JP2011146590A - 不揮発性記憶装置およびその製造方法 - Google Patents

不揮発性記憶装置およびその製造方法 Download PDF

Info

Publication number
JP2011146590A
JP2011146590A JP2010007173A JP2010007173A JP2011146590A JP 2011146590 A JP2011146590 A JP 2011146590A JP 2010007173 A JP2010007173 A JP 2010007173A JP 2010007173 A JP2010007173 A JP 2010007173A JP 2011146590 A JP2011146590 A JP 2011146590A
Authority
JP
Japan
Prior art keywords
film
phase change
metal
interlayer insulating
change material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010007173A
Other languages
English (en)
Other versions
JP5420436B2 (ja
Inventor
Hiroshi Moriya
浩志 守谷
Yoshitaka Sasako
佳孝 笹子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010007173A priority Critical patent/JP5420436B2/ja
Priority to TW099127432A priority patent/TWI422026B/zh
Priority to PCT/JP2010/064175 priority patent/WO2011086725A1/ja
Publication of JP2011146590A publication Critical patent/JP2011146590A/ja
Application granted granted Critical
Publication of JP5420436B2 publication Critical patent/JP5420436B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8616Thermal insulation means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】金属配線上にダイオード等の選択素子を有し、選択素子上に相変化メモリ等の記憶素子を積層することにより構成される不揮発性記憶装置の消費電力を低減する。
【解決手段】メモリマトリクス状に形成された相変化メモリにおいて、隣り合う上部電極膜6同士の間および隣り合う下部電極膜4同士の間に、層間絶縁膜9、12よりも熱伝導率の低い空隙13、15を形成することにより、相変化メモリ内で発生する熱が層間絶縁膜9、12を通じて散逸することを防ぎ、相変化材料膜5を従来より低い電流で効率的に加熱することを可能とする。
【選択図】図2

