JP2011082330A - 固体撮像装置、撮像装置、および固体撮像装置の製造方法 - Google Patents

固体撮像装置、撮像装置、および固体撮像装置の製造方法 Download PDF

Info

Publication number
JP2011082330A
JP2011082330A JP2009233226A JP2009233226A JP2011082330A JP 2011082330 A JP2011082330 A JP 2011082330A JP 2009233226 A JP2009233226 A JP 2009233226A JP 2009233226 A JP2009233226 A JP 2009233226A JP 2011082330 A JP2011082330 A JP 2011082330A
Authority
JP
Japan
Prior art keywords
diffusion layer
gate electrode
semiconductor substrate
buried gate
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009233226A
Other languages
English (en)
Other versions
JP5493669B2 (ja
Inventor
Atsushi Masagaki
敦 正垣
Yasuhiro Yamamura
育弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009233226A priority Critical patent/JP5493669B2/ja
Priority to CN2010102919510A priority patent/CN102034839B/zh
Priority to CN201310168084.5A priority patent/CN103378120B/zh
Priority to US12/892,017 priority patent/US8519456B2/en
Publication of JP2011082330A publication Critical patent/JP2011082330A/ja
Application granted granted Critical
Publication of JP5493669B2 publication Critical patent/JP5493669B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】光電変換素子の面積の低下を最小限に抑制しながら、高機能化を図る。
【解決手段】固体撮像装置1は、半導体基板11と、半導体基板11に形成される複数の画素回路22とを有する。半導体基板11に形成される画素回路22は、光電変換素子25と、光電変換素子25と隣り合って形成される第1埋め込みゲート電極51と、光電変換素子25および第1埋め込みゲート電極51から離間して形成される第2埋め込みゲート電極56と、第1埋め込みゲート電極51と第2埋め込みゲート電極56との間に形成される第1拡散層55と、第1埋め込みゲート電極51と第2埋め込みゲート電極56との間において、第1拡散層55と離間した状態で重ねて形成される第2拡散層60とを有する。光電変換素子25に蓄積された電荷は、第1拡散層55を通じて第2拡散層60へ転送される。
【選択図】図5

