JP2011119722A - 多層配線基板及びその製造方法 - Google Patents

多層配線基板及びその製造方法 Download PDF

Info

Publication number
JP2011119722A
JP2011119722A JP2010250875A JP2010250875A JP2011119722A JP 2011119722 A JP2011119722 A JP 2011119722A JP 2010250875 A JP2010250875 A JP 2010250875A JP 2010250875 A JP2010250875 A JP 2010250875A JP 2011119722 A JP2011119722 A JP 2011119722A
Authority
JP
Japan
Prior art keywords
layer
metal foil
plating
wiring board
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010250875A
Other languages
English (en)
Other versions
JP5700241B2 (ja
Inventor
Masayuki Kodaira
正幸 小平
Satoshi Isoda
聡 磯田
Takanori Nishida
貴紀 西田
Mitsuyasu Ishihara
光泰 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010250875A priority Critical patent/JP5700241B2/ja
Publication of JP2011119722A publication Critical patent/JP2011119722A/ja
Application granted granted Critical
Publication of JP5700241B2 publication Critical patent/JP5700241B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】高密度で、フリップチップ接続性やワイヤーボンド接続性に優れ、しかもSAWデバイスを構成する配線基板として用いた場合のフィルタ機能を確保することが可能な、多層配線基板及びその製造方法を提供することを目的とする。
【解決手段】配線パターンと絶縁層とが交互に設けられ、前記絶縁層を貫通して配線パターン間を接続する層間接続を有する多層配線基板であって、前記層間接続がめっきによるフィルドビアで形成され、最外層の配線パターンが、前記層間接続上に配置されかつ前記めっきによるフィルドビアと接続された金属箔により形成される多層配線基板及びその製造方法。
【選択図】図1