Description

本発明は、不揮発性記憶装置およびその製造方法に関し、特に、電気的に書き換え可能な相変化メモリおよびその製造に適用して有効な技術に関するものである。
近年、次世代不揮発性半導体メモリとして、カルコゲナイド(chalcogenide)のような相変化材料を用いた相変化メモリ(Phase-change Random Access Memory:PRAM)が提案されている。この相変化メモリは、不揮発性でありながら、書き込み・読出しの動作がDRAM(Dynamic Random Access Memory)と同程度に高速であると予想され、かつセル面積がフラッシュメモリと同程度に縮小可能であることから、次世代不揮発性メモリとして最有力視されている。
相変化メモリに用いられる相変化材料は、すでにDVD(Digital Versatile Disc)等の光ディスク媒体で使用されているが、DVDの場合は、相変化材料がアモルファス状態と結晶状態とで光の反射率が異なる特性を利用している。
一方、相変化メモリの場合は、相変化材料がアモルファス状態と結晶状態とで電気抵抗が数桁違う特性を利用し、相変化材料膜に電流を流すことで電気的に書き換えを行うメモリ素子である。相変化メモリの基本的なメモリセルの構造は、記憶素子(相変化材料膜)と選択素子とを組み合わせた構造である。相変化メモリは、選択素子から電流を加えることで記憶素子に発生するジュール熱により記憶素子を結晶状態、若しくは非晶質状態にすることで情報を記憶・保持する。相変化メモリのスイッチング、すなわち相変化材料のアモルファス状態から結晶状態への相変化およびその逆の変化は、相変化材料膜にパルス電圧を印加した際に発生するジュール熱を利用している。すなわち、アモルファス状態から結晶状態への相変化では、結晶化温度以上、融点以下となる電圧を印加し、結晶状態からアモルファス状態への相変化では、融点以上となる短パルスの電圧を加えて急冷する。
一般に記憶素子の抵抗値は相変化により2桁から3桁も変化する。このため、相変化メモリは、結晶か非晶質かによって読み出し信号が大きく異なるため、センス動作が容易である。
この電気的情報記憶に関わる相変化メモリについての公知文献として、例えば、特許文献1(特開2003−100085号公報)がある。特許文献1には、記憶セルに情報を記録する前に、前記記憶セルの記録状態を読みとることで、記憶装置として確実かつ容易に動作する相変化メモリを提供する技術が開示されている。
また、特許文献2(特開2003−303941号公報)には、ビットラインおよびワードラインを規定する2つのアレイ関連マスクのみを必要とする、自己整列したメモリセルをビットラインとワードラインとの交差点に垂直に配置形成するクロスポイント型とすることで、メモリセルの微細化を実現する技術が開示されている。クロスポイント型のメモリセル構造を有する相変化メモリは、低コストで製造することが可能である。
また、特許文献3(特開2001−127263号公報)には、室温において安定した2つの相(高温相と低温相)を有する相変化薄膜と、この相変化薄膜に直列に接続されたpn接合からなるスイッチ素子とからなるメモリセルを複数設けて不揮発性メモリを構成することにより、高集積で、高密度記録が可能な不揮発性メモリを実現する技術が開示されている。また、特許文献3では、電極と相変化材料膜との間に導電性断熱膜を設けることで、相変化材料膜において発生した熱の拡散を最小限に抑える方法が提案されている。
特開2003−100085号公報 特開2003−303941号公報 特開2001−127263号公報
前述したように、相変化メモリを書き換えるためには、ダイオードから相変化材料膜へ電流を流して相変化材料膜を発熱させ、相変化材料膜の温度を、相変化材料の結晶化温度または融点以上の温度まで上昇させる必要がある。このため、相変化には比較的大きな電圧を必要とし、消費電力が大きくなってしまうという問題がある。
特許文献1および特許文献2に示す技術では、隣り合うメモリセル同士の間が絶縁膜により充填されており、加熱した相変化材料膜から熱が絶縁膜を通じて散逸してしまうため、相変化材料膜の温度上昇に大きな消費電力が必要となる問題がある。
これに対し、特許文献3に示す技術では、電極と相変化材料膜との間に導電性断熱膜を設け、相変化材料膜において発生した熱の拡散を最小限に抑える方法が提案されている。しかし、特許文献3に記載されている導電性断熱膜は熱抵抗がそれほど大きくなく、消費電力の低減の効果が期待できない。
本発明の目的は、書き込み・消去時の消費電力を低減させた相変化メモリを有する不揮発性記憶装置を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
本願の一発明による不揮発性記憶装置は、半導体基板の主面の第1方向に沿って延びる複数の第1金属配線と、前記第1方向と直交する第2方向に沿って延びる複数の第2金属配線と、前記複数の第1金属配線と前記複数の第2金属配線との各交点に、電流で駆動する記憶素子である相変化材料膜および選択素子であるダイオードを含むメモリセルを有する不揮発性記憶装置である。
前記不揮発性記憶装置の前記各メモリセルは、前記第1金属配線上に形成された前記ダイオードと、前記ダイオード上に形成された第1金属電極と、前記第1金属電極上に形成された前記相変化材料膜と、前記相変化材料膜上であって前記第2金属配線の下に形成された第2金属電極とを有している。
本願の一発明による不揮発性記憶装置は、隣り合う前記第1金属電極同士の間または隣り合う前記第2金属電極同士の間の少なくとも一方に空隙が形成されているものである。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
相変化メモリにおいて、記憶情報の書き換えおよび読み出しの際の消費電力を低減することができる。
本発明の一実施の形態1である不揮発性記憶装置のメモリマトリクスの要部平面図である。 図1のメモリマトリクスのA−A線における要部断面図である。 図1のメモリマトリクスのB−B線における要部断面図である。 図1のメモリマトリクスのC−C線における要部断面図である。 図1のメモリマトリクスのD−D線における要部断面図である。 相変化材料の融点と電流の関係を示すグラフである。 本発明の実施の形態1である不揮発性記憶装置のメモリマトリクスの等価回路図である。 本発明の実施の形態1である不揮発性記憶装置の製造工程を説明する要部断面図である。 図8に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図8に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図8に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図8に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図9に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図10に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図11に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図12に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図13に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図14に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図15に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図16に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図17に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図18に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図19に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図20に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図21に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