Description

本発明は、半導体基板に複数の光電変換素子を配列した固体撮像装置、撮像装置、および固体撮像装置の製造方法に関する。
特許文献1は、複数の画素回路を有する固体撮像装置を開示する。
特許文献1の画素回路は、フォトダイオードに対して、第1転送ゲート、第1浮遊拡散層、第2転送ゲートおよび第2浮遊拡散層を、その順番で接続する。
そして、特許文献1の画素回路は、フォトダイオードに蓄積された電荷を、第1転送ゲート、第1浮遊拡散層、第2転送ゲート、第2浮遊拡散層を通じて増幅トランジスタのゲートに与える。
また、増幅トランジスタは、フォトダイオードの蓄積電荷に応じた電流を出力信号線へ流す。
特開2006−311515号公報
しかしながら、特許文献1において、フォトダイオード、第1転送ゲート、第1浮遊拡散層、第2転送ゲート、および第2浮遊拡散層は、半導体基板の受光エリアに並べて形成される。
その結果、特許文献1の画素回路では、半導体基板の受光エリアにおけるフォトダイオードの面積が小さくなる。フォトダイオードは、面積が小さくなると、受光効率が低下する。
そして、特許文献1の画素回路では、複数の画素回路のフォトダイオードのピッチを1マイクロメートルオーダ以下(または2マイクロメートル以下)にした場合、フォトダイオードの面積の低下による受光効率の低下の問題が顕著に発生してしまう可能性がある。
このように固体撮像装置では、フォトダイオードなどの光電変換素子の面積の低下を最小限に抑制しながら、高機能化を図ることが求められている。
本発明の第1の観点の固体撮像装置は、半導体基板と、半導体基板に形成される複数の画素回路とを有する。また、半導体基板に形成される画素回路は、光電変換素子と、光電変換素子と隣り合って形成される第1埋め込みゲート電極と、光電変換素子および第1埋め込みゲート電極から離間して形成される第2埋め込みゲート電極と、第1埋め込みゲート電極と第2埋め込みゲート電極との間に形成される第1拡散層と、第1埋め込みゲート電極と第2埋め込みゲート電極との間において、第1拡散層と離間した状態で重ねて形成される第2拡散層とを有する。そして、光電変換素子に蓄積された電荷は、第1拡散層を通じて第2拡散層へ転送される。
第1の態様では、第1埋め込みゲート電極と第2埋め込みゲート電極との間に、第1拡散層と第2拡散層とが互いに離間した状態で重ねて形成される。よって、半導体基板の一面について見たとき、第1拡散層および第2拡散層が使用する面積は、1個の拡散層の面積となる。その結果、半導体基板における各画素回路の光電変換素子の面積は、第1拡散層および第2拡散層の一方の拡散層のみを設けた場合と同等の面積になる。
本発明の第2の観点の撮像装置は、固体撮像装置と、被写体を前記固体撮像装置に結像する光学系とを有する。固体撮像装置は、半導体基板と、半導体基板に形成される複数の画素回路とを有する。また、半導体基板に形成される画素回路は、光電変換素子と、光電変換素子と隣り合って形成される第1埋め込みゲート電極と、光電変換素子および第1埋め込みゲート電極から離間して形成される第2埋め込みゲート電極と、第1埋め込みゲート電極と第2埋め込みゲート電極との間に形成される第1拡散層と、第1埋め込みゲート電極と第2埋め込みゲート電極との間において、第1拡散層と離間した状態で重ねて形成される第2拡散層とを有する。そして、光電変換素子に蓄積された電荷は、第1拡散層を通じて第2拡散層へ転送される。
本発明の第3の観点の固体撮像装置の製造方法は、半導体基板に複数の画素回路が形成される固体撮像装置についての製造方法である。そして、この製造方法は、半導体基板の一面側に、各画素回路の第1埋め込みゲート電極用の穴および第2埋め込みゲート電極用の穴を形成するステップと、第1埋め込みゲート電極用の穴の周囲および第2埋め込みゲート電極用の穴の周囲に、第1不純物領域および第2不純物領域を形成するステップと、第1埋め込みゲート電極用の穴および第2埋め込みゲート電極用の穴に、第1埋め込みゲート電極および第2埋め込みゲート電極を形成するステップと、第1不純物領域の一部に、第1不純物領域より不純物濃度が低い第1チャネル形成領域を形成するステップと、第2不純物領域の一部に、第2不純物領域より不純物濃度が低い第2チャネル形成領域を形成するステップと、第1不純物領域および前記第1チャネル形成領域と接する位置において、半導体基板に光電変換素子を形成するステップと、第1不純物領域と前記第2不純物領域との間における半導体基板の一面側に形成され、第2チャネル形成領域と接する第2拡散層と、第2拡散層と離間した状態で重なるように半導体基板内に形成され、第1チャネル形成領域および第2チャネル形成領域と接する第1拡散層とを形成するステップとを有する。
本発明では、フォトダイオードなどの光電変換素子の面積の低下を最小限に抑制しながら、高機能化を図ることができる。
図1は、本発明の第1の実施形態に係るCMOSイメージセンサの概略レイアウト図である。 図2は、図1の画素回路の一例の回路図である。 図3は、図1のCMOSイメージセンサでの一行分の読出期間のタイミングチャートである。 図4は、半導体基板に対する図2の画素回路の概略レイアウト図である。 図5は、図4の半導体基板のA−A’断面図である。 図6は、図5の第1チャネル形成領域における横断面図である。 図7は、図4〜図6に示す画素回路の製造工程図(前半)である。 図8は、図4〜図6に示す画素回路の製造工程図(後半)である。 図9は、半導体基板に対する比較例の画素回路の概略レイアウト図である。 図10は、図9の半導体基板の断面図である。 図11は、本発明の第2の実施形態に係るCMOSイメージセンサの半導体基板に形成される4個の画素回路の概略レイアウト図である。 図12は、図11の半導体基板において、フローティングディフュージョンが形成される部分の縦断面図である。 図13は、本発明の第2の実施形態に係るカメラシステムの概略構成図である。
以下、本発明の実施の形態を図面に関連付けて説明する。なお、説明は以下の順序で行う。
1.第1の実施形態(固体撮像装置の例。)
2.第2の実施形態(複数の画素回路に対して1個のフローティングディフュージョン(第2拡散層)を形成した例)
3.第3の実施形態(撮像装置の例。)
<1.第1の実施形態>
[CMOSイメージセンサ1の構成]
図1に、本発明の第1の実施形態に係る固体撮像装置を適用した、カラムAD(Analog to Digital)変換方式のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ1の概略レイアウトを示す。
CMOSイメージセンサ1は、半導体基板11を有する。
半導体基板11には、受光エリア21が設定される。
受光エリア21は、縦横比がたとえば3:4または9:16の長方形のエリアである。
そして、受光エリア21には、複数の画素回路22が形成される。
複数の画素回路22は、受光エリア21に行列状に二次元に配列される。
また、受光エリア21には、二次元配列された画素回路22の列数と同数の複数の列信号線(読出信号線)23と、二次元配列された画素回路22の行数と同数の複数の行信号線24とが配線される。
列信号線23は、図1の上下方向に延在し、一列に配列された複数の画素回路22に接続される。
行信号線24は、図1の左右方向に延在し、一行に配列された複数の画素回路22に接続される。
図2は、図1の画素回路22の一例の回路図である。
画素回路22は、回路素子として、フォトダイオード(光電変換素子)25、第1転送トランジスタ30、第2転送トランジスタ26、リセットトランジスタ27、増幅トランジスタ28、および選択トランジスタ29を有する。
フォトダイオード25は、不図示の電源配線と、第1転送トランジスタ30のソース電極との間に接続される。
フォトダイオード25は、光を受光すると、電荷を蓄積する。フォトダイオード25は、受光光量に応じた電荷量を蓄積する。
第1転送トランジスタ30のドレイン電極は、後述する埋設拡散層55からなる保持部44により、第2転送トランジスタ26のゲート電極と接続される。
そして、第1転送トランジスタ30は、ゲート電極がたとえばハイレベルに制御されると、オン状態となり、フォトダイオード25に埋設拡散層55を接続する。フォトダイオード25に蓄積された電荷は、埋設拡散層55に移動する。
第2転送トランジスタ26のソース電極は、埋設拡散層55に接続される。また、第2転送トランジスタ26のドレイン電極は、後述する表面拡散層60からなるフローティングディフュージョンFDに接続される。
表面拡散層60は、増幅トランジスタ28のゲート電極に接続される。
そして、第2転送トランジスタ26は、ゲート電極がたとえばハイレベルに制御されると、オン状態となる。
これにより、埋設拡散層55は、フローティングディフュージョンFDとしての表面拡散層60と接続される。
また、フローティングディフュージョンFDの電圧レベルは、埋設拡散層55の電荷量に応じた電圧レベルになる。
増幅トランジスタ28のソース電極は、行信号線24に接続される。ドレイン電極は、選択トランジスタ29のソース電極に接続される。
そして、増幅トランジスタ28は、ゲート電極に接続されたフローティングディフュージョンFDの電圧レベルに応じた電流を、選択トランジスタ29へ流す。
選択トランジスタ29のドレイン電極は、列信号線23に接続される。
そして、選択トランジスタ29は、ゲート電極がたとえばハイレベルに制御されると、オン状態となり、増幅トランジスタ28を列信号線23に接続する。これにより、増幅トランジスタ28から列信号線23へ電流が流れる。
このような画素回路22は、フォトダイオード25に所定の時間電荷を蓄積させた後、たとえば第1転送トランジスタ30、第2転送トランジスタ26および選択トランジスタ29をオン状態に制御する。
この場合、フォトダイオード25に蓄積された電荷は、オン状態の第1転送トランジスタ30および第2転送トランジスタ26を通じてフローティングディフュージョンFDに流れる。