Description

本発明は、表層の配線パターンが高密度かつ平滑で、しかもフリップチップ接続性やワイヤーボンド接続性に優れた多層配線基板及びその製造方法に関し、特には通信モジュール用の多層配線基板に関する。
近年、携帯電話等の移動通信機器の小型化・薄型化・高性能化に伴い、高周波フィルタとしてのSAW(Surface Acoustic Wave:表面弾性波)デバイスの小型化・薄型化・高周波化が進んでいる。これに伴い、SAWデバイスを構成する配線基板にも、高密度化に加え、薄型化におけるフィルタ機能を確保するために配線パターン表面の平滑化が要求されている。
従来のSAWデバイスとしては、基体の一方主面側(活性面側)に機能素子領域と入出力電極とを有するSAW圧電体素子を、基体の一方主面側(活性面側)を配線基板側に向けて、フェイスダウンで接続端子にフリップチップ実装してSAWフィルタを構成したものがある(特許文献1)。また、配線基板上にSAW圧電体素子をフリップチップ実装し、SAW圧電体素子の活性面上に封止樹脂の流れを堰き止めるために設ける堰き止め手段を備えたものがある(特許文献2)。
また、高密度化・薄型化の要求に応える多層配線基板としては、全層に亘って、非貫通ビアをシーケンシャル構造で接続したものや(特許文献3)、全層に亘って、非貫通ビアの直上に非貫通ビアを形成したいわゆるフルスタック構造を備えた多層配線基板が提案されている(特許文献4、5)。
特開平11−097479号公報 特開2006−211612号公報 特開2001−308548号公報 特開2004−152915号公報 特開2007−129180号公報
しかしながら、特許文献1及び2のSAWデバイスを構成する配線基板では、SAW圧電素子を搭載する面の配線パターンの表面凹凸については考慮されていない。近年では、移動体通信機器の高周波化(例えば、0.45〜4.0GHz)とともに、一層の小型化・薄型化が進んでおり、フェイスダウンでフリップチップ接続されたSAW圧電素子の活性面(表面弾性波の振動部分)と配線基板表面の配線パターンとの隙間に形成される振動空間が、より狭く(例えば、10μm程度)なるように設計される傾向がある。このような場合、SAW圧電素子を搭載する配線基板表面の配線パターンの表面凹凸が大きいと、配線パターンとSAW圧電素子の活性面が接触する可能性があり、フィルタとしての機能を確保できない問題があった。
また、特許文献1及び2のSAWデバイスを構成する配線基板では、SAW圧電素子のフリップチップ接続用のバンプは、配線基板の層間接続用のビア直上ではなく、配線パターンの一部に設けられた表層電極上に接続されている。このため、樹脂製の配線基板を用いた場合、熱や圧力で軟化し易いので、フリップチップ接続の際の圧着力や超音波が接続箇所に伝わり難く、接続信頼性を確保するのが難しい問題がある。
特許文献3のシーケンシャルビア構造を有する多層配線基板では、非貫通ビア内がめっき等の金属で充填されていないため、SAW圧電素子のフリップチップ接続用のバンプを、配線基板の層間接続用のビア上に設けることはできず、絶縁層上の配線パターンの一部に設けられた表層電極上に接続される。このため、フリップチップ接続の際の圧着力や超音波が接続箇所に伝わり難く、接続信頼性を確保するのが難しい問題がある。
特許文献4多層配線基板は、フルスタックビア構造を有する。しかしながら、フィルドビアの直上に電子部品素子を搭載するための接続端子を有していない。仮に、SAW圧電素子のフリップチップ接続用のバンプを、配線基板の層間接続用のビア上に設けたとしても、ビア内を導電ペーストで充填するため、熱や圧力で軟化し易いので、フリップチップ接続の際の圧着力や超音波が接続箇所に伝わり難く、接続信頼性を確保するのが難しい問題がある。
特許文献5の多層配線基板では、ビア内をめっき金属で充填して、フィルドビアを直上に積重ねたスタック構造が可能となる。しかしながら、フィルドビアの直上に電子部品素子を搭載するための接続端子を有していない。また、表面の銅箔上にバリア金属層を形成しておき、非貫通孔に層間接続の際のめっきを充填する際に、バリア金属層を形成した表面の銅箔上にも、層間接続の際のめっきによるめっき層が形成され、その後バリア金属層上のめっきを除去して銅箔のみとする。このため、SAW圧電素子のフリップチップ接続用のバンプを、配線基板の層間接続用のビア上に設けたとしても、表面の銅箔のバリア金属層上のめっきを除去する際に、バリア金属層のない部分のフィルドビア表面に凹凸が生じてしまう。したがって、フリッチップ実装時の圧着力が配線基板の表面端子上に均一に伝わり難く、やはり接続信頼性上の問題がある。これは、フリップチップ接続だけでなく、ワイヤーボンド接続の場合も同様である。
本発明は、上記問題点に鑑みなされたものであり、高密度で、フリップチップ接続性やワイヤーボンド接続性に優れ、しかもSAWデバイスを構成する配線基板として用いた場合のフィルタ機能を確保することが可能な、多層配線基板及びその製造方法を提供することを目的とする。
本発明は、以下のものに関する。
1. 配線パターンと絶縁層とが交互に設けられ、前記絶縁層を貫通して配線パターン間を接続する層間接続を有する多層配線基板であって、前記層間接続がめっきによるフィルドビアで形成され、最外層の配線パターンが、前記層間接続上に配置されかつ前記めっきによるフィルドビアと接続された金属箔により形成される多層配線基板。
2. 上記1において、金属箔の一方の面にのみ、絶縁層と配線パターンとそれぞれの配線パターン間を接続する層間接続とを形成した後、前記金属箔を回路加工することにより、最外層の配線パターンが金属箔により形成される多層配線基板。
3. 上記1または2において、フィルドビアで形成される層間接続が、多層配線基板の厚み方向全体に亘って、略柱状に設けられた多層配線基板。
4. 上記1から3の何れかにおいて、最外層の配線パターン上に保護めっきとして、ニッケルめっきまたはニッケルめっきと金めっきまたはニッケルめっきとパラジウムめっきと金めっきとを有する多層配線基板。
5. 上記1から4の何れかにおいて、最外層の配線パターンを構成する金属箔が、厚さ1〜18μmの銅箔である多層配線基板。
6. 上記1から5の何れかにおいて、最外層の配線パターン上に形成された保護めっきの表面の最大粗さ(Rz)が、8μm未満である多層配線基板。
7. 上記1から6の何れかにおいて、層間接続の直上に位置する最外層の配線パターンが、フリップチップ接続端子またはワイヤーボンド接続端子を形成する多層配線基板。
8. 上記7の多層配線基板の最外層の配線パターンで形成されるフリップチップ接続端子またはワイヤーボンド接続端子を用いて、電子部品素子を実装した電子装置。
9. 上記8において、電子部品素子として、SAW圧電素子またはPA素子を搭載して通信モジュールとした電子装置。
10. 最外層の第1層導体となる金属箔Aを準備する工程(1)と、前記金属箔A上に第1絶縁層と第2層導体となる金属箔Bとを積層する工程(2)と、前記第1絶縁層に第2層導体から第1層導体に到る層間接続孔を形成する工程(3)と、この層間接続孔内及び前記第2層導体上に、前記第1層導体と前記第2層導体とを電気的に接続するためのフィルドビアめっきを行なう工程(4)と、前記フィルドビアめっき後の第2層導体を回路加工して、第2層配線パターンを形成する工程(5)と、前記第2層配線パターン上に前記工程(2)〜(5)を必要な回数繰り返す工程(6)と、前記第1層導体である金属箔Aを回路加工して、第1層配線パターンを形成することにより、前記フィルドビアめっきを行なった層間接続孔の直上に接続端子を形成する工程(7)と、を有する多層配線基板の製造方法。
11. 上記10において、第1層導体である金属箔Aを回路加工して、第1層配線パターンを形成することにより、フィルドビアめっきを行なった層間接続孔の直上に接続端子を形成する工程の後、前記接続端子の上に保護めっきを形成する多層配線基板の製造方法。
12. 上記10または11において、両面に金属箔を有するコア基板を準備し、このコア基板の金属箔の上に、工程(1)で準備した表層の第1層となる金属箔Aを直接重ねた後、工程(2)〜(6)を行ない、その後、前記コア基板の金属箔と金属箔Aとの界面で、前記複数の配線層と前記コア基板とを分離する工程(9)と、第1層導体である金属箔Aを回路加工して、第1層配線パターンを形成することにより、フィルドビアめっきを行なった層間接続孔の直上に接続端子を形成する工程(7)と、を有する多層配線基板の製造方法。
本発明によれば、高密度で、フリップチップ接続性やワイヤーボンド接続性に優れ、しかもSAWデバイスを構成する配線基板として用いた場合のフィルタ機能を確保することが可能な、多層配線基板及びその製造方法を提供することができる。
本発明の多層配線基板及びこれを用いて作製した通信モジュールの断面図を示す。 本発明の多層配線基板の断面図を示す。 本発明の多層配線基板の製造工程の一部を示す。 本発明の多層配線基板の製造工程の一部を示す。 本発明の多層配線基板の製造工程の一部を示す。 本発明の多層配線基板の製造工程の一部を示す。 本発明の多層配線基板の製造工程の一部を示す。 本発明の多層配線基板の製造工程の一部を示す。 本発明の多層配線基板の製造工程の一部を示す。
本発明の多層配線基板は、電子部品素子を搭載するための基板である。本発明において、電子部品素子とは、半導体素子、SAW圧電素子、PA(パワーアンプ)素子などのフリップチップ接続やワイヤーボンド接続によって、配線基板上の接続端子に接続される表面実装型の電子部品素子をいう。電子部品素子を、フリップチップ接続またはワイヤーボンド接続して搭載する用途であれば、特に限定はないが、例えばSAW圧電素子もしくはPA(パワーアンプ)素子を搭載して、いわゆるSAWフィルタパッケージもしくはPAモジュールなどの通信モジュールを形成するための部材として、主に携帯電話などの通信モジュールでベアチップ実装用途に用いられるのが望ましい。
本発明の多層配線基板の一形態としては、配線パターンと絶縁層とが交互に設けられ、前記絶縁層を貫通して配線パターン間を接続する層間接続を有する多層配線基板であって、前記層間接続がめっきによるフィルドビアで形成され、このフィルドビアで形成される層間接続の直上に位置する前記配線パターンのうち、第1層配線パターンが、金属箔により形成される多層配線基板が挙げられる。つまり、最外層の配線パターンである第1層配線パターンが、層間接続上を覆うように配置されかつめっきによるフィルドビアと裏面が直接接続された金属箔により形成される多層配線基板が挙げられる。