図22に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図23に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図24に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図25に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図26に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図27に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図28に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図29に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図30に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図31に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図32に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図33に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図34に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図35に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図36に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図37に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図38に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図39に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図40に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図41に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図42に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図43に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 図44に続く不揮発性記憶装置の製造方法を説明する要部断面図である。 本発明の実施の形態2である不揮発性記憶装置のメモリマトリクスの要部断面図である。 本発明の実施の形態3である不揮発性記憶装置のメモリマトリクスの要部断面図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。また、実施の形態等において構成要素等について、「Aからなる」、「Aよりなる」というときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことはいうまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、材料等について言及するときは、特にそうでない旨明記したとき、または、原理的または状況的にそうでないときを除き、特定した材料は主要な材料であって、副次的要素、添加物、付加要素等を排除するものではない。例えば、シリコン部材は特に明示した場合等を除き、純粋なシリコンの場合だけでなく、添加不純物、シリコンを主要な要素とする2元、3元等の合金(例えばSiGe)等を含むものとする。
また、以下の実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、自己整列した複数のメモリセルをビットラインとワードラインとの交点に垂直に配置形成するクロスポイント型のメモリマトリクスを有し、選択素子としてダイオードを有し、記憶素子として相変化メモリを有する不揮発性記憶装置について説明する。
まず、本実施の形態における相変化メモリの平面レイアウトの一部を図1に示し、要部断面図を図2〜図5に示す。図2、図3、図4および図5はそれぞれ、図1におけるA−A線、B−B線C−C線およびD−D線に沿った断面図である。
本実施の形態の不揮発性記憶装置は、図1の平面図に示すように、平面において直交する複数の第1金属配線2と複数の第2金属配線7との交点23に、記憶素子と選択素子とを有するクロスポイント型のメモリセルによって構成されるメモリマトリクスを有する。なお、図1ではメモリマトリクスの構成をわかりやすくするために、第1金属配線2および第2金属配線7のみを示している。第1金属配線2は図1に示す第1方向に沿う向きにストライプ状に複数並んでおり、第2金属配線7は図1に示すように、第1方向と垂直に交わる第2方向に沿う向きにストライプ状に複数並んでいる。
本実施の形態における不揮発性記憶装置は、図2〜図5に示すように、半導体基板1を有している。半導体基板1上には、図1における第1方向に沿う向きに、ストライプ状に複数延在して形成された第1金属配線2が形成されている。第1金属配線2上には、第1方向に沿う方向に断続的に複数のp型半導体膜3aが形成されており、p型半導体膜3a上にはn型半導体膜3bが形成されている。p型半導体膜3aおよびn型半導体膜3bはpn接合を有するダイオード3を構成しており、ダイオード3上には下部電極膜4が形成されている。下部電極膜4上には相変化材料膜5が形成されている。相変化材料膜5上には、上部電極膜6上が形成されている。上部電極膜6上には、第2金属配線7がストライプ状に形成されており、図1に示すように、第1方向に延在する第1金属配線2と第2方向に延在する第2金属配線7とは、平面において直交する向きにそれぞれ複数形成されている。複数の第1金属配線2および複数の第2金属配線7のそれぞれの交点に形成された各メモリセルは、p型半導体膜3a、n型半導体膜3b、下部電極膜4、相変化材料膜5および上部電極膜6により構成されている。
本実施の形態における不揮発性記憶装置は、直交する複数の第1金属配線2および複数の第2金属配線7の交点に形成された、ダイオード3、下部電極膜4、相変化材料膜5および上部電極膜6からなる複数のメモリセルを有するクロスポイント型のメモリマトリクスである。また、本実施の形態における不揮発性記憶装置は、メモリセル内の相変化材料膜5に電流を流すことで相変化材料膜5を結晶状態またはアモルファス状態に変化させ、相変化材料膜5が結晶状態とアモルファス状態とで抵抗値が異なることを利用して情報を記録する相変化メモリである。メモリセルは第1金属配線2および第2金属配線7に対して垂直に形成された柱状の形状を有し、平面形状においてマトリクス状に並列しており、メモリセル同士の間に形成された層間絶縁膜9、10、11、12により各メモリセル間の電気的分離がなされている。
ここで、図2および図3に示すように、層間絶縁膜9、10は隣り合う相変化材料膜5同士の間を埋めているが、少なくとも隣り合う下部電極膜4同士の間には空隙13、14が設けられている。すなわち、層間絶縁膜9、10は、メモリセルの形成されていない領域における半導体基板1の上面を覆い、各メモリセルのp型半導体膜3a、n型半導体膜3b、下部電極膜4および相変化材料膜5の側壁を覆っているが、隣り合うp型半導体膜3a、n型半導体膜3bおよび下部電極膜4同士の間に充填されておらず、層間絶縁膜9、10内に空隙が形成されている。
これにより、隣り合った下部電極膜4同士の間の熱抵抗が、下部電極膜4同士の間に空隙13、14が無く層間絶縁膜9、10が充填されている場合に比べて増している。また、層間絶縁膜11、12の少なくとも複数の上部電極膜6同士の間には空隙15、16が設けられ、隣り合った上部電極膜6同士の間の熱抵抗が、空隙15、16が無く層間絶縁膜11、12が充填されている場合に比べて増している。
これは、空隙13、14、15および16の方が層間絶縁膜9、10、11および12よりも熱伝導率が低いためである。なお、空隙13、14、15および16は、CVD(Chemical Vapor Deposition)法によって層間絶縁膜を形成する工程において、装置内の雰囲気が層間絶縁膜9、10、11および12に閉じ込められて形成される領域であるので、空隙13、14、15および16中の気圧は層間絶縁膜9、10、11および12を堆積する工程中のCVD装置内と同等の気圧を有することとなる。