また、増幅トランジスタ28は、フローティングディフュージョンFDの電位に応じた電流を、オン状態の選択トランジスタ29を通じて列信号線23に流す。
これにより、列信号線23の電圧は、フォトダイオード25に蓄積された電荷量に応じた電圧レベルになる。
また、画素回路22は、いわゆるkTCノイズなどを除去するために、リセットトランジスタ27および選択トランジスタ29をオン状態に制御する。
リセットトランジスタ27がオン状態になると、フローティングディフュージョンFDが行信号線24に接続される。
また、行信号線24に接続された状態でのフローティングディフュージョンFDの電位に応じた電流が、増幅トランジスタ28から列信号線23へ流れる。
これにより、列信号線23の電圧は、フローティングディフュージョンFDのリセット電位に応じた電圧レベルになる。
図1のCMOSイメージセンサ1の半導体基板11には、複数の画素回路22の他にも、行走査回路31、カラムAD変換回路32、列走査回路33、通信タイミング制御部34、および信号処理部35が形成される。
カラムAD変換回路32は、複数の画素回路22から読み出した受光光量に応じたカウント値を含む信号を生成し、出力信号線40へ出力する。
そのため、カラムAD変換回路32は、参照信号出力回路36、列信号線23と同数の複数の比較器37、および列信号線23と同数の複数のカウンタ38を有する。
参照信号出力回路36は、参照信号線39に接続される。
そして、参照信号出力回路36は、ランプ波形で変化する参照信号を、参照信号線39へ出力する。
各比較器37は、参照信号線39と、各列信号線23とに接続される。
そして、比較器37は、列信号線23の電圧より参照信号線39の参照信号の電圧が高い場合、ハイレベルの信号を出力する。また、列信号線23の電圧より参照信号の電圧が低い場合、比較器37は、ローレベルの信号を出力する。
各カウンタ38は、各比較器37と、出力信号線40に接続される。
そして、カウンタ38は、所定のタイミングからカウントを開始し、その後に比較器37の出力信号がハイレベルからローレベルに反転するまでの期間においてアップカウントする。
また、カウンタ38は、カウントしたカウント値を含む信号を、出力信号線40へ出力する。
信号処理部35は、出力信号線40に接続される。
そして、信号処理部35は、後述するように、画素回路22毎に、読取期間(D相)でのカウント値から、リセット期間(P相)でのカウント値を減算する。
これにより、CDS(相関2重サンプリング)処理がなされる。
この減算の演算結果が、各画素回路22のフォトダイオード25の受光量を示す値として利用される。
行走査回路31は、複数の行信号線24に接続される。
そして、行走査回路31は、画像を読みだす場合、複数の行信号線24を順番にたとえばハイレベルに制御する。
これにより、複数の画素回路22は、一行毎に選択される。
列走査回路33は、カラムAD変換回路32の複数のカウンタ38に接続される。
そして、列走査回路33は、複数のカウンタ38へ順番に出力タイミング信号を出力する。
出力タイミング信号が入力されると、カウンタ38は、カウント値を含む信号を出力信号線40へ出力する。
これにより、複数のカウンタ38がカウントしたカウント値を含む複数の信号は、順番に出力信号線40へ出力される。
通信タイミング制御部34は、行走査回路31、列走査回路33、参照信号出力回路36などに接続される。
そして、通信タイミング制御部34は、複数の画素回路22からのデータ読み出しを制御するために、行走査回路31、列走査回路33、参照信号出力回路36などを制御する。
[CMOSイメージセンサ1の読み出し動作]
次に、図1のCMOSイメージセンサ1から撮像画像を読み出す動作について説明する。
以下に、全画素で略同時に受光するグローバルシャッタ方式の動作を例に説明する。
グローバルシャッタ方式では、全画素をタイムラグが殆ど生じないシャッタ時間で露光し、全画素同時に複数のフォトダイオード25の蓄積電荷を保持部44に転送する。
なお、CMOSイメージセンサ1の一般的な読み出し動作は、1行ずつ読み出しを行うローリングシャッタ方式の動作である。
ローリングシャッタ方式では、たとえば1行の画素毎に、順番に受光する。
グローバルシャッタ方式では、CMOSイメージセンサ1の複数の画素回路22のリセットトランジスタ27は、同時にリセットされる。
また、所定のシャッタ時間の後に、CMOSイメージセンサ1の複数の画素回路22の第1転送トランジスタ30は、同時にオン状態に制御される。
なお、CMOSイメージセンサ1の複数の画素回路22は、複数のリセットトランジスタ27が1行毎に順番に且つ連続的にリセットされた後、複数の第1転送トランジスタ30が1行毎に順番に且つ連続的にオン状態に制御されてもよい。
この場合でも、全画素のシャッター期間内の処理に、1行毎に各画素から読み出す動作がない。そのため、ローリングシャッタ方式と比べて短時間に読み出しが完了できる。
複数のフォトダイオード25は、リセット後に光学系で集光された被写体の光を受光する。この電荷量は、フォトダイオード25の受光光量に応じた量になる。
そして、グローバルシャッタ方式により複数の画素回路22を駆動すると、複数の保持部44は、すべての画素回路22に共通するリセットタイミングからオンタイミングまでの間に、それぞれのフォトダイオード25に蓄積された電荷を保持する。
複数の保持部44にフォトダイオード25の受光光量に応じた電荷を蓄積した後、CMOSイメージセンサ1は、複数の保持部44から、電荷を読み出す。
CMOSイメージセンサ1が生成する被写体の撮像画像は、複数のフォトダイオード25の受光光量で表される二次元の光量分布(輝度分布)に基づいて生成される。
1枚の画像を撮像する場合、通信タイミング制御部34の制御の下で、行走査回路31は、複数の行信号線24を1本ずつ順番にハイレベルに制御する。
また、たとえば列走査回路33は、ハイレベルに制御された行信号線24に接続される複数の画素回路22の複数の選択トランジスタ29を、オン状態に制御する。
これにより、複数の画素回路22は、1行ずつ選択される。選択された1行の複数の画素回路22は、複数の列信号線23へたとえば受光光量に応じたレベルの電圧を出力する。
参照信号出力回路36は、行走査回路31が各行信号線24をハイレベルに制御する期間毎に、ハイレベルからローレベルへ変化するランプ波形の参照信号を2回出力する。
列走査回路33は、参照信号出力回路36が各参照信号を出力し始めるタイミングに同期して、複数のカウンタ38に対してカウント開始のタイミング信号を出力する。
図3は、一行分の読出期間での信号波形を示すタイミングチャートである。
図3(A)に、参照信号出力回路36が出力する参照信号のランプ波形と、画素信号(画素回路22が列信号線23へ出力する電圧レベルの信号)の波形とを示す。
図3(B)に、比較器37の出力信号の波形を示す。
図3に示すように、参照信号は、一行分の読出期間において2個のランプ波形に制御される。
1番目のランプ波形は、リセット期間(P相)に出力される。2番目のランプ波形は、読出期間(D相)に出力される。
そして、P相およびD相の各期間において、参照信号の電圧レベルは、画素信号の電圧レベルと一致する。この一致タイミングにおいて、比較器37は、出力電圧をハイレベルからローレベルへ反転する。
また、カウンタ38は、たとえば参照信号がハイレベルに制御されたタイミングから、比較器37の出力が反転するまでの期間において、カウントアップ動作する。
カウンタ38は、一行分の読出期間毎に、P相のカウント値とD相のカウント値との2個のカウント値をカウントする。
また、P相のランプ波形を出力する期間では、選択された一行分の複数の画素回路22において、複数のリセットトランジスタ27がオン状態に制御される。
したがって、画素信号(列信号線23)の電圧レベルは、選択された一行中の画素回路22のフローティングディフュージョンFDのリセット電位に応じた電圧レベルになる。
また、このP相でのカウント処理において、カウンタ38は、フローティングディフュージョンFDによる列信号線23の電位と参照信号の電位とが一致するまでの期間を示すカウント値をカウントする。
D相のランプ波形を出力する期間では、選択された一行分の複数の画素回路22において、複数の第2転送トランジスタ26がオン状態とされる。
したがって、画素信号(列信号線23)の電圧レベルは、選択された一行中の画素回路22の保持部44の保持電荷量に応じた電圧レベルとなる。
また、このD相でのカウント処理において、カウンタ38は、保持部44の保持電荷量に応じた列信号線23の電位と参照信号の電位とが一致するまでの期間を示すカウント値をカウントする。
複数のカウンタ38は、それぞれがカウントした2個のカウント値を、出力信号線40を通じて信号処理部35へ出力する。
信号処理部35は、各カウンタ38のD相のカウント値から、P相のカウント値を減算する。
これにより、各画素回路22での雑音成分を除去した、1行分の光量分布情報(輝度分布情報)が得られる。
そして、行走査回路31は、複数の行信号線24を1本ずつ順番にハイレベルに制御する。また、行走査回路31は、各行の読出期間ごとに図3の制御を繰り返す。
これにより、1枚の画像についての光量分布情報(輝度分布情報)が得られる。
信号処理部35または信号処理部35の後段に接続される図示しない画像処理部は、この1枚の光量分布の画像から、図示しないカラーフィルタの色成分の不足分を補って、白黒画像またはフルカラー画像を生成する。
CMOSイメージセンサ1は、撮像画像として、光量分布の画像、白黒画像またはフルカラー画像を出力する。
[画素回路22の概略レイアウト]
次に、CMOSイメージセンサ1の画素回路22の構造について詳しく説明する。
図4は、半導体基板11についての、図1の画素回路の形成領域12の概略レイアウトを示す模式図である。
複数の画素回路22は、半導体基板11の受光エリア21に二次元的に配列される。