本発明の多層配線基板の一形態をより具体的に示すと、図1、図2に示すように、一方の面にフリップチップ接続端子5を含む第1層配線パターン8を、第1絶縁層9に形成された第1フィルドビア10を層間接続として、第2層配線パターン11に電気的に接続された配線構造を有し、さらに第2絶縁層12に形成された第2フィルドビア13を層間接続として第3層配線パターン14に電気的に接続された配線構造を有し、さらに第3絶縁層15に形成された第3フィルドビア16を層間接続として、裏面電極7となる部分を含む第4層配線パターン17に電気的に接続された配線構造を備える多層配線基板1であって、前記第1層配線パターン8は金属箔A19で構成され、その上に保護めっき22を備えており、第1フィルドビア10の直上に、電子部品素子3を搭載するためのフリップチップ接続端子5が設けられる多層配線基板1である。
つまり、図1、図2に示す形態では、一方の面にフリップチップ接続端子5を、他方の面に裏面電極7を有する多層配線基板1であり、フリップチップ接続端子5は層間接続である各フィルドビア10、13、16の直上に設けられ、これらのフィルドビア10、13、16は多層配線基板1の厚み方向全体に亘って直上に設けられており、裏面電極7に接続された構造の多層配線基板1としている。多層配線基板1の表面側(第1層側)には、第1フィルドビア10の直上に、電子部品素子3をバンプ4で接続するためのフリップチップ接続端子5が設けられており、電子部品素子3はバンプ4で多層配線基板1に固定されて搭載された構造となる。
このため、図1、図2に示す形態では、バンプ4とフリップチップ接続端子5と裏面電極7とは多層配線基板1の厚さ方向に、層間接続(第1フィルドビア10、第2フィルドビア13、第3フィルドビア16)を介して連続した状態で繋がるため、電子部品素子3を搭載する時の熱・圧力・超音波振動が伝わりやすい構造となる。しかも、フリップチップ接続端子5となる部分を含む第1層配線パターン8は、金属箔A19だけで構成され、その上部には、フィルドビアめっきにより層間接続を形成する際にも、フィルドビアめっき21a、21b、21cが形成されない。このため、このような層間接続の際に生じるめっき層31により、金属箔A19の表面粗さや凹凸が拡大することがない。ここで、層間接続の際に生じるめっき層31とは、例えば、コンフォーマル工法において、ビア内に層間接続のためのフィルドビアめっき等を行なうと、表面の金属箔上にもフィルドビアめっきが形成され、表面の導体の厚みが厚くなるが、このときの金属箔上に形成されたフィルドビアめっきのことをいう。また、金属箔A19で構成される第1層導体30(図4に示す。)の厚みが、層間接続の際に生じるめっき層31によって増大することがないので、微細パターンを形成する場合でも、それに応じた厚みの金属箔A19を選択することができ、ハーフエッチングやバフ研磨を行なう必要がないので、金属箔A19の表面粗さが拡大することがない。したがって、金属箔A19の表面平滑性をほぼそのまま利用することができ、優れた表面平滑性を有する第1層配線パターン8を形成することができる。また、フリップチップ接続端子5となる部分を含む第1層配線パターン上に保護めっき22を形成する場合でも、第1層配線パターン8の表面が平滑なので、その上に形成する保護めっき22の表面も平滑性を維持することができる。このため、表面平滑性に優れたフリップチップ接続端子5を形成できるので、フリップチップ接続性に優れる多層配線基板1を提供できる。また、フリップチップ接続端子5を、ワイヤーボンド接続端子として形成した場合は、ワイヤーボンド接続性に優れる多層配線基板1を提供できる。なお、ここでハーフエッチングとは、回路加工によって配線パターンを形成する前に、エッチングによって導体厚みを薄くしておき、微細な回路加工を容易にするための処理をいう。用いる金属箔A19を選択することにより、第1層配線パターン8上の保護めっき22の表面粗さは、最大粗さ(Rz)で8μm未満の表面平滑性を得ることも可能である。ここで、最大粗さ(Rz)は、JIS B 0601(2001)で規定される最大粗さ(Rz)であり、触針式表面粗さ計などを用いて測定することが可能である。
さらに、図1、図2に示す形態では、フリップチップ接続端子5となる部分以外においても、第1層配線パターン8上の保護めっき22の表面は、同様に平滑性を有している。このため、電子部品素子3としてSAW圧電素子3を搭載する場合、第1層配線パターン8が、SAW圧電素子3の活性面39(表面弾性波の振動部分)の下方領域に形成された場合でも、SAW圧電素子3のフィルタ機能を確保することができる。例えば、0.45〜4.0GHzの高周波領域に用いるSAWデバイスでは、小型化・薄型化の要求から、多層配線基板1に搭載されるSAW圧電素子3の下面(活性面39)と、多層配線基板1の第1層配線パターン8上の保護めっき22との間に設ける隙間(振動空間)が10μm程度になるように設計される場合がある。このため、SAW圧電素子3を搭載する面の第1層配線パターン8上の保護めっき22の表面凹凸が、10μmに近いかそれ以上であると、第1層配線パターン8上の保護めっき22とSAW圧電素子3が電気的に繋がる恐れがあり、フィルタとして機能しない。したがって、第1層配線パターン8上の保護めっき22の最大粗さ(Rz)が8μm未満の表面平滑性を有するように調整すれば、0.45〜4.0GHz程度の高周波のSAWフィルタ用の基板として用いられた場合に、フィルタ機能を確保するのに有効である。
また、図1、図2に示す形態では、第1層配線パターン8は、金属箔A19をエッチング等で回路加工するだけで形成できるので、厚みの薄い金属箔A19を用いれば、配線パターンの高密度化を図ることができる。さらに、第1層配線パターン8には、その上部に、層間接続を形成する際に用いるフィルドめっき層が形成されないので、微細な配線パターンを形成する場合でも、いわゆるハーフエッチングやバフ研磨等によって、導体厚みを薄くする工程が必要ないため、工数が増加せず、安価な多層配線基板1を提供することが可能になる。また、ハーフエッチングやバフ研磨等を行なうと、導体の表面粗さが大きくなるため、これらの工程が不要であることは、工数低減ばかりでなく、第1層配線パターン8及びその上の保護めっき22の表面の表面平滑性を維持する効果を有する。このように、本発明によれば、特にフリップチップ接続端子5を含む第1層配線パターン8上の保護めっき22の表面平滑性を要求される、電子部品素子3搭載用途に適した多層配線基板1を提供することができる。
本発明の多層配線基板は、電子部品素子を搭載するための基板であり、例えばSAW圧電素子もしくはPA(パワーアンプ)素子を搭載していわゆるSAWフィルタパッケージもしくはPAモジュールなどの通信モジュールを形成するための部材として用いることができる。主に携帯電話などの通信モジュールでベアチップ実装用途に用いられるのが、本発明の第1層配線パターンが高密度で、その上に形成される保護めっきが平滑表面を有するという特徴を生かすことができる点で望ましい。
本発明において、導体とは、絶縁層の表面に設けられ、上部に層間接続の際に生じるめっき層を有する金属箔または金属箔のみで構成される、回路加工前の状態のものをいう。配線パターンとは、この導体を回路加工して配線や接続端子のパターンが形成されたものをいい、例えばコンフォーマルマスク用の開口を設けただけのもの等は含まない。層間接続の際に生じるめっき層とは、例えば、コンフォーマル工法において、ビア内に層間接続のためのフィルドビアめっき等を行なうと、表面の金属箔上にもフィルドビアめっきが形成され、表面の導体の厚みが厚くなるが、このときの金属箔上に形成されたフィルドビアめっきのことをいう。また、第1層配線パターンとは、上記の配線パターンのうち、電子部品素子との接続端子を有する側の表層(第1層)に設けられる配線パターンをいう。各層の配線パターンは、フィルドビアで形成される層間接続の直上の位置を含むように形成される。
フィルドビアで形成される層間接続の直上に位置する配線パターンのうち、第1層配線パターンは、金属箔Aにより形成される。つまり、第1層配線パターンでは、回路加工前の金属箔Aの上部には、層間接続の際に生じるめっき層は形成されておらず、金属箔Aが露出し、金属箔Aのみで第1層導体が構成されており、第1層配線パターンは、この第1層導体を回路加工することにより形成される。このため、第1層配線パターンは、金属箔Aの表面平滑性をほぼそのまま利用することができ、優れた表面平滑性を備えることができる。このため、第1層配線パターン上に形成する保護めっきの表面も平滑になる。また、第1層配線パターンは、金属箔Aのみをエッチングして回路加工するので、導体厚みが薄いため、微細な配線パターンの形成が可能になる。このため、回路加工前に、ハーフエッチングやバフ研磨等によって、導体厚みを薄くする工程が不要である。
第1層配線パターンを除く各層の配線パターンの回路加工の方法としては、一般の電子部品素子実装用基板に用いられる回路形成方法によって行なうことができる。このような回路形成方法として、サブトラクト法、セミアディティブ法等が挙げられる。
本発明に用いる金属箔Aとしては、一般の電子部品素子実装用基板に用いられるものを使用することができるが、電気特性や回路加工性等の点から、特には銅箔が望ましい。また、銅箔の表面粗さは、最大粗さ(Rz)で8μm未満の表面平滑性を有するものが望ましい。このような銅箔を用いれば、この銅箔の表面粗さを維持するように回路加工することで、得られる配線パターンの表面も、最大粗さ(Rz)で8μm未満とすることができる。さらに、配線パターン上に保護めっきを形成した場合でも、保護めっきの表面は、銅箔の表面粗さと同等の平滑性を維持できる。このような銅箔としては、3EC−VLP−12(三井金属鉱業株式会社製、商品名)等が例示できる。また、金属箔は、アルミニウム、真鍮、ニッケル、鉄等の単独、合金又は複合箔からなる金属箔、または銅箔にアルミニウム、ニッケル、銀、金等の金属をめっきや蒸着したものに置き換えることができる。
本発明において、層間接続とは、絶縁層に設けられた層間接続孔を介して、各層の配線パターン同士を電気的に接続するものをいい、いわゆるフィルドビアめっきにより形成される。フィルドビアめっきとしては、例えば、一般の電子部品素子実装用基板に用いられる電気銅めっきを用いたフィルドビアめっきが挙げられる。
本発明に述べるフィルドビアとは、フィルドビアめっきにより形成される層間接続であり、層間接続孔の内部がフィルドビアめっきにより形成された金属で充填されているものをいう。フィルドビアは、絶縁層をレーザー等により加工して、直径1μmから300μm程度の層間接続孔を形成した後、この層間接続孔を、フィルドビアめっきで満たすことにより形成することができる。