また、本実施の形態では層間絶縁膜9、10と同様に、層間絶縁膜11、12内にも空隙15、16が形成されている。層間絶縁膜11は層間絶縁膜10の上面を覆い、上部電極膜6の側壁を覆っている。また、層間絶縁膜12は層間絶縁膜10の上面、上部電極膜6の側壁および上面を覆っている。ただし、層間絶縁膜9、10と同様に、層間絶縁膜11、12は上部電極膜6同士の間に充填されておらず、内部に空隙15、16を有している。
第1金属配線2および第2金属配線7は、例えばAl(アルミニウム)、Cu(銅)またはW(タングステン)からなる。p型半導体膜3aおよびn型半導体膜3bはそれぞれ多結晶シリコン膜からなり、それぞれ異なる導電型の不純物が導入されている。例えば、p型半導体膜3aはB(ボロン)を含む多結晶シリコン膜からなり、n型半導体膜3bはP(リン)を含む多結晶シリコン膜からなる。
上部電極膜6および下部電極膜4は、例えばW(タングステン)等の高融点金属材料からなる。上部電極膜6および下部電極膜4の部材に高融点金属材料を用いることで、相変化メモリの書き込みおよび消去時にメモリセルに電流を流して発熱させても、上部電極膜6および下部電極膜4の材料が劣化しないため、不揮発性記憶装置の信頼性が向上する。また、上部電極膜6および下部電極膜4の材料は、TiNなど熱伝導率の低い材料であれば、相変化メモリの駆動電圧を低減できるため好ましい。
相変化材料膜5は例えばGeSbTe(ゲルマニウム-アンチモン-テルル:GST)からなる。また、層間絶縁膜9〜12の材料は、例えば、TEOS(珪酸エチル)とする。
図4および図5は、それぞれ図1のC−C線およびD−D線における要部断面図である。図4にはメモリセルおよび第1金属配線2は示されておらず、半導体基板1上には層間絶縁膜10が断続的に形成され、半導体基板1上および層間絶縁膜10上には空隙14を挟んで層間絶縁膜9、10が形成されている。層間絶縁膜10は半導体基板1の主面に沿う方向に断続的に形成されており、層間絶縁膜9は、半導体基板1の主面に沿う方向において隣り合う層間絶縁膜10同士の間を埋めるように形成されており、層間絶縁膜9および層間絶縁膜10の上面の高さは均一に形成されている。層間絶縁膜9および層間絶縁膜10上には、空隙16を挟んで層間絶縁膜11が、層間絶縁膜10と同様に半導体基板1の主面に沿う方向に断続的に形成されている。層間絶縁膜11上には第2金属配線7が複数形成されており、ストライプ状に形成された層間絶縁膜11および第2金属配線7同士の間を埋めるように層間絶縁膜12が形成されている。層間絶縁膜12の上面の高さは第2金属配線7よりも高く形成され、層間絶縁膜12は第2金属配線7を覆うように形成されている。
また、図5にはメモリセルおよび第2金属配線7は示されておらず、半導体基板1上には、第1金属配線2が断続的に形成され、第1金属配線2同士の間には層間絶縁膜10が形成されている。半導体基板1、層間絶縁膜10および第1金属配線2上には空隙13を挟んで層間絶縁膜9が形成されている。層間絶縁膜9は半導体基板1の主面に沿う方向に断続的に形成されており、層間絶縁膜9の上面の高さは均一に形成されている。層間絶縁膜9上には、空隙15を挟んで層間絶縁膜12が形成されている。
次に、本実施の形態の相変化メモリの基本動作について説明する。
相変化メモリの書き換えの場合、図2において、電流は第1金属配線2からp型半導体膜3a、n型半導体膜3b、下部電極膜4、相変化材料膜5、上部電極膜6、そして第2金属配線7へと順に流れる。これらの系において、ジュール熱は主として抵抗の高い部分、すなわち上部電極膜6と相変化材料膜5との界面、相変化材料膜5と下部電極膜4との界面、ダイオード3と下部電極膜4との界面、またはダイオード3と第1金属配線2との界面で発生する。発生した熱は周囲の材料に拡散する。例えば相変化材料膜5で発生した熱は相変化材料膜5の周囲に存在する第1金属配線2、下部電極膜4、上部電極膜6、第2金属配線7および層間絶縁膜へ拡散する。
相変化型不揮発性メモリは、メモリセル内の相変化材料膜5が結晶状態とアモルファス状態とで抵抗値が異なることを利用し情報を記録する。例えば、抵抗値が小さい結晶状態をOFF状態、抵抗値が大きいアモルファス状態をONとすることで、2値の切り替えが可能なメモリセルとなる。メモリセルのONからOFFおよびOFFからONのスイッチングは、パルス電圧をワード線とビット線に印加することで行う。
OFFからONへの書き換え、すなわち相変化材料膜5の結晶状態からアモルファス状態への相変化は、相変化材料膜5が融点Tm以上に加熱される電圧をワード線(第1金属配線2)とビット線(第2金属配線7)に印加することで行う。この際、パルス幅を短くすることで、メモリセル内の相変化材料膜5が急冷却されアモルファス状態となる。
一方、ONからOFFへの消去、すなわち相変化材料膜5のアモルファス状態から結晶状態への相変化は、相変化材料が結晶化温度Tc以上融点Tm以下となるように電圧をワード線(第1金属配線2)とビット線(第2金属配線7)に印加することで行う。例えば、相変化材料膜5をGeSbTeとした場合、融点Tmは約600℃(絶対温度で、約870度)、結晶化温度Tcは約160℃(絶対温度で、約430度)である。すなわち、結晶化温度Tcに比べ融点Tmは、絶対温度で2倍程度大きいため、一般的に相変化材料を溶融する際に必要な電流(以下、書換電流と記す)は、結晶化の際に必要な電流に比べ大きい。
本実施の形態の相変化メモリでは、並列する複数の下部電極膜4同士の間の層間絶縁膜9、10内に空隙13、14、が設けられ、並列する複数の上部電極膜6同士の間の層間絶縁膜11、12内に空隙15、16が設けられている。このため、結晶化、あるいはアモルファス化の際に相変化材料膜5で発生した熱が、層間絶縁膜9、10、11および12を通じて隣り合った下部電極膜4間または隣り合った上部電極膜6間を伝わり逃げるのを抑制し、効率よく相変化材料膜5を加熱することができる。よって、空隙13、14、15および16が無く、各下部電極膜4間および各上部電極膜6間に層間絶縁膜が充填されている場合に比べ、小さい書換電流で所望の温度(融点Tmまたは結晶化温度Tc)を得ることが出来る。すなわち、本実施の形態における相変化メモリを用いた不揮発性記憶装置では、記憶情報の書き換え時および読み込み時における消費電力を低減することが可能である。
なお、下部電極膜4同士の間が完全に層間絶縁膜9、10により充填されて空隙13,14が形成されておらず、上部電極膜6同士の間の層間絶縁膜11、12内にのみ空隙15、16が設けられている場合であっても、特許文献1および特許文献2に示す従来技術のように空隙13、14、15および16が全て形成されていない場合に比べ、少ない消費電力で記憶情報の書き換えおよび読み込みをすることができる。これは、上部電極膜6同士の間が完全に層間絶縁膜11、12により充填されて空隙15,16が形成されておらず、下部電極膜4同士の間の層間絶縁膜9、10内にのみ空隙13、14が設けられている場合であっても同様であり、消費電力を低減する効果がある。しかし、空隙13、14、15および16が全て形成されている方がより効率良く相変化材料膜5を加熱することができるため、図2に示すように空隙13、14、15および16が全て形成されていることが好ましい。
図6は、本発明の相変化メモリにおける空隙の、書換電流低減の効果を調べるために行った熱伝導解析結果の一例を示すグラフである。比較のために、空隙が無い場合の解析も合わせて示す。図6は、相変化材料膜を構成するGeSbTe(GST)の温度の印加電流依存性を示した解析例である。グラフの縦軸は相変化材料膜(GST)の温度を示し、グラフの横軸は相変化材料膜に流れる電流の大きさを示している。ここで、図2における第1金属配線2、第2金属配線7、下部電極膜4および上部電極膜6の部材はWとしている。下部電極膜4および上部電極膜6は厚さ0.005μm、面積0.001μmとしている。なお、ここで用いている相変化材料はGeSbTe(GST)であり、GSTの融点は600℃である。
図6に示すように、層間絶縁膜9〜12内に空隙13〜16がない場合、相変化材料膜5の温度が融点の600℃を超えるには、140μA以上の電流が必要である。一方、本発明の相変化メモリでは、110μAで相変化材料膜5の温度が融点の600℃に達している。すなわち、本発明の相変化メモリでは、上部電極膜6同士の間および下部電極膜4同士の間の層間絶縁膜9〜12に空隙13〜16を設けることによって、空隙が無い場合に比べ書換電流を低くすることを可能としていることがわかる。