図4は、1個の画素回路22が形成される画素回路の形成領域12を、図1の半導体基板11の受光エリア21側から見た図である。
画素回路22は、図2に示すように、フォトダイオード25、第1転送トランジスタ30、保持部44、第2転送トランジスタ26、フローティングディフュージョンFD、リセットトランジスタ27、増幅トランジスタ28および選択トランジスタ29を有する。
画素回路の形成領域12には、これら複数の回路素子と、複数の回路素子を電気的に接続する配線部とが形成される。
図4の四角形の画素回路の形成領域12には、その右半分に、フォトダイオード25が形成される。複数の画素回路22のフォトダイオード25は、1マイクロメートルオーダ以下、または2マイクロメートル以下のピッチにて、半導体基板11の受光エリア21に並べて形成される。
図4において、フォトダイオード25は、画素回路の形成領域12の幅の半分以上となる、約6割の幅に形成される。
また、図4の四角形の画素回路の形成領域12には、図4の左半分の上部に、フローティングディフュージョンFDが形成される。
フローティングディフュージョンFDと、フォトダイオード25との間には、第1転送トランジスタ30のゲート電極が形成される。
また、図4の四角形の画素回路の形成領域12には、図4の左上の隅部に、第2転送トランジスタ26のゲート電極が形成される。
また、図4の四角形の画素回路の形成領域12には、図4の左半分の中部から下部にかけて、リセットトランジスタ27のゲート電極、増幅トランジスタ28のゲート電極、選択トランジスタ29のゲート電極が形成される。
これらのトランジスタは、図4の上下方向に並ぶように、一括して形成される。
また、リセットトランジスタ27のゲート電極は、フローティングディフュージョンFDと隣接して形成される。
リセットトランジスタ27のゲート電極と増幅トランジスタ28のゲート電極との間には、配線部41が形成される。
増幅トランジスタ28のゲート電極と選択トランジスタ29のゲート電極との間には、配線部42が形成される。
選択トランジスタ29のゲート電極の図4の下側には、列信号線23に接続される配線部43が形成される。
[画素回路22の積層構造]
図5は、図4の画素回路22の積層構造を示す半導体基板11の部分縦断面図である。
図5は、図4の画素回路22のA−A’断面図である。
図5は、1個の画素回路の形成領域12のP型ウェル50内を図示したものである。
また、図5には、半導体基板11の受光エリア21と重ねて、遮光幕69が図示されている。
遮光幕69は、フォトダイオード25の形成位置に開口部を有する。
そして、遮光幕69は、開口部以外において、半導体基板11へ入射される光を遮断する。
CMOSイメージセンサ1の半導体基板11は、N型の半導体基板11である。
半導体基板11の受光エリア21には、所定の深さ(例えば3マイクロメートル)までの範囲に、P型ウェル50が形成される。P型ウェル50は、たとえば受光エリア21の全体に形成される。P型ウェル50内に複数の画素回路22が並べて形成される。
受光エリア21の全体に形成されるP型ウェル50は、素子分離部71により、複数の画素回路の形成領域12に分離される。
また、素子分離部71により分離された各画素回路の形成領域12の表面には、酸化膜72が形成される。
素子分離部71により画素回路22毎に分離された画素回路の形成領域12には、図2の画素回路22の回路素子および配線が形成される。
そして、図5に示すように、画素回路の形成領域12は、フォトダイオード25、第1転送トランジスタ30、埋設拡散層55、第2転送トランジスタ26、表面拡散層60とが形成される。
埋設拡散層55は、保持部44として機能する。
表面拡散層60は、フローティングディフュージョンFDとして機能する。
フォトダイオード25は、埋め込み型のフォトダイオード25である。
フォトダイオード25は、半導体基板11の受光エリア21の一面側に形成されたP+領域61と、P+領域61の下側の半導体基板11の内部に形成されたN型領域62を有する。
埋め込み型のフォトダイオード25は、たとえば半導体基板11の受光エリア21の一面側から、1〜3マイクロメートルの深さまでの範囲に形成する。
これにより、埋め込み型のフォトダイオード25は、大量の電荷を蓄積することができる。
なお、埋め込み型のフォトダイオード25は、N型の半導体基板11のシリコン(Si)の光の吸収係数に応じてたとえば3マイクロメートル前後の深さまで電位の勾配をつけるように形成するとよい。
これにより、3マイクロメートル前後の深部で発生した電子を利用して、フォトダイオード25の感度を確保できる。
第1転送トランジスタ30は、第1埋め込みゲート電極51と、第1酸化膜52と、第1不純物領域53と、第1チャネル形成領域54とを有する。
そして、第1転送トランジスタ30は、埋め込み型のフォトダイオード25と隣接して形成される。
第1埋め込みゲート電極51は、半導体基板11に埋め込んで形成される。
具体的には、第1埋め込みゲート電極51は、半導体基板11の受光エリア21の一面側から、埋め込み型のフォトダイオード25のN型領域62に到達する深さまでの範囲に形成される。
この第1埋め込みゲート電極51は、半導体基板11の受光エリア21の一面側から、1〜1.5マイクロメートルの深さ位置までに形成すればよい。
第1酸化膜52は、第1埋め込みゲート電極51を被覆する。
第1不純物領域53は、第1酸化膜52を被覆する。
第1不純物領域53は、N型領域62とは逆のP型の半導体領域である。
第1チャネル形成領域54は、半導体基板の受光エリア21の一面側から離れた内部において、第1不純物領域53の一部として形成される。
第1チャネル形成領域54は、第1不純物領域53より低い濃度のP型の半導体領域である。
そして、第1不純物領域53は、第1埋め込みゲート電極51がオン状態にあるときに、第1チャネル形成領域54との間に十分な電位差が得られるように高い不純物濃度に形成する。
また、第1不純物領域53は、フォトダイオード25と埋設拡散層55との間以外において不要な電荷移動が発生しないように、高い不純物濃度に形成する。
図6は、第1チャネル形成領域54が形成される深さでの半導体基板11の部分横断面図である。
図6に示すように、第1埋め込みゲート電極51の周囲には、第1酸化膜52が形成される。
第1酸化膜52の周囲には、第1チャネル形成領域54が形成される。
第1チャネル形成領域54は、埋め込み型のフォトダイオード25のN型領域62と、埋設拡散層55とに接する。
そして、第1埋め込みゲート電極51に所定の電位が与えられると、フォトダイオード25のN型領域62に蓄積された電荷は、第1チャネル形成領域54を通じて埋設拡散層55へ移動する。
保持部44として機能する埋設拡散層55は、図5に示すように、半導体基板11の受光エリア21の一面側から離間して、半導体基板11内に埋設して形成される。
埋設拡散層55は、N型の半導体領域である。
また、埋設拡散層55は、第1転送トランジスタ30の第1チャネル形成領域54と、第2転送トランジスタ26の後述する第2チャネル形成領域59とに接する。
なお、埋設拡散層55の深さ位置は、半導体基板11の受光エリア21の一面側からの平均飛程距離Rpの深さが1マイクロメートルとなる深さに形成すればよい。
また、埋設拡散層55の不純物濃度は、フォトダイオード25の電荷蓄積容量をより小面積で確保するために、フォトダイオード25のN型領域62の不純物濃度より高くする。
また、埋設拡散層55の不純物濃度は、後述するように、リセット時に完全空乏化できる程度の高過ぎない濃度にする。
第2転送トランジスタ26は、第2埋め込みゲート電極56と、第2酸化膜57と、第2不純物領域58と、第2チャネル形成領域59とを有する。
そして、第2転送トランジスタ26は、第1転送トランジスタ30およびフォトダイオード25から離れた位置に形成される。
第2埋め込みゲート電極56は、半導体基板11に埋め込んで形成される。
具体的には、第2埋め込みゲート電極56は、半導体基板11の受光エリア21の一面側から、埋設拡散層55に到達する深さまでの範囲に形成される。
第2酸化膜57は、第2埋め込みゲート電極56を被覆する。
第2不純物領域58は、第2酸化膜57を被覆する。
第2不純物領域58は、埋設拡散層55とは逆のP型の半導体領域である。
第2チャネル形成領域59は、半導体基板の受光エリア21の一面側から離れた内部において、第2不純物領域58の一部として形成される。
第2チャネル形成領域59は、第2不純物領域58より低い濃度のP型の半導体領域である。
そして、第2チャネル形成領域59は、埋設拡散層55と、表面拡散層60とに接する。
なお、第2不純物領域58は、第2埋め込みゲート電極56がオン状態にあるときに、第2チャネル形成領域59との間に十分な電位差が得られるように、高い不純物濃度に形成する。
また、第2不純物領域58は、埋設拡散層55と表面拡散層60との間以外において不要な電荷移動が発生しないように、高い不純物濃度に形成する。
フローティングディフュージョンFDとして機能する表面拡散層60は、半導体基板11の受光エリア21の一面側に形成される。
表面拡散層60は、N型の半導体領域である。
表面拡散層60の不純物濃度は、配線部とのコンタクトを得るために、高くする。
また、表面拡散層60は、第1転送トランジスタ30の第1不純物領域53と、第2転送トランジスタ26の第2不純物領域58との間に形成され、第2転送トランジスタ26の第2チャネル形成領域59に接する。
なお、第2チャネル形成領域59と表面拡散層60とのPN接合部分は、半導体基板11の受光エリア21の一面側から0.5マイクロメートルの深さまでの範囲内に位置させるとよい。
これにより、フローティングディフュージョンFDのPN接合部分の深さを、一般的なCMOSイメージセンサ1と同等にできる。
また、図5の第1チャネル形成領域54、埋設拡散層55、第2チャネル形成領域59および表面拡散層60の不純物濃度は、以下のように調整される。
すなわち、たとえばリセット時などに第1埋め込みゲート電極51および第2埋め込みゲート電極56をオン状態にした場合に、電荷を蓄積したフォトダイオード25のN型領域62の電位よりも、第1チャネル形成領域54の電位が高くなるように、第1チャネル形成領域54の不純物濃度を調整する。
また、同条件の下で、第1チャネル形成領域54の電位、埋設拡散層55の電位、第2チャネル形成領域59の電位および表面拡散層60の電位が、その順番に高くなるように、これら各領域の不純物濃度を調整する。
この場合、表面拡散層60の不純物濃度は、埋設拡散層55の不純物濃度と比べて高くなる。
このような不純物濃度の組み合わせにすることにより、埋設拡散層55に保持される電荷はすべて表面拡散層60へ移動できる。
その結果、第2埋め込みゲート電極56をオン状態にして電荷を移動させたリセット後には、埋設拡散層55は、完全に無電化状態(完全空乏化)になる。埋設拡散層55は、完全空乏化される。
[画素回路22の製造方法]
図7および図8は、半導体基板11のP型ウェル50に、画素回路22の回路素子を形成するための製造工程図である。
図7および図8の製造工程では、まず、図7(A)に示すように、半導体基板11のP型ウェル50が形成された受光エリア21に、素子分離部71および酸化膜72を形成する。
素子分離部71は、STI(Shallow Trench Isolation)法やLOCOS(Local Oxidation of Silicon)法などにより形成できる。
半導体基板11のP型ウェル50に素子分離部71および酸化膜72を形成した後、図7(B)に示すように、半導体基板11の受光エリア21に、第1埋め込みゲート電極51用の穴と、第2埋め込みゲート電極56用の穴とを形成する。
具体的には、半導体基板11のP型ウェル50の上に、ゲート電極の配置と相補的なパターンのレジスト膜81を形成する。
その後、半導体基板11をエッチングして、第1埋め込みゲート電極51用の穴82と、第2埋め込みゲート電極56用の穴82とを形成する。
ゲート電極用の穴82を形成した後、図7(C)に示すように、第1埋め込みゲート電極51用の穴82の周囲と、第2埋め込みゲート電極56用の穴82の周囲とに、不純物をイオン注入する。
これにより、第1埋め込みゲート電極51用の穴82の周囲に、P型の第1不純物領域53が形成される。また、第2埋め込みゲート電極56用の穴82の周囲に、P型の第2不純物領域58が形成される。
半導体基板11にP型領域を形成する場合、不純物としては、たとえばホウ素(B)、二フッ化ホウ素(BF)などを注入すればよい。また、イオン注入には、インプラ装置などのイオン注入装置を用いればよい。
ゲート電極用の穴82の周囲にP型半導体領域を形成した後、レジスト膜81を除去する。
また、図7(D)に示すように、半導体基板11受光エリア21の一面側に、ポリシリコン膜83を形成する。
ポリシリコン膜83の一部は、第1埋め込みゲート電極51用の穴82の内部と、第2埋め込みゲート電極56用の穴82の内部とにも形成される。
また、図7(D)に示すように、ポリシリコン膜83の上に、新たなレジスト膜84を形成する。
レジスト膜84は、第1埋め込みゲート電極51用の穴82の上と、第2埋め込みゲート電極56用の穴82の上とに形成される。
この状態で、ポリシリコン膜83をエッチングする。
これにより、半導体基板11には、第1埋め込みゲート電極51と、第2埋め込みゲート電極56とが形成される。
次に、図7(E)に示すように、半導体基板11の上に、新たなレジスト膜85を形成する。
レジスト膜85は、第1埋め込みゲート電極51およびその周囲以外の一面側に形成される。
また、レジスト膜85が形成された状態でN型の不純物を少量イオン注入する。
N型領域を形成する場合、不純物としては、たとえばヒ素(As)、リン(P)などをイオン注入すればよい。また、イオン注入には、インプラ装置を用いればよい。
半導体基板11に注入された不純物は、半導体基板11の受光エリア21の一面側から離間した所定の深さ位置に注入される。
そして、P型の第1不純物領域53についての、この不純物が注入された部分は、第1不純物領域53より不純物濃度が低いP型領域となる。
これにより、第1チャネル形成領域54が形成される。
なお、この時点での第1チャネル形成領域54は、図7(E)に示すように、第1不純物領域53よりも図7の左右方向へ若干広がった状態に形成される。
レジスト膜85を除去した後、図7(F)に示すように、半導体基板11の上に、新たなレジスト膜86を形成する。
レジスト膜86は、第2埋め込みゲート電極56についての、第1埋め込みゲート電極51側の半分およびその周囲以外の一面側に形成される。
また、レジスト膜86が形成された状態でN型の不純物を少量イオン注入する。
不純物は、半導体基板11から離間した所定の深さ位置に注入される。
また、P型の第2不純物領域58についての、この不純物が注入された部分は、第2不純物領域58より不純物濃度が低いP型領域となる。
これにより、第2チャネル形成領域59が形成される。
なお、この時点での第2チャネル形成領域59は、図7(F)に示すように、第2不純物領域58の一面側より第1埋め込みゲート電極51側に若干広がった状態に形成される。
以上の工程により、半導体基板11には、第1転送トランジスタ30と、第2転送トランジスタ26とが形成される。
次に、図8(A)に示すように、半導体基板11の上に、新たなレジスト膜87を形成する。
レジスト膜87は、素子分離部71と第1埋め込みゲート電極51との間以外の一面側に形成される。
また、レジスト膜87が形成された状態でP型の不純物およびN型の不純物を順次イオン注入する。
これにより、半導体基板11には、P+領域61およびN型領域62を有する埋め込み型のフォトダイオード25が形成される。
また、N型領域62は、第1チャネル形成領域54と接する。
次に、図8(B)に示すように、半導体基板11の上に、新たなレジスト膜88を形成する。
レジスト膜88は、第1埋め込みゲート電極51と第2埋め込みゲート電極56との間以外に形成される。
また、レジスト膜88が形成された状態でN型の不純物をイオン注入する。
これにより、半導体基板11には、埋設拡散層55と、表面拡散層60とが形成される。
そして、表面拡散層60は、半導体基板11の受光エリア21の一面側に形成される。
表面拡散層60は、第2チャネル形成領域59と接する。
また、埋設拡散層55は、半導体基板11の内部において、表面拡散層60と重なり且つ離間して形成される。
埋設拡散層55は、第1チャネル形成領域54と、第2チャネル形成領域59とに接する。
図7および図8の工程の後に、半導体基板11の受光エリア21の一面側に、画素回路22の各種のトランジスタ26〜30のゲート電極を形成する。
これにより、半導体基板11に、複数の画素回路22が形成される。
そして、図7および図8の工程により形成された図5の画素回路22では、第1埋め込みゲート電極51の電位をたとえばハイレベルに制御する。
これにより、フォトダイオード25で発生した電荷は、第1チャネル形成領域54を通じて、保持部44として機能する埋設拡散層55へ移動する。
また、画素回路22では、第2埋め込みゲート電極56の電位をたとえばハイレベルに制御する。
これにより、埋設拡散層55に保持される電荷は、第2チャネル形成領域59を通じて、フローティングディフュージョンFDとして機能する表面拡散層60へ移動する。
[比較例の画素回路22の積層構造および製造方法]
図9は、半導体基板11に対する比較例の画素回路22の概略レイアウト図である。
図10は、比較例の画素回路22の断面図である。図10の縦断面図は、図5の縦断面図に対応している。
以下の説明において、比較例の画素回路22の各部には、説明の便宜のために、実施形態と同一の符号を使用する。
比較例の画素回路22は、基本的に図4および図5の第1の実施形態の画素回路22の積層構造と同じである。
ただし、比較例の画素回路22は、第1転送トランジスタ30が他のトランジスタと同様に半導体基板11の一面側に形成されたゲート電極を有する点で、第1の実施形態の画素回路22と異なる。
また、比較例の画素回路22は、第2転送トランジスタ26および埋設拡散層55が無い点とで、第1の実施形態の画素回路22と異なる。
そして、この比較例の画素回路22は、第1転送トランジスタ30のゲート電極は、フォトダイオード25と、フローティングディフュージョンFDとして機能する表面拡散層60との間に形成される。
また、この比較例の画素回路22において第1転送トランジスタ30は、画素回路22からの読み出し時に順番にオン状態に制御される。
また、CMOSイメージセンサ1では、各画素回路22からの読み出し時に、図3のように画素回路22のリセット動作が必要となる。
そのため、比較例の画素回路22では、ローリングシャッタ方式により複数の画素回路22から読み出しを行う必要がある。
比較例の画素回路22では、グローバルシャッタ方式による読み出しができない。
以上のように、第1の実施形態のCMOSイメージセンサ1は、フォトダイオード25とフローティングディフュージョンFDとの間に、第1転送トランジスタ30、保持部44および第2転送トランジスタ26を接続している。
よって、第1の実施形態では、複数の画素回路22のフォトダイオード25から、グローバルシャッタ方式による読み出しが可能である。
しかも、グローバルシャッタ方式による読み出しの場合でも、P相のカウント値とD相のカウント値との減算によるCDS処理により、kTCノイズを抑えた値が得られる。
また、第1の実施形態のCMOSイメージセンサ1は、第1転送トランジスタ30および第2転送トランジスタ26を、埋め込みゲート電極により形成する。
また、CMOSイメージセンサ1は、フローティングディフュージョンFDとして機能する表面拡散層60の下に重ねて、保持部44として機能する埋設拡散層55を形成する。