本発明に用いる絶縁層は、各層間及び同一層内の配線パターン同士の電気的な絶縁を図るものであるとともに、各層の導体を貼り合わせたり、各層の配線パターンの支持体になるものである。一般の電子部品素子搭載用基板の製造において使用される一般的なものを使用することができる。例えば、熱硬化性樹脂プリプレグ、高分子量エポキシ樹脂を主成分としたものやBTレジンを主成分とする熱硬化タイプの液状やシート状の絶縁層を使用することができる。熱硬化性樹脂プリプレグとしては、高分子量エポキシ樹脂を主成分としたGEA−679FG(日立化成工業株式会社製、商品名)やBTレジンを主成分としたGHPL−830NX Type A(三菱ガス化学株式会社製、商品名)等が、液状接着剤としては、SFX513(信越化学工業株式会社製、商品名)等が、シート状接着剤としては、AS−3000、AS2600W(何れも日立化成工業株式会社製、商品名)、電子部品用高性能接着シート TAS(東レ株式会社製、商品名)等が例示できるが、これらに限定されるわけではない。絶縁層は、1種類のものを単独で用いても良いし、2種類以上をシート状のものは重ねて、液状のものは混合して用いても良い。
本発明に用いる絶縁層は、高Tg(ガラス転移点)・低α(熱膨張係数)材であるのがより望ましい。これにより、電子部品素子搭載(バンプ接続またはワイヤーボンド接続)時の高温加熱(例えば230℃)による絶縁層の軟化によって、接続端子の沈み込みが生じ、接続信頼性を低下させるのを抑制することができる。ここで、高Tg・低α材とは、Tg点が160〜280℃(TMA法:熱機械的分析法)、熱膨張係数が120〜180ppm/℃(Tg点以上の厚さ方向)である絶縁層をいい、このような高Tg・低α材としては、例えば、エポキシ系樹脂に無機系フィラーを充填した絶縁層などが使用できる。
金属箔Aの一方の面にのみ、絶縁層と配線パターンとそれぞれの配線パターン間を接続する層間接続とを積み上げて形成し、最外層の配線パターンである第1層配線パターンは前記金属箔Aを回路加工して形成する。つまり、金属箔Aの一方の面にのみ多層化を行ない、金属箔Aの他方の面には多層化せずにそのまま回路加工する。金属箔Aの他方の面は、絶縁層や配線パターンは形成されず、金属箔Aの初期の表面状態が維持されている。この金属箔Aを回路加工することによって、層間接続の直上に位置する配線パターンのうち、第1層配線パターンが金属箔Aにより形成される。これにより、第1層配線パターンは、金属箔Aの表面平滑性をそのまま利用することができ、優れた表面平滑性を備えることができる。このため、第1層配線パターン上に形成される保護めっきの表面平滑性も優れている。また、第1層配線パターンは、金属箔Aのみをエッチングして回路加工するので、導体厚みが薄いため、微細な配線パターンの形成が可能になる。このため、回路加工前に、ハーフエッチングやバフ研磨等によって、導体厚みを薄くする工程が不要である。
フィルドビアで形成される層間接続が、多層配線基板の厚み方向全体に亘って、直上に設けられるフルスタック構造を有するのが望ましい。つまり、フィルドビアで形成される層間接続が、多層配線基板の厚み方向全体に亘って、略柱状に設けられるのが望ましい。これにより、金属が充填されたフィルドビアが、多層配線基板の厚さ方向全体に亘って積み重ねられた状態となるため、フィルドビアの直上に接続端子を設ければ、接続端子上にフリップチップ接続やワイヤーボンド接続を行なう際の熱・圧力・超音波振動が伝わりやすい構造となる。このため、フリップチップ接続性やワイヤーボンド接続性の優れた多層配線基板を提供できる。
接続端子となる部分を含む第1層配線パターン上には、保護めっきとして、ニッケルめっきまたはニッケルめっきと金めっきとを有するのが望ましい。ニッケルめっき上にパラジウムめっきを行なってから金めっきを行なうのが、電子部品素子との接続信頼性を向上できる点でさらに望ましい。金めっきの代わりに銀めっきを用いてもよい。これらのめっき方法としては、電子部品素子実装用基板で用いられる無電解めっきや電気めっき、置換めっきを用いることができる。なお、保護めっきとは、配線パターンを保護して、フリップチップ接続性やワイヤーボンド接続性を付与するため、回路形成後の配線パターンの上部に設けられるめっき層をいう。
第1層配線パターンを構成する金属箔Aが、厚さ1〜18μmの銅箔であるのが望ましい。本発明の多層配線基板では、第1層配線パターンが、金属箔Aを回路加工することにより形成されるため、適切な金属箔Aの厚さを選択できるが、金属箔Aが、厚さ1〜18μmの銅箔であれば、例えば、ライン/スペースが、30μm/30μm以下の高密度配線パターンを形成するのが容易である。
第1層配線パターンを構成する金属箔Aは、表面の最大粗さ(Rz)が8μm未満であるのが望ましい。これにより、金属箔Aは、当初の表面粗さを維持した状態で回路加工され、第1層配線パターンとなるため、第1層配線パターンの表面の最大粗さ(Rz)を8μm未満とすることができる。また、第1層配線パターンの上に形成される保護めっきの表面粗さも同等に維持することができる。ここで、最大粗さ(Rz)は、JIS B 0601(2001)で規定される最大粗さ(Rz)であり、触針式表面粗さ計などを用いて測定することが可能である。
層間接続の直上に位置する第1層配線パターンが、フリップチップ接続端子またはワイヤーボンド接続端子を形成するのが望ましい。本発明の多層配線基板では、第1層配線パターンが、金属箔Aを回路加工することにより形成されるため、金属箔Aの表面状態が維持されるので、金属箔Aの表面平滑性をそのまま利用することができる。このため、この金属箔Aで形成される配線パターンを、フリップチップ接続端子またはワイヤーボンド接続端子として形成することにより、配線パターン上に形成される保護めっきの表面平滑性も優れるので、フリップチップ接続性及びワイヤーボンド接続性に優れた多層配線基板を提供することができる。
本発明において、接続端子とは、一般の電子部品素子実装用基板で用いられるものと同様に、バンプやワイヤーボンドによって、電子部品素子と電気的接続を行なうための端子である。接続端子は、金属箔Aで形成した第1層配線パターンの表面を金や銀等の保護めっきで被覆して形成するのが、バンプやワイヤーボンドもしくははんだによる接続を行う際の作業性や信頼性上、好ましい。
接続端子の上部に設けられる保護めっき表面は、金めっきであるのが望ましい。これにより、フリップチップ接続に用いるバンプとして金バンプを用いる際に、接続端子とバンプとの接合を強固にすることができる。ワイヤーボンド接続に金ワイヤを用いた場合も同様に、接続端子と金ワイヤとの接合を強固にできる。さらに、はんだ付けを行う際のはんだ濡れ性を確保することができる。また、金めっきの下地としてニッケルめっきを設けるのが望ましく、さらにニッケルめっき上にパラジウムめっきを設けてから金めっきするのが望ましい。本発明において、接続端子となる部分を含む第1層配線パターンは、銅箔等の金属箔Aを用いて形成されるが、金めっきの下地としてニッケルめっきを設けることにより、銅が金めっき表面に拡散し、バンプとの接続信頼性を低下させるのを抑制することができる。
金めっきの厚さは、0.01〜3μmが望ましい。これにより、金めっきは、バンプとの接合強度を確保することができ、下地ニッケルめっきの酸化を防止することができる。また、下地のニッケルめっきの厚さは、1〜20μmが望ましい。さらにニッケルめっき上に設けるパラジウムめっきの厚さは、0.01〜1μmが望ましい。これにより、ニッケルめっきが、銅の金めっき表面への拡散を抑制するため、バンプ接続の信頼性を確保できる。
本発明において、裏面電極とは、多層配線基板の接続端子が設けられる面(一方の面)の反対面(他方の面)に設けられる電極をいい、本発明の多層配線板を用いて作製した通信モジュール等が、他の基板に実装される際に、他の基板の実装端子と接続するために用いられる。裏面電極と他の基板の実装端子との接続は、導電性接着剤を用いた圧着や、はんだ付けなどで行うことができる。
本発明の多層配線基板の製造方法の一形態について、図を用いて説明する。まず、図3に示すように、両面に金属箔38を有するコア基板25と、表層の第1層導体30(図4に示す。)となる金属箔A19を準備し(工程(1))、コア基板25の金属箔38の上に、最外層である表層の第1層導体30となる金属箔A19を直接重ねる。金属箔A19は、コア基板25の金属箔38よりも一回り小さいサイズのものを用いる。その後、金属箔A19の一方の面上に第1絶縁層9と金属箔B20とを積層する(工程(2))。第1絶縁層9は、金属箔A19よりも一回り大きいサイズのものを用いる。このように積層された状態では、金属箔A19の他方の面と、コア基板25の金属箔38とは、接触しているだけで接着はされていない状態であり、一方、金属箔A19の周囲にはみ出した第1層絶縁層9と、コア基板25の金属箔38とは、接着された状態となっている。このため、金属箔A19の他方の面はコア基板25の金属箔38に保護された状態となるため、この後に続く多層配線基板1の製造プロセスにおいても、金属箔A19の他方の面は表面状態が当初の状態のまま維持される。なお、図3の実施形態では、金属箔A19の表面は、コア基板25の金属箔38により保護されるが、金属箔A19の表面を保護でき、かつ剥離可能なものであれば、その材料・方法について特に限定はなく、樹脂製のフィルム等を用いることもできる。なお、図3の実施形態では、コア基板25の両面の金属箔38上に金属箔A19を重ねて多層化プロセスを行うが、この場合、1回の多層化プロセスを行うだけで、2枚の多層配線基板1を製造することができ、生産効率がよい。また、コア基板25の上下両側に多層化プロセスを行うので、反りが生じ難く、製造プロセスにおけるトラブルが生じ難い。さらに、コア基板25が支持体となるので、薄い多層配線基板1の場合でも、製造プロセスでの取り扱いが容易であり、作業性が向上する。なお、コア基板25の片方の金属箔38上にのみ金属箔A19を重ねて多層化プロセスを行うこともできる。
次に、図4に示すように、第1絶縁層9に、金属箔B20から第1層導体30に到る第1層間接続孔29を形成する(工程(3))。第1層間接続孔29の形成は、金属箔B20にエッチングにより開口を形成し、この開口に炭酸ガスレーザ等を照射するコンフォーマル工法、金属箔B20に開口を形成せずに直接UVレーザ等を照射するダイレクトレーザ工法等を用いて行なうことができる。