ここで、本実施の形態におけるメモリマトリクスの動作方式について図7を用いて説明する。図7は、本実施の形態のメモリマトリクスの等価回路図である。メモリセルMCij(i=1,2,3,・・・,m)(j=1,2,3,・・・,n)は、複数本平行に配置されたワード線WLi(i=1,2,3,・・・,m)と、ワード線WLiと交差するように複数本並行に配置されたビット線BLj(j=1,2,3,・・・,n)との交点に配置される。ここで、選択素子SEと相変化抵抗素子VRとが直列に接続された構造となっており。また、図7において、図2に示すダイオード3は選択素子SEにあたり、図2に示す相変化材料膜5は相変化抵抗素子VRにあたる。
相変化メモリの記録は次のように行う。例えば、メモリセルMC11を書き換える場合、1番目のワード線WL1に電圧Vhを、他のワード線WLiに電圧V1を、1番目のビット線BL1に電圧V1を、他のビット線BLjに電圧Vhを印加し、メモリセルMC11の記憶素子に電流を流して情報の記憶を行う。ここで、Vh>V1である。書き換えの際、非選択のメモリセルに誤書込みが行われないようにするため、整流作用を持つ選択素子SEが必要となる。また、当然、電圧Vhは選択素子SEの降伏電圧以下でなければいけない。記録情報の読み出しは次のように行う。例えば、メモリセルMC11の情報を読み出す場合、1番目のワード線WL1に電圧Vmを、他のワード線WLiに電圧V1を、1番目のビット線BL1に電圧V1を印加し、BL1に流れる電流の大きさから情報を読み出す。
なお、本実施の形態では第1金属配線2をワード線とし、第2金属配線7をビット線として説明するが、第1金属配線2をビット線として、第2金属配線7をワード線としてもよい。
次に、本実施の形態の相変化メモリの製造方法を、図8〜図48を用いて説明する。図8は、図1に示すA−A線における断面図である図2と同じ位置における断面図である。なお、図9〜図44では、説明する工程毎に、図1に示すA−A線、B−B線、C−C線およびD−D線における断面図と同じ位置における断面図を4つずつ示す。すなわち、図8、図9、図13、図17、図21、図25、図29、図33、図37および図41は図1に示すA−A線における断面図である図2と同じ位置における断面図である。図10、図14、図18、図22、図26、図30、図34、図38および図42は図1に示すB−B線における断面図である図3と同じ位置における断面図である。図11、図15、図19、図23、図27、図31、図35、図39および図43は図1に示すC−C線における断面図である図4と同じ位置における断面図である。図12、図16、図20、図24、図28、図32、図36、図40および図44は図1に示すD−D線における断面図である図5と同じ位置における断面図である。図45、図46、図47および図48は、それぞれ図1におけるA−A線、B−B、線C−C線およびD−D線における断面図である。
まず、図8に示すように、半導体基板1上に、第1金属膜2a、p型半導体膜3a、n型半導体膜3b、第2金属膜4a、相変化材料膜5aを順次形成する。
第1金属膜2aは例えばW(タングステン)からなり、CVD法等により形成することができる。p型半導体膜3aがB(ボロン)を不純物として含む多結晶シリコンの場合は、p型半導体膜3aと第1金属膜2aとが直接接合する構造であるため、第1金属膜2aの材料をW(タングステン)として、p型半導体膜3aと第1金属膜2aとの接触抵抗を低くすることが好ましい。第1金属膜2aの膜厚は、例えば10nm以上100nm以下が望ましい。第1金属膜2aの膜厚が薄すぎると配線抵抗が高くなり、厚すぎると加工形状の制御が困難となる。
p型半導体膜3aの材料はB(ボロン)、Ga(ガリウム)またはIn(インジウム)のいずれかを不純物として含む多結晶シリコンであり、n型半導体膜3bの材料はP(リン)またはAs(ヒ素)を不純物として含む多結晶シリコンである。p型半導体膜3aおよびn型半導体膜3bは、例えばそれぞれCVD法により形成することができる。p型半導体膜3aおよびn型半導体膜3bの合計膜厚は、例えば30nm以上250nm以下が望ましい。なお、本実施例では選択素子としてPN型ダイオードを用いた場合を示すが、PINダイオードを用いても良い。PINダイオードを用いる場合には、上記p型半導体膜3aとn型半導体膜3bの間に、真性多結晶層を設ける。このPN層の間に不純物を混ぜていないI層(真性多結晶層)を形成することによって、順方向電流に応じて内部抵抗を幅広く可変することが可能になる。また、P+/N−/N+ダイオードを用いても良く、その場合、PINダイオードと同程度の性能を得ることができる。
p型半導体膜3a、n型半導体膜3bは、初めから多結晶シリコンとして成膜せずに、非晶質シリコンとして成膜した後、レーザアニールにより結晶化して成膜することもできる。これにより、プロセス中の熱負荷を低減することができる。また、p型半導体膜3aと第1金属膜2aとの間には、接触抵抗を下げるため、シリサイド技術を用いてタングステンシリサイドやチタンシリサイド等を形成してもよい。同様に、n型半導体膜3bと第2金属膜4aの間に、タングステンシリサイド等を形成してもよい。
相変化材料膜5aは例えばGeSbTeからなり、スパッタリング法等により形成することができる。他の相変化材料膜5aとしては、カルコゲン元素(S,Se,Te)のうちの少なくとも1元素を含む材料を用いることができて、組成を選択することにより、GeSbTeと同程度の性能を得ることができる。相変化材料膜5aの膜厚は、例えば5nm以上300nm以下が望ましい。
次に、図9〜図12に示すように、リソグラフィ技術及びドライエッチング技術を用いて、第1方向に沿って相変化材料膜5a、第2金属膜4a、n型半導体膜3b、p型半導体膜3a及び第1金属膜2aを順次ストライプ状に加工し、相変化材料膜5aの上面から半導体基板1に達する複数の溝20を形成する。これにより、第1金属膜2aからなる第1金属配線2が形成される。上記溝20により、相変化材料膜5a、第2金属膜4a、n型半導体膜3b、p型半導体膜3a及び第1金属配線2の積層パターンは、ワード線のパターンとなり、隣り合うパターンと平行して第1方向に沿ってストライプ状に形成される。また、第1金属配線2は、相変化メモリの読み出し及び書き込みが行えるように、周辺回路(図示しない)を含む半導体基板1と電気的に接続されている。
次に、図13〜図16に示すように、半導体基板1上に層間絶縁膜10を形成する。層間絶縁膜10は、例えばTEOSからなり、CVD法等により形成することができる。この時、ストライプ状に形成されたp型半導体膜3a、n型半導体膜3b、第2金属膜4aおよび相変化材料膜5a同士の間の一部に層間絶縁膜10を形成するが、埋め込み性の悪い条件を用いることで、隣り合う第2金属膜4a同士の間に層間絶縁膜10を挟んで空隙14を設ける。次に、CMP(Chemical Mechanical Polishing)技術を用いて層間絶縁膜10の上面を研磨して、相変化材料膜5aの表面を露出させる。
なお、ここでいう埋め込み性の悪い条件とは、CVD法等により層間絶縁膜10を形成する際に、層間絶縁膜10が等方的に成膜される条件を用いることをいう。等方性の強いCVD法を用いて層間絶縁膜10を形成することにより、隣り合う第2金属膜4a同士の間に層間絶縁膜10が充填される前に、隣り合う第2金属膜4a同士の間の上方の相変化材料膜5a同士の間が層間絶縁膜10で埋められ、空隙14が層間絶縁膜10に閉じ込められて形成される。これにより、層間絶縁膜10は層間絶縁膜10の内部に空隙14を有する構造となる。
また、空隙14の下部に形成する層間絶縁膜10の厚みを厚くしたい場合は、最初に埋め込み性の良い(等方性の弱い)成膜条件を用いて、露出している半導体基板1上に層間絶縁膜10をある程度堆積した後、前述した埋め込み性の悪い条件を用いて隣り合うp型半導体膜3a、n型半導体膜3b、第2金属膜4aおよび相変化材料膜5a同士の間の一部に層間絶縁膜10を形成するとよい。
次に、図17〜図20に示すように、リソグラフィ技術及びドライエッチング技術を用いて、第2方向に沿って層間絶縁膜10、相変化材料膜5a、第2金属膜4a、n型半導体膜3b、p型半導体膜3aを順次加工し、第1金属配線2の上面を露出する複数の溝21を形成する。これにより、相変化材料膜5a、第2金属膜4a、n型半導体膜3b、p型半導体膜3aの積層パターンは柱状となり、相変化材料膜5aからなる相変化材料膜5、第2金属膜4aからなる下部電極膜4が形成される。また、n型半導体膜3b、p型半導体膜3aからなる積層構造のダイオード3が形成される。