よって、半導体基板11の受光エリア21の一面側について見たとき、表面拡散層60および埋設拡散層55が使用する面積は、1個の拡散層の面積となる。
その結果、半導体基板11の受光エリア21でのフォトダイオード25の面積は、表面拡散層60および埋設拡散層55を設けたことによって小さくならない。
半導体基板11の受光エリア21の一面側においてのフォトダイオード25の面積は、画素回路22がフローティングディフュージョンFDの表面拡散層60しか持たない場合と同等の面積になる。
また、埋め込みゲート電極を採用することで、低電圧駆動のCMOSイメージセンサ1において、半導体基板11内に埋め込んだ埋設蓄積層55を用いて電荷を移動させることができる。
また、第1の実施形態では、互いに重ねて形成される表面拡散層60および埋設拡散層55のうち、半導体基板11に埋設される埋設拡散層55を、フォトダイオード25の電荷を保持する保持部44として利用する。
よって、保持部44には、半導体基板11の表面電荷によるノイズが発生しない。
保持部44に保持される電荷量は、フォトダイオード25で発生した電荷量になり、ノイズ成分が非常に少ないものになる。
なお、半導体基板11の表面部に欠陥があると、その欠陥部分から半導体基板11の表面部に電荷が湧き出すことがある。この湧き出した電荷は、ノイズとなる。
<2.第2の実施形態>
第2の実施形態に係るCMOSイメージセンサ1は、複数の画素回路22に対して1個のフローティングディフュージョンFDを形成したものである。
図11は、第2の実施形態のCMOSイメージセンサ1の半導体基板11に形成される4個の画素回路22の概略レイアウトを示す模式図である。
図11には、2行×2列の4個の画素回路22が図示されている。
そして、図11に示すように、第2の実施形態の半導体基板11には、2行×2列の4個の画素回路22毎の繰り返しパターンにより、複数の画素回路22が形成されている。
具体的には、図11の左上の画素回路の形成領域には、フォトダイオード25−1、第1転送トランジスタ30−1および第2転送トランジスタ26−1を有する左上画素回路22−1が形成されている。
また、図11の左下の画素回路の形成領域には、フォトダイオード25−2、第1転送トランジスタ30−2および第2転送トランジスタ26−2を有する左下画素回路22−2が形成されている。
また、図11の右下の画素回路の形成領域には、フォトダイオード25−3、第1転送トランジスタ30−3および第2転送トランジスタ26−3を有する右下画素回路22−3が形成されている。
また、図11の右上の画素回路の形成領域には、フォトダイオード25−4、第1転送トランジスタ30−4および第2転送トランジスタ26−4を有する右上画素回路22−4が形成されている。
そして、この4個の画素回路22−1〜22−4の間に、1個のフローティングディフュージョンFDとしての表面拡散層60が形成されている。
また、4個の第1転送トランジスタ30−1〜30−4は、表面拡散層60と、それぞれのフォトダイオード25−1〜25−4との間に形成される。
また、4個の第2転送トランジスタ26−1〜26−4は、表面拡散層60と隣接して形成される。
また、4個の画素回路22−1〜22−4についての図11の上側には、1個のリセットトランジスタ27が配置されている。
リセットトランジスタ27のゲート電極の左右には、Vddに接続される配線部41と、表面拡散層60に接続される配線部91とが接続される。
また、配線部91の右側には、GNDに接続される配線部93が形成される。
また、4個の画素回路22−1〜22−4についての図11の下側には、1個の増幅トランジスタ28と、1個の選択トランジスタ29とが配置される。
増幅トランジスタ28のゲート電極の左側には、表面拡散層60に接続される配線部92が形成される。
増幅トランジスタ28と選択トランジスタ29との間には、配線部42が形成される。
選択トランジスタ29の右側には、配線部43が形成される。
図12は、フローティングディフュージョンFDとしての表面拡散層60における半導体基板11の縦断面図である。
図12に示すように、半導体基板の受光エリア21の表面に露出して形成される表面拡散層60の下側には、表面拡散層60と離間する位置に、4個の埋設拡散層55−1〜55−4が形成される。
図12の左側の左上埋設拡散層55−1は、第1転送トランジスタ30−1と第2転送トランジスタ26−1との間に形成される。
図12の右側の左下埋設拡散層55−2は、第1転送トランジスタ30−2と第2転送トランジスタ26−2との間に形成される。
また、3個目の右下埋設拡散層55−3は、第1転送トランジスタ30−3と第2転送トランジスタ26−3との間に形成される。
また、4個目の右上埋設拡散層55−4は、第1転送トランジスタ30−4と第2転送トランジスタ26−4との間に形成される。
以上のように、第2の実施形態では、複数の画素回路22は、2行×2列の4個の画素回路22毎の繰り返しパターンにより半導体基板11に形成される。
そして、第2の実施形態では、フローティングディフュージョンFDなどの回路素子を、複数の画素回路22において共用化する。
その結果、第2の実施形態では、半導体基板11の受光エリア21に形成するフローティングディフュージョンFD、リセットトランジスタ27、増幅トランジスタ28、および選択トランジスタ29の個数を減らすことができる。
そして、第2の実施形態では、その削減した個数に相当する面積の分だけ、複数の画素回路22のフォトダイオード25についての、半導体基板11の受光エリア21の一面側での面積を増やすことができる。また、フォトダイオード25の個数を増やすことができる。
<3.第3の実施形態>
[撮像装置の構成]
図13に、本発明の実施形態に係る撮像装置を適用したカメラシステム101の概略構成を示す。
このカメラシステム101は、上述したいずれかの実施形態のCMOSイメージセンサ(固体撮像装置)1を搭載したデジタルスチルカメラまたはデジタルビデオカメラである。
なお、カメラシステム101は、カメラモジュールなどとして、携帯電話機などのモバイル機器に組み込まれてもよい。
図13のカメラシステム101は、光学系を構成するレンズ群102、CMOSイメージセンサ1、DSP(Digital Signal Processor)回路103、表示装置104、操作系装置105、フレームメモリ106、記録装置107、および電源系装置108を有する。
DSP回路103は、CMOSイメージセンサ1に接続される。DSP回路103は、CMOSイメージセンサ1で撮像された画像を加工する。
DSP回路103、表示装置104、操作系装置105、フレームメモリ106、記録装置107、および電源系装置108は、バスライン109で接続される。
レンズ群102は、被写体からの入射光(像光)をCMOSイメージセンサ1の受光エリア21に集光する。これにより、受光エリア21で、被写体が結像する。
表示装置104は、たとえば液晶表示パネル、有機EL(Electro Luminescence)パネルを有する。表示装置104は、取り込んだ画像を表示する。
操作系装置105は、たとえばタッチパネル、操作ボタンを有する。
そして、操作系装置105は、CMOSイメージセンサ1、DSP回路103、表示装置104、記録装置107または電源系装置108へ制御指令を出力する。
電源系装置108は、たとえばバッテリなどを有する。
そして、電源系装置108は、CMOSイメージセンサ1、DSP回路103、表示装置104、操作系装置105および記録装置107へ電力を供給する。
記録装置107は、たとえば半導体メモリ、光記録媒体などを有する。
そして、記録装置107は、半導体メモリ、光記録媒体に撮像画像のデータを記録する。
なお、半導体メモリ、光記録媒体などは、カメラシステム101から着脱可能でもよい。
[動作説明]
たとえば、静止画または動画を撮像する場合、CMOSイメージセンサ1は、複数の画素回路から読みだした、受光光量の分布データを出力する。
DSP回路103は、この受光光量の分布データを加工し、カメラシステム101で要求されている1フレームの撮像画像のデータを生成する。
フレームメモリ106は、撮像画像のデータを記憶する。
表示装置104は、フレームメモリ106からデータを読み込んで表示する。
また、操作系装置105の指令に基づいて、記録装置107は、フレームメモリ106から撮像画像のデータを取り込んで、撮影モードに応じたフォーマットで記憶する。
この他にもたとえば、撮影した静止画または動画を表示する場合、表示装置104は、記録装置107からデータを読み込んで表示する。
以上の各実施形態は、本発明の好適な実施形態の例であるが、本発明は、これに限定されるものではなく、発明の要旨を逸脱しない範囲において種々の変形または変更が可能である。
たとえば各上記実施形態での固体撮像装置は、CMOSイメージセンサ1である。
この他にも例えば、固体撮像装置は、CCD(Charge Coupled Device)イメージセンサでもよい。
各上記実施形態では、各画素回路22に、1個の保持部44(埋設拡散層55)を形成している。
この他にも例えば、各画素回路22に、複数個の保持部44(埋設拡散層55)を形成してもよい。この場合、複数個の保持部44として機能する複数個の埋設拡散層55は、表面拡散層60と重ねて、半導体基板11の深さ方向に並べて重ねて形成すればよい。
1…CMOSイメージセンサ(固体撮像装置)、11…半導体基板、21…受光エリア、22…画素回路、25…フォトダイオード(光電変換素子)、44…保持部、51…第1埋め込みゲート電極、53…第1不純物領域、54…第1チャネル形成領域、55…埋設拡散層(第2拡散層)、56…第2埋め込みゲート電極、58…第2不純物領域、59…第2チャネル形成領域、60…表面拡散層(第1拡散層)、61…P+領域(第1不純物領域)、62…N型領域(第2不純物領域)、101…カメラシステム(撮像装置)、102…レンズ群(光学系)、FD…フローティングディフュージョン