次に、図4に示すように、第1層間接続孔29内及び金属箔B20上に、第1層導体30と金属箔B20とを電気的に接続するためのフィルドビアめっき21aを行なう(工程(4))。第1層間接続孔29内には、第1フィルドビア10が形成され、金属箔B20の上には層間接続の際に生じるめっき層31が形成される。また、金属箔B20と層間接続の際に生じるめっき層31の両者により、第2層導体33が形成される。このとき、金属箔B20の表面に形成されるフィルドビアめっき21a(層間接続の際に生じるめっき層31)の厚みにもよるが、第2層導体33の表面粗さは、金属箔B20よりも拡大した状態となる。また、フィルドビアめっき21aは、第1層間接続孔29内を埋めるように形成されるが、第1層間接続孔29内に形成されたフィルドビアめっき21aの表面(第1フィルドビア10部分の表面)は、金属箔B20上に形成されたフィルドビアめっき21aの表面とは完全に平坦になり難い。このため、図示はしないが、第1層間接続孔29内に形成されたフィルドビアめっき21aの表面(第1フィルドビア10部分の表面)は、金属箔B20表面上に形成されたフィルドビアめっき21aの表面に対して、突出や窪みを生じ易い。
次に、図5に示すように、フィルドビアめっき後の第2層導体33(図4に示す。)を回路加工して、第2層配線パターン11を形成する(工程(5))。フィルドビアめっき後の第2層導体33は、金属箔B20の厚みに、層間接続の際に生じるめっき層31の厚みが加わっているため、これらの両者を合わせた厚みの導体に対して回路加工が必要である。また、上述したように、フィルドビアめっき後の第2層導体33は、第1フィルドビア10部分に突出や窪みを生じ易い。微細回路を形成するために、第2層導体33の厚みを薄くしたり、第1フィルドビア10部分の突出や窪みを小さくして平坦にする必要がある場合は、回路加工の前に、ハーフエッチングやバフ研磨等を行う。フィルドビアめっき後の第2層導体33に対してハーフエッチングやバフ研磨等を行うと、第2層導体33の厚み自体は薄くなり、第1フィルドビア10部分の突出や窪み自体は小さくなる。しかし、これらのフィルドビアめっき21aやハーフエッチング、バフ研磨等の処理を行った後は、第2層導体33の表面粗さが、これらの処理を行う前の金属箔B20の表面粗さに比べると大幅に拡大する。また、第1フィルドビア10部分の突出や窪みも完全に消失させるのは難しいため、金属箔B20の表面上に形成されたフィルドビアめっき21aの表面に比べると平坦性が劣る。一方、コア基板25の金属箔38上に配置された金属箔A19の表面(金属箔38側の表面)は、金属箔B20側への第1フィルドビア10や第2層配線パターン11形成のためにフィルドビアめっき21aやハーフエッチング、バフ研磨等の処理を行った後においても、これらの処理に曝されることがないため、当初の状態が維持されている。このため、金属箔A19は、当初の銅箔としての表面粗さや、コア基板25の金属箔38上に積層されたときの平坦性を維持している。また、層間接続のためのフィルドビアめっき21aは、金属箔A19の裏面(第1絶縁層9側)に直接接続するように、第1層間接続孔29内に形成されるが、金属箔A19の表面(金属箔38側)には形成されないため、導体厚みが厚くなることもない。したがって、金属箔A19を用いて、最外層となる第1層配線パターン8として微細回路を形成する際も、金属箔A19の厚みを選択すれば、ハーフエッチングやバフ研磨等で導体厚みを薄くする必要がなく、金属箔A19をそのままエッチング等で回路形成すればよいので、高密度かつ平坦で、表面粗さが金属箔と同等に維持された配線パターンを形成することができる。
次に、第2層配線パターン11上に、工程(2)〜(5)を必要な回数繰り返す(工程(6))。この工程(6)は、具体的には、図5に示すように、第2層配線パターン11上に、第2絶縁層12と金属箔C23とを積層し(工程(2))、次に、図6に示すように、第2絶縁層12に金属箔C23から第2層導体33に到る第2層間接続孔32を形成し(工程(3))、第2層間接続孔32内及び金属箔C23上に、第2層導体33(図4に示す。)と金属箔C23とを電気的に接続するためのフィルドビアめっき21bを行ない、第2フィルドビア13及び第3層導体35とを形成し(工程(4))、次に、図7に示すように、フィルドビアめっき後の第3層導体35(図6に示す。)を回路加工して、第3層配線パターン14を形成した後(工程(5))、さらに第3層配線パターン14上に、第3絶縁層15と金属箔D24とを積層し(工程(2))、第3絶縁層15に金属箔D24から第3層導体35に到る第3層間接続孔34を形成し(工程(3))、第3層間接続孔34内及び金属箔D24上に、第3層導体35と金属箔D24とを電気的に接続するためのフィルドビアめっき21cを行ない、第3フィルドビア16及び第4層導体37とを形成する(工程(4))。次に、フィルドビアめっき後の第4層導体37を回路加工して、第4層配線パターン17(図9に示す。)を形成する(工程(5))。なお、この工程(5)の第4層導体37の回路加工は、コア基板25と、多層配線基板1とを分離する前に行なってもよいし、図8に示すように、これらを分離した後で行なってもよく、また、後述する第1層導体30の回路加工と同時に行なってもよい。
次に、図8に示すように、コア基板25と多層配線基板1とを分離し、図9に示すように、第1層導体30である金属箔A19を回路加工して、第1層配線パターン8を形成することにより、フィルドビアめっきを行なった第1層間接続孔29の直上に接続端子5を形成する(工程(7))。第1層導体30である金属箔A19の上には、層間接続の際にも、めっき層が生じないため、第1層導体30の厚みは、金属箔A19の厚みそのものとなる。このため、第1層導体30の回路加工は、金属箔A19をエッチングするだけで行うことができるので、金属箔A19の厚みを1μm〜18μmに設定すれば、高密度な配線パターンを形成することが可能となる。また、このため、第1層導体30に対して、ハーフエッチングやバフ研磨を行う必要がないので、表面の平滑性が保たれる。なお、工程(7)の第1層導体30の回路加工は、工程(5)の第4層導体37の回路加工と同時に行なってもよい。なお、このように、コア基板25の金属箔38上に、平滑で厚み精度のよい金属箔A19を積層し、この金属箔A19の一方の面のみに、絶縁層と配線パターンと絶縁層を介して配線パターン間を接続する層間接続とを形成することで多層配線基板1を形成した後、この多層配線基板1とコア基板25とを分離することにより、平滑で厚み精度のよい金属箔A19を用いて最外層である第1層配線パターン8を形成することが可能になる。したがって、高密度で、フリップチップ接続性やワイヤーボンド接続性に優れ、しかもSAWデバイスを構成する配線基板として用いた場合のフィルタ機能を確保することが可能な、多層配線基板及びその製造方法を提供することができる。
次に、図9に示すように、第1層間接続孔29の直上に形成された接続端子5の上に保護めっき22を形成する。保護めっき22としては、ニッケルめっきまたはニッケルめっきと金めっきとを有するのが望ましい。これにより、第1層配線パターン8を保護して、フリップチップ接続性やワイヤーボンド接続性を付与することができる。また、ニッケルめっきと金めっきとの間にパラジウムめっきを形成すると、電子部品素子3との接続信頼性が向上するので更に望ましい。金めっきの代わりに銀めっきを用いることもできる。
以下、図3から図9を用いて、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
まず、図3に示すように、ガラスエポキシ材に厚さ12μmの銅箔(金属箔38)を張り合わせた銅張積層板25(日立化成工業株式会社製 MCL−E−67)の両側に、その銅張積板25の銅箔(金属箔38)よりも幅の狭い金属箔A19として、厚さ12μmの銅箔(三井金属鉱業株式会社製 3EC−VLP−12)の光沢面が銅張積層板25の銅箔(金属箔38)に対向するように配置した。金属箔A19として用意した銅箔の光沢面(第1層側となる面)は、表面の最大粗さ(Rz)が、3μm未満であった。その外側に第1絶縁層9として、プリプレグ(日立化成工業株式会社製 GEA−679FG)と、その外側に金属箔B20として厚さ5μmの極薄銅箔に厚さ18μmのキャリア銅箔が貼りあわされたキャリア付極薄銅箔(三井金属鉱業株式会社製 MT18SDH5)を、5μmの極薄銅箔の粗化面が第1絶縁層9と接着するように構成し、真空ホットプレスにて積層し、18μmのキャリア銅箔を剥がすことで積層板a26を形成した。絶縁層厚さとしては、多層配線基板1の仕上り厚さ要求により任意に決定することができる。
次に、図4に示すように、この積層板a26の両外側の銅箔(金属箔B20)にエッチング法により直径100μmの開口を有するコンフォーマルマスクを形成した。このコンフォーマルマスクの開口は、金属箔A19との層間接続をとり、かつフリップチップ接続用のバンプ4が配置される位置に形成される。レーザー加工により第1層間接続孔29となる非貫通孔を設け、銅箔(金属箔B20)上及び非貫通孔(第1層間接続孔29)内部にパラジウムコロイド触媒であるHS201B(日立化成工業株式会社製、商品名)を使用して触媒核を付与後、CUST2000(日立化成工業株式会社製、商品名)を使用して厚さ1μmの下地無電解めっき層を形成し、非貫通孔(第1層間接続孔29)を電解フィルドビアめっき液によるフィルドビアめっき21aにより充填し、第1フィルドビア10を形成した。フィルドビアめっき21aにより、層間接続の際に生じるめっき層31の厚さとしては20μmであった。
次に、図5に示すように、両外側の導体(第2層導体33)に所定の配線パターンをエッチング法により形成し、得られた配線パターン(第2層配線パターン11)の表面を粗化処理液マルチボンドMB−100(日本マクダーミッド株式会社製、商品名)で粗化する。次いで、第2絶縁層12としてプリプレグ(日立化成工業株式会社製 GEA−679FG)と、その外側に金属箔C23として厚さ5μmの極薄銅箔に厚さ18μmのキャリア銅箔が貼りあわされたキャリア付極薄銅箔(三井金属鉱業株式会社製 MT18SDH5)を、5μmの極薄銅箔の粗化面が第2絶縁層12と接着するように構成し、真空ホットプレスにて積層し、18μmのキャリア銅箔を剥がすことで積層板b27を形成した。絶縁層厚さとしては、多層配線基板1の仕上り厚さ要求により任意に決定することができる。
次いで、図6に示すように、積層板b27に第2層間接続孔32となる非貫通孔を設け、フィルドめっき21bにより、第3層導体35と層間接続をとりかつフリップチップ接続用のバンプ4が配置される位置に、第2フィルドビア13を形成した。