次に、図21〜図24に示すように、半導体基板1上に層間絶縁膜9を形成する。層間絶縁膜9は例えばTEOSからなり、CVD法等により形成することができる。この時、ストライプ状に形成されたダイオード3、下部電極膜4および相変化材料膜5からなる積層パターン同士の間の一部を層間絶縁膜9で埋めるが、前述した埋め込み性の悪い条件を用いることで、隣り合う下部電極膜4同士の間に層間絶縁膜9を挟んで空隙13を設ける。その後、CMP技術を用いて層間絶縁膜9の表面を研磨して、相変化材料膜5の上面を露出させる。
ここで、相変化材料膜5の側壁は層間絶縁膜10および層間絶縁膜9で覆われており、露出しておらず、空隙14および空隙13に接していない。
次に、図25〜図28に示すように、相変化材料膜5上および層間絶縁膜9、10上に相変化材料膜5と電気的に接続された第3金属膜6aを形成する。第3金属膜6aは例えばW(タングステン)からなり、CVD法等により形成することができる。
次に、図29〜図32に示すように、リソグラフィ技術及びドライエッチング技術を用いて、第1方向に沿って第3金属膜6aをストライプ状に加工し、層間絶縁膜9、10のそれぞれの上面を露出する複数の溝22を形成する。
次に、図33〜図36に示すように、半導体基板1の全面上に層間絶縁膜11を形成する。層間絶縁膜11は例えばTEOSからなり、CVD法等により形成することができる。この時、前述した埋め込み性の悪い条件を用いることで、隣り合う第3金属膜6a同士の間に空隙16を設ける。次に、CMP技術を用いて層間絶縁膜11の表面を研磨して、第3金属膜6aの上面を露出させる。
次に、図37〜図40に示すように、第3金属膜6a上および層間絶縁膜11上に第3金属膜6aと電気的に接続された第4金属膜7aを形成する。第4金属膜7aは例えばW(タングステン)からなり、CVD法等により形成することができる。
次に、図41〜図44に示すように、リソグラフィ技術及びドライエッチング技術を用いて、第2方向に沿って第4金属膜7a、第3金属膜6aを順次加工する。これにより、第4金属膜7aからなる第2金属配線7が形成され、第3金属膜6aからなる柱状の上部電極膜6が形成される。上部電極膜6は、相変化メモリの読み出し及び書き込みが行えるように、周辺回路(図示しない)を含む半導体基板1と電気的に接続されている。この工程により、柱状に形成されたダイオード3、下部電極膜4、相変化材料膜5および上部電極膜6を有するメモリセルが形成され、このメモリセルが複数マトリクス状に並んだメモリマトリクスが形成される。
次に、図45〜図48に示すように、半導体基板1の全面上に層間絶縁膜12を形成した後、層間絶縁膜12の上面をCMP技術により研磨し、表面を平坦にする。層間絶縁膜12は例えばTEOSからなり、CVD法等により形成することができる。この時、前述した埋め込み性の悪い条件を用いることで、隣り合う上部電極膜6の間に空隙15を設ける。これにより、本実施の形態における相変化メモリを有する不揮発性記憶装置が完成する。
前述したように、本実施の形態では、クロスポイント型の相変化メモリにおいて、隣り合う上部電極膜6同士の間および隣り合う下部電極膜4同士の間に、層間絶縁膜9〜12よりも熱伝導率の低い空隙13〜16を形成することにより、メモリセル内で発生する熱の散逸を防ぎ、相変化材料膜5を従来より低い電流で効率的に加熱することを可能としている。これにより、相変化メモリの書き込み・消去時の消費電力を低減させることができる。
(実施の形態2)
次に、図49を用いて、相変化材料膜5の上部に電極膜25を設ける場合の不揮発性記憶装置について説明する。図49は、本実施の形態における相変化メモリの要部断面図であり、図1のA−A線に沿った断面図である図2と同じ位置における断面図を示している。
本実施の形態の相変化メモリと、前記実施の形態1に示した相変化メモリとの大きな違いは、相変化材料膜5と、上部電極膜6との間に薄い電極膜25を設けていることである。
電極膜25は、前記実施の形態の図8で示した工程において、相変化材料膜5aを成膜した後に相変化材料膜5a上に金属膜を成膜することで形成される。電極膜25は例えばW(タングステン)からなり、CVD法等により形成することができる。
本実施の形態における製造工程では、前記実施の形態1で図9〜図12および図17〜図20を用いて説明したそれぞれのエッチング工程において、相変化材料膜5aをストライプ状に加工する前に、相変化材料膜5a上のW(タングステン)膜をそれぞれの工程で加工して形成するパターンと同方向に延在するストライプ状にエッチングし、相変化材料膜5上に電極膜25を形成する。
また、前記実施の形態1で図13〜図16および図21〜図24を用いて説明したCMP技術によるそれぞれの研磨工程では、相変化材料膜5aまたは相変化材料膜5の上面を露出させず、電極膜25の上面を露出させた時点で研磨を停止することで相変化材料膜5上に電極膜25を残す。
本実施の形態では、前期実施の形態1と同様の効果に加え、上部電極膜6および相変化材料膜5の間に電極膜25を形成することにより、製造工程中に相変化材料膜5aまたは相変化材料膜5の表面が露出することで相変化材料膜5aまたは相変化材料膜5が昇華することを防ぐことができ、また、上部電極膜6および相変化材料膜5の間の密着性を向上させることが可能である。
(実施の形態3)
次に、本実施の形態では図50を用いて、相変化材料膜5の幅を狭めた場合の不揮発性記憶装置について説明する。図50は、本実施の形態における相変化メモリの要部断面図であり、図1のA−A線に沿った断面図である図2と同じ位置における断面図を示している。なお、ここでいう各部位の幅とは、半導体基板1の主面に沿う方向であって、図1に示す第1方向および第2方向における幅をいう。
本実施の形態の相変化メモリと、前記実施の形態1に示した相変化メモリの大きな違いは、相変化材料膜5の幅の長さである。前記実施の形態1に示した相変化メモリでは、相変化材料膜5の幅は、下部電極膜4および上部電極膜6の幅と同じであるが、本実施の形態の相変化メモリでは、相変化材料膜5の幅は、下部電極膜4および上部電極膜6の幅に比べて小さい。
本実施の形態では、相変化材料膜5の幅を小さくすることで、半導体基板1の主面に沿う面における相変化材料膜5の断面の断面積を、半導体基板1の主面に沿う面におけるダイオード3、下部電極膜4および上部電極膜6のいずれの断面の断面積よりも小さくすることができ、書き換え時の相変化材料膜5の電流密度を増加させることができるため、相変化材料膜5内での発熱密度を増すことが可能である。これにより、効率良く相変化材料膜5が加熱され、半導体基板1の主面に沿う面における相変化材料膜5と下部電極膜4または上部電極膜6との断面積が同じである場合よりも低い電流での書き換えが可能となり、前記実施の形態1に示した不揮発性記憶装置よりも更に消費電力を低減することができる。
相変化材料膜5の第2方向における幅を、下部電極膜4および上部電極膜6の幅に比べて小さくする方法としては、例えば、前記実施の形態1で示した図9〜図12の工程におけるドライエッチング工程の後であって図13〜図16の工程の前に、相変化材料膜5aを等方性ドライエッチング法により加工して相変化材料膜5aの側面にサイドエッチングを入れる方法がある。
また、相変化材料膜5の第1方向における幅を、下部電極膜4および上部電極膜6の幅に比べて小さくする方法としては、例えば、前記実施の形態1で示した図17〜図20の工程におけるドライエッチング工程の後であって図21〜図24の工程の前に、相変化材料膜5を等方性ドライエッチング法により加工して相変化材料膜5の側面にサイドエッチングを入れる方法がある。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
例えば、前記実施の形態1〜3において示したメモリマトリクスを複数層積層させて使用する不揮発性記憶装置においても、本発明を適用することが可能である。
本発明の不揮発性記憶装置の製造方法は、相変化メモリを利用する不揮発性メモリに幅広く利用されるものである。
1 半導体基板
2 第1金属配線
2a 第1金属膜
3 ダイオード
3a p型半導体膜
3b n型半導体膜
4 下部電極膜
4a 第2金属膜
5 相変化材料膜
5a 相変化材料膜
6 上部電極膜
6a 第3金属膜
7 第2金属配線
7a 第4金属膜
9、10、11、12 層間絶縁膜
13、14、15、16 空隙
20、21、22 溝
23 交点
25 電極膜
WL1、WL2、WLi、WLm ワード線
BL1、BL2、BLj、BLn ビット線
SE 選択素子
VR 相変化抵抗素子