Claims (7)

  1. 半導体基板と、
    前記半導体基板に形成される複数の画素回路と
    を有し、
    前記半導体基板に形成される前記画素回路は、
    光電変換素子と、
    前記光電変換素子と隣り合って形成される第1埋め込みゲート電極と、
    前記光電変換素子および前記第1埋め込みゲート電極から離間して形成される第2埋め込みゲート電極と、
    前記第1埋め込みゲート電極と前記第2埋め込みゲート電極との間に形成される第1拡散層と、
    前記第1埋め込みゲート電極と前記第2埋め込みゲート電極との間において、前記第1拡散層と離間した状態で重ねて形成される第2拡散層と
    を有し、
    前記光電変換素子に蓄積された電荷は、
    前記第1拡散層を通じて前記第2拡散層へ転送される
    固体撮像装置。
  2. 前記第1拡散層は、
    前記半導体基板内に埋設して形成され、
    前記第2拡散層は、
    前記半導体基板の一面側に形成される
    請求項1記載の固体撮像装置。
  3. 前記光電変換素子は、
    前記半導体基板の一面側に並べて形成され、
    第1導電型の第1不純物領域と、前記第1不純物領域と接する第2導電型の第2不純物領域とを有し、
    前記第1不純物領域が、前記第2不純物領域より前記一面側に形成され、
    前記第1拡散層および第2拡散層は、
    第2導電型に形成され、
    前記固体撮像装置は、
    前記第1埋め込みゲート電極の周囲に形成され、前記光電変換素子の第2導電型の第2不純物領域、第2導電型の前記第1拡散層および第2導電型の前記第2拡散層と接する第1導電型の第1不純物領域と、
    前記第1不純物領域の一部において、前記第1不純物領域より不純物濃度が低い第1導電型の領域として形成され、前記光電変換素子の第2不純物領域および前記第1拡散層と接する第1導電型の第1チャネル形成領域と、
    前記第2埋め込みゲート電極の周囲に形成され、第2導電型の前記第1拡散層および第2導電型の前記第2拡散層と接する第1導電型の第2不純物領域と、
    前記第2不純物領域の一部において、前記第2不純物領域より不純物濃度が低い第1導電型の領域として形成され、前記第1拡散層および前記第2拡散層と接する第1導電型の第2チャネル形成領域と
    を有する請求項2記載の固体撮像装置。
  4. 前記第1埋め込みゲート電極および前記第2埋め込みゲート電極をオン状態にした場合に、前記光電変換素子の電位よりも、前記第1チャネル形成領域の電位、前記第1拡散層の電位、前記第2チャネル形成領域の電位、および前記第2拡散層の電位が、その順番に高くなるように、これら各領域の不純物濃度が調整されている
    請求項3記載の固体撮像装置。
  5. 前記第2拡散層は、
    前記半導体基板において隣接して形成される複数の画素回路について1個ずつ形成される
    請求項1記載の固体撮像装置。
  6. 固体撮像装置と、
    被写体を前記固体撮像装置に結像する光学系と
    を有し、
    前記固体撮像装置は、
    半導体基板と、
    前記半導体基板に形成される複数の画素回路と
    を有し、
    前記半導体基板に形成される前記画素回路は、
    光電変換素子と、
    前記光電変換素子と隣り合って形成される第1埋め込みゲート電極と、
    前記光電変換素子および前記第1埋め込みゲート電極から離間して形成される第2埋め込みゲート電極と、
    前記第1埋め込みゲート電極と前記第2埋め込みゲート電極との間に形成される第1拡散層と、
    前記第1埋め込みゲート電極と前記第2埋め込みゲート電極との間において、前記第1拡散層と離間した状態で重ねて形成される第2拡散層と
    を有し、
    前記光電変換素子に蓄積された電荷は、
    前記第1拡散層を通じて前記第2拡散層へ転送される
    撮像装置。
  7. 半導体基板に複数の画素回路が形成される固体撮像装置についての前記半導体基板の一面側に、各前記画素回路の第1埋め込みゲート電極用の穴および第2埋め込みゲート電極用の穴を形成するステップと、
    前記第1埋め込みゲート電極用の穴の周囲および第2埋め込みゲート電極用の穴の周囲に、第1不純物領域および第2不純物領域を形成するステップと、
    前記第1埋め込みゲート電極用の穴および前記第2埋め込みゲート電極用の穴に、第1埋め込みゲート電極および第2埋め込みゲート電極を形成するステップと、
    前記第1不純物領域の一部に、前記第1不純物領域より不純物濃度が低い第1チャネル形成領域を形成するステップと、
    前記第2不純物領域の一部に、前記第2不純物領域より不純物濃度が低い第2チャネル形成領域を形成するステップと、
    第1不純物領域および前記第1チャネル形成領域と接する位置において、前記半導体基板に光電変換素子を形成するステップと、
    前記第1不純物領域と前記第2不純物領域との間における前記半導体基板の一面側に形成され、前記第2チャネル形成領域と接する第2拡散層と、前記第2拡散層と離間した状態で重なるように前記半導体基板内に形成され、前記第1チャネル形成領域および前記第2チャネル形成領域と接する第1拡散層とを形成するステップと
    を有する固体撮像装置の製造方法。
JP2009233226A 2009-10-07 2009-10-07 固体撮像装置、撮像装置、および固体撮像装置の製造方法 Expired - Fee Related JP5493669B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009233226A JP5493669B2 (ja) 2009-10-07 2009-10-07 固体撮像装置、撮像装置、および固体撮像装置の製造方法
CN2010102919510A CN102034839B (zh) 2009-10-07 2010-09-26 固体摄像器件、其制造方法及包括它的摄像装置
CN201310168084.5A CN103378120B (zh) 2009-10-07 2010-09-26 固体摄像器件及包括它的摄像装置
US12/892,017 US8519456B2 (en) 2009-10-07 2010-09-28 Solid-state image pickup device, image pickup apparatus including the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233226A JP5493669B2 (ja) 2009-10-07 2009-10-07 固体撮像装置、撮像装置、および固体撮像装置の製造方法

Publications (2)

Publication Number Publication Date
JP2011082330A true JP2011082330A (ja) 2011-04-21
JP5493669B2 JP5493669B2 (ja) 2014-05-14

Family

ID=43822532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233226A Expired - Fee Related JP5493669B2 (ja) 2009-10-07 2009-10-07 固体撮像装置、撮像装置、および固体撮像装置の製造方法

Country Status (3)

Country Link
US (1) US8519456B2 (ja)
JP (1) JP5493669B2 (ja)
CN (2) CN103378120B (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216768A (ja) * 2013-04-24 2014-11-17 キヤノン株式会社 撮像装置、撮像システム、撮像装置の駆動方法
JP2015082592A (ja) * 2013-10-23 2015-04-27 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
KR20150107547A (ko) * 2014-03-13 2015-09-23 삼성전자주식회사 이미지 센서의 단위 픽셀, 이를 포함하는 이미지 센서 및 이미지 센서의 제조 방법
KR20160007217A (ko) * 2014-07-11 2016-01-20 삼성전자주식회사 이미지 센서의 픽셀 및 이미지 센서
JP2016103541A (ja) * 2014-11-27 2016-06-02 キヤノン株式会社 固体撮像装置
JP2018019425A (ja) * 2017-10-18 2018-02-01 キヤノン株式会社 撮像装置、撮像システム、撮像装置の駆動方法
WO2020059553A1 (ja) * 2018-09-20 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器
WO2022091592A1 (ja) * 2020-10-29 2022-05-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及びその製造方法、並びに電子機器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084785A (ja) * 2011-10-11 2013-05-09 Sony Corp 固体撮像装置、撮像装置
TWI467751B (zh) * 2011-12-12 2015-01-01 Sony Corp A solid-state imaging device, a driving method of a solid-state imaging device, and an electronic device
JP2014112580A (ja) * 2012-12-05 2014-06-19 Sony Corp 固体撮像素子および駆動方法
JP6221341B2 (ja) * 2013-05-16 2017-11-01 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法および電子機器
KR102114344B1 (ko) 2013-06-05 2020-05-22 삼성전자주식회사 이미지 센서의 픽셀 어레이 레이아웃 생성 방법 및 이를 이용한 레이아웃 생성 시스템
KR102174650B1 (ko) 2013-10-31 2020-11-05 삼성전자주식회사 이미지 센서
CN104393010B (zh) * 2014-12-01 2017-09-05 豪威科技(上海)有限公司 降低图像延迟的cmos图像传感器及其制备方法
JP2016139660A (ja) * 2015-01-26 2016-08-04 株式会社東芝 固体撮像装置
CN106981495B (zh) * 2016-01-15 2019-10-25 中芯国际集成电路制造(上海)有限公司 一种cmos图像传感器及其制作方法
US10002895B2 (en) * 2016-06-13 2018-06-19 Semiconductor Components Industries, Llc Apparatus and methods for buried channel transfer gate
EP3432297B1 (en) 2016-09-09 2023-05-03 Sony Semiconductor Solutions Corporation Display device and electronic device
KR102662585B1 (ko) * 2017-01-09 2024-04-30 삼성전자주식회사 이미지 센서
KR102333610B1 (ko) * 2017-03-06 2021-12-03 에스케이하이닉스 주식회사 이미지 센서
KR102432861B1 (ko) 2017-06-15 2022-08-16 삼성전자주식회사 거리 측정을 위한 이미지 센서
CN110459554B (zh) * 2019-08-29 2021-10-15 上海华力集成电路制造有限公司 降低cis单元像素面积的结构及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311515A (ja) * 2005-03-29 2006-11-09 Konica Minolta Holdings Inc 固体撮像装置
JP2007165886A (ja) * 2005-12-09 2007-06-28 Dongbu Electronics Co Ltd 垂直カラーフィルタ検出器群及びその製造方法
JP2007294531A (ja) * 2006-04-21 2007-11-08 Nikon Corp 固体撮像装置
JP2008193527A (ja) * 2007-02-06 2008-08-21 Nikon Corp 光電変換部の連結/分離構造、固体撮像素子及び撮像装置
JP2008258316A (ja) * 2007-04-03 2008-10-23 Sharp Corp 固体撮像装置およびその製造方法、電子情報機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY107475A (en) * 1990-05-31 1995-12-30 Canon Kk Semiconductor device and method for producing the same.
JP2837014B2 (ja) * 1992-02-17 1998-12-14 三菱電機株式会社 半導体装置及びその製造方法
JP4337371B2 (ja) * 2003-03-13 2009-09-30 ソニー株式会社 固体撮像素子および固体撮像素子の製造方法
JP4341421B2 (ja) * 2004-02-04 2009-10-07 ソニー株式会社 固体撮像装置
JP4537114B2 (ja) * 2004-05-07 2010-09-01 キヤノン株式会社 ズームレンズ
JP4581792B2 (ja) * 2004-07-05 2010-11-17 コニカミノルタホールディングス株式会社 固体撮像装置及びこれを備えたカメラ
JP4530747B2 (ja) * 2004-07-16 2010-08-25 富士通セミコンダクター株式会社 固体撮像装置及びその製造方法
KR100678466B1 (ko) * 2005-01-06 2007-02-02 삼성전자주식회사 3d 전송트랜지스터를 구비하는 이미지 센서 및 그 제조방법
US7399951B2 (en) * 2005-03-29 2008-07-15 Konica Minolta Holdings, Inc. Solid-state image-sensing device
JP2007096271A (ja) * 2005-09-05 2007-04-12 Toshiba Corp 固体撮像装置及びその製造方法
KR100884976B1 (ko) * 2006-12-29 2009-02-23 동부일렉트로닉스 주식회사 이미지 센서의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311515A (ja) * 2005-03-29 2006-11-09 Konica Minolta Holdings Inc 固体撮像装置
JP2007165886A (ja) * 2005-12-09 2007-06-28 Dongbu Electronics Co Ltd 垂直カラーフィルタ検出器群及びその製造方法
JP2007294531A (ja) * 2006-04-21 2007-11-08 Nikon Corp 固体撮像装置
JP2008193527A (ja) * 2007-02-06 2008-08-21 Nikon Corp 光電変換部の連結/分離構造、固体撮像素子及び撮像装置
JP2008258316A (ja) * 2007-04-03 2008-10-23 Sharp Corp 固体撮像装置およびその製造方法、電子情報機器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9756272B2 (en) 2013-04-24 2017-09-05 Canon Kabushiki Kaisha Image pickup apparatus, image pickup system, and method of driving image pickup apparatus
JP2014216768A (ja) * 2013-04-24 2014-11-17 キヤノン株式会社 撮像装置、撮像システム、撮像装置の駆動方法
KR102318462B1 (ko) * 2013-10-23 2021-10-28 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
JP2015082592A (ja) * 2013-10-23 2015-04-27 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
KR20240023207A (ko) 2013-10-23 2024-02-20 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
KR20160077055A (ko) 2013-10-23 2016-07-01 소니 주식회사 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
KR20230025932A (ko) 2013-10-23 2023-02-23 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
KR102499590B1 (ko) * 2013-10-23 2023-02-14 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
US9985068B2 (en) 2013-10-23 2018-05-29 Sony Semiconductor Solutions Corporation Solid-state imaging device and manufacturing method therefor, and electronic apparatus
KR20210130248A (ko) 2013-10-23 2021-10-29 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
KR20150107547A (ko) * 2014-03-13 2015-09-23 삼성전자주식회사 이미지 센서의 단위 픽셀, 이를 포함하는 이미지 센서 및 이미지 센서의 제조 방법
KR102215822B1 (ko) * 2014-03-13 2021-02-16 삼성전자주식회사 이미지 센서의 단위 픽셀, 이를 포함하는 이미지 센서 및 이미지 센서의 제조 방법
KR102252647B1 (ko) * 2014-07-11 2021-05-17 삼성전자주식회사 이미지 센서의 픽셀 및 이미지 센서
KR20160007217A (ko) * 2014-07-11 2016-01-20 삼성전자주식회사 이미지 센서의 픽셀 및 이미지 센서
JP2016103541A (ja) * 2014-11-27 2016-06-02 キヤノン株式会社 固体撮像装置
JP2018019425A (ja) * 2017-10-18 2018-02-01 キヤノン株式会社 撮像装置、撮像システム、撮像装置の駆動方法
WO2020059553A1 (ja) * 2018-09-20 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器
WO2022091592A1 (ja) * 2020-10-29 2022-05-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及びその製造方法、並びに電子機器

Also Published As

Publication number Publication date
US20110079832A1 (en) 2011-04-07
CN103378120B (zh) 2017-07-14
JP5493669B2 (ja) 2014-05-14
CN102034839A (zh) 2011-04-27
US8519456B2 (en) 2013-08-27
CN102034839B (zh) 2013-05-01
CN103378120A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5493669B2 (ja) 固体撮像装置、撮像装置、および固体撮像装置の製造方法
CN107425022B (zh) 固态成像装置和电子设备
JP6138661B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP5471174B2 (ja) 固体撮像装置とその製造方法、及び電子機器
US8785993B2 (en) Solid-state imaging element, manufacturing method, and electronic device
WO2014141900A1 (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP2015053411A (ja) 固体撮像素子、固体撮像素子の製造方法、および電子機器
CN110419107B (zh) 摄像装置和电子设备
TW201630173A (zh) 固體攝像裝置及固體攝像裝置之製造方法
US8399914B2 (en) Method for making solid-state imaging device
JP5326507B2 (ja) 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
US20110241080A1 (en) Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP2015023250A (ja) 固体撮像素子及びその駆動方法、並びに電子機器
JP2011114062A (ja) 固体撮像装置、および、その製造方法、電子機器
WO2022185785A1 (ja) 固体撮像素子および電子機器
JP2011066241A (ja) 固体撮像装置とその製造方法、及び電子機器
CN107146801B (zh) 固态成像器件以及制造方法和电子设备
JP2013051327A (ja) 固体撮像素子および電子機器
JP2017055050A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2016139660A (ja) 固体撮像装置
WO2010134147A1 (ja) 固体撮像素子
JP2011082329A (ja) 固体撮像装置、撮像装置および固体撮像装置の製造方法
JP2007134639A (ja) 光電変換装置及びそれを用いた撮像素子
JP2015099862A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2013131516A (ja) 固体撮像装置、固体撮像装置の製造方法、及び、電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

LAPS Cancellation because of no payment of annual fees