第2の外側ポンプ電極を有し、かつ、前記第1の内部空所から導入された前記雰囲気中に含まれるNOを触媒作用及び/又は電気分解により分解させ、該分解によって発生した酸素をポンピング処理する測定用ポンプ手段とを具備し、
    前記測定用ポンプ手段のポンピング処理によって該測定用ポンプ手段に流れるポンプ電流に基づいて前記被測定ガス中の窒素酸化物の量を測定する窒素酸化物センサにおいて、
    前記第1の拡散律速手段は、前記ガス導入口から前記内部空所に連通し、且つ、上下に並んだ2つのスリットを有し、
    前記2つのスリットの各断面形状を形成するそれぞれ1因子の寸法が、10μm以下であることを特徴とする窒素酸化物センサ。
  10. 外部空間における被測定ガス中の窒素酸化物成分の量を測定する窒素酸化物センサであって、少なくとも、
    前記外部空間に接する酸素イオン伝導性固体電解質からなる基体と、
    前記固体電解質内に形成され、前記外部空間と連通した第1の内部空所と、
    前記外部空間からガス導入口を介して所定の拡散抵抗の下に前記被測定ガスを前記第1の内部空所へ導入するための第1の拡散律速手段と、
    前記第1の内部空所内外に形成された第1の内側ポンプ電極と第1の外側ポンプ電極を有し、かつ、前記外部空間から導入された前記被測定ガスに含まれる酸素を前記電極間に印加される制御電圧に基づいてポンピング処理して、前記第1の内部空所内の酸素分圧を実質的にNOが分解され得ない所定の値に制御する主ポンプ手段と、
    前記第1の内部空所と連通した第2の内部空所と、
    所定の拡散抵抗の下に前記第1の内部空所内でポンピング処理された雰囲気を前記第2の内部空所へ導入するためのスリットで形成された第2の拡散律速手段と、
    前記第2の内部空所内外に形成された第2の内側測定電極と第2の外側測定電極を有し、かつ、前記第1の内部空所から導入された前記雰囲気中に含まれるNOを触媒作用により分解させ、該分解によって発生した酸素の量と基準ガスに含まれる酸素の量との差に応じた起電力を発生する酸素分圧検出手段とを具備し、
    前記酸素分圧検出手段にて検出された起電力に基づいて前記被測定ガス中の窒素酸化物の量を測定する窒素酸化物センサにおいて、
    前記第1の拡散律速手段は、前記ガス導入口から前記内部空所に連通し、且つ、上下に並んだ2つのスリットを有し、
    前記2つのスリットの各断面形状を形成するそれぞれ1因子の寸法が、10μm以下であることを特徴とする窒素酸化物センサ。
JP2004275283A 2004-09-22 2004-09-22 ガスセンサ及び窒素酸化物センサ Expired - Lifetime JP3860590B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275283A JP3860590B2 (ja) 2004-09-22 2004-09-22 ガスセンサ及び窒素酸化物センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275283A JP3860590B2 (ja) 2004-09-22 2004-09-22 ガスセンサ及び窒素酸化物センサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19290298A Division JP3701124B2 (ja) 1998-07-08 1998-07-08 ガスセンサ及び窒素酸化物センサ

Publications (3)

Publication Number Publication Date
JP2004354400A JP2004354400A (ja) 2004-12-16
JP2004354400A5 JP2004354400A5 (ja) 2005-09-15
JP3860590B2 true JP3860590B2 (ja) 2006-12-20

Family

ID=34056588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275283A Expired - Lifetime JP3860590B2 (ja) 2004-09-22 2004-09-22 ガスセンサ及び窒素酸化物センサ

Country Status (1)