配線パターンの形成、積層板の形成、フィルドビアの形成をする工程を繰り返すことにより、図7に示すように、銅張積層板25の両側に、片側4層の配線パターンを有し、全てのフィルドビアが直上に形成されたフルスタック構造の多層配基板1を備えた積層板c36を形成した。本実施例では、片側4層の配線パターンを有する構造の多層配線基板1を構成したが、さらに、配線パターンの形成、積層板の形成、フィルドビアの形成をする工程を繰り返すことにより、片側5層以上の任意の層数の配線パターンを有する構造の積層板が形成できる。
図8に示すように、幅の狭い金属箔A19の端部またはそれより内側に設けた裁断部28で裁断することにより、銅張積層板25と上下各1枚の多層配線基板1とをそれぞれ分離し、2枚の多層配線基板1を得た。この時点での、金属箔A19の表面粗さは、最大粗さ(Rz)で3μm未満であり、銅張積層板25によって、金属箔A19は当初の表面粗さのまま、保護されていた。本実施例では、第4層導体37を形成後に裁断部28で裁断を行なったが、第2層導体33を形成後ならびに第3層導体35を形成後に幅の狭い金属箔A19の端部またはそれより内側に設けた裁断部28で裁断することにより、2層構造ならびに3層構造の積層板が形成でき、この時点での金属箔A19の表面粗さは、最大粗さ(Rz)で3μm未満であり、銅張積層板25によって、金属箔A19は当初の表面粗さのまま、保護されていた。
次いで、図9に示すように、分離した多層配線基板1の最外層(第1層導体30である金属箔A19及び第4層導体37)をエッチング法で回路加工することにより第1層配線パターン8及び第4層配線パターン17を形成した。このとき、第1層配線パターン8の一部をフリップチップ接続端子5となる部分として形成し、このフリップチップ接続端子5となる部分が、第1フィルドビア10の直上に配置されるようにした。即ち、フィルドビアがフルスタック構造で形成されており、これらのフィルドビアの直上の最も表層には、金属箔A19を回路加工して形成されるフリップチップ接続端子5となる部分が配置される。この時点での、金属箔A19の表面粗さは、最大粗さ(Rz)で3μm未満であり、金属箔A19は当初の表面粗さのまま、保護されていた。
次に、図9に示すように、フリップチップ接続端子5となる部分及び裏面電極7となる部分を除く所定の領域に、ソルダーレジスト18を形成した。その後、保護めっき22として、厚さ10μmの無電解ニッケルめっき上に厚さ0.03μmの無電解パラジウムめっきを行い、パラジウムめっきの上に厚さ0.05μmの無電解金めっきを行い、フリップチップ接続端子5及び裏面電極7を形成して多層配線基板1を完成させた。接続端子5の上部の保護めっき22及び第1層配線パターン上の保護めっき22の表面粗さは、最大粗さ(Rz)が0.5μm〜2.9μmであり、金属箔A19の当初の表面粗さと同等であった。
(実施例2)
金属箔A19として用意した銅箔の表面(第1層側となる面)は、表面の最大粗さ(Rz)が、5μm未満であること以外は、実施例1と同様にして、多層配線基板1を作製した。接続端子5の上部の保護めっき22及び第1層配線パターン上の保護めっき22の表面粗さは、最大粗さ(Rz)が0.7μm〜4.8μmであった。
(実施例3)
金属箔A19として用意した銅箔の表面(第1層側となる面)は、表面の最大粗さ(Rz)が、8μm未満であること以外は、実施例1と同様にして、多層配線基板1を作製した。接続端子5の上部の保護めっき22及び第1層配線パターン上の保護めっき22の表面粗さは、最大粗さ(Rz)が0.9μm〜7.7μmであった。
(実施例4)
フリップチップ接続端子5を、第1フィルドビア10の直上に形成したが、第1フィルドビア10、第2フィルドビア13、第3フィルドビア16の位置をそれぞれにずらして、表層側から見たとき、何れのフィルドビアも重ならないように形成した。これ以外は、実施例1と同様にして多層配線基板1を作製した。接続端子5の上部の保護めっき22及び第1層配線パターン上の保護めっき22の表面粗さは、最大粗さ(Rz)が0.5μm〜2.9μmであり、金属箔A19の当初の表面粗さと同等であった。
(参考例1)
金属箔A19として、厚さ12μmの銅箔(三井金属鉱業株式会社製 3EC−VLP−12)を準備し、この金属箔A19の表面(第1層側となる面)に対して、研磨紙を用いて研磨を行い、表面の最大粗さ(Rz)が、8μm以上のものを準備した。これ以外は、実施例1と同様にして、多層配線基板1を作製した。接続端子5の上部の保護めっき22及び第1層配線パターン上の保護めっき22の表面粗さは、最大粗さ(Rz)が8μmを超えていた。
(比較例1)
電子部品素子3搭載面の配線パターンを、金属箔A19により形成した第1層配線パターン8で形成するのではなく、金属箔D24と層間接続の際に生じるめっき層31とを有する第4層導体37を回路加工して形成した第4層配線パターン17によって形成した。その後、接続端子5となる部分を含む第4層配線パターン17上に保護めっき22を行い、接続端子5を形成した。以下、工程を示す。
実施例1と同様にして、配線パターンの形成、積層板の形成、フィルドビアの形成をする工程を繰り返すことにより、図7に示すように、銅張積層板25の両側に、片側4層の配線パターンを有する多層配基板1を備えた積層板c36を形成した。
次に、第4層導体37に対して、ハーフエッチングを行なった。このハーフエッチングの目的は、比較例1では、金属箔A19よりも厚い第4層導体37によって、微細な接続端子5となる部分を形成する必要があるため、第4層導体37の厚みを薄くしておき、微細な回路加工を行い易くするためである。第4層導体37の厚みは、金属箔D24の厚さ(5μm)とフィルドビアめっき21cによって層間接続の際に生じるめっき層31の厚さ(20μm)との和でありおよそ25μmであった。ハーフエッチング量は、第4層導体37の厚さを金属箔A19と同等の厚さにするため13μmとし、残った第4層導体37の厚みは、金属箔A19と同等の12μmであった。
次に、図8に示すように、幅の狭い金属箔A19の端部またはそれより内側に設けた裁断部28で裁断することにより、銅張積層板25とその上下各1枚の多層配線基板1とを分離し、2枚の多層配線基板1を得た。
次いで、図9に示すように、分離した多層配線基板1の最外層(第1層導体30である金属箔A19及び第4層導体37)をエッチング法で回路加工することにより第1層配線パターン8及び第4層配線パターン17を形成した。フリップチップ接続端子5となる部分及び裏面電極7となる部分を除く所定の位置に、ソルダーレジスト18を形成した(なお、比較例1は、図9とは、フリップチップ接続端子5と裏面電極7の位置が、上下反転している)。その後、保護めっき22として厚さ10μmの無電解ニッケルめっき上に厚さ0.03μmの無電解パラジウムめっきを行い、パラジウムめっきの上に厚さ0.05μmの無電解金めっきを行い、多層配線基板1を完成させた。接続端子5の上部の保護めっき22及び第1層配線パターン上の保護めっき22の表面粗さは、最大粗さ(Rz)が8μmを超えていた。
(参考例2)
図9の多層配線基板1において、接続端子5を第1フィルドビア10の直上ではなく、ずらした位置の第1絶縁層9上に設け、また第1フィルドビア10、第2フィルドビア13、第3フィルドビア16の位置をそれぞれにずらし、表層側から見たとき、何れのフィルドビアも重ならないように形成した。これ以外は、実施例1と同様である。
実施例1〜4、参考例1、比較例1、参考例2の結果を、表1に示す。実施例1〜3では、フィルドビアをフルスタック構造としており、第1層配線パターン8の保護めっき22の表面粗さ(Rz)が8μm未満であるため、フリップチップ接続性、ワイヤーボンド接続性が良好であった。実施例4では、フルスタック構造ではないものの、第1フィルドビアの直上に接続端子が配置されているため、超音波や熱の伝わりが確保され、フリップチップ接続性やワイヤーボンド接続性は良好であった。一方、参考例1、比較例1では、フィルドビアをフルスタック構造で設けているが、第1層配線パターンの保護めっきの表面粗さ(Rz)が8μmを超えているため、フリップチップ接続性、ワイヤーボンド接続性は、良好とは言えなかった。参考例2では、第1層配線パターンの保護めっきの表面粗さ(Rz)は0.5〜2.9μmと小さいものの、フィルドビアがフルスタック構造で配置されていないため、フリップチップ接続性、ワイヤーボンド接続性は、良好とは言えなかった。
Figure 2011119722
表面粗さは、JIS B 0601(2001)において規定される最大粗さRzであり、触針式表面粗さ計サーフテストSV−3000(株式会社ミツトヨ社製、商品名)を用いて測定した。
フリップチップ接続性を評価するために以下の評価を行なった。フリップチップ接続は、多層配線基板の接続端子と電子部品素子の金バンプとが対向するように位置合わせした後、上からフリップチップボンダによりフリップチップ接続を行った。フリップチップ接続の圧着条件は、超音波を併用しつつ、230℃に昇温し1バンプ当たり50gの加圧を行いながら、4秒間保持した。フリップチップボンダから取り出し、フリップチップ接続をチェックした。電子部品素子全体に未接続のバンプが無いものを”○”とし、未接続のバンプがあるものを”×”とした。
ワイヤーボンド接続性を評価するために以下の評価を行なった。直径0.025mmの金ワイヤを用い、温度が140℃、1stボンディング側は超音波印加時間が40ミリ秒、加重が75グラム、2ndボンディング側は超音波印加時間が45ミリ秒、荷重が100グラムの条件で、超音波熱圧着法を用いて行ない、ボンドテスタによるプル強度が7g以上を”○”とし、5g以上から7g未満を”△”とし、5g未満を”×”とした。
1…多層配線基板、 2…通信モジュール、 3…電子部品素子またはSAW圧電素子、 4…(フリップチップ接続用)バンプ、 5…(フリップチップ)接続端子、 6…モールド用の樹脂、 7… 裏面電極、 8…第1層配線パターン、 9…第1絶縁層、 10…第1フィルドビア、 11…第2層配線パターン、 12…第2絶縁層、 13…第2フィルドビア、 14…第3層配線パターン、 15…第3絶縁層、 16…第3フィルドビア、 17…第4層配線パターン、 18…ソルダーレジスト、 19…金属箔A、 20…金属箔B、 21a、21b、21c…フィルドビアめっき、 22…保護めっき、 23…金属箔C、 24…金属箔D、 25…銅張積層板またはコア基板、 26…積層板a、 27…積層板b、 28…裁断部、 29…第1層間接続孔、 30…第1層導体、 31…層間接続の際に生じるめっき層、 32…第2層間接続孔、 33…第2層導体、 34…第3層間接続孔、 35…第3層導体、 36…積層板c、 37…第4層導体、 38…(コア基板の)金属箔、 39…SAW圧電素子の活性面

Claims (12)

  1. 配線パターンと絶縁層とが交互に設けられ、前記絶縁層を貫通して配線パターン間を接続する層間接続を有する多層配線基板であって、
    前記層間接続がめっきによるフィルドビアで形成され、
    最外層の配線パターンが、前記層間接続上に配置されかつ前記めっきによるフィルドビアと接続された金属箔により形成される多層配線基板。
  2. 請求項1において、金属箔の一方の面にのみ、絶縁層と配線パターンとそれぞれの配線パターン間を接続する層間接続とを形成した後、前記金属箔を回路加工することにより、最外層の配線パターンが金属箔により形成される多層配線基板。
  3. 請求項1または2において、フィルドビアで形成される層間接続が、多層配線基板の厚み方向全体に亘って、略柱状に設けられた多層配線基板。
  4. 請求項1から3の何れかにおいて、最外層の配線パターン上に保護めっきとして、ニッケルめっきまたはニッケルめっきと金めっきまたはニッケルめっきとパラジウムめっきと金めっきとを有する多層配線基板。
  5. 請求項1から4の何れかにおいて、最外層の配線パターンを構成する金属箔が、厚さ1〜18μmの銅箔である多層配線基板。
  6. 請求項1から5の何れかにおいて、最外層の配線パターン上に形成された保護めっきの表面の最大粗さ(Rz)が、8μm未満である多層配線基板。
  7. 請求項1から6の何れかにおいて、層間接続の直上に位置する最外層の配線パターンが、フリップチップ接続端子またはワイヤーボンド接続端子を形成する多層配線基板。
  8. 請求項7の多層配線基板の最外層の配線パターンで形成されるフリップチップ接続端子またはワイヤーボンド接続端子を用いて、電子部品素子を実装した電子装置。
  9. 請求項8において、電子部品素子として、SAW圧電素子またはPA素子を搭載して通信モジュールとした電子装置。
  10. 最外層の第1層導体となる金属箔Aを準備する工程(1)と、
    前記金属箔A上に第1絶縁層と第2層導体となる金属箔Bとを積層する工程(2)と、
    前記第1絶縁層に第2層導体から第1層導体に到る層間接続孔を形成する工程(3)と、
    この層間接続孔内及び前記第2層導体上に、前記第1層導体と前記第2層導体とを電気的に接続するためのフィルドビアめっきを行なう工程(4)と、
    前記フィルドビアめっき後の第2層導体を回路加工して、第2層配線パターンを形成する工程(5)と、
    前記第2層配線パターン上に前記工程(2)〜(5)を必要な回数繰り返す工程(6)と、
    前記第1層導体である金属箔Aを回路加工して、第1層配線パターンを形成することにより、前記フィルドビアめっきを行なった層間接続孔の直上に接続端子を形成する工程(7)と、
    を有する多層配線基板の製造方法。
  11. 請求項10において、第1層導体である金属箔Aを回路加工して、第1層配線パターンを形成することにより、フィルドビアめっきを行なった層間接続孔の直上に接続端子を形成する工程の後、前記接続端子の上に保護めっきを形成する多層配線基板の製造方法。
  12. 請求項10または11において、
    両面に金属箔を有するコア基板を準備し、このコア基板の金属箔の上に、工程(1)で準備した表層の第1層となる金属箔Aを直接重ねた後、工程(2)〜(6)を行ない、
    その後、前記コア基板の金属箔と金属箔Aとの界面で、前記複数の配線層と前記コア基板とを分離する工程(9)と、
    第1層導体である金属箔Aを回路加工して、第1層配線パターンを形成することにより、フィルドビアめっきを行なった層間接続孔の直上に接続端子を形成する工程(7)と、
    を有する多層配線基板の製造方法。
JP2010250875A 2009-11-09 2010-11-09 多層配線基板及びその製造方法 Active JP5700241B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250875A JP5700241B2 (ja) 2009-11-09 2010-11-09 多層配線基板及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009255976 2009-11-09
JP2009255976 2009-11-09
JP2010250875A JP5700241B2 (ja) 2009-11-09 2010-11-09 多層配線基板及びその製造方法

Publications (2)

Publication Number Publication Date
JP2011119722A true JP2011119722A (ja) 2011-06-16
JP5700241B2 JP5700241B2 (ja) 2015-04-15

Family

ID=44284599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250875A Active JP5700241B2 (ja) 2009-11-09 2010-11-09 多層配線基板及びその製造方法

Country Status (1)

Country Link
JP (1) JP5700241B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128000A (ja) * 2011-12-16 2013-06-27 Advance Materials Corp パッケージ基板及びその製造方法
US20140138831A1 (en) * 2012-11-16 2014-05-22 Qualcomm Incorporated Surface finish on trace for a thermal compression flip chip (tcfc)
JP2014123772A (ja) * 2014-03-17 2014-07-03 Advance Materials Corp パッケージ基板
JP2014207346A (ja) * 2013-04-15 2014-10-30 株式会社村田製作所 多層配線基板およびこれを備えるモジュール
CN108092632A (zh) * 2017-12-15 2018-05-29 安徽华东光电技术研究所 一种x波段3瓦功率放大器的制作工艺
WO2020121652A1 (ja) 2018-12-14 2020-06-18 三菱瓦斯化学株式会社 半導体素子搭載用パッケージ基板の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342256B2 (en) 2019-01-24 2022-05-24 Applied Materials, Inc. Method of fine redistribution interconnect formation for advanced packaging applications
IT201900006740A1 (it) 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di strutturazione di substrati
IT201900006736A1 (it) 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di fabbricazione di package
US11931855B2 (en) 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
US11862546B2 (en) 2019-11-27 2024-01-02 Applied Materials, Inc. Package core assembly and fabrication methods
US11257790B2 (en) 2020-03-10 2022-02-22 Applied Materials, Inc. High connectivity device stacking
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US11400545B2 (en) 2020-05-11 2022-08-02 Applied Materials, Inc. Laser ablation for package fabrication
US11232951B1 (en) 2020-07-14 2022-01-25 Applied Materials, Inc. Method and apparatus for laser drilling blind vias
US11676832B2 (en) 2020-07-24 2023-06-13 Applied Materials, Inc. Laser ablation system for package fabrication
US11521937B2 (en) 2020-11-16 2022-12-06 Applied Materials, Inc. Package structures with built-in EMI shielding
US11404318B2 (en) 2020-11-20 2022-08-02 Applied Materials, Inc. Methods of forming through-silicon vias in substrates for advanced packaging
US11705365B2 (en) 2021-05-18 2023-07-18 Applied Materials, Inc. Methods of micro-via formation for advanced packaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273315A (ja) * 2002-03-19 2003-09-26 Tdk Corp モジュール部品、モジュール部品を用いたrfブロック、及び、モジュール部品の製造方法
JP2005072085A (ja) * 2003-08-28 2005-03-17 Ngk Spark Plug Co Ltd 配線基板の製造方法、及び配線基板
US20080202661A1 (en) * 2007-02-28 2008-08-28 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate and method of manufacturing electronic component device
US20090242261A1 (en) * 2008-03-25 2009-10-01 Ibiden Co., Ltd Printed wiring board and associated manufacturing methodology
JP2009252827A (ja) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd 回路形成用支持基板と、半導体素子搭載用パッケージ基板及び基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273315A (ja) * 2002-03-19 2003-09-26 Tdk Corp モジュール部品、モジュール部品を用いたrfブロック、及び、モジュール部品の製造方法
JP2005072085A (ja) * 2003-08-28 2005-03-17 Ngk Spark Plug Co Ltd 配線基板の製造方法、及び配線基板
US20080202661A1 (en) * 2007-02-28 2008-08-28 Shinko Electric Industries Co., Ltd. Method of manufacturing wiring substrate and method of manufacturing electronic component device
JP2008218450A (ja) * 2007-02-28 2008-09-18 Shinko Electric Ind Co Ltd 配線基板の製造方法及び電子部品装置の製造方法
US20090242261A1 (en) * 2008-03-25 2009-10-01 Ibiden Co., Ltd Printed wiring board and associated manufacturing methodology
WO2009119680A1 (ja) * 2008-03-25 2009-10-01 イビデン株式会社 プリント配線板及びその製造方法
JP5238801B2 (ja) * 2008-03-25 2013-07-17 イビデン株式会社 プリント配線板及びその製造方法
JP2009252827A (ja) * 2008-04-02 2009-10-29 Hitachi Chem Co Ltd 回路形成用支持基板と、半導体素子搭載用パッケージ基板及び基板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128000A (ja) * 2011-12-16 2013-06-27 Advance Materials Corp パッケージ基板及びその製造方法
US20140138831A1 (en) * 2012-11-16 2014-05-22 Qualcomm Incorporated Surface finish on trace for a thermal compression flip chip (tcfc)
US9269681B2 (en) * 2012-11-16 2016-02-23 Qualcomm Incorporated Surface finish on trace for a thermal compression flip chip (TCFC)
JP2014207346A (ja) * 2013-04-15 2014-10-30 株式会社村田製作所 多層配線基板およびこれを備えるモジュール
US9538644B2 (en) 2013-04-15 2017-01-03 Murata Manufacturing Co., Ltd. Multilayer wiring substrate and module including same
JP2014123772A (ja) * 2014-03-17 2014-07-03 Advance Materials Corp パッケージ基板
CN108092632A (zh) * 2017-12-15 2018-05-29 安徽华东光电技术研究所 一种x波段3瓦功率放大器的制作工艺
WO2020121652A1 (ja) 2018-12-14 2020-06-18 三菱瓦斯化学株式会社 半導体素子搭載用パッケージ基板の製造方法
KR20210100593A (ko) 2018-12-14 2021-08-17 미츠비시 가스 가가쿠 가부시키가이샤 반도체 소자 탑재용 패키지 기판의 제조 방법
US11990349B2 (en) 2018-12-14 2024-05-21 Mitsubishi Gas Chemical Company, Inc. Method for producing package substrate for loading semiconductor device

Also Published As

Publication number Publication date
JP5700241B2 (ja) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5700241B2 (ja) 多層配線基板及びその製造方法
KR100867148B1 (ko) 인쇄회로기판 및 그 제조방법
JP5527585B2 (ja) 多層配線基板及びその製造方法
JP2012191204A (ja) プリント配線板の製造方法
WO2007126090A1 (ja) 回路基板、電子デバイス装置及び回路基板の製造方法
JP2013030603A (ja) 配線基板の製造方法
US20080128911A1 (en) Semiconductor package and method for manufacturing the same
JP2016063130A (ja) プリント配線板および半導体パッケージ
TW201401942A (zh) 多層電路板及其製作方法
TW201410097A (zh) 柔性多層電路板及其製作方法
JP2000100987A (ja) 半導体チップモジュール用多層回路基板およびその製造方法
JP2014082443A (ja) 多層配線板
JP2015225895A (ja) プリント配線板および半導体パッケージ、ならびにプリント配線板の製造方法
JP4460341B2 (ja) 配線基板およびその製造方法
KR101061801B1 (ko) 칩 내장형 다층 인쇄회로기판 및 그 제조방법
JPWO2014050995A1 (ja) 多層配線板、及び、多層配線板の製造方法
JP4835264B2 (ja) 部品内蔵回路モジュール基板
JP5527586B2 (ja) 多層配線基板
JP4389756B2 (ja) 多層フレキシブルプリント配線板の製造方法
JP2013145847A (ja) プリント配線板及び該プリント配線板の製造方法
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JP2016100352A (ja) プリント配線板およびその製造方法
JP2008078573A (ja) 部品内蔵型多層プリント配線板
JP2008098202A (ja) 多層配線基板、多層配線基板構造体
JP2004266271A (ja) 電子部品の実装体及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R151 Written notification of patent or utility model registration

Ref document number: 5700241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250