Claims (10)

  1. 半導体基板の主面の第1方向に沿って延びる複数の第1金属配線と、
    前記第1方向と直交する第2方向に沿って延びる複数の第2金属配線と、
    前記複数の第1金属配線と前記複数の第2金属配線との各交点に、電流で駆動する記憶素子である相変化材料膜および選択素子であるダイオードを含むメモリセルを有する不揮発性記憶装置であって、
    前記各メモリセルは、
    前記第1金属配線上に形成された前記ダイオードと、
    前記ダイオード上に形成された第1金属電極と、
    前記第1金属電極上に形成された前記相変化材料膜と、
    前記相変化材料膜上であって前記第2金属配線の下に形成された第2金属電極と、
    を有し、
    隣り合う前記第1金属電極同士の間または隣り合う前記第2金属電極同士の間の少なくとも一方に空隙が形成されていることを特徴とする不揮発性記憶装置。
  2. 前記空隙は、隣り合う前記メモリセル同士の間に形成された層間絶縁膜内に形成されていることを特徴とする請求項1記載の不揮発性記憶装置。
  3. 前記半導体基板の主面に沿う面における前記相変化材料膜の断面積が、前記半導体基板の主面に沿う面における前記ダイオード、前記第1金属電極または前記第2金属電極のいずれかの断面積よりも小さいことを特徴とする請求項1記載の不揮発性記憶装置。
  4. 前記相変化材料膜の側壁は、前記メモリセル同士の間に形成された層間絶縁膜に覆われていることを特徴とする請求項1記載の不揮発性記憶装置。
  5. 前記相変化材料膜と前記第2金属電極との間に、金属膜が形成されていることを特徴とする請求項1記載の不揮発性記憶装置。
  6. 半導体基板の主面にダイオードと相変化材料膜を含む抵抗素子とで構成された相変化メモリを備えた不揮発性記憶装置の製造方法であって、
    (a)前記半導体基板上に第1金属膜、第1導電型の不純物を含む第1ポリシリコン膜、第2導電型の不純物を含む第2ポリシリコン膜、第2金属膜および前記相変化材料膜を順次形成する工程と、
    (b)前記(a)工程の後、前記半導体基板の主面の第1方向に沿って前記相変化材料膜、前記第2金属膜、前記第2ポリシリコン膜、前記第1ポリシリコン膜および前記第1金属膜を順次ストライプ状にエッチングする工程と、
    (c)前記(b)工程の後、前記半導体基板上であって、隣り合う前記相変化材料膜同士の間に第1層間絶縁膜を形成する工程と、
    (d)前記(c)工程の後、前記第1方向と直交する第2方向に沿って前記第1層間絶縁膜、前記相変化材料膜、前記第2金属膜、前記第2ポリシリコン膜、前記第1ポリシリコン膜および前記第1金属膜をストライプ状にエッチングする工程と、
    (e)前記(d)工程の後、前記半導体基板上であって、隣り合う前記相変化材料膜同士の間に第2層間絶縁膜を形成する工程と、
    (f)前記(e)工程の後、前記第1層間絶縁膜上、前記第2層間絶縁膜上および前記相変化材料膜上に、前記相変化材料膜と電気的に接続された第3金属膜を形成する工程と、
    (g)前記(f)工程の後、前記第1方向に沿って前記第3金属膜をストライプ状にエッチングする工程と、
    (h)前記(g)工程の後、隣り合う前記第3金属膜同士の間に第3層間絶縁膜を形成する工程と、
    (i)前記(h)工程の後、前記第3金属膜上および前記第3層間絶縁膜上に、前記第3金属膜と電気的に接続された第4金属膜を形成する工程と、
    (j)前記(i)工程の後、前記第2方向に沿って前記第3層間絶縁膜、前記第4金属膜および前記第3金属膜をエッチングして、前記第3層間絶縁膜、前記第4金属膜および、前記第3金属膜をストライプ状にエッチングする工程と、
    (k)前記(j)工程の後、隣り合う前記第4金属膜同士の間に第4層間絶縁膜を形成する工程と、
    を有し、
    隣り合う前記第2金属膜同士の間または隣り合う前記第3金属膜同士の間の少なくとも一方に空隙を形成することを特徴とする不揮発性記憶装置の製造方法。
  7. 前記空隙は前記第1層間絶縁膜、前記第2層間絶縁膜、前記第3層間絶縁膜または前記第4層間絶縁膜内に形成されていることを特徴とする請求項6記載の不揮発性記憶装置の製造方法。
  8. 前記(b)工程の後であって前記(c)工程の前、または前記(d)工程の後であって前記(e)工程の前の少なくともどちらか一方において、前記相変化材料膜の側壁の一部をエッチングする工程を有し、
    前記半導体基板の主面に沿う面における前記相変化材料膜の断面積を、前記半導体基板の主面に沿う面における前記第1金属膜の断面積よりも小さくすることを特徴とする請求項6記載の不揮発性記憶装置の製造方法。
  9. 前記(a)工程では、前記半導体基板上に前記第1金属膜、前記第1ポリシリコン膜、前記第2ポリシリコン膜、前記第2金属膜、前記相変化材料膜および第5金属膜を順次形成し、
    前記(b)工程では、前記半導体基板の主面の前記第1方向に沿って前記第5金属膜、前記相変化材料膜、前記第2金属膜、前記第2ポリシリコン膜、前記第1ポリシリコン膜および前記第1金属膜を順次ストライプ状にエッチングし、
    前記(d)工程では、前記第2方向に沿って前記第1層間絶縁膜、前記第5金属膜、前記相変化材料膜、前記第2金属膜、前記第2ポリシリコン膜、前記第1ポリシリコン膜および前記第1金属膜をストライプ状にエッチングし、
    前記(f)工程では、前記第1層間絶縁膜上、前記第2層間絶縁膜上および前記第5金属膜上に、前記相変化材料膜と電気的に接続された前記第3金属膜を形成することを特徴とする請求項6記載の不揮発性記憶装置の製造方法。
  10. 前記(c)工程、前記(e)工程、前記(h)工程または前記(k)工程において、等方性のあるCVD法により前記第1層間絶縁膜、前記第2層間絶縁膜、前記第3層間絶縁膜または前記第4層間絶縁膜を形成することを特徴とする請求項6記載の不揮発性記憶装置の製造方法。
JP2010007173A 2010-01-15 2010-01-15 不揮発性記憶装置およびその製造方法 Expired - Fee Related JP5420436B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010007173A JP5420436B2 (ja) 2010-01-15 2010-01-15 不揮発性記憶装置およびその製造方法
TW099127432A TWI422026B (zh) 2010-01-15 2010-08-17 Method for manufacturing nonvolatile memory device
PCT/JP2010/064175 WO2011086725A1 (ja) 2010-01-15 2010-08-23 不揮発性記憶装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007173A JP5420436B2 (ja) 2010-01-15 2010-01-15 不揮発性記憶装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2011146590A true JP2011146590A (ja) 2011-07-28
JP5420436B2 JP5420436B2 (ja) 2014-02-19