Country Link
JP (1) JP3860590B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123861A1 (de) 2020-10-02 2022-04-07 Ngk Insulators, Ltd. Gassensor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085398B2 (ja) 2007-04-16 2012-11-28 株式会社デンソー 温度センサ
EP2105731B1 (en) 2008-03-28 2019-10-30 NGK Insulators, Ltd. Laminated solid electrolyte gas sensor
JP4745361B2 (ja) * 2008-03-28 2011-08-10 日本碍子株式会社 ガスセンサ
JP5053151B2 (ja) * 2008-03-31 2012-10-17 日本碍子株式会社 ガスセンサおよびNOxセンサ
JP2009244140A (ja) * 2008-03-31 2009-10-22 Ngk Insulators Ltd ガスセンサおよびNOxセンサ
JP4659889B2 (ja) 2008-04-02 2011-03-30 日本特殊陶業株式会社 ガスセンサ
JP4578556B2 (ja) 2008-05-12 2010-11-10 日本特殊陶業株式会社 ガスセンサ及びその製造方法
JP5141576B2 (ja) * 2009-01-27 2013-02-13 トヨタ自動車株式会社 ガス濃度検出装置
JP5204160B2 (ja) 2009-09-03 2013-06-05 日本特殊陶業株式会社 マルチガスセンサの制御方法及びマルチガスセンサの制御装置
JP5638984B2 (ja) 2010-03-11 2014-12-10 日本特殊陶業株式会社 ガスセンサ
JP5416686B2 (ja) 2010-12-13 2014-02-12 日本特殊陶業株式会社 マルチガスセンサ
JP2012198247A (ja) * 2012-07-24 2012-10-18 Ngk Insulators Ltd ガスセンサおよびNOxセンサ
JP2013140175A (ja) * 2013-03-15 2013-07-18 Ngk Insulators Ltd ガスセンサ
JP6359436B2 (ja) 2014-01-17 2018-07-18 日本特殊陶業株式会社 NOxセンサ
JP6650855B2 (ja) 2016-09-30 2020-02-19 日本特殊陶業株式会社 ガスセンサ
JP7122220B2 (ja) * 2018-10-26 2022-08-19 日本碍子株式会社 ガスセンサ
US11549925B2 (en) * 2019-04-08 2023-01-10 Ngk Spark Plug Co., Ltd. NOx sensor element and NOx sensor
DE102021001576A1 (de) * 2020-03-30 2021-09-30 Ngk Insulators, Ltd. Gassensorsystem
JP7470610B2 (ja) * 2020-10-02 2024-04-18 日本碍子株式会社 センサ素子及びガスセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123861A1 (de) 2020-10-02 2022-04-07 Ngk Insulators, Ltd. Gassensor

Also Published As

Publication number Publication date
JP2004354400A (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
JP3701124B2 (ja) ガスセンサ及び窒素酸化物センサ
JP3860590B2 (ja) ガスセンサ及び窒素酸化物センサ
JP5253165B2 (ja) ガスセンサ及び窒素酸化物センサ
JP3544437B2 (ja) ガスセンサ
JP3701114B2 (ja) NOx分解電極の酸化防止方法
US5902469A (en) Gas sensor
JP3272215B2 (ja) NOxセンサ及びNOx測定方法
JPH09113484A (ja) 被測定ガス中の所定ガス成分の測定方法及び測定装置
JP3671109B2 (ja) ガスセンサ
JP4205792B2 (ja) NOx分解電極及びNOx濃度測定装置
JP3623065B2 (ja) 窒素酸化物センサ
EP0859233B1 (en) Gas sensor
JP4165652B2 (ja) ガスセンサ
EP0849590B1 (en) Gas sensor
JP3619344B2 (ja) 窒素酸化物の測定装置
JP3771569B2 (ja) NOxセンサ
US10060876B2 (en) Gas sensor for measuring different gases, and corresponding production method
JP3798412B2 (ja) NOxセンサ
WO2024062818A1 (ja) ガスセンサおよびガスセンサによる濃度測定方法
JP2002310985A (ja) NOxセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

EXPY Cancellation because of completion of term