Family

ID=44304023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007173A Expired - Fee Related JP5420436B2 (ja) 2010-01-15 2010-01-15 不揮発性記憶装置およびその製造方法

Country Status (3)

Country Link
JP (1) JP5420436B2 (ja)
TW (1) TWI422026B (ja)
WO (1) WO2011086725A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107945A1 (ja) * 2014-01-17 2015-07-23 ソニー株式会社 スイッチ素子および記憶装置
JP2015135917A (ja) * 2014-01-17 2015-07-27 ソニー株式会社 スイッチ素子および記憶装置
US9524937B2 (en) 2013-12-30 2016-12-20 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
JP2017537470A (ja) * 2014-11-07 2017-12-14 マイクロン テクノロジー, インク. クロスポイントメモリと、その製造方法
US10153327B1 (en) 2017-07-06 2018-12-11 Samsung Electronics Co., Ltd. Semiconductor device including data storage pattern between isolation lines

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560205B (zh) * 2013-11-04 2015-10-14 中国科学院上海微系统与信息技术研究所 相变存储结构及制作方法
KR102437416B1 (ko) 2015-08-28 2022-08-30 삼성전자주식회사 3차원 반도체 메모리 장치
KR102368428B1 (ko) * 2017-06-29 2022-03-02 삼성전자주식회사 가변 저항 메모리 소자 및 그 제조방법
KR20200106681A (ko) 2019-03-05 2020-09-15 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
CN112151674A (zh) * 2020-08-31 2020-12-29 清华大学 低温非易失性存储器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303941A (ja) * 2002-03-28 2003-10-24 Micronics Internatl Co Ltd 自己整列したプログラム可能な相変化メモリ
US6815704B1 (en) * 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
JP2005064050A (ja) * 2003-08-14 2005-03-10 Toshiba Corp 半導体記憶装置及びそのデータ書き込み方法
JP2007194426A (ja) * 2006-01-19 2007-08-02 Toshiba Corp 半導体記憶装置
JP2009267219A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd 半導体記憶装置およびその製造方法
JP2010040820A (ja) * 2008-08-06 2010-02-18 Hitachi Ltd 不揮発性記憶装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028117A1 (ja) * 2004-09-09 2006-03-16 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とその製造方法
JP2009123725A (ja) * 2007-11-12 2009-06-04 Hitachi Ltd 不揮発性半導体記憶装置
TWI361504B (en) * 2008-01-30 2012-04-01 Ind Tech Res Inst Hollow stylus-shaped structure, methods for fabricating the same, and phase-change memory devices, magnetic random access memory devices, resistive random access memory devices, field emission display, multi-electrobeams direct writing lithography appara

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303941A (ja) * 2002-03-28 2003-10-24 Micronics Internatl Co Ltd 自己整列したプログラム可能な相変化メモリ
JP2005064050A (ja) * 2003-08-14 2005-03-10 Toshiba Corp 半導体記憶装置及びそのデータ書き込み方法
US6815704B1 (en) * 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
JP2007194426A (ja) * 2006-01-19 2007-08-02 Toshiba Corp 半導体記憶装置
JP2009267219A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd 半導体記憶装置およびその製造方法
JP2010040820A (ja) * 2008-08-06 2010-02-18 Hitachi Ltd 不揮発性記憶装置及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497647B2 (en) 2013-12-30 2019-12-03 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
US9524937B2 (en) 2013-12-30 2016-12-20 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
US9842803B2 (en) 2013-12-30 2017-12-12 Samsung Electronics Co., Ltd. Semiconductor devices including gaps between conductive patterns
JP2015135917A (ja) * 2014-01-17 2015-07-27 ソニー株式会社 スイッチ素子および記憶装置
KR20160110375A (ko) * 2014-01-17 2016-09-21 소니 주식회사 스위치 소자 및 기억 장치
JPWO2015107945A1 (ja) * 2014-01-17 2017-03-23 ソニー株式会社 スイッチ素子および記憶装置
WO2015107945A1 (ja) * 2014-01-17 2015-07-23 ソニー株式会社 スイッチ素子および記憶装置
US10084017B2 (en) 2014-01-17 2018-09-25 Sony Semiconductor Solutions Corporation Switch device and storage unit having a switch layer between first and second electrodes
KR102297252B1 (ko) * 2014-01-17 2021-09-03 소니 세미컨덕터 솔루션즈 가부시키가이샤 스위치 소자 및 기억 장치
JP2017537470A (ja) * 2014-11-07 2017-12-14 マイクロン テクノロジー, インク. クロスポイントメモリと、その製造方法
JP2019165235A (ja) * 2014-11-07 2019-09-26 マイクロン テクノロジー,インク. クロスポイントメモリと、その製造方法
US10396125B2 (en) 2014-11-07 2019-08-27 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US10680037B2 (en) 2014-11-07 2020-06-09 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US10153327B1 (en) 2017-07-06 2018-12-11 Samsung Electronics Co., Ltd. Semiconductor device including data storage pattern between isolation lines

Also Published As

Publication number Publication date
WO2011086725A1 (ja) 2011-07-21
JP5420436B2 (ja) 2014-02-19
TW201138087A (en) 2011-11-01
TWI422026B (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5420436B2 (ja) 不揮発性記憶装置およびその製造方法
JP5342189B2 (ja) 不揮発性記憶装置及びその製造方法
US8427865B2 (en) Semiconductor storage device
JP4577693B2 (ja) 不揮発性メモリ素子及びその製造方法
KR100782482B1 (ko) GeBiTe막을 상변화 물질막으로 채택하는 상변화 기억 셀, 이를 구비하는 상변화 기억소자, 이를 구비하는 전자 장치 및 그 제조방법
US20180138398A1 (en) Phase change memory cell with constriction structure
KR100809341B1 (ko) 저항체를 이용한 비휘발성 메모리 장치 및 그 제조 방법
JP4847743B2 (ja) 不揮発性メモリ素子
JP2009123725A (ja) 不揮発性半導体記憶装置
JP5268376B2 (ja) 不揮発性記憶装置およびその製造方法
JP2009267219A (ja) 半導体記憶装置およびその製造方法
JP4577692B2 (ja) 不揮発性メモリ素子及びその製造方法
US20100123114A1 (en) Nonvolatile memory device
KR102119306B1 (ko) 저항 스위칭 소자 및 이를 이용한 상변화 메모리 소자
JP2010087007A (ja) 相変化メモリ装置及びその製造方法
JP5634002B2 (ja) 相変化型不揮発性メモリ及び半導体装置
TWI704705B (zh) 半導體記憶裝置
JP2008103541A (ja) 相変化メモリおよびその製造方法
KR100876767B1 (ko) 상 변화 메모리 장치의 형성 방법
JP2011114011A (ja) 不揮発性記憶装置およびその製造方法
US20230403955A1 (en) Semiconductor memory device
US11678594B2 (en) Semiconductor storage device
JP2009076596A (ja) 半導体装置およびその製造方法
TW202113823A (zh) 半導體記憶裝置
KR20090001206A (ko) 반도체 소자의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees