WO2022185785A1 - 固体撮像素子および電子機器 - Google Patents

固体撮像素子および電子機器 Download PDF

Info

Publication number
WO2022185785A1
WO2022185785A1 PCT/JP2022/002609 JP2022002609W WO2022185785A1 WO 2022185785 A1 WO2022185785 A1 WO 2022185785A1 JP 2022002609 W JP2022002609 W JP 2022002609W WO 2022185785 A1 WO2022185785 A1 WO 2022185785A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation region
pixel
plan
view
light
Prior art date
Application number
PCT/JP2022/002609
Other languages
English (en)
French (fr)
Inventor
達也 大川
遥介 佐竹
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280015149.XA priority Critical patent/CN116848639A/zh
Priority to JP2023503631A priority patent/JPWO2022185785A1/ja
Publication of WO2022185785A1 publication Critical patent/WO2022185785A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to solid-state imaging devices and electronic devices.
  • CMOS Complementary Metal Oxide Semiconductor
  • phase difference detection pixels there is room for further improvement in terms of increasing the saturation signal charge amount of the photodiodes in the light receiving pixels that detect the phase difference.
  • the present disclosure proposes a solid-state imaging device and an electronic device capable of increasing the saturation signal charge amount of a photodiode in a phase difference detection pixel.
  • a solid-state imaging device includes a plurality of light-receiving pixels arranged in a matrix inside a semiconductor layer. Also, the light-receiving pixel has a pair of photoelectric conversion units, a first isolation region, and a second isolation region. A pair of photoelectric conversion units are arranged adjacent to each other and have a shared floating diffusion. The first isolation region is arranged so as to surround the pair of photoelectric conversion units. The second isolation region is arranged between the pair of photoelectric conversion units. The first isolation region has a rectangular shape in plan view, and is provided to extend from a surface of the semiconductor layer opposite to the light incident surface toward the light incident surface. The second isolation region is arranged along a diagonal line of the first isolation region, which is rectangular in plan view, and extends from the surface of the semiconductor layer opposite to the light incident surface toward the light incident surface. be provided.
  • FIG. 1 is a system configuration diagram showing a schematic configuration example of a solid-state imaging device according to each embodiment of the present disclosure;
  • FIG. It is a figure showing an example of a pixel circuit concerning a 1st embodiment of this indication.
  • 1 is a plan view showing an example of a configuration of light receiving pixels according to the first embodiment of the present disclosure;
  • FIG. 4 is a cross-sectional view taken along line AA shown in FIG. 3;
  • FIG. 4 is a cross-sectional view taken along line BB shown in FIG. 3;
  • FIG. 2 is a plan view showing an example of a configuration of a light receiving pixel group according to the first embodiment of the present disclosure;
  • FIG. 7 is a cross-sectional view showing an example of a configuration of a light receiving pixel according to Modification 1 of the first embodiment of the present disclosure
  • FIG. 7 is a cross-sectional view showing an example of a configuration of a light receiving pixel according to Modification 2 of the first embodiment of the present disclosure
  • FIG. 11 is a plan view showing an example of a configuration of a light receiving pixel group according to Modification 3 of the first embodiment of the present disclosure
  • FIG. 11 is a plan view showing an example of a configuration of a light receiving pixel group according to Modification 4 of the first embodiment of the present disclosure
  • FIG. 11 is a plan view showing an example of a configuration of a light receiving pixel group according to Modification 5 of the first embodiment of the present disclosure
  • FIG. 11 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 6 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 7 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 8 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel group according to Modification 8 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing another example of the configuration of the light-receiving pixel group according to Modification 8 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 9 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel group according to Modification 9 of the first embodiment of the present disclosure
  • FIG. 22 is a plan view showing another example of the configuration of the light-receiving pixel group according to Modification 9 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 10 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing another example of the configuration of a light receiving pixel according to Modification 10 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 11 of the first embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 12 of the first embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of a pixel circuit according to a second embodiment of the present disclosure
  • FIG. FIG. 10 is a plan view showing an example of the configuration of light receiving pixels according to the second embodiment of the present disclosure
  • 26 is a cross-sectional view taken along line CC shown in FIG. 25
  • FIG. FIG. 26 is a cross-sectional view taken along line DD shown in FIG. 25;
  • FIG. 7 is a cross-sectional view showing an example of a configuration of a light receiving pixel according to Modification 1 of the second embodiment of the present disclosure
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a light receiving pixel according to Modification 2 of the second embodiment of the present disclosure
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a light receiving pixel according to Modification 3 of the second embodiment of the present disclosure
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a light receiving pixel according to Modification 4 of the second embodiment of the present disclosure
  • FIG. 12 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 5 of the second embodiment of the present disclosure
  • FIG. 14 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 6 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 7 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 8 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 9 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 10 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 11 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 12 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 13 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 14 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 15 of the second embodiment of the present disclosure
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 16 of the second embodiment of the present disclosure
  • 1 is a block diagram showing a configuration example of an imaging device as an electronic device to which technology according to the present disclosure is applied;
  • FIG. 20 is a plan view showing an example of a configuration of a light receiving pixel according to Modification 16 of the second embodiment of the present disclosure
  • 1 is a block diagram showing a configuration example of an imaging device as an electronic device to which technology according to the present disclosure is applied
  • CMOS Complementary Metal Oxide Semiconductor
  • the dynamic range and SN ratio can be improved by increasing the saturation signal charge amount (Qs) of the photodiode.
  • phase difference detection pixels there is room for further improvement in terms of increasing the saturation signal charge amount of the photodiodes in the light receiving pixels that detect the phase difference.
  • FIG. 1 is a system configuration diagram showing a schematic configuration example of a solid-state imaging device 1 according to each embodiment of the present disclosure.
  • the solid-state imaging device 1 which is a CMOS image sensor, includes a pixel array section 10, a system control section 12, a vertical drive section 13, a column readout circuit section 14, a column signal processing section 15, A horizontal driving unit 16 and a signal processing unit 17 are provided.
  • pixel array section 10 system control section 12, vertical drive section 13, column readout circuit section 14, column signal processing section 15, horizontal drive section 16 and signal processing section 17 are on the same semiconductor substrate or are electrically connected. provided on a plurality of stacked semiconductor substrates.
  • the pixel array section 10 includes light-receiving pixels 11 each having a photoelectric conversion element (photodiode PD (see FIG. 3)) capable of photoelectrically converting an amount of charge corresponding to the amount of incident light, accumulating it internally, and outputting it as a signal. are arranged two-dimensionally in a matrix.
  • a photoelectric conversion element photodiode PD (see FIG. 3)
  • the pixel array section 10 includes dummy pixels having no photodiodes PD, and light-shielding pixels whose light-receiving surface is shielded from external light. /or may include regions arranged in columns.
  • the light-shielding pixel may have the same configuration as the light-receiving pixel 11 except that the light-receiving surface is light-shielded. Further, hereinafter, the photocharge having the amount of charge corresponding to the amount of incident light may be simply referred to as "charge”, and the light-receiving pixel 11 may be simply referred to as "pixel".
  • a pixel driving line LD is formed along the left-right direction in the drawing (pixel arrangement direction of the pixel row) for each row with respect to the matrix-like pixel arrangement, and a vertical pixel wiring is formed for each column.
  • the LV is formed along the vertical direction in the drawing (the pixel arrangement direction of the pixel column).
  • One end of the pixel drive line LD is connected to an output terminal corresponding to each row of the vertical drive section 13 .
  • the column readout circuit section 14 includes at least a circuit that supplies a constant current for each column to the light receiving pixels 11 in the selected row in the pixel array section 10, a current mirror circuit, a changeover switch for the light receiving pixels 11 to be read, and the like.
  • the column readout circuit section 14 forms an amplifier together with the transistors in the selected pixels in the pixel array section 10, converts the photoelectric charge signal into a voltage signal, and outputs the voltage signal to the vertical pixel wiring LV.
  • the vertical driving section 13 includes a shift register, an address decoder, etc., and drives each light receiving pixel 11 of the pixel array section 10 simultaneously or in units of rows.
  • the vertical drive section 13 has a readout scanning system and a sweeping scanning system or a batch sweeping and batch transfer system, although the specific configuration thereof is not shown.
  • the readout scanning system sequentially selectively scans the light receiving pixels 11 of the pixel array section 10 row by row in order to read out pixel signals from the light receiving pixels 11 .
  • sweep scanning is performed ahead of the readout scanning by the time of the shutter speed for the readout rows to be readout scanned by the readout scanning system.
  • batch sweeping is performed ahead of batch transfer by the time of the shutter speed.
  • unnecessary charges are swept (reset) from the photodiodes PD of the light-receiving pixels 11 in the readout row.
  • a so-called electronic shutter operation is performed by discharging (resetting) unnecessary charges.
  • the electronic shutter operation is an operation of discarding unnecessary photocharge accumulated in the photodiode PD until just before and starting new exposure (starting accumulation of photocharge).
  • the signal read out by the readout operation by the readout scanning system corresponds to the amount of incident light after the immediately preceding readout operation or the electronic shutter operation.
  • the period from the readout timing of the previous readout operation or the sweep timing of the electronic shutter operation to the readout timing of the current readout operation is the accumulation time (exposure time) of the photoelectric charges in the light receiving pixels 11.
  • the time from batch sweeping to batch transfer is accumulation time (exposure time).
  • a pixel signal output from each light-receiving pixel 11 in a pixel row selectively scanned by the vertical driving section 13 is supplied to the column signal processing section 15 through each vertical pixel wiring LV.
  • the column signal processing unit 15 performs predetermined signal processing on pixel signals output from the light-receiving pixels 11 of the selected row through the vertical pixel wiring LV for each pixel column of the pixel array unit 10, and performs a predetermined signal processing on the pixel signals after the signal processing. Temporarily holds the pixel signal.
  • the column signal processing unit 15 performs at least noise removal processing, such as CDS (Correlated Double Sampling) processing, as signal processing.
  • CDS Correlated Double Sampling
  • the CDS processing by the column signal processing unit 15 removes pixel-specific fixed pattern noise such as reset noise and variations in the threshold value of the amplification transistor AMP.
  • the column signal processing unit 15 may be configured to have, for example, an AD conversion function other than noise removal processing, so that pixel signals are output as digital signals.
  • the horizontal driving section 16 includes a shift register, an address decoder, etc., and sequentially selects unit circuits corresponding to the pixel columns of the column signal processing section 15 . Pixel signals processed by the column signal processing unit 15 are sequentially output to the signal processing unit 17 by selective scanning by the horizontal driving unit 16 .
  • the system control unit 12 includes a timing generator that generates various timing signals, and controls the vertical driving unit 13, the column signal processing unit 15, the horizontal driving unit 16, etc. based on the various timing signals generated by the timing generator. Drive control.
  • the solid-state imaging device 1 further includes a signal processing section 17 and a data storage section (not shown).
  • the signal processing unit 17 has at least an addition processing function, and performs various signal processing such as addition processing on the pixel signals output from the column signal processing unit 15 .
  • the data storage unit temporarily stores data required for signal processing in the signal processing unit 17 .
  • the signal processing unit 17 and the data storage unit may be processed by an external signal processing unit provided on a substrate different from the solid-state imaging device 1, such as a DSP (Digital Signal Processor) or software. 1 may be mounted on the same substrate.
  • DSP Digital Signal Processor
  • FIG. 2 is a diagram illustrating an example of a pixel circuit according to the first embodiment of the present disclosure
  • a pair of light receiving pixels 11 share one readout circuit 18 .
  • “shared” means that the pair of light receiving pixels 11 are electrically connected to the common readout circuit 18, that is, the output of the pair of light receiving pixels 11 is input to the common readout circuit 18. means.
  • Each light-receiving pixel 11 has components common to each other.
  • identification numbers (1, 2) are added to the end of the reference numerals of the constituent elements of each light receiving pixel 11 in order to distinguish the constituent elements of each light receiving pixel 11 from each other.
  • an identification number is attached to the end of the code for the constituent elements of each light receiving pixel 11 .
  • the identification number at the end of the code of the component of each light receiving pixel 11 is omitted.
  • Each light receiving pixel 11 has, for example, a photodiode PD and a transfer transistor TR electrically connected to the photodiode PD.
  • the photodiode PD is an example of a photoelectric conversion unit.
  • These light-receiving pixels 11 share a floating diffusion FD electrically connected to each transfer transistor TR.
  • “shared” means that each photodiode PD of each light receiving pixel 11 is electrically connected to the floating diffusion FD.
  • the photodiode PD performs photoelectric conversion to generate electric charge according to the amount of light received.
  • the cathode of photodiode PD is electrically connected to the source of transfer transistor TR, and the anode of photodiode PD is electrically connected to a reference potential line (eg, ground potential).
  • Transfer transistor TR is electrically connected to the floating diffusion FD, and the transfer gate TG, which is the gate of the transfer transistor TR, is electrically connected to the pixel drive line LD (see FIG. 1).
  • Transfer transistor TR is, for example, a CMOS transistor.
  • the floating diffusion FD is common to the light-receiving pixels 11 sharing one readout circuit 18 and electrically connected to the input end of the common readout circuit 18 for these light-receiving pixels 11 .
  • This floating diffusion FD temporarily holds the charge output from the photodiode PD via the transfer transistor TR.
  • the readout circuit 18 has, for example, a reset transistor RST, a selection transistor SEL, an amplification transistor AMP, and a switching transistor FDG, as shown in FIG.
  • the reset transistor RST, amplification transistor AMP, selection transistor SEL, and switching transistor FDG are, for example, CMOS transistors. Note that the selection transistor SEL and the switching transistor FDG may be omitted as necessary.
  • the source of the switching transistor FDG which is the input section of the readout circuit 18, is electrically connected to the floating diffusion FD, and the drain of the switching transistor FDG is electrically connected to the source of the reset transistor RST.
  • a gate of the switching transistor FDG is electrically connected to the pixel drive line LD.
  • the drain of the reset transistor RST is electrically connected to the power supply voltage VDD, and the gate of the reset transistor RST is electrically connected to the pixel drive line LD.
  • the source of the amplification transistor AMP is electrically connected to the drain of the selection transistor SEL, and the drain of the amplification transistor AMP is electrically connected to the power supply voltage VDD. Also, the gate of the amplification transistor AMP is electrically connected to the source of the switching transistor FDG and the floating diffusion FD.
  • the source of the selection transistor SEL which is the output section of the readout circuit 18, is electrically connected to the vertical pixel wiring LV, and the gate of the selection transistor SEL is electrically connected to the pixel drive line LD.
  • the transfer transistor TR transfers the charge of the photodiode PD to the floating diffusion FD when the transfer transistor TR is turned on.
  • the reset transistor RST resets the potential of the floating diffusion FD to a predetermined potential.
  • the reset transistor RST When the reset transistor RST is turned on, the reset transistor RST resets the potential of the floating diffusion FD to the potential of the power supply voltage VDD.
  • the selection transistor SEL controls the output timing of the pixel signal from the readout circuit 18 .
  • the amplification transistor AMP generates, as a pixel signal, a voltage signal corresponding to the level of the charge held in the floating diffusion FD.
  • the amplification transistor AMP constitutes a source follower type amplifier, and outputs a pixel signal having a voltage corresponding to the level of charge generated in the photodiode PD.
  • the amplification transistor AMP amplifies the potential of the floating diffusion FD when the selection transistor SEL is turned on, and outputs a voltage corresponding to the potential to the column signal processing unit 15 (see FIG. 1) via the vertical pixel wiring LV. .
  • the switching transistor FDG is used when switching the conversion efficiency.
  • pixel signals are small when shooting in a dark place.
  • the FD capacity needs to be large so that V when converted into voltage by the amplification transistor AMP does not become too large (in other words, so that it becomes small).
  • the switching transistor FDG when the switching transistor FDG is turned on, the gate capacitance of the switching transistor FDG increases, so the overall FD capacitance increases. On the other hand, when the switching transistor FDG is turned off, the overall FD capacitance is reduced. Thus, by switching the state of the switching transistor FDG, the FD capacitance can be made variable and the conversion efficiency can be switched.
  • FIG. 3 is a plan view showing an example of the configuration of the light receiving pixel 11 according to the first embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view taken along line AA shown in FIG. 3
  • FIG. 5 is a cross-sectional view taken along line BB shown in FIG. Note that in the cross-sectional views shown in FIGS. 4 and 5, illustration of the pixel transistor, the floating diffusion FD, and the like is omitted.
  • the pixel array section 10 includes a semiconductor layer 20, a planarization film 30, a color filter 40, and an on-chip lens 50.
  • the semiconductor layer 20 contains silicon, for example.
  • the semiconductor layer 20 has a plurality of photodiodes PD.
  • the photodiode PD is an example of a photoelectric conversion unit.
  • One light receiving pixel 11 is provided with a pair of photodiodes PD1 and PD2. By providing the pair of photodiodes PD1 and PD2, the light receiving pixel 11 functions as a phase difference detection pixel.
  • Photodiode PD includes a first impurity region 21 containing impurities of a first conductivity type (for example, N-type) and a second impurity region 22 containing impurities of a second conductivity type (for example, P-type). .
  • the first impurity region 21 is arranged in the central portion of the photodiode PD, and the second impurity region 22 is formed in the side and bottom portions of the first impurity region 21 (parts on the side opposite to the side on which the light L is incident). placed along.
  • the light receiving pixel 11 has a first isolation region 24 and a second isolation region 25 .
  • the first isolation region 24 is arranged to surround a pair of photodiodes PD in one light receiving pixel 11, as shown in FIG.
  • the first isolation region 24 is provided so as to penetrate the semiconductor layer 20, as shown in FIGS.
  • the first isolation region 24 is made of a low refractive index dielectric such as silicon oxide (SiO 2 ). Thereby, the first isolation region 24 can optically and electrically isolate the plurality of light-receiving pixels 11 adjacent to each other.
  • the second isolation region 25 is arranged between a pair of photodiodes PD adjacent to each other in one light receiving pixel 11, as shown in FIG. Further, the second isolation region 25 is provided so as to penetrate the semiconductor layer 20, as shown in FIG.
  • the second isolation region 25 is composed of a low refractive index dielectric such as silicon oxide. Thereby, the second isolation region 25 can optically and electrically isolate a pair of photodiodes PD adjacent to each other.
  • the phase difference of the incident light L is detected using the pair of photodiodes PD. can do.
  • the second separation region 25 is formed along one of the two diagonal lines of the first separation region 24, which is rectangular in plan view. placed.
  • the four corners of the first separation region 24, which is rectangular in plan view are corner C1, corner C2, corner C3, and corner C4 in clockwise order from the upper right, then the second separation region 25 consists of corner C1 and corner C4. It is arranged along a diagonal line extending between C3.
  • the first isolation region 24 and the second isolation region 25 should not be in contact with each other in plan view.
  • an overflow path connecting the pair of photodiodes PD can be arranged in the gap formed between the first isolation region 24 and the second isolation region 25 (for example, near the corner C1 and near the corner C3). can be done.
  • the first embodiment it is possible to suppress the decrease in the volume of the photodiode PD by forming such an overflow path separately, so that the saturation signal charge amount of the photodiode PD in the phase difference detection pixel is further increased. be able to.
  • the gap formed between the first separation region 24 and the second separation region 25 A pixel transistor, a floating diffusion FD, and the like can be arranged in the region.
  • the floating diffusion FD is arranged at the corner C1
  • the pixel transistor for example, the amplification transistor AMP
  • the active area AA of this pixel transistor are arranged at the corner C3.
  • the layout efficiency of the pixel array section 10 can be improved because the first isolation region 24 and the second isolation region 25 are not in contact with each other in plan view.
  • the floating diffusion FD and the pixel transistor are provided, for example, on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a in a cross-sectional view.
  • FIG. 6 is a plan view showing an example of the configuration of the light receiving pixel group 100 according to the first embodiment of the present disclosure.
  • one light-receiving pixel group 100 is composed of four light-receiving pixels 11 arranged in two rows and two columns in plan view. Also, the four light receiving pixels 11 included in one light receiving pixel group 100 share one readout circuit 18 (see FIG. 2).
  • one (for example, upper left) light-receiving pixel 11 has an amplification transistor AMP arranged at the corner C3 (see FIG. 3) and one (for example, upper right).
  • a selection transistor SEL is arranged at the corner C3 of the light receiving pixel 11 of the .
  • the reset transistor RST is arranged at the corner C3 of one light-receiving pixel 11 (for example, lower left), and the switching transistor is arranged at the corner C3 of one light-receiving pixel 11 (for example, lower right).
  • FDG is placed.
  • various types of pixel transistors may be arranged in the corners C3 of the plurality of light receiving pixels 11 in the so-called 4 ⁇ 2 shared light receiving pixel group 100 .
  • the layout efficiency of the pixel array section 10 can be further improved.
  • the first isolation region 24 and the second isolation region 25 are preferably provided so as to penetrate the semiconductor layer 20 .
  • the second impurity region 22 can be formed not only on the bottom portion of the first impurity region 21 but also on the side portion thereof.
  • impurities of the second conductivity type are also emitted from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25. can be diffused.
  • the saturation signal charge amount of the photodiode PD can be further increased.
  • the impurity of the second conductivity type is diffused from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25, as shown in FIG.
  • Second impurity regions 22a can also be formed at corners C1 and C3.
  • an overflow path connecting the pair of photodiodes PD can be formed without separately cutting out part of the second isolation region 25 to form the second impurity region. That is, in the first embodiment, the second impurity region 22a shown in FIG. 5 functions as an overflow path connecting the pair of photodiodes PD.
  • the volume of the photodiode PD can be increased compared to the case where the overflow path is formed by cutting out part of the second isolation region 25 . Therefore, according to the first embodiment, it is possible to further increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • the step of partially notching the second isolation region 25 to form the second impurity region can be omitted. Therefore, according to the first embodiment, since the manufacturing process of the pixel array section 10 can be simplified, the manufacturing cost of the solid-state imaging device 1 can be reduced.
  • the light receiving pixel 11 further has a contact region 26 and transfer gates TG1 and TG2.
  • the contact region 26 and the transfer gates TG1 and TG2 are provided on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a.
  • the contact regions 26 are electrically connected to the reference potential line, and are arranged at the corners C2 and C4 of the light receiving pixels 11 in plan view, respectively, as shown in FIG.
  • Contact region 26 arranged at corner C2 is electrically connected to photodiode PD2
  • contact region 26 arranged at corner C4 is electrically connected to photodiode PD1.
  • the transfer gate TG1 is arranged so as to be adjacent to the floating diffusion FD in plan view and to block the floating diffusion FD and the photodiode PD1.
  • the transfer gate TG2 is arranged so as to be adjacent to the floating diffusion FD in plan view and to block the floating diffusion FD and the photodiode PD2.
  • the planarizing film 30 is disposed on the light incident surface 20a of the semiconductor layer 20, as shown in FIG. 4, and planarizes the light incident surface 20a.
  • the planarizing film 30 is made of silicon oxide, for example.
  • a fixed charge film (not shown) may be arranged between the photodiode PD and the first isolation region 24, the second isolation region 25, and the planarizing film 30.
  • Such a fixed charge film has a function of fixing charges (here, holes) at the interface between the photodiode PD, the first isolation region 24 , the second isolation region 25 and the planarization film 30 .
  • Fixed charge films are made of, for example, hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), tantalum oxide, zirconium oxide (ZrO 2 ), titanium oxide, magnesium oxide (MgO 2 ), lanthanum oxide (La 2 O 3 ), etc.
  • Fixed charge films include praseodymium oxide (Pr 2 O 3 ), cerium oxide (CeO 2 ), neodymium oxide (Nd 2 O 3 ), promethium oxide (Pm 2 O 3 ), samarium oxide (Sm 2 O 3 ), It may be composed of europium oxide (Eu 2 O 3 ) or the like.
  • Gd 2 O 3 gadolinium oxide
  • Tb 2 O 3 terbium oxide
  • Dy 2 O 3 dysprosium oxide
  • Ho 2 O 3 holmium oxide
  • Er 2 O 3 erbium oxide
  • Tm 2 O 3 thulium oxide
  • Fixed charge films include ytterbium oxide (Yb 2 O 3 ), lutetium oxide (Lu 2 O 3 ), yttrium oxide (Y 2 O 3 ), aluminum nitride (AlN), hafnium oxynitride (HfON), and aluminum oxynitride film. (AlON) or the like.
  • the color filter 40 is an optical filter that transmits light in a predetermined wavelength range of the incident light L, and is provided between the on-chip lens 50 and the planarization film 30 .
  • the on-chip lens 50 is provided on the side of the semiconductor layer 20 on which the light L is incident, and has a function of concentrating the light L toward the corresponding light receiving pixel 11 .
  • the on-chip lens 50 is made of, for example, an organic material or silicon oxide.
  • one on-chip lens 50 is provided for each light receiving pixel 11 (that is, one on-chip lens 50 for each pair of photodiodes PD).
  • the light receiving pixel 11 functions as a phase difference detection pixel.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the light-receiving pixel 11 according to Modification 1 of the first embodiment of the present disclosure, and corresponds to FIG. 4 of the first embodiment.
  • the second separation region 25 extends from the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a to the middle of the semiconductor layer 20 (that is, the semiconductor layer 20). layer 20).
  • the second impurity region 22 can be formed not only on the bottom of the first impurity region 21 but also on the side portions thereof, as in the first embodiment described above. This is because, in the step of forming the first isolation region 24 and the second isolation region 25, impurities of the second conductivity type are also emitted from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25. can be diffused.
  • the area of the PN junction surface of the photodiode PD can be increased, so that the saturation signal charge amount of the photodiode PD can be further increased.
  • the second impurity regions 22a can also be formed in the corner C1 (see FIG. 3) and the corner C3 (see FIG. 3) as in the first embodiment described above. can.
  • an overflow path connecting the pair of photodiodes PD can be formed without separately cutting out part of the second isolation region 25 to form the second impurity region. Therefore, according to Modification 1 of the first embodiment, it is possible to further increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • Modification 1 a separate step of notching part of the second isolation region 25 to form a second impurity region can be omitted. Therefore, according to Modification 1 of the first embodiment, the manufacturing process of the pixel array section 10 can be simplified, so that the manufacturing cost of the solid-state imaging device 1 can be reduced.
  • the second impurity region 22 is arranged on the light incident surface 20a side of the second separation region 25, so that the second impurity region 22 is also a pair of photodiodes. It can function as an overflow path connecting PDs.
  • the light-receiving pixels 11 can be caused to function more satisfactorily as phase difference detection pixels.
  • FIG. 8 is a cross-sectional view showing an example of the configuration of the light receiving pixel 11 according to Modification 2 of the first embodiment of the present disclosure.
  • the first isolation region 24 and the second isolation region 25 are separated from the semiconductor layer 20 from the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a. It is provided halfway (that is, so as not to penetrate the semiconductor layer 20).
  • the second impurity region 22 can be formed not only on the bottom of the first impurity region 21 but also on the side portions thereof, as in the first embodiment described above. This is because, in the step of forming the first isolation region 24 and the second isolation region 25, impurities of the second conductivity type are also emitted from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25. can be diffused.
  • the area of the PN junction surface of the photodiode PD can be increased, so that the saturation signal charge amount of the photodiode PD can be further increased.
  • the second impurity regions 22a can also be formed at the corner C1 (see FIG. 3) and the corner C3 (see FIG. 3). can.
  • an overflow path connecting the pair of photodiodes PD can be formed without separately cutting out part of the second isolation region 25 to form the second impurity region. Therefore, according to Modification 2 of the first embodiment, it is possible to further increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • Modification 2 a separate step of notching part of the second isolation region 25 to form the second impurity region can be omitted. Therefore, according to Modification 2 of the first embodiment, the manufacturing process of the pixel array section 10 can be simplified, so that the manufacturing cost of the solid-state imaging device 1 can be reduced.
  • the second impurity region 22 is arranged on the side of the light incident surface 20a of the second isolation region 25, so that the second impurity region 22 is also a pair of photodiodes. It can function as an overflow path connecting PDs.
  • the light-receiving pixels 11 can function more satisfactorily as phase difference detection pixels.
  • 9 to 11 are plan views showing examples of configurations of light receiving pixel groups 100 according to Modifications 3 to 5 of the first embodiment of the present disclosure. 9 to 11 omit illustration of elements other than the first isolation region 24 and the second isolation region 25 in the light-receiving pixel 11 for easy understanding.
  • FIG. 6 of the first embodiment described above shows an example in which all the second separation regions 25 face the same direction in the plurality of light receiving pixels 11 included in the same light receiving pixel group 100, but the present disclosure is such. Examples are not limited.
  • the second separation regions 25 of the upper right and lower left light receiving pixels 11 face the same direction, and the upper left and lower right , the second separation regions 25 of the light receiving pixels 11 may face in another same direction.
  • the light-receiving pixels 11 have the second isolation regions 25 facing in different directions, thereby detecting phase differences in various directions. can be done.
  • the light-receiving pixels 11 can be caused to function more satisfactorily as phase difference detection pixels.
  • the second separation regions 25 of the upper right and lower right light receiving pixels 11 face the same direction, and the upper left and lower left , the second separation regions 25 of the light receiving pixels 11 may face in another same direction.
  • This also enables the detection of phase differences in various directions, so that the light-receiving pixels 11 can function even better as phase-difference detection pixels.
  • the second separation regions 25 of the upper right and upper left light receiving pixels 11 face the same direction, and the lower right and lower left , the second separation regions 25 of the light receiving pixels 11 may face in another same direction.
  • This also enables the detection of phase differences in various directions, so that the light-receiving pixels 11 can function even better as phase-difference detection pixels.
  • FIG. 12 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 6 of the first embodiment of the present disclosure, and corresponds to FIG. 3 of the first embodiment. As shown in FIG. 12, in Modification 6 of the first embodiment, the contact region 26 partially overlaps the second isolation region 25 in plan view.
  • both photodiodes PD can be connected to the ground potential with one contact region 26, so the layout efficiency of the pixel array section 10 can be improved.
  • FIG. 13 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 7 of the first embodiment of the present disclosure. As shown in FIG. 13, in Modification 7 of the first embodiment, a pair of floating diffusions FD are provided in a pair of photodiodes PD, respectively.
  • the floating diffusion FD1 corresponding to the photodiode PD1 is arranged at the corner C4 in plan view
  • the floating diffusion FD2 corresponding to the photodiode PD2 is arranged at the corner C2 in plan view.
  • the photodiodes PD1 and PD2 share the floating diffusion FD.
  • a contact region 26 is arranged at the corner C1 of the light-receiving pixel 11 where the floating diffusion FD is arranged in the above-described first embodiment.
  • the floating diffusion FD, the contact region 26, and the pixel transistor can be arranged efficiently by having such a planar configuration. Therefore, according to Modification 7 of the first embodiment, the layout efficiency of the pixel array section 10 can be improved.
  • FIG. 14 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 8 of the first embodiment of the present disclosure.
  • a pair of floating diffusions FD are provided in a pair of photodiodes PD, respectively, similarly to Modification 7 described above.
  • the contact region 26 is provided so as to overlap the second separation region 25 in plan view. Then, in the corner C1 of the light-receiving pixel 11 where the contact region 26 is arranged in the seventh modification, another pixel transistor (for example, a select transistor SEL) and the active area AA of this pixel transistor are arranged.
  • a select transistor SEL for example, a select transistor SEL
  • the floating diffusion FD, the contact region 26 and the two pixel transistors can be arranged efficiently by having such a planar configuration. Therefore, according to the eighth modification of the first embodiment, the layout efficiency of the pixel array section 10 can be improved.
  • FIG. 15 is a plan view showing an example of the configuration of the light receiving pixel group 100 according to Modification 8 of the first embodiment of the present disclosure.
  • one light receiving pixel group 100 is composed of two light receiving pixels 11 arranged vertically in plan view. Two light receiving pixels 11 included in one light receiving pixel group 100 share one readout circuit 18 (see FIG. 2).
  • the switching transistor FDG is arranged at the corner C1 (see FIG. 14) of one (for example, upper) light receiving pixel 11, and the reset transistor RST is arranged at the corner C3. placed.
  • the selection transistor SEL is arranged at the corner C1 of the other (for example, lower) light receiving pixel 11, and the amplification transistor AMP is arranged at the corner C3.
  • FIG. 16 is a plan view showing another example of the configuration of the light-receiving pixel group 100 according to Modification 8 of the first embodiment of the present disclosure.
  • one light receiving pixel group 100 may be composed of two light receiving pixels 11 arranged horizontally in plan view.
  • the switching transistor FDG is arranged at the corner C1 (see FIG. 14) of one (for example, right) light receiving pixel 11, and the reset transistor RST is arranged at the corner C3. placed.
  • the selection transistor SEL is arranged at the corner C1 of the other (for example, left) light receiving pixel 11, and the amplification transistor AMP is arranged at the corner C3.
  • various types of pixel transistors may be arranged at the corners C1 and C3 of the plurality of light-receiving pixels 11. . Thereby, the layout efficiency of the pixel array section 10 can be further improved.
  • FIG. 17 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 9 of the first embodiment of the present disclosure. As shown in FIG. 17, in the ninth modification of the first embodiment, the layout of the pixel transistors provided at the corner C3 is different from that in the above-described first embodiment (FIG. 3).
  • an active region AA having a substantially L-shape in plan view is arranged, and different pixel transistors (for example, the amplification transistor AMP and the selection transistor SEL) are arranged on two sides of the active region AA. ) is placed.
  • different pixel transistors for example, the amplification transistor AMP and the selection transistor SEL
  • the ninth modification of the first embodiment by having such a planar configuration, the floating diffusion FD, the contact region 26 and the pixel transistor can be arranged more efficiently. Therefore, according to the ninth modification of the first embodiment, the layout efficiency of the pixel array section 10 can be further improved.
  • FIG. 18 is a plan view showing an example of the configuration of the light receiving pixel group 100 according to Modification 9 of the first embodiment of the present disclosure.
  • one light-receiving pixel group 100 is composed of four light-receiving pixels 11 arranged in two rows and two columns in plan view. Also, the four light receiving pixels 11 included in one light receiving pixel group 100 share one readout circuit 18 (see FIG. 2).
  • two amplification transistors AMP are arranged at the corner C3 (see FIG. 17) of one (for example, upper left) light receiving pixel 11, and one (for example, The selection transistor SEL is arranged at the corner C3 of the light receiving pixel 11 of the upper right).
  • the reset transistor RST is arranged at the corner C3 of one light-receiving pixel 11 (for example, lower left), and the switching transistor is arranged at the corner C3 of one light-receiving pixel 11 (for example, lower right).
  • FDG is placed.
  • various types of pixel transistors may be arranged in the corners C3 of the plurality of light receiving pixels 11 in the so-called 4 ⁇ 2 shared light receiving pixel group 100 .
  • the layout efficiency of the pixel array section 10 can be further improved.
  • the readout circuit 18 shared by one light receiving pixel group 100 can be provided with a plurality of (two in FIG. 18) amplification transistors AMP connected in parallel. As a result, random noise in the readout circuit 18 can be improved.
  • FIG. 19 is a plan view showing another example of the configuration of the light receiving pixel group 100 according to Modification 9 of the first embodiment of the present disclosure.
  • two amplification transistors AMP are arranged at the corner C3 (see FIG. 17) of one (for example, upper left) light-receiving pixel 11, and one (for example, upper right) Two amplification transistors AMP are arranged at the corner C3 of the light receiving pixel 11 of .
  • an amplification transistor AMP and a selection transistor SEL are arranged at a corner C3 of one light receiving pixel 11 (for example, lower left).
  • a reset transistor RST and a switching transistor FDG are arranged at a corner C3 of one light receiving pixel 11 (for example, lower right).
  • various pixel transistors may be arranged in the corners C3 of the plurality of light receiving pixels 11 in the so-called 4 ⁇ 2 shared light receiving pixel group 100 . This also makes it possible to further improve the layout efficiency of the pixel array section 10 .
  • the readout circuit 18 (see FIG. 2) shared by one light receiving pixel group 100 can be provided with five amplification transistors AMP connected in parallel. Thereby, the random noise of the readout circuit 18 can be improved.
  • FIG. 20 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 10 of the first embodiment of the present disclosure.
  • a pair of floating diffusions FD are provided in a pair of photodiodes PD, respectively, and contact regions 26 are arranged in the same manner as in Modification 8 described above. It is provided so as to overlap with the 2-separation region 25 .
  • a substantially L-shaped active area AA is arranged along the corner C1, and different pixel transistors (for example, reset transistor RST and switching transistor FDG) are arranged on two sides of the active area AA.
  • different pixel transistors for example, reset transistor RST and switching transistor FDG
  • a substantially L-shaped active area AA is arranged along the corner C3, and different pixel transistors (eg, amplification transistor AMP and selection transistor SEL) are arranged on two sides of the active area AA.
  • different pixel transistors eg, amplification transistor AMP and selection transistor SEL
  • the floating diffusion FD, the contact region 26 and the pixel transistor can be arranged more efficiently. Therefore, according to the modification 10 of the first embodiment, the layout efficiency of the pixel array section 10 can be further improved.
  • FIG. 21 is a plan view showing another example of the configuration of the light receiving pixel 11 according to Modification 10 of the first embodiment of the present disclosure.
  • a substantially L-shaped active area AA is arranged along the corner C1, and different pixel transistors (for example, an amplification transistor AMP and a selection transistor SEL) are arranged on two sides of the active area AA. placed.
  • different pixel transistors for example, an amplification transistor AMP and a selection transistor SEL
  • a substantially L-shaped active area AA is arranged along the corner C3, and different pixel transistors (for example, reset transistor RST and switching transistor FDG) are arranged on two sides of the active area AA.
  • different pixel transistors for example, reset transistor RST and switching transistor FDG
  • the floating diffusion FD, the contact region 26 and the pixel transistor can be arranged more efficiently even when having such a planar configuration. Therefore, according to the modification 10 of the first embodiment, the layout efficiency of the pixel array section 10 can be further improved.
  • Modification 10 by arranging the substantially L-shaped active area AA in the light receiving pixel 11, the area of the active area AA can be increased. Therefore, according to the modification 10 of the first embodiment, the layout efficiency of the pixel array section 10 can be further improved.
  • a combination of an amplification transistor AMP and a selection transistor SEL or a combination of a reset transistor RST and a switching transistor FDG is provided. may be placed. Thereby, the layout efficiency of the pixel array section 10 can be further improved.
  • FIG. 22 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 11 of the first embodiment of the present disclosure.
  • the arrangement of the transfer gates TG1 and TG2 is different from that of the above-described first embodiment (FIG. 3).
  • part of the transfer gates TG1 and TG2 overlaps the second isolation region 25 in plan view. This also makes it possible to further improve the layout efficiency of the pixel array section 10 .
  • FIG. 23 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 12 of the first embodiment of the present disclosure.
  • the arrangement of pixel transistors is different from that of the above-described first embodiment (FIG. 3).
  • part of the pixel transistor (here, the amplification transistor AMP) overlaps the second isolation region 25 in plan view. This also makes it possible to further improve the layout efficiency of the pixel array section 10 .
  • FIG. 24 is a diagram illustrating an example of a pixel circuit according to the second embodiment of the present disclosure.
  • each light receiving pixels 11 share one readout circuit 18 in the second embodiment.
  • “shared” means that the four light receiving pixels 11 are electrically connected to the common readout circuit 18, that is, the outputs of the four light receiving pixels 11 are input to the common readout circuit 18. means.
  • Each light-receiving pixel 11 has components common to each other.
  • identification numbers (1, 2, 3, 4) are added to the end of the reference numerals of the constituent elements of each light receiving pixel 11 in order to distinguish the constituent elements of each light receiving pixel 11 from each other.
  • an identification number is attached to the end of the code for the constituent elements of each light receiving pixel 11 .
  • the identification number at the end of the code of the component of each light receiving pixel 11 is omitted.
  • Each light receiving pixel 11 has, for example, a photodiode PD and a transfer transistor TR electrically connected to the photodiode PD.
  • the photodiode PD is an example of a photoelectric conversion unit.
  • These light-receiving pixels 11 share a floating diffusion FD electrically connected to each transfer transistor TR.
  • “shared” means that each photodiode PD of each light receiving pixel 11 is electrically connected to the floating diffusion FD.
  • the photodiode PD performs photoelectric conversion to generate electric charge according to the amount of light received.
  • the cathode of photodiode PD is electrically connected to the source of transfer transistor TR, and the anode of photodiode PD is electrically connected to a reference potential line (eg, ground potential).
  • Transfer transistor TR is electrically connected to the floating diffusion FD, and the transfer gate TG, which is the gate of the transfer transistor TR, is electrically connected to the pixel drive line LD (see FIG. 1).
  • Transfer transistor TR is, for example, a CMOS transistor.
  • the floating diffusion FD is common to the light-receiving pixels 11 sharing one readout circuit 18 and electrically connected to the input end of the common readout circuit 18 for these light-receiving pixels 11 .
  • This floating diffusion FD temporarily holds the charge output from the photodiode PD via the transfer transistor TR.
  • the readout circuit 18 has, for example, a reset transistor RST, a selection transistor SEL, an amplification transistor AMP, and a switching transistor FDG, as shown in FIG.
  • the reset transistor RST, amplification transistor AMP, selection transistor SEL, and switching transistor FDG are, for example, CMOS transistors. Note that the selection transistor SEL and the switching transistor FDG may be omitted as necessary.
  • the source of the switching transistor FDG which is the input section of the readout circuit 18, is electrically connected to the floating diffusion FD, and the drain of the switching transistor FDG is electrically connected to the source of the reset transistor RST.
  • a gate of the switching transistor FDG is electrically connected to the pixel drive line LD.
  • the drain of the reset transistor RST is electrically connected to the power supply voltage VDD, and the gate of the reset transistor RST is electrically connected to the pixel drive line LD.
  • the source of the amplification transistor AMP is electrically connected to the drain of the selection transistor SEL, and the drain of the amplification transistor AMP is electrically connected to the power supply voltage VDD. Also, the gate of the amplification transistor AMP is electrically connected to the source of the switching transistor FDG and the floating diffusion FD.
  • the source of the selection transistor SEL which is the output section of the readout circuit 18, is electrically connected to the vertical pixel wiring LV, and the gate of the selection transistor SEL is electrically connected to the pixel drive line LD.
  • the transfer transistor TR transfers the charge of the photodiode PD to the floating diffusion FD when the transfer transistor TR is turned on.
  • the reset transistor RST resets the potential of the floating diffusion FD to a predetermined potential.
  • the reset transistor RST When the reset transistor RST is turned on, the reset transistor RST resets the potential of the floating diffusion FD to the potential of the power supply voltage VDD.
  • the selection transistor SEL controls the output timing of the pixel signal from the readout circuit 18 .
  • the amplification transistor AMP generates, as a pixel signal, a voltage signal corresponding to the level of the charge held in the floating diffusion FD.
  • the amplification transistor AMP constitutes a source follower type amplifier, and outputs a pixel signal having a voltage corresponding to the level of charge generated in the photodiode PD.
  • the amplification transistor AMP amplifies the potential of the floating diffusion FD when the selection transistor SEL is turned on, and outputs a voltage corresponding to the potential to the column signal processing unit 15 (see FIG. 1) via the vertical pixel wiring LV. .
  • the switching transistor FDG is used when switching the conversion efficiency. Since the function of this switching transistor FDG is the same as that of the above-described first embodiment, detailed description thereof will be omitted.
  • FIG. 25 is a plan view showing an example of the configuration of the light receiving pixel 11 according to the second embodiment of the present disclosure.
  • FIG. 26 is a cross-sectional view taken along line CC shown in FIG. 25
  • FIG. 27 is a cross-sectional view taken along line DD shown in FIG. Note that the cross-sectional views shown in FIGS. 26 and 27 omit illustration of pixel transistors, floating diffusions FD, and the like.
  • the pixel array section 10 includes a semiconductor layer 20, a planarizing film 30, a color filter 40, and an on-chip lens 50.
  • the semiconductor layer 20 contains silicon, for example.
  • the semiconductor layer 20 has a plurality of photodiodes PD.
  • the photodiode PD is an example of a photoelectric conversion unit.
  • one light receiving pixel 11 is provided with four photodiodes PD1 to PD4.
  • the light receiving pixel 11 functions as a phase difference detection pixel.
  • Photodiode PD includes a first impurity region 21 containing impurities of a first conductivity type (for example, N-type) and a second impurity region 22 containing impurities of a second conductivity type (for example, P-type). .
  • the first impurity region 21 is arranged in the central portion of the photodiode PD, and the second impurity region 22 is formed in the side and bottom portions of the first impurity region 21 (parts on the side opposite to the side on which the light L is incident). placed along.
  • the light receiving pixel 11 has a first isolation region 24 and a second isolation region 25 .
  • the first isolation region 24 is arranged to surround four photodiodes PD in one light receiving pixel 11, as shown in FIG.
  • the first isolation region 24 is provided so as to penetrate the semiconductor layer 20. As shown in FIGS.
  • the first isolation region 24 is made of a low refractive index dielectric such as silicon oxide (SiO 2 ). Thereby, the first isolation region 24 can optically and electrically isolate the plurality of light-receiving pixels 11 adjacent to each other.
  • the second isolation region 25 is arranged between four photodiodes PD adjacent to each other in one light receiving pixel 11, as shown in FIG. Also, the second isolation region 25 is provided so as to penetrate the semiconductor layer 20, as shown in FIG.
  • the second isolation region 25 is composed of a low refractive index dielectric such as silicon oxide. Thereby, the second isolation region 25 can optically and electrically isolate the four photodiodes PD adjacent to each other.
  • the phase difference of the incident light L can be detected using the four photodiodes PD. can do.
  • the second separation regions 25 are arranged along two diagonal lines of the first separation region 24, which is rectangular in plan view.
  • the first separation region 24, which is rectangular in plan view are corner C1, corner C2, corner C3, and corner C4 in clockwise order from the upper right
  • the second separation region 25 consists of corner C1 and corner C4.
  • the volume of the photodiode PD is reduced compared to the case where the second separation regions 25 are arranged along different directions (for example, directions substantially parallel to the two vertical sides of the first separation region 24) in a plan view. can be increased. Therefore, according to the second embodiment, it is possible to increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • the first isolation region 24 and the second isolation region 25 are preferably provided so as to penetrate the semiconductor layer 20 .
  • the second impurity regions 22 can be formed not only on the bottoms of the first impurity regions 21 but also on the sides.
  • impurities of the second conductivity type are also emitted from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25. can be diffused.
  • the saturated signal charge amount of the photodiode PD can be further increased.
  • the light receiving pixel 11 further has a contact region 26, floating diffusions FD1 to FD4 and transfer gates TG1 to TG4.
  • the contact regions 26, the floating diffusions FD1 to FD4, and the transfer gates TG1 to TG4 are provided on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a.
  • the contact regions 26 are electrically connected to the reference potential line and arranged at the corners C1 to C4 of the light receiving pixels 11 in plan view, as shown in FIG.
  • the floating diffusion FD1 is part of the floating diffusion FD (see FIG. 24), is adjacent to the intersection of the second separation regions 25 in a plan view, and is located between the intersection of the second separation regions 25 and the photodiode PD1. placed in between.
  • the floating diffusion FD2 is part of the floating diffusion FD, is adjacent to the intersection of the second separation regions 25 in a plan view, and is arranged between the intersection of the second separation regions 25 and the photodiode PD2. .
  • the floating diffusion FD3 is part of the floating diffusion FD, is adjacent to the intersection of the second separation regions 25 in a plan view, and is arranged between the intersection of the second separation regions 25 and the photodiode PD3. .
  • the floating diffusion FD4 is part of the floating diffusion FD, is adjacent to the intersection of the second isolation regions 25 in a plan view, and is arranged between the intersection of the second isolation regions 25 and the photodiode PD4. .
  • the photodiodes PD1 to PD4 share the floating diffusion FD.
  • the transfer gate TG1 is arranged so as to be adjacent to the floating diffusion FD1 in plan view and to block the floating diffusion FD1 and the photodiode PD1.
  • the transfer gate TG2 is arranged so as to be adjacent to the floating diffusion FD2 in plan view and to block the floating diffusion FD2 and the photodiode PD2.
  • the transfer gate TG3 is arranged so as to be adjacent to the floating diffusion FD3 in plan view and to block the floating diffusion FD3 and the photodiode PD3.
  • the transfer gate TG4 is arranged so as to be adjacent to the floating diffusion FD4 in plan view and to block the floating diffusion FD4 and the photodiode PD4.
  • the pixel transistor and the active area AA of this pixel transistor are arranged so as to overlap the four photodiodes PD in plan view.
  • the switching transistor FDG is arranged so as to overlap the photodiode PD1
  • the amplification transistor AMP is arranged so as to overlap the photodiode PD2.
  • the select transistor SEL is arranged so as to overlap with the photodiode PD3
  • the reset transistor RST is arranged so as to overlap with the photodiode PD4.
  • the floating diffusion FD, the contact region 26, and the pixel transistor can be arranged efficiently by having such a planar configuration. Therefore, according to the second embodiment, the layout efficiency of the pixel array section 10 can be improved.
  • the planarizing film 30 is arranged on the light incident surface 20a of the semiconductor layer 20, as shown in FIG. 26, and planarizes the light incident surface 20a.
  • the planarizing film 30 is made of silicon oxide, for example.
  • a fixed charge film (not shown) may be arranged between the photodiode PD and the first isolation region 24, the second isolation region 25, and the planarizing film 30.
  • the fixed charge film has the function of fixing charges (here, holes) at the interface between the photodiode PD, the first isolation region 24 , the second isolation region 25 and the planarization film 30 .
  • the material for the fixed charge film it is preferable to use a high dielectric material with many fixed charges.
  • the same material as that of the fixed charge film according to the first embodiment can be used.
  • the color filter 40 is an optical filter that transmits light in a predetermined wavelength range of the incident light L, and is provided between the on-chip lens 50 and the planarization film 30 .
  • the on-chip lens 50 is provided on the side of the semiconductor layer 20 on which the light L is incident, and has a function of concentrating the light L toward the corresponding light receiving pixel 11 .
  • the on-chip lens 50 is made of, for example, an organic material or silicon oxide.
  • one on-chip lens 50 is provided for each light receiving pixel 11 (that is, one on-chip lens 50 for each four photodiodes PD).
  • the light receiving pixel 11 functions as a phase difference detection pixel.
  • FIG. 28 is a cross-sectional view showing an example of the configuration of the light-receiving pixel 11 according to Modification 1 of the second embodiment of the present disclosure, and corresponds to FIG. 26 of the second embodiment.
  • the second separation region 25 extends from the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a to the middle of the semiconductor layer 20 (that is, the semiconductor layer 20). layer 20).
  • the second impurity region 22 can be formed not only on the bottom of the first impurity region 21 but also on the side portions, as in the second embodiment described above. This is because, in the step of forming the first isolation region 24 and the second isolation region 25, the impurities of the second conductivity type are also emitted from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25. can be diffused.
  • the area of the PN junction surface of the photodiode PD can be increased, so that the saturation signal charge amount of the photodiode PD can be further increased.
  • the second impurity region 22 is arranged on the side of the light incident surface 20a of the second isolation region 25, so that the second impurity region 22 is also a pair of photodiodes. It can function as an overflow path connecting PDs.
  • the light-receiving pixels 11 can function even better as phase difference detection pixels.
  • FIG. 29 is a cross-sectional view showing an example of the configuration of the light receiving pixel 11 according to Modification 2 of the second embodiment of the present disclosure.
  • the first isolation region 24 and the second isolation region 25 are separated from the semiconductor layer 20 from the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a. It is provided halfway (that is, so as not to penetrate the semiconductor layer 20).
  • the second impurity regions 22 can be formed not only on the bottoms of the second impurity regions 22 but also on the sides, as in the above-described second embodiment. This is because, in the step of forming the first isolation region 24 and the second isolation region 25, impurities of the second conductivity type are also emitted from the sidewalls of the trenches formed in the portions corresponding to the first isolation region 24 and the second isolation region 25. can be diffused.
  • the area of the PN junction surface of the photodiode PD can be increased, so that the saturation signal charge amount of the photodiode PD can be further increased.
  • the second impurity region 22 is arranged on the side of the light incident surface 20a of the second isolation region 25, so that the second impurity region 22 is also a pair of photodiodes. It can function as an overflow path connecting PDs.
  • the light-receiving pixels 11 can function even better as phase difference detection pixels.
  • FIG. 30 is a cross-sectional view showing an example of the configuration of the light receiving pixel 11 according to Modification 3 of the second embodiment of the present disclosure.
  • the second isolation region 25 extends from the light incident surface 20a of the semiconductor layer 20 to the middle of the semiconductor layer 20 (that is, so as not to penetrate the semiconductor layer 20). ) is provided.
  • the four photodiodes PD can be separated by the second separation region 25 as in the above-described second embodiment. Therefore, according to the modification 3 of the second embodiment, the light receiving pixels 11 can function as phase difference detection pixels.
  • the second impurity regions 22 are arranged on the opposite side of the second isolation region 25 from the light incident surface 20a. can function as an overflow path connecting the photodiodes PD.
  • the light-receiving pixels 11 can function even better as phase difference detection pixels.
  • FIG. 31 is a cross-sectional view showing an example of the configuration of the light receiving pixel 11 according to Modification 4 of the second embodiment of the present disclosure.
  • the first separation region 24 and the second separation region 25 extend from the light incident surface 20a of the semiconductor layer 20 to the middle of the semiconductor layer 20 (that is, the semiconductor layer 20). 20).
  • the four photodiodes PD can be separated by the second separation region 25 as in the above-described second embodiment. Therefore, according to the modification 4 of the second embodiment, the light receiving pixels 11 can function as phase difference detection pixels.
  • the second impurity regions 22 are arranged on the opposite side of the second separation region 25 from the light incident surface 20a. can function as an overflow path connecting the photodiodes PD.
  • the light-receiving pixels 11 can function even better as phase difference detection pixels.
  • FIG. 32 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 5 of the second embodiment of the present disclosure.
  • the configuration of the second isolation region 25 is different from that of the above-described second embodiment (FIG. 25).
  • the second isolation region 25 has an end that is not in contact with the first isolation region 24 in plan view.
  • the first isolation region 24 and the second isolation region 25 are not in contact at the corners C2 and C4.
  • an overflow path connecting a pair of photodiodes PD adjacent to the gap can be arranged.
  • an overflow path connecting the photodiode PD2 and the photodiode PD3 can be arranged in the gap adjacent to the corner C2.
  • an overflow path connecting the photodiode PD1 and the photodiode PD4 can be arranged in the gap adjacent to the corner C4.
  • Modification 5 it is possible to suppress reduction in the volume of the photodiode PD by separately forming such an overflow path. Therefore, according to Modification 5 of the second embodiment, it is possible to further increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • a substantially L-shaped active area AA is arranged along the corner C2, and different pixel transistors (for example, amplification transistor AMP and select transistor SEL) are arranged.
  • a substantially L-shaped active area AA is arranged along the corner C4, and different pixel transistors (for example, the reset transistor RST and the switching transistor FDG) are arranged on two sides of the active area AA. placed.
  • the layout efficiency of the pixel array section 10 can be improved because the second isolation region 25 has an end that is not in contact with the first isolation region 24 in plan view.
  • Modification 5 by arranging the substantially L-shaped active area AA in the light receiving pixel 11, the area of the active area AA can be increased. Therefore, according to the modification 5 of the second embodiment, the layout efficiency of the pixel array section 10 can be further improved.
  • FIG. 33 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 6 of the second embodiment of the present disclosure.
  • Modification 6 of the second embodiment differs from Modification 5 (FIG. 32) described above in the configuration of the second isolation region 25 .
  • the first isolation region 24 and the second isolation region 25 are not in contact with each other.
  • an overflow path connecting a pair of photodiodes PD adjacent to the gap can be arranged.
  • Modification 6 it is possible to suppress reduction in the volume of the photodiode PD due to the separate formation of such an overflow path. Therefore, according to Modification 6 of the second embodiment, it is possible to further increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • a substantially C-shaped active area AA extending from the vicinity of corner C3 to the vicinity of corners C4, C1, C2 and C3 in plan view is arranged.
  • Different pixel transistors for example, amplification transistor AMP, selection transistor SEL, reset transistor RST, and switching transistor FDG
  • one contact region 26 is arranged near the corner C3.
  • the first isolation region 24 and the second isolation region 25 are not in contact with each other, so that the layout efficiency of the pixel array section 10 can be further improved.
  • Modification 6 by arranging the substantially C-shaped active area AA in the light receiving pixel 11, the area of the active area AA can be further increased. Therefore, according to Modification 6 of the second embodiment, the layout efficiency of the pixel array section 10 can be further improved.
  • FIG. 34 is a plan view showing an example of the configuration of the light receiving pixel 11 according to Modification 7 of the second embodiment of the present disclosure.
  • Modification 7 of the second embodiment differs from Modification 6 (FIG. 33) described above in the configuration of the second isolation region 25 .
  • the second isolation region 25 is not provided at the crossing portion of the second isolation region 25 that is substantially X-shaped in plan view.
  • the second isolation region 25 has a notch 25a at the intersection.
  • an overflow path connecting a pair of photodiodes PD adjacent to the gap can be arranged in the gap formed in the notch 25a.
  • Modification 7 it is possible to suppress reduction in the volume of the photodiode PD by separately forming such an overflow path. Therefore, according to Modification 7 of the second embodiment, it is possible to further increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • the second isolation region 25 has the notch 25a, so that the floating diffusion FD can be arranged in the notch 25a. That is, in Modification 7, the layout efficiency of the pixel array section 10 can be further improved by the second isolation region 25 having the notch 25a.
  • one floating diffusion FD shared by four photodiodes PD is arranged by arranging the notch 25a of the second isolation region 25 in the central part of the light receiving pixel 11 in plan view. can be done.
  • the area of the floating diffusion FD can be further increased, so that the layout efficiency of the pixel array section 10 can be further improved.
  • planar configuration of the second isolation region 25 in the present disclosure is not limited to the examples of the second embodiment and modifications 5 to 7 described above.
  • 35 to 43 are plan views showing examples of configurations of light receiving pixels 11 according to modified examples 8 to 16 of the second embodiment of the present disclosure. 35 to 16, for the sake of easy understanding, illustration of elements other than the first isolation region 24 and the second isolation region 25 in the light receiving pixel 11 is omitted.
  • the end of the second separation region 25, which is substantially X-shaped in plan view, is in contact with the first separation region 24 at corners C2 and C4, while it is in contact with the first separation region 24 at corners C1 and C3. It does not have to be in contact with the 1 isolation region 24 .
  • the ends of the second separation region 25, which is substantially X-shaped in plan view, are in contact with the first separation region 24 at all the corners C1 to C4, and extend from the corners C1 and C3.
  • a portion extending toward the intersection may have a notch 25a near the intersection.
  • the ends of the second separation region 25, which is substantially X-shaped in plan view, are in contact with the first separation region 24 at all the corners C1 to C4, and extend from the corners C1 and C3.
  • a notch 25a may be provided in the intermediate portion of the portion extending toward the intersection.
  • the end of the second separation region 25 which is substantially X-shaped in plan view, contacts the first separation region 24 at corners C2 and C4.
  • the ends of the second separation region 25 are not in contact with the first separation region 24 at the corners C1 and C3, and extend from the corners C1 and C3 toward the intersections.
  • a notch 25a may be provided in the vicinity of the intersection.
  • the ends of the second separation region 25, which is substantially X-shaped in plan view, are in contact with the first separation region 24 at all the corners C1 to C4, and extend from the corners C2 and C4.
  • a portion extending toward the intersection may have a notch 25a near the intersection.
  • the ends of the second separation region 25, which is substantially X-shaped in plan view, are in contact with the first separation region 24 at all the corners C1 to C4, and are separated from the corners C2 and C4.
  • a notch 25a may be provided in the intermediate portion of the portion extending toward the intersection.
  • the end of the second separation region 25 which is substantially X-shaped in plan view, contacts the first separation region 24 at corners C1 and C3.
  • the ends of the second separation region 25 are not in contact with the first separation region 24 at the corners C2 and C4, and extend from the corners C2 and C4 toward the intersections.
  • a notch 25a may be provided in the vicinity of the intersection.
  • the ends of the second separation region 25, which is substantially X-shaped in plan view, are in contact with the first separation region 24 at all the corners C1 to C4, and the second separation region 25 The intersection may have a notch 25a.
  • the ends of the second separation region 25, which is substantially X-shaped in plan view, are in contact with the first separation region 24 at all the corners C1 to C4 and intersect from the corners C1 to C4.
  • a notch portion 25a may be provided in the intermediate portion of the portion extending toward the portion.
  • the volume of the photodiode PD can be increased by arranging the second isolation region 25 along two diagonal lines in the rectangular first isolation region 24 in plan view. can. Therefore, according to the examples of FIGS. 35 to 43, it is possible to increase the saturation signal charge amount of the photodiode PD in the phase difference detection pixel.
  • the layout efficiency of the pixel array section 10 can be improved because the second isolation region 25 has the notch 25a.
  • the solid-state imaging device 1 includes a plurality of light receiving pixels 11 arranged in a matrix inside a semiconductor layer 20 .
  • the light receiving pixel 11 also has a pair of photoelectric conversion portions (photodiodes PD), a first isolation region 24 and a second isolation region 25 .
  • a pair of photoelectric conversion units (photodiodes PD) are arranged adjacent to each other and have a shared floating diffusion FD.
  • the first isolation region 24 is arranged to surround a pair of photoelectric conversion units (photodiodes PD).
  • the second isolation region 25 is arranged between a pair of photoelectric conversion units (photodiodes PD).
  • the first isolation region 24 has a rectangular shape in a plan view, and is provided to extend from a surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a toward the light incident surface 20a.
  • the second isolation region 25 is arranged along the diagonal line of the rectangular first isolation region 24 in plan view, and extends from the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a toward the light incident surface 20a. is provided as follows.
  • the saturated signal charge amount of the photodiode PD can be increased in the phase difference detection pixel.
  • the first isolation region 24 and the second isolation region 25 are not in contact with each other in plan view.
  • the solid-state imaging device 1 further includes pixel transistors provided on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a. Further, the pixel transistor is arranged at one corner C3 close to the end of the second isolation region 25 among the four corners C1 to C4 of the rectangular first isolation region 24 in plan view. Also, the floating diffusion FD is arranged at the other corner C1 close to the end of the second separation region 25 among the four corners C1 to C4 of the first separation region 24 which is rectangular in plan view.
  • the solid-state imaging device 1 further includes pixel transistors provided on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a. Further, the pixel transistor is arranged at two corners C1 and C3 close to the end of the second isolation region 25 among the four corners C1 to C4 of the first isolation region 24 which is rectangular in plan view, and , the floating diffusion FD is arranged at two corners C2 and C4 that are not close to the end of the second separation region 25 among the four corners C1 to C4 of the rectangular first separation region 24 in plan view.
  • the active area AA of the pixel transistor has a substantially L-shape in plan view.
  • the solid-state imaging device 1 for one active area AA, among the pixel transistors, a combination of the amplification transistor AMP and the selection transistor SEL or a combination of the reset transistor RST and the switching transistor FDG is placed.
  • the pixel transistor partially overlaps the second isolation region 25 in plan view.
  • the light receiving pixels 11 are provided on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a, and are contact regions electrically connected to the reference potential line. 26 further. Further, the contact region 26 partially overlaps the second separation region 25 in plan view.
  • the solid-state imaging device 1 includes a light-receiving pixel group 100 having a plurality of light-receiving pixels 11 .
  • the plurality of light receiving pixels 11 included in the same light receiving pixel group 100 have the second isolation regions 25 oriented in different directions in plan view.
  • the solid-state imaging device 1 further includes a transfer transistor TRG that transfers charges accumulated in the photoelectric conversion section (photodiode PD) to the floating diffusion FD. Further, the gates of the transfer transistors TRG (transfer gates TG1 and TG2) partially overlap the second isolation region 25 in plan view.
  • the solid-state imaging device 1 includes a plurality of light receiving pixels 11 arranged in a matrix inside the semiconductor layer 20 .
  • the light receiving pixel 11 also has four photoelectric conversion units (photodiodes PD), a first isolation region 24 and a second isolation region 25 .
  • the four photoelectric conversion units (photodiodes PD) are arranged adjacent to each other and have a shared floating diffusion FD.
  • the first isolation region 24 is arranged to surround four photoelectric conversion units (photodiodes PD) and has a rectangular shape in plan view.
  • the second separation region 25 is arranged to separate the four photoelectric conversion units (photodiodes PD), and is arranged along two diagonal lines of the rectangular first separation region 24 in plan view.
  • the saturated signal charge amount of the photodiode PD can be increased in the phase difference detection pixel.
  • the second isolation region 25 has an end that is not in contact with the first isolation region 24 in plan view.
  • the solid-state imaging device 1 further includes pixel transistors provided on the surface 20b of the semiconductor layer 20 opposite to the light incident surface 20a. Further, the active area AA of the pixel transistor is arranged at a corner not in contact with the second isolation region 25 among the four corners C1 to C4 of the rectangular first isolation region 24 in plan view.
  • the second isolation region 25 has a notch 25a at the intersection.
  • the floating diffusion FD is arranged so as to overlap the notch 25a in plan view.
  • the present disclosure is not limited to application to solid-state imaging devices. That is, the present disclosure applies to general electronic devices having a solid-state imaging device, such as a camera module, an imaging device, a mobile terminal device having an imaging function, or a copier using a solid-state imaging device as an image reading unit, in addition to the solid-state imaging device. applicable.
  • a solid-state imaging device such as a camera module, an imaging device, a mobile terminal device having an imaging function, or a copier using a solid-state imaging device as an image reading unit, in addition to the solid-state imaging device.
  • imaging devices examples include digital still cameras and video cameras.
  • Mobile terminal devices having such an imaging function include, for example, smartphones and tablet terminals.
  • FIG. 44 is a block diagram showing a configuration example of an imaging device as the electronic device 1000 to which the technology according to the present disclosure is applied.
  • An electronic device 1000 in FIG. 44 is, for example, an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smart phone or a tablet terminal.
  • an electronic device 1000 includes a lens group 1001, a solid-state image sensor 1002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a recording unit 1006, an operation unit 1007, and a power supply unit 1008. Configured.
  • the DSP circuit 1003 , frame memory 1004 , display section 1005 , recording section 1006 , operation section 1007 and power supply section 1008 are interconnected via a bus line 1009 .
  • a lens group 1001 captures incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 1002 .
  • the solid-state imaging device 1002 corresponds to the solid-state imaging device 1 according to the above-described embodiment, and converts the amount of incident light imaged on the imaging surface by the lens group 1001 into an electric signal for each pixel and outputs the electric signal as a pixel signal. do.
  • the DSP circuit 1003 is a camera signal processing circuit that processes signals supplied from the solid-state imaging device 1002 .
  • a frame memory 1004 temporarily holds the image data processed by the DSP circuit 1003 in frame units.
  • a display unit 1005 is composed of a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays moving images or still images captured by the solid-state imaging device 1002 .
  • a recording unit 1006 records image data of a moving image or a still image captured by the solid-state imaging device 1002 in a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 1007 issues operation commands for various functions of the electronic device 1000 in accordance with user's operations.
  • a power supply unit 1008 appropriately supplies various power supplies as operating power supplies for the DSP circuit 1003, frame memory 1004, display unit 1005, recording unit 1006, and operation unit 1007 to these supply targets.
  • the signal quality can be improved by applying the solid-state imaging device 1 of each embodiment described above as the solid-state imaging device 1002 .
  • the present technology can also take the following configuration.
  • the light-receiving pixels are a pair of photoelectric conversion units arranged adjacent to each other and having a shared floating diffusion; a first isolation region arranged to surround the pair of photoelectric conversion units; a second separation region arranged between the pair of photoelectric conversion units; has
  • the first isolation region has a rectangular shape in a plan view, and is provided to extend from a surface of the semiconductor layer opposite to the light incident surface toward the light incident surface,
  • the second isolation region is arranged along a diagonal line of the first isolation region, which is rectangular in plan view, and extends from the surface of the semiconductor layer opposite to the light incident surface toward the light incident surface.
  • a solid-state imaging device provided.
  • (4) further comprising a pixel transistor provided on a surface opposite to the light incident surface of the semiconductor layer;
  • the pixel transistor is arranged at two corners of four corners of the first isolation region, which is rectangular in plan view, and is close to an end of the second isolation region;
  • the solid-state imaging device according to (5), wherein, among the pixel transistors, a combination of an amplification transistor and a selection transistor or a combination of a reset transistor and a switching transistor is arranged for one of the active regions.
  • the solid-state imaging device according to any one of (3) to (6), wherein the pixel transistor partially overlaps the second isolation region in plan view.
  • the light-receiving pixel further has a contact region provided on a surface of the semiconductor layer opposite to the light incident surface and electrically connected to a reference potential line, The solid-state imaging device according to any one of (1) to (7), wherein the contact region partially overlaps the second separation region in plan view.
  • a light-receiving pixel group having a plurality of the light-receiving pixels The solid-state imaging device according to any one of (1) to (8), wherein the plurality of light-receiving pixels included in the same light-receiving pixel group have the second isolation regions oriented in different directions in plan view. (10) further comprising a transfer transistor that transfers the charge accumulated in the photoelectric conversion unit to the floating diffusion; The solid-state imaging device according to any one of (1) to (9), wherein a gate of the transfer transistor partially overlaps the second isolation region in plan view.
  • the solid-state imaging device is Having a plurality of light receiving pixels arranged in a matrix inside the semiconductor layer, The light-receiving pixels are a pair of photoelectric conversion units arranged adjacent to each other and having a shared floating diffusion; a first isolation region arranged to surround the pair of photoelectric conversion units; a second separation region arranged between the pair of photoelectric conversion units; has The first isolation region has a rectangular shape in a plan view, and is provided to extend from a surface of the semiconductor layer opposite to the light incident surface toward the light incident surface, The second isolation region is arranged along a diagonal line of the first isolation region, which is rectangular in plan view, and extends from the surface of the semiconductor layer opposite to the light incident surface toward the light incident surface.
  • the solid-state imaging device is further comprising a pixel transistor provided on a surface opposite to the light incident surface of the semiconductor layer; the pixel transistor is arranged at one of the four corners of the first isolation region, which is rectangular in plan view, and is adjacent to the end of the second isolation region;
  • the solid-state imaging device is further comprising a pixel transistor provided on a surface opposite to the light incident surface of the semiconductor layer;
  • the pixel transistor is arranged at two corners of four corners of the first isolation region, which is rectangular in plan view, and is close to an end of the second isolation region;
  • the electronic device according to (12) above, wherein the floating diffusion is arranged at two corners that are not close to the end of the second separation region among the four corners of the first separation region that is rectangular in plan view.
  • the electronic device according to (13) or (14), wherein the active region of the pixel transistor has a substantially L shape in plan view.
  • the solid-state imaging device is Having a light-receiving pixel group having a plurality of light-receiving pixels, The electronic device according to any one of (11) to (18), wherein the plurality of light-receiving pixels included in the same light-receiving pixel group have the second isolation regions oriented in different directions in plan view. (20)
  • the solid-state imaging device is further comprising a transfer transistor for transferring the charge accumulated in the photoelectric conversion unit to the floating diffusion; The electronic device according to any one of (11) to (19), wherein the gate of the transfer transistor partially overlaps the second isolation region in plan view.
  • the light-receiving pixels are four photoelectric conversion units arranged adjacent to each other and having a shared floating diffusion; a first separation region arranged to surround the four photoelectric conversion units and having a rectangular shape in a plan view; a second separation region arranged to separate the four photoelectric conversion units and arranged along two diagonal lines of the first separation region having a rectangular shape in plan view; A solid-state imaging device.
  • (23) further comprising a pixel transistor provided on a surface opposite to the light incident surface of the semiconductor layer;
  • (25) The solid-state imaging device according to (24), wherein the floating diffusion is arranged so as to overlap with the notch in plan view.
  • the solid-state imaging device is Having a plurality of light receiving pixels arranged in a matrix inside the semiconductor layer, The light-receiving pixels are four photoelectric conversion units arranged adjacent to each other and having a shared floating diffusion; a first separation region arranged to surround the four photoelectric conversion units and having a rectangular shape in a plan view; a second separation region arranged to separate the four photoelectric conversion units and arranged along two diagonal lines of the first separation region having a rectangular shape in plan view; electronic device.
  • the solid-state imaging device is further comprising a pixel transistor provided on a surface opposite to the light incident surface of the semiconductor layer; The electronic device according to (27), wherein the active region of the pixel transistor is arranged at one of the four corners of the first isolation region which is rectangular in plan view and is not in contact with the second isolation region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示に係る固体撮像素子(1)は、半導体層(20)の内部に行列状に配列される複数の受光画素(11)を備える。受光画素(11)は、一対の光電変換部と、第1分離領域(24)と、第2分離領域(25)と、を有する。一対の光電変換部は、互いに隣接して配置され、共有されたフローティングディフュージョン(FD)を有する。第1分離領域(24)は、一対の光電変換部を囲むように配置される。第2分離領域(25)は、一対の光電変換部同士の間に配置される。第1分離領域(24)は、平面視で矩形状であり、半導体層(20)の光入射面(20a)とは反対側の面(20b)から光入射面(20a)に向けて延びるように設けられる。第2分離領域(25)は、平面視で矩形状の第1分離領域(24)の対角線に沿って配置され、半導体層(20)の光入射面(20a)とは反対側の面(20b)から光入射面(20a)に向けて延びるように設けられる。

Description

固体撮像素子および電子機器
 本開示は、固体撮像素子および電子機器に関する。
 近年、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサにおいて、同じオンチップレンズから一対のフォトダイオードに光を入射させることにより、位相差の検出を実現させる技術がある(たとえば、特許文献1参照)。
米国特許出願公開第2018/0219040号明細書
 しかしながら、上記の従来技術では、位相差を検出する受光画素(以下、位相差検出画素とも呼称する。)において、フォトダイオードの飽和信号電荷量を増加させるという点でさらなる改善の余地があった。
 そこで、本開示では、位相差検出画素においてフォトダイオードの飽和信号電荷量を増加させることができる固体撮像素子および電子機器を提案する。
 本開示によれば、固体撮像素子が提供される。固体撮像素子は、半導体層の内部に行列状に配列される複数の受光画素を備える。また、前記受光画素は、一対の光電変換部と、第1分離領域と、第2分離領域と、を有する。一対の光電変換部は、互いに隣接して配置され、共有されたフローティングディフュージョンを有する。第1分離領域は、前記一対の光電変換部を囲むように配置される。第2分離領域は、前記一対の光電変換部同士の間に配置される。前記第1分離領域は、平面視で矩形状であり、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられる。前記第2分離領域は、平面視で矩形状の前記第1分離領域の対角線に沿って配置され、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられる。
本開示の各実施形態に係る固体撮像素子の概略構成例を示すシステム構成図である。 本開示の第1実施形態に係る画素回路の一例を示す図である。 本開示の第1実施形態に係る受光画素の構成の一例を示す平面図である。 図3に示すA-A線の矢視断面図である。 図3に示すB-B線の矢視断面図である。 本開示の第1実施形態に係る受光画素群の構成の一例を示す平面図である。 本開示の第1実施形態の変形例1に係る受光画素の構成の一例を示す断面図である。 本開示の第1実施形態の変形例2に係る受光画素の構成の一例を示す断面図である。 本開示の第1実施形態の変形例3に係る受光画素群の構成の一例を示す平面図である。 本開示の第1実施形態の変形例4に係る受光画素群の構成の一例を示す平面図である。 本開示の第1実施形態の変形例5に係る受光画素群の構成の一例を示す平面図である。 本開示の第1実施形態の変形例6に係る受光画素の構成の一例を示す平面図である。 本開示の第1実施形態の変形例7に係る受光画素の構成の一例を示す平面図である。 本開示の第1実施形態の変形例8に係る受光画素の構成の一例を示す平面図である。 本開示の第1実施形態の変形例8に係る受光画素群の構成の一例を示す平面図である。 本開示の第1実施形態の変形例8に係る受光画素群の構成の別の一例を示す平面図である。 本開示の第1実施形態の変形例9に係る受光画素の構成の一例を示す平面図である。 本開示の第1実施形態の変形例9に係る受光画素群の構成の一例を示す平面図である。 本開示の第1実施形態の変形例9に係る受光画素群の構成の別の一例を示す平面図である。 本開示の第1実施形態の変形例10に係る受光画素の構成の一例を示す平面図である。 本開示の第1実施形態の変形例10に係る受光画素の構成の別の一例を示す平面図である。 本開示の第1実施形態の変形例11に係る受光画素の構成の一例を示す平面図である。 本開示の第1実施形態の変形例12に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態に係る画素回路の一例を示す図である。 本開示の第2実施形態に係る受光画素の構成の一例を示す平面図である。 図25に示すC-C線の矢視断面図である。 図25に示すD-D線の矢視断面図である。 本開示の第2実施形態の変形例1に係る受光画素の構成の一例を示す断面図である。 本開示の第2実施形態の変形例2に係る受光画素の構成の一例を示す断面図である。 本開示の第2実施形態の変形例3に係る受光画素の構成の一例を示す断面図である。 本開示の第2実施形態の変形例4に係る受光画素の構成の一例を示す断面図である。 本開示の第2実施形態の変形例5に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例6に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例7に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例8に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例9に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例10に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例11に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例12に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例13に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例14に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例15に係る受光画素の構成の一例を示す平面図である。 本開示の第2実施形態の変形例16に係る受光画素の構成の一例を示す平面図である。 本開示に係る技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。
 以下に、本開示の各実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 近年、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサにおいて、同じオンチップレンズから一対のフォトダイオードに光を入射させることにより、位相差の検出を実現させる技術がある。
 また、かかるイメージセンサでは、フォトダイオードの飽和信号電荷量(Qs)を増加させることにより、ダイナミックレンジやSN比を向上させることができる。
 しかしながら、上記の従来技術では、位相差を検出する一対のフォトダイオード同士の間に分離領域を形成する必要があり、さらにこの分離領域内にオーバーフローパスを形成する必要もあることから、フォトダイオード自体の体積を十分にとれない場合があった。
 すなわち、上記の従来技術では、位相差を検出する受光画素(以下、位相差検出画素とも呼称する。)において、フォトダイオードの飽和信号電荷量を増加させるという点でさらなる改善の余地があった。
 そこで、上述の問題点を克服し、位相差検出画素においてフォトダイオードの飽和信号電荷量を増加させることができる技術の実現が期待されている。
[固体撮像素子の構成]
 図1は、本開示の各実施形態に係る固体撮像素子1の概略構成例を示すシステム構成図である。図1に示すように、CMOSイメージセンサである固体撮像素子1は、画素アレイ部10と、システム制御部12と、垂直駆動部13と、カラム読出し回路部14と、カラム信号処理部15と、水平駆動部16と、信号処理部17とを備える。
 これら画素アレイ部10、システム制御部12、垂直駆動部13、カラム読出し回路部14、カラム信号処理部15、水平駆動部16および信号処理部17は、同一の半導体基板上または電気的に接続された複数の積層半導体基板上に設けられる。
 画素アレイ部10には、入射光量に応じた電荷量を光電変換して内部に蓄積し、信号として出力することが可能な光電変換素子(フォトダイオードPD(図3参照))を有する受光画素11が行列状に2次元配置されている。
 また、画素アレイ部10は、受光画素11の他に、フォトダイオードPDを持たない構造のダミー画素や、受光面を遮光することで外部からの光入射が遮断された遮光画素などが、行および/または列状に配置されている領域を含む場合がある。
 なお、遮光画素は、受光面が遮光された構造である以外は、受光画素11と同様の構成を備えていてもよい。また、以下では、入射光量に応じた電荷量の光電荷を、単に「電荷」とも呼称し、受光画素11を、単に「画素」とも呼称する場合もある。
 画素アレイ部10には、行列状の画素配列に対して、行ごとに画素駆動線LDが図面中の左右方向(画素行の画素の配列方向)に沿って形成され、列ごとに垂直画素配線LVが図面中の上下方向(画素列の画素の配列方向)に沿って形成される。画素駆動線LDの一端は、垂直駆動部13の各行に対応した出力端に接続される。
 カラム読出し回路部14は、少なくとも、画素アレイ部10内の選択行における受光画素11に列ごとに定電流を供給する回路、カレントミラー回路および読出し対象となる受光画素11の切替えスイッチなどを含む。
 そして、カラム読出し回路部14は、画素アレイ部10内の選択画素におけるトランジスタとともに増幅器を構成し、光電荷信号を電圧信号に変換して垂直画素配線LVに出力する。
 垂直駆動部13は、シフトレジスタやアドレスデコーダなどを含み、画素アレイ部10の各受光画素11を、全画素同時や行単位などで駆動する。この垂直駆動部13は、その具体的な構成については図示を省略するが、読出し走査系と、掃出し走査系あるいは一括掃出しおよび一括転送系とを有する構成となっている。
 読出し走査系は、受光画素11から画素信号を読み出すために、画素アレイ部10の受光画素11を行単位で順に選択走査する。行駆動(ローリングシャッタ動作)の場合、掃出しについては、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査が行なわれる。
 また、グローバル露光(グローバルシャッタ動作)の場合は、一括転送よりもシャッタスピードの時間分先行して一括掃出しが行なわれる。このような掃出しにより、読出し行の受光画素11のフォトダイオードPDから不要な電荷が掃出し(リセット)される。そして、不要電荷の掃出し(リセット)により、いわゆる電子シャッタ動作が行われる。
 ここで、電子シャッタ動作とは、直前までフォトダイオードPDに溜まっていた不要な光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことをいう。
 読出し走査系による読出し動作によって読み出される信号は、その直前の読出し動作または電子シャッタ動作以降に入射した光量に対応するものである。行駆動の場合は、直前の読出し動作による読出しタイミングまたは電子シャッタ動作による掃出しタイミングから、今回の読出し動作による読出しタイミングまでの期間が、受光画素11における光電荷の蓄積時間(露光時間)となる。グローバル露光の場合は、一括掃出しから一括転送までの時間が蓄積時間(露光時間)となる。
 垂直駆動部13によって選択走査された画素行の各受光画素11から出力される画素信号は、垂直画素配線LVの各々を通してカラム信号処理部15に供給される。カラム信号処理部15は、画素アレイ部10の画素列ごとに、選択行の各受光画素11から垂直画素配線LVを通して出力される画素信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。
 具体的には、カラム信号処理部15は、信号処理として少なくとも、ノイズ除去処理、たとえばCDS(Correlated Double Sampling:相関二重サンプリング)処理を行う。このカラム信号処理部15によるCDS処理により、リセットノイズや増幅トランジスタAMPの閾値ばらつきなどの画素固有の固定パターンノイズが除去される。
 なお、カラム信号処理部15には、ノイズ除去処理以外に、たとえば、AD変換機能を持たせて、画素信号をデジタル信号として出力するように構成することもできる。
 水平駆動部16は、シフトレジスタやアドレスデコーダなどを含み、カラム信号処理部15の画素列に対応する単位回路を順番に選択する。この水平駆動部16による選択走査により、カラム信号処理部15で信号処理された画素信号が順番に信号処理部17に出力される。
 システム制御部12は、各種のタイミング信号を生成するタイミングジェネレータなどを含み、タイミングジェネレータで生成された各種のタイミング信号を基に、垂直駆動部13、カラム信号処理部15、水平駆動部16などの駆動制御を行う。
 固体撮像素子1は、さらに、信号処理部17と、図示しないデータ格納部とを備える。信号処理部17は、少なくとも加算処理機能を有し、カラム信号処理部15から出力される画素信号に対して加算処理などの種々の信号処理を行う。
 データ格納部は、信号処理部17での信号処理にあたって、その処理に必要なデータを一時的に格納する。これら信号処理部17およびデータ格納部については、固体撮像素子1とは別の基板に設けられる外部信号処理部、たとえばDSP(Digital Signal Processor)やソフトウェアによる処理であってもよいし、固体撮像素子1と同じ基板上に搭載されてもよい。
[第1実施形態の画素回路]
 つづいて、第1実施形態に係る画素回路の一例について、図2を参照しながら説明する。図2は、本開示の第1実施形態に係る画素回路の一例を示す図である。
 図2に示すように、第1実施形態では、一対の受光画素11が1つの読み出し回路18を共有している。ここで、「共有」とは、一対の受光画素11が共通の読み出し回路18に電気的に接続されている、すなわち、一対の受光画素11の出力が共通の読み出し回路18に入力されることを意味する。
 各受光画素11は、互いに共通の構成要素を有している。図2では、各受光画素11の構成要素を互いに区別するために、各受光画素11の構成要素の符号の末尾に識別番号(1、2)が付与されている。
 本開示では、各受光画素11の構成要素を互いに区別する必要がある場合には、各受光画素11の構成要素の符号の末尾に識別番号を付与する。一方で、本開示では、各受光画素11の構成要素を互いに区別する必要がない場合には、各受光画素11の構成要素の符号の末尾の識別番号を省略する。
 各受光画素11は、たとえば、フォトダイオードPDと、かかるフォトダイオードPDに電気的に接続される転送トランジスタTRとをそれぞれ有する。フォトダイオードPDは、光電変換部の一例である。
 これらの受光画素11は、各転送トランジスタTRと電気的に接続されるフローティングディフュージョンFDを共有している。ここで、「共有」とは、各受光画素11の個々のフォトダイオードPDがフローティングディフュージョンFDに電気的に接続されていることを意味する。
 フォトダイオードPDは、光電変換を行って受光量に応じた電荷を発生する。フォトダイオードPDのカソードは、転送トランジスタTRのソースに電気的に接続され、フォトダイオードPDのアノードは、基準電位線(たとえば、接地電位)に電気的に接続される。
 転送トランジスタTRのドレインは、フローティングディフュージョンFDに電気的に接続され、転送トランジスタTRのゲートである転送ゲートTGは、画素駆動線LD(図1参照)に電気的に接続される。転送トランジスタTRは、たとえば、CMOSトランジスタである。
 フローティングディフュージョンFDは、1つの読み出し回路18を共有する各受光画素11で共通であり、これらの受光画素11で共通の読み出し回路18の入力端に電気的に接続される。このフローティングディフュージョンFDは、転送トランジスタTRを介してフォトダイオードPDから出力された電荷を一時的に保持する。
 読み出し回路18は、図2に示すように、たとえば、リセットトランジスタRSTと、選択トランジスタSELと、増幅トランジスタAMPと、切替トランジスタFDGとを有する。リセットトランジスタRST、増幅トランジスタAMP、選択トランジスタSELおよび切替トランジスタFDGは、たとえば、CMOSトランジスタである。なお、選択トランジスタSELや切替トランジスタFDGは、必要に応じて省略されてもよい。
 読み出し回路18の入力部である切替トランジスタFDGのソースは、フローティングディフュージョンFDに電気的に接続され、切替トランジスタFDGのドレインは、リセットトランジスタRSTのソースに電気的に接続される。切替トランジスタFDGのゲートは、画素駆動線LDに電気的に接続されている。
 リセットトランジスタRSTのドレインは、電源電圧VDDに電気的に接続され、リセットトランジスタRSTのゲートは、画素駆動線LDに電気的に接続される。
 増幅トランジスタAMPのソースは、選択トランジスタSELのドレインに電気的に接続され、増幅トランジスタAMPのドレインは、電源電圧VDDに電気的に接続される。また、増幅トランジスタAMPのゲートは、切替トランジスタFDGのソースおよびフローティングディフュージョンFDに電気的に接続される。
 読み出し回路18の出力部である選択トランジスタSELのソースは、垂直画素配線LVに電気的に接続され、選択トランジスタSELのゲートは、画素駆動線LDに電気的に接続される。
 転送トランジスタTRは、かかる転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。
 リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、かかるリセットトランジスタRSTは、フローティングディフュージョンFDの電位を電源電圧VDDの電位にリセットする。選択トランジスタSELは、読み出し回路18からの画素信号の出力タイミングを制御する。
 増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、フォトダイオードPDで発生した電荷のレベルに応じた電圧の画素信号を出力する。
 増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電位を増幅し、その電位に応じた電圧を垂直画素配線LVを介してカラム信号処理部15(図1参照)に出力する。
 切替トランジスタFDGは、変換効率を切り替える際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、フローティングディフュージョンFDの容量(以下、FD容量とも呼称する。)が大きければ、増幅トランジスタAMPで電圧に変換した際のVが小さくなってしまう。
 一方で、明るい場所では画素信号が大きくなるので、FD容量が大きくなければ、フローティングディフュージョンFDでフォトダイオードPDの電荷を受けきれない。さらに、増幅トランジスタAMPで電圧に変換した際のVが大きくなりすぎないように(換言すると、小さくなるように)、FD容量が大きくなっている必要がある。
 すなわち、切替トランジスタFDGをオンにした場合には、切替トランジスタFDG分のゲート容量が増えるので、全体のFD容量が大きくなる。一方、切替トランジスタFDGをオフにした場合には、全体のFD容量が小さくなる。このように、切替トランジスタFDGの状態を切り替えることで、FD容量を可変にし、変換効率を切り替えることができる。
[第1実施形態の受光画素]
 つづいて、第1実施形態に係る受光画素11の詳細な構成について、図3~図6を参照しながら説明する。図3は、本開示の第1実施形態に係る受光画素11の構成の一例を示す平面図である。
 また、図4は、図3に示すA-A線の矢視断面図であり、図5は、図3に示すB-B線の矢視断面図である。なお、図4および図5に示す断面図では、画素トランジスタやフローティングディフュージョンFDなどの図示を省略している。
 図4などに示すように、画素アレイ部10は、半導体層20と、平坦化膜30と、カラーフィルタ40と、オンチップレンズ50とを備える。
 半導体層20は、たとえば、シリコンを含む。半導体層20は、複数のフォトダイオードPDを有する。フォトダイオードPDは、光電変換部の一例である。なお、1つの受光画素11には、一対のフォトダイオードPD1、PD2が設けられる。かかる一対のフォトダイオードPD1、PD2が設けられることにより、受光画素11は、位相差検出画素として機能する。
 フォトダイオードPDは、第1導電型(たとえば、N型)の不純物を含む第1不純物領域21と、第2導電型(たとえば、P型)の不純物を含む第2不純物領域22とで構成される。
 第1不純物領域21は、フォトダイオードPDの中央部に配置され、第2不純物領域22は、かかる第1不純物領域21の側部および底部(光Lが入射する側とは反対側の部位)に沿って配置される。
 また、受光画素11は、第1分離領域24と、第2分離領域25とを有する。第1分離領域24は、図3に示すように、1つの受光画素11において一対のフォトダイオードPDを囲むように配置される。
 また、第1分離領域24は、図4および図5に示すように、半導体層20を貫通するように設けられる。かかる第1分離領域24は、たとえば、酸化シリコン(SiO)などの低屈折率の誘電体で構成される。これにより、第1分離領域24は、互いに隣接する複数の受光画素11同士の間を光学的および電気的に分離することができる。
 第2分離領域25は、図3に示すように、1つの受光画素11において互いに隣接する一対のフォトダイオードPD同士の間に配置される。また、第2分離領域25は、図5に示すように、半導体層20を貫通するように設けられる。
 かかる第2分離領域25は、たとえば、酸化シリコンなどの低屈折率の誘電体で構成される。これにより、第2分離領域25は、互いに隣接する一対のフォトダイオードPD同士の間を光学的および電気的に分離することができる。
 このように、第1実施形態では、第2分離領域25を用いて一対のフォトダイオードPD同士を互いに分離することができることから、一対のフォトダイオードPDを用いて入射する光Lの位相差を検出することができる。
 ここで、第1実施形態では、図3に示すように、第2分離領域25が、平面視で矩形状である第1分離領域24の2本の対角線のうち、1本の対角線に沿って配置される。たとえば、平面視で矩形状である第1分離領域24の4つの隅を右上から時計回り順に隅C1、隅C2、隅C3、隅C4とした場合、第2分離領域25は、隅C1と隅C3との間に延びる対角線に沿って配置される。
 これにより、平面視で第2分離領域25が異なる向き(たとえば、第1分離領域24の1辺と略平行な向き)に沿って配置される場合と比べて、フォトダイオードPDの体積を増加させることができる。したがって、第1実施形態によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量を増加させることができる。
 また、第1実施形態では、図3に示すように、第1分離領域24と第2分離領域25とが、平面視で互いに接していないとよい。これにより、第1分離領域24と第2分離領域25との間に形成される隙間(たとえば、隅C1の近傍および隅C3の近傍)に一対のフォトダイオードPD同士を繋ぐオーバーフローパスを配置することができる。
 したがって、第1実施形態によれば、かかるオーバーフローパスを別途形成することによってフォトダイオードPDの体積が減少することを抑制できるため、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、第1実施形態では、第1分離領域24と第2分離領域25とが平面視で互いに接していないことにより、第1分離領域24と第2分離領域25との間に形成される隙間に画素トランジスタやフローティングディフュージョンFDなどを配置することができる。
 たとえば、図3の例では、平面視において、隅C1にフローティングディフュージョンFDが配置され、隅C3に画素トランジスタ(たとえば、増幅トランジスタAMP)およびこの画素トランジスタの活性領域AAが配置される。
 すなわち、第1実施形態では、第1分離領域24と第2分離領域25とが平面視で互いに接していないことにより、画素アレイ部10のレイアウト効率を向上させることができる。なお、フローティングディフュージョンFDや画素トランジスタは、断面視において、たとえば、半導体層20の光入射面20aとは反対側の面20bに設けられる。
 また、隅C3に配置される画素トランジスタは、増幅トランジスタAMPに限られない。図6は、本開示の第1実施形態に係る受光画素群100の構成の一例を示す平面図である。
 第1実施形態では、図6に示すように、平面視で2行2列に配置される4つの受光画素11で1つの受光画素群100が構成される。また、1つの受光画素群100に含まれる4つの受光画素11は、1つの読み出し回路18(図2参照)を共有している。
 そして、第1実施形態では、1つの受光画素群100において、1つ(たとえば、左上)の受光画素11の隅C3(図3参照)に増幅トランジスタAMPが配置され、1つ(たとえば、右上)の受光画素11の隅C3に選択トランジスタSELが配置される。
 また、1つの受光画素群100において、1つ(たとえば、左下)の受光画素11の隅C3にリセットトランジスタRSTが配置され、1つ(たとえば、右下)の受光画素11の隅C3に切替トランジスタFDGが配置される。
 このように、第1実施形態では、いわゆる4×2共有の受光画素群100において、複数の受光画素11の隅C3に、さまざまな種類の画素トランジスタを配置してもよい。これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第1実施形態では、第1分離領域24および第2分離領域25が、半導体層20を貫通するように設けられるとよい。これにより、図4に示すように、第1不純物領域21の底部のみならず側部にも第2不純物領域22を形成することができる。
 なぜなら、かかる第1分離領域24および第2分離領域25を形成する工程において、第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁からも第2導電型の不純物を拡散させることができるからである。
 したがって、第1実施形態によれば、フォトダイオードPDのPN接合面の面積を拡大することができることから、フォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、第1実施形態では、上述の第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁から第2導電型の不純物を拡散させる工程により、図5に示すように、隅C1および隅C3にも第2不純物領域22aを形成することができる。
 これにより、別途第2分離領域25の一部を切り欠いて第2不純物領域を形成することなく、一対のフォトダイオードPD同士を繋ぐオーバーフローパスを形成することができる。すなわち、第1実施形態では、図5に示す第2不純物領域22aが、一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能する。
 このように、第1実施形態では、第2分離領域25の一部を切り欠いてオーバーフローパスが形成される場合と比べて、フォトダイオードPDの体積を増加させることができる。したがって、第1実施形態によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、第1実施形態では、別途第2分離領域25の一部を切り欠いて第2不純物領域を形成する工程を省略することができる。したがって、第1実施形態によれば、画素アレイ部10の製造工程を簡素化することができることから、固体撮像素子1の製造コストを低減することができる。
 画素アレイ部10におけるその他の部位の説明を続ける。受光画素11は、コンタクト領域26および転送ゲートTG1、TG2をさらに有する。コンタクト領域26および転送ゲートTG1、TG2は、半導体層20の光入射面20aとは反対側の面20bに設けられる。
 コンタクト領域26は、基準電位線に電気的に接続され、図3に示すように、平面視で受光画素11の隅C2および隅C4にそれぞれ配置される。隅C2に配置されるコンタクト領域26は、フォトダイオードPD2に電気的に接続され、隅C4に配置されるコンタクト領域26は、フォトダイオードPD1に電気的に接続される。
 転送ゲートTG1は、平面視でフローティングディフュージョンFDに隣接するとともに、かかるフローティングディフュージョンFDとフォトダイオードPD1とを遮るように配置される。
 転送ゲートTG2は、平面視でフローティングディフュージョンFDに隣接するとともに、かかるフローティングディフュージョンFDとフォトダイオードPD2とを遮るように配置される。
 平坦化膜30は、図4などに示すように、半導体層20の光入射面20aに配置され、かかる光入射面20aを平坦化する。平坦化膜30は、たとえば、酸化シリコンで構成される。
 なお、第1実施形態では、フォトダイオードPDと第1分離領域24、第2分離領域25および平坦化膜30との間に、図示しない固定電荷膜が配置されてもよい。かかる固定電荷膜は、フォトダイオードPDと第1分離領域24、第2分離領域25および平坦化膜30との界面に電荷(ここでは、正孔)を固定する機能を有する。
 固定電荷膜の材料としては、固定電荷を多く有する高誘電材料を用いることが好ましい。固定電荷膜は、たとえば、酸化ハフニウム(HfO)、酸化アルミニウム(Al)、酸化タンタル、酸化ジルコニウム(ZrO)、酸化チタン、酸化マグネシウム(MgO)、酸化ランタン(La)などで構成される。
 また、固定電荷膜は、酸化プラセオジム(Pr)、酸化セリウム(CeO)、酸化ネオジム(Nd)、酸化プロメチウム(Pm)、酸化サマリウム(Sm)、酸化ユウロピウム(Eu)などで構成されてもよい。
 また、固定電荷膜は、酸化ガドリニウム(Gd)、酸化テルビウム(Tb)、酸化ジスプロシウム(Dy)、酸化ホルミウム(Ho)、酸化エルビウム(Er)、酸化ツリウム(Tm)などで構成されてもよい。
 また、固定電荷膜は、酸化イッテルビウム(Yb)、酸化ルテチウム(Lu)、酸化イットリウム(Y)窒化アルミニウム(AlN)、酸窒化ハフニウム(HfON)、酸窒化アルミニウム膜(AlON)などで構成されてもよい。
 カラーフィルタ40は、入射する光Lのうちの所定の波長領域の光を透過させる光学的なフィルタであり、オンチップレンズ50と平坦化膜30との間に設けられる。
 オンチップレンズ50は、半導体層20に対して光Lが入射する側に設けられ、対応する受光画素11に向かって光Lを集光させる機能を有する。オンチップレンズ50は、たとえば、有機材料や酸化シリコンなどで構成される。
 第1実施形態では、図4および図5に示すように、1つの受光画素11ごとに1つのオンチップレンズ50(すなわち、一対のフォトダイオードPDごとに1つのオンチップレンズ50)が設けられる。これにより、受光画素11は、位相差検出画素として機能する。
[第1実施形態の各種変形例]
 つづいて、第1実施形態の各種変形例について、図7~図23を参照しながら説明する。
<変形例1>
 図7は、本開示の第1実施形態の変形例1に係る受光画素11の構成の一例を示す断面図であり、第1実施形態の図4に対応する図である。図7に示すように、第1実施形態の変形例1では、第2分離領域25が、半導体層20の光入射面20aとは反対側の面20bから半導体層20の途中まで(すなわち、半導体層20を貫通しないように)設けられる。
 これによっても、上述の第1実施形態と同様に、第1不純物領域21の底部のみならず側部にも第2不純物領域22を形成することができる。なぜなら、かかる第1分離領域24および第2分離領域25を形成する工程において、第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁からも第2導電型の不純物を拡散させることができるからである。
 したがって、第1実施形態の変形例1によれば、フォトダイオードPDのPN接合面の面積を拡大することができることから、フォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例1では、上述の第1実施形態と同様に、隅C1(図3参照)および隅C3(図3参照)にも第2不純物領域22a(図5参照)を形成することができる。
 これにより、別途第2分離領域25の一部を切り欠いて第2不純物領域を形成することなく、一対のフォトダイオードPD同士を繋ぐオーバーフローパスを形成することができる。したがって、第1実施形態の変形例1によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例1では、別途第2分離領域25の一部を切り欠いて第2不純物領域を形成する工程を省略することができる。したがって、第1実施形態の変形例1によれば、画素アレイ部10の製造工程を簡素化することができることから、固体撮像素子1の製造コストを低減することができる。
 また、この変形例1では、図7に示すように、第2分離領域25の光入射面20a側に第2不純物領域22が配置されることから、かかる第2不純物領域22も一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能させることができる。
 したがって、第1実施形態の変形例1によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例2>
 図8は、本開示の第1実施形態の変形例2に係る受光画素11の構成の一例を示す断面図である。図8に示すように、第1実施形態の変形例2では、第1分離領域24および第2分離領域25が、半導体層20の光入射面20aとは反対側の面20bから半導体層20の途中まで(すなわち、半導体層20を貫通しないように)設けられる。
 これによっても、上述の第1実施形態と同様に、第1不純物領域21の底部のみならず側部にも第2不純物領域22を形成することができる。なぜなら、かかる第1分離領域24および第2分離領域25を形成する工程において、第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁からも第2導電型の不純物を拡散させることができるからである。
 したがって、第1実施形態の変形例2によれば、フォトダイオードPDのPN接合面の面積を拡大することができることから、フォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例2では、上述の第1実施形態と同様に、隅C1(図3参照)および隅C3(図3参照)にも第2不純物領域22a(図5参照)を形成することができる。
 これにより、別途第2分離領域25の一部を切り欠いて第2不純物領域を形成することなく、一対のフォトダイオードPD同士を繋ぐオーバーフローパスを形成することができる。したがって、第1実施形態の変形例2によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例2では、別途第2分離領域25の一部を切り欠いて第2不純物領域を形成する工程を省略することができる。したがって、第1実施形態の変形例2によれば、画素アレイ部10の製造工程を簡素化することができることから、固体撮像素子1の製造コストを低減することができる。
 また、この変形例2では、図8に示すように、第2分離領域25の光入射面20a側に第2不純物領域22が配置されることから、かかる第2不純物領域22も一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能させることができる。
 したがって、第1実施形態の変形例2によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例3~5>
 図9~図11は、本開示の第1実施形態の変形例3~5に係る受光画素群100の構成の一例を示す平面図である。なおこの図9~図11では、理解を容易にするため、受光画素11において第1分離領域24および第2分離領域25以外の各要素の図示を省略している。
 上述の第1実施形態の図6では、同じ受光画素群100に含まれる複数の受光画素11において、すべての第2分離領域25が同じ方向を向いている例について示したが、本開示はかかる例に限られない。
 たとえば、図9に示すように、平面視で2行2列に配置される4つの受光画素11において、右上および左下の受光画素11の第2分離領域25が同じ方向を向き、左上および右下の受光画素11の第2分離領域25が別の同じ方向を向いていてもよい。
 このように、同じ受光画素群100に含まれる複数の受光画素11において、受光画素11同士が互いに異なる方向を向いた第2分離領域25を有することにより、さまざまな方向の位相差を検知することができる。
 したがって、第1実施形態の変形例3によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
 また、図10に示すように、平面視で2行2列に配置される4つの受光画素11において、右上および右下の受光画素11の第2分離領域25が同じ方向を向き、左上および左下の受光画素11の第2分離領域25が別の同じ方向を向いていてもよい。
 これによっても、さまざまな方向の位相差を検知することができることから、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
 また、図11に示すように、平面視で2行2列に配置される4つの受光画素11において、右上および左上の受光画素11の第2分離領域25が同じ方向を向き、右下および左下の受光画素11の第2分離領域25が別の同じ方向を向いていてもよい。
 これによっても、さまざまな方向の位相差を検知することができることから、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例6>
 図12は、本開示の第1実施形態の変形例6に係る受光画素11の構成の一例を示す平面図であり、第1実施形態の図3に対応する図である。図12に示すように、第1実施形態の変形例6では、コンタクト領域26が、平面視で第2分離領域25に一部が重なっている。
 これにより、1つのコンタクト領域26で両方のフォトダイオードPDを接地電位に接続することができることから、画素アレイ部10のレイアウト効率を向上させることができる。
<変形例7>
 図13は、本開示の第1実施形態の変形例7に係る受光画素11の構成の一例を示す平面図である。図13に示すように、第1実施形態の変形例7では、一対のフローティングディフュージョンFDが一対のフォトダイオードPDにそれぞれ設けられる。
 具体的には、フォトダイオードPD1に対応するフローティングディフュージョンFD1が平面視で隅C4に配置され、フォトダイオードPD2に対応するフローティングディフュージョンFD2が平面視で隅C2に配置される。
 なお、かかるフローティングディフュージョンFD1、FD2は、図示しない配線層を介して電気的に接続されていることから、フォトダイオードPD1、PD2はフローティングディフュージョンFDを共有している。
 そして、上述の第1実施形態ではフローティングディフュージョンFDが配置されていた受光画素11の隅C1には、コンタクト領域26が配置される。
 第1実施形態の変形例7では、このような平面構成を有することにより、フローティングディフュージョンFD、コンタクト領域26および画素トランジスタを効率よく配置することができる。したがって、第1実施形態の変形例7によれば、画素アレイ部10のレイアウト効率を向上させることができる。
<変形例8>
 図14は、本開示の第1実施形態の変形例8に係る受光画素11の構成の一例を示す平面図である。図14に示すように、第1実施形態の変形例8では、上述の変形例7と同様に、一対のフローティングディフュージョンFDが一対のフォトダイオードPDにそれぞれ設けられる。
 また、この変形例8では、コンタクト領域26が、平面視で第2分離領域25と重なるように設けられる。そして、上述の変形例7ではコンタクト領域26が配置されていた受光画素11の隅C1には、別の画素トランジスタ(たとえば、選択トランジスタSEL)およびこの画素トランジスタの活性領域AAが配置される。
 第1実施形態の変形例8では、このような平面構成を有することにより、フローティングディフュージョンFD、コンタクト領域26および2つの画素トランジスタを効率よく配置することができる。したがって、第1実施形態の変形例8によれば、画素アレイ部10のレイアウト効率を向上させることができる。
 なお、隅C1および隅C3に配置される画素トランジスタは、増幅トランジスタAMPおよび選択トランジスタSELに限られない。図15は、本開示の第1実施形態の変形例8に係る受光画素群100の構成の一例を示す平面図である。
 図15に示すように、この変形例8では、たとえば、平面視で上下に並んだ2つの受光画素11で1つの受光画素群100が構成される。また、1つの受光画素群100に含まれる2つの受光画素11は、1つの読み出し回路18(図2参照)を共有している。
 そして、図15の例では、1つの受光画素群100において、1つ(たとえば、上)の受光画素11の隅C1(図14参照)に切替トランジスタFDGが配置され、隅C3にリセットトランジスタRSTが配置される。
 また、1つの受光画素群100において、もう1つ(たとえば、下)の受光画素11の隅C1に選択トランジスタSELが配置され、隅C3に増幅トランジスタAMPが配置される。
 このように、第1実施形態の変形例8では、いわゆる2×2共有の受光画素群100において、複数の受光画素11の隅C1、C3に、さまざまな種類の画素トランジスタを配置してもよい。これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 図16は、本開示の第1実施形態の変形例8に係る受光画素群100の構成の別の一例を示す平面図である。図16に示すように、この変形例8では、たとえば、平面視で左右に並んだ2つの受光画素11で1つの受光画素群100が構成されてもよい。
 そして、この変形例8では、1つの受光画素群100において、1つ(たとえば、右)の受光画素11の隅C1(図14参照)に切替トランジスタFDGが配置され、隅C3にリセットトランジスタRSTが配置される。
 また、1つの受光画素群100において、もう1つ(たとえば、左)の受光画素11の隅C1に選択トランジスタSELが配置され、隅C3に増幅トランジスタAMPが配置される。
 このように、第1実施形態の変形例8では、いわゆる4×1共有の受光画素群100において、複数の受光画素11の隅C1、C3に、さまざまな種類の画素トランジスタを配置してもよい。これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
<変形例9>
 図17は、本開示の第1実施形態の変形例9に係る受光画素11の構成の一例を示す平面図である。図17に示すように、第1実施形態の変形例9では、隅C3に設けられる画素トランジスタの配置形態が上述の第1実施形態(図3)と異なる。
 具体的には、隅C3に沿って平面視で略L字形状の活性領域AAが配置されるとともに、かかる活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、増幅トランジスタAMPおよび選択トランジスタSEL)が配置される。
 第1実施形態の変形例9では、このような平面構成を有することにより、フローティングディフュージョンFD、コンタクト領域26および画素トランジスタをさらに効率よく配置することができる。したがって、第1実施形態の変形例9によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、この変形例9では、略L字形状の活性領域AAを受光画素11内に配置することにより、かかる活性領域AAの面積を大きく取ることができる。したがって、第1実施形態の変形例9によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 なお、隅C3に配置される画素トランジスタは、増幅トランジスタAMPおよび選択トランジスタSELに限られない。図18は、本開示の第1実施形態の変形例9に係る受光画素群100の構成の一例を示す平面図である。
 図18に示すように、この変形例9では、たとえば、平面視で2行2列に並んだ4つの受光画素11で1つの受光画素群100が構成される。また、1つの受光画素群100に含まれる4つの受光画素11は、1つの読み出し回路18(図2参照)を共有している。
 そして、この変形例9では、1つの受光画素群100において、1つ(たとえば、左上)の受光画素11の隅C3(図17参照)に2つの増幅トランジスタAMPが配置され、1つ(例えば、右上)の受光画素11の隅C3に選択トランジスタSELが配置される。
 また、1つの受光画素群100において、1つ(たとえば、左下)の受光画素11の隅C3にリセットトランジスタRSTが配置され、1つ(たとえば、右下)の受光画素11の隅C3に切替トランジスタFDGが配置される。
 このように、第1実施形態の変形例9では、いわゆる4×2共有の受光画素群100において、複数の受光画素11の隅C3に、さまざまな種類の画素トランジスタを配置してもよい。これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第1実施形態の変形例9では、1つの受光画素群100で共有する読み出し回路18に複数(図18では2つ)の並列接続された増幅トランジスタAMPを設けることができる。これにより、読み出し回路18のランダムノイズを改善することができる。
 図19は、本開示の第1実施形態の変形例9に係る受光画素群100の構成の別の一例を示す平面図である。
 図19の例では、1つの受光画素群100において、1つ(たとえば、左上)の受光画素11の隅C3(図17参照)に2つの増幅トランジスタAMPが配置され、1つ(たとえば、右上)の受光画素11の隅C3に2つの増幅トランジスタAMPが配置される。
 また、1つの受光画素群100において、1つ(たとえば、左下)の受光画素11の隅C3に増幅トランジスタAMPおよび選択トランジスタSELが配置される。また、1つの受光画素群100において、1つ(たとえば、右下)の受光画素11の隅C3にリセットトランジスタRSTおよび切替トランジスタFDGが配置される。
 このように、第1実施形態の変形例9では、いわゆる4×2共有の受光画素群100において、複数の受光画素11の隅C3に、さまざまな画素トランジスタを配置してもよい。これによっても、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、図19の例では、1つの受光画素群100で共有する読み出し回路18(図2参照)に5つの並列接続された増幅トランジスタAMPを設けることができる。これにより、かかる読み出し回路18のランダムノイズを改善することができる。
<変形例10>
 図20は、本開示の第1実施形態の変形例10に係る受光画素11の構成の一例を示す平面図である。図20に示すように、第1実施形態の変形例10では、上述の変形例8と同様に、一対のフローティングディフュージョンFDが一対のフォトダイオードPDにそれぞれ設けられ、コンタクト領域26が平面視で第2分離領域25と重なるように設けられる。
 また、隅C1に沿って略L字形状の活性領域AAが配置されるとともに、かかる活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、リセットトランジスタRSTおよび切替トランジスタFDG)が配置される。
 さらに、隅C3に沿って略L字形状の活性領域AAが配置されるとともに、かかる活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、増幅トランジスタAMPおよび選択トランジスタSEL)が配置される。
 第1実施形態の変形例10では、このような平面構成を有することにより、フローティングディフュージョンFD、コンタクト領域26および画素トランジスタをさらに効率よく配置することができる。したがって、第1実施形態の変形例10によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 なお、受光画素11内における各画素トランジスタの配置は図20の例に限られない。図21は、本開示の第1実施形態の変形例10に係る受光画素11の構成の別の一例を示す平面図である。
 図21の例では、隅C1に沿って略L字形状の活性領域AAが配置されるとともに、かかる活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、増幅トランジスタAMPおよび選択トランジスタSEL)が配置される。
 また、隅C3に沿って略L字形状の活性領域AAが配置されるとともに、かかる活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、リセットトランジスタRSTおよび切替トランジスタFDG)が配置される。
 第1実施形態の変形例10では、このような平面構成を有する場合でも、フローティングディフュージョンFD、コンタクト領域26および画素トランジスタをさらに効率よく配置することができる。したがって、第1実施形態の変形例10によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、この変形例10では、略L字形状の活性領域AAを受光画素11内に配置することにより、かかる活性領域AAの面積を大きく取ることができる。したがって、第1実施形態の変形例10によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、この変形例10では、図20および図21に示すように、1つの活性領域AAに対して、増幅トランジスタAMPと選択トランジスタSELとの組合せ、またはリセットトランジスタRSTと切替トランジスタFDGとの組合せが配置されてもよい。これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
<変形例11>
 図22は、本開示の第1実施形態の変形例11に係る受光画素11の構成の一例を示す平面図である。第1実施形態の変形例11では、転送ゲートTG1、TG2の配置が上述の第1実施形態(図3)と異なる。
 具体的には、図22に示すように、平面視において、転送ゲートTG1、TG2の一部が第2分離領域25に重なっている。これによっても、画素アレイ部10のレイアウト効率をさらに向上させることができる。
<変形例12>
 図23は、本開示の第1実施形態の変形例12に係る受光画素11の構成の一例を示す平面図である。第1実施形態の変形例12では、画素トランジスタの配置が上述の第1実施形態(図3)と異なる。
 具体的には、図23に示すように、平面視において、画素トランジスタ(ここでは増幅トランジスタAMP)の一部が第2分離領域25に重なっている。これによっても、画素アレイ部10のレイアウト効率をさらに向上させることができる。
[第2実施形態]
 近年、裏面照射型のCMOSイメージセンサにおいて、同じオンチップレンズから4つのフォトダイオードに光を入射させることにより、位相差の検出を実現させる技術がある。また、かかるイメージセンサでは、フォトダイオードの飽和信号電荷量を増加させることにより、ダイナミックレンジやSN比を向上させることができる。
 しかしながら、上記の従来技術では、位相差を検出する4つのフォトダイオード同士の間に分離領域を形成する必要があり、さらにこの分離領域内にオーバーフローパスを形成する必要もあることから、フォトダイオード自体の体積を十分にとれない場合があった。
 すなわち、上記の従来技術では、位相差検出画素において、フォトダイオードの飽和信号電荷量を増加させるという点でさらなる改善の余地があった。
 そこで、上述の問題点を克服し、4つのフォトダイオードを有する位相差検出画素においてフォトダイオードの飽和信号電荷量を増加させることができる技術の実現が期待されている。
[第2実施形態の画素回路]
 まずは、第2実施形態に係る画素回路の一例について、図24を参照しながら説明する。図24は、本開示の第2実施形態に係る画素回路の一例を示す図である。
 図24に示すように、第2実施形態では、4つの受光画素11が1つの読み出し回路18を共有している。ここで、「共有」とは、4つの受光画素11が共通の読み出し回路18に電気的に接続されている、すなわち、4つの受光画素11の出力が共通の読み出し回路18に入力されることを意味する。
 各受光画素11は、互いに共通の構成要素を有している。図24では、各受光画素11の構成要素を互いに区別するために、各受光画素11の構成要素の符号の末尾に識別番号(1、2、3、4)が付与されている。
 本開示では、各受光画素11の構成要素を互いに区別する必要がある場合には、各受光画素11の構成要素の符号の末尾に識別番号を付与する。一方で、本開示では、各受光画素11の構成要素を互いに区別する必要がない場合には、各受光画素11の構成要素の符号の末尾の識別番号を省略する。
 各受光画素11は、たとえば、フォトダイオードPDと、かかるフォトダイオードPDに電気的に接続される転送トランジスタTRとをそれぞれ有する。フォトダイオードPDは、光電変換部の一例である。
 これらの受光画素11は、各転送トランジスタTRと電気的に接続されるフローティングディフュージョンFDを共有している。ここで、「共有」とは、各受光画素11の個々のフォトダイオードPDがフローティングディフュージョンFDに電気的に接続されていることを意味する。
 フォトダイオードPDは、光電変換を行って受光量に応じた電荷を発生する。フォトダイオードPDのカソードは、転送トランジスタTRのソースに電気的に接続され、フォトダイオードPDのアノードは、基準電位線(たとえば、接地電位)に電気的に接続される。
 転送トランジスタTRのドレインは、フローティングディフュージョンFDに電気的に接続され、転送トランジスタTRのゲートである転送ゲートTGは、画素駆動線LD(図1参照)に電気的に接続される。転送トランジスタTRは、たとえば、CMOSトランジスタである。
 フローティングディフュージョンFDは、1つの読み出し回路18を共有する各受光画素11で共通であり、これらの受光画素11で共通の読み出し回路18の入力端に電気的に接続される。このフローティングディフュージョンFDは、転送トランジスタTRを介してフォトダイオードPDから出力された電荷を一時的に保持する。
 読み出し回路18は、図24に示すように、たとえば、リセットトランジスタRSTと、選択トランジスタSELと、増幅トランジスタAMPと、切替トランジスタFDGとを有する。リセットトランジスタRST、増幅トランジスタAMP、選択トランジスタSELおよび切替トランジスタFDGは、たとえば、CMOSトランジスタである。なお、選択トランジスタSELや切替トランジスタFDGは、必要に応じて省略されてもよい。
 読み出し回路18の入力部である切替トランジスタFDGのソースは、フローティングディフュージョンFDに電気的に接続され、切替トランジスタFDGのドレインは、リセットトランジスタRSTのソースに電気的に接続される。切替トランジスタFDGのゲートは、画素駆動線LDに電気的に接続されている。
 リセットトランジスタRSTのドレインは、電源電圧VDDに電気的に接続され、リセットトランジスタRSTのゲートは、画素駆動線LDに電気的に接続される。
 増幅トランジスタAMPのソースは、選択トランジスタSELのドレインに電気的に接続され、増幅トランジスタAMPのドレインは、電源電圧VDDに電気的に接続される。また、増幅トランジスタAMPのゲートは、切替トランジスタFDGのソースおよびフローティングディフュージョンFDに電気的に接続される。
 読み出し回路18の出力部である選択トランジスタSELのソースは、垂直画素配線LVに電気的に接続され、選択トランジスタSELのゲートは、画素駆動線LDに電気的に接続される。
 転送トランジスタTRは、かかる転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。
 リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、かかるリセットトランジスタRSTは、フローティングディフュージョンFDの電位を電源電圧VDDの電位にリセットする。選択トランジスタSELは、読み出し回路18からの画素信号の出力タイミングを制御する。
 増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、フォトダイオードPDで発生した電荷のレベルに応じた電圧の画素信号を出力する。
 増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電位を増幅し、その電位に応じた電圧を垂直画素配線LVを介してカラム信号処理部15(図1参照)に出力する。
 切替トランジスタFDGは、変換効率を切り替える際に用いられる。この切替トランジスタFDGの機能は、上述の第1実施形態と同様であることから、詳細な説明は省略する。
[第2実施形態の受光画素]
 つづいて、第2実施形態に係る受光画素11の詳細な構成について、図25~図27を参照しながら説明する。図25は、本開示の第2実施形態に係る受光画素11の構成の一例を示す平面図である。
 また、図26は、図25に示すC-C線の矢視断面図であり、図27は、図25に示すD-D線の矢視断面図である。なお、図26および図27に示す断面図では、画素トランジスタやフローティングディフュージョンFDなどの図示を省略している。
 図26などに示すように、画素アレイ部10は、半導体層20と、平坦化膜30と、カラーフィルタ40と、オンチップレンズ50とを備える。
 半導体層20は、たとえば、シリコンを含む。半導体層20は、複数のフォトダイオードPDを有する。フォトダイオードPDは、光電変換部の一例である。なお、1つの受光画素11には、図25に示すように、4つのフォトダイオードPD1~PD4が設けられる。かかる4つのフォトダイオードPD1~PD4が設けられることにより、受光画素11は、位相差検出画素として機能する。
 フォトダイオードPDは、第1導電型(たとえば、N型)の不純物を含む第1不純物領域21と、第2導電型(たとえば、P型)の不純物を含む第2不純物領域22とで構成される。
 第1不純物領域21は、フォトダイオードPDの中央部に配置され、第2不純物領域22は、かかる第1不純物領域21の側部および底部(光Lが入射する側とは反対側の部位)に沿って配置される。
 また、受光画素11は、第1分離領域24と、第2分離領域25とを有する。第1分離領域24は、図25に示すように、1つの受光画素11において4つのフォトダイオードPDを囲むように配置される。
 また、第1分離領域24は、図26および図27に示すように、半導体層20を貫通するように設けられる。かかる第1分離領域24は、たとえば、酸化シリコン(SiO)などの低屈折率の誘電体で構成される。これにより、第1分離領域24は、互いに隣接する複数の受光画素11同士の間を光学的および電気的に分離することができる。
 第2分離領域25は、図25に示すように、1つの受光画素11において互いに隣接する4つのフォトダイオードPD同士の間に配置される。また、第2分離領域25は、図26に示すように、半導体層20を貫通するように設けられる。
 かかる第2分離領域25は、たとえば、酸化シリコンなどの低屈折率の誘電体で構成される。これにより、第2分離領域25は、互いに隣接する4つのフォトダイオードPD同士の間を光学的および電気的に分離することができる。
 このように、第2実施形態では、第2分離領域25を用いて4つのフォトダイオードPD同士を互いに分離することができることから、4つのフォトダイオードPDを用いて入射する光Lの位相差を検出することができる。
 また、第2実施形態では、1つの受光画素11に4つのフォトダイオードPDが設けられることから、複数回の撮像を必要とせず高ダイナミックレンジ(HDR:High Dynamic Range)の画像を得ることができる。
 ここで、第2実施形態では、図25に示すように、第2分離領域25が、平面視で矩形状である第1分離領域24の2本の対角線に沿って配置される。たとえば、平面視で矩形状である第1分離領域24の4つの隅を右上から時計回り順に隅C1、隅C2、隅C3、隅C4とした場合、第2分離領域25は、隅C1と隅C3との間に延びる対角線と、隅C2と隅C4との間に延びる対角線とに沿って配置される。すなわち、第2実施形態に係る第2分離領域25は、平面視で略X字形状である。
 これにより、平面視で第2分離領域25が異なる向き(たとえば、第1分離領域24の垂直な2辺とそれぞれ略平行な向き)に沿って配置される場合と比べて、フォトダイオードPDの体積を増加させることができる。したがって、第2実施形態によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量を増加させることができる。
 また、第2実施形態では、第1分離領域24および第2分離領域25が、半導体層20を貫通するように設けられるとよい。これにより、図26に示すように、第1不純物領域21の底部のみならず側部にも第2不純物領域22を形成することができる。
 なぜなら、かかる第1分離領域24および第2分離領域25を形成する工程において、第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁からも第2導電型の不純物を拡散させることができるからである。
 したがって、第2実施形態によれば、フォトダイオードPDのPN接合面の面積を拡大することができることから、フォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 画素アレイ部10におけるその他の部位の説明を続ける。受光画素11は、コンタクト領域26、フローティングディフュージョンFD1~FD4および転送ゲートTG1~TG4をさらに有する。コンタクト領域26、フローティングディフュージョンFD1~FD4および転送ゲートTG1~TG4は、半導体層20の光入射面20aとは反対側の面20bに設けられる。
 コンタクト領域26は、基準電位線に電気的に接続され、図25に示すように、平面視で受光画素11の隅C1~C4にそれぞれ配置される。
 フローティングディフュージョンFD1は、フローティングディフュージョンFD(図24参照)の一部であり、平面視で第2分離領域25の交差部に隣接するとともに、かかる第2分離領域25の交差部とフォトダイオードPD1との間に配置される。
 フローティングディフュージョンFD2は、フローティングディフュージョンFDの一部であり、平面視で第2分離領域25の交差部に隣接するとともに、かかる第2分離領域25の交差部とフォトダイオードPD2との間に配置される。
 フローティングディフュージョンFD3は、フローティングディフュージョンFDの一部であり、平面視で第2分離領域25の交差部に隣接するとともに、かかる第2分離領域25の交差部とフォトダイオードPD3との間に配置される。
 フローティングディフュージョンFD4は、フローティングディフュージョンFDの一部であり、平面視で第2分離領域25の交差部に隣接するとともに、かかる第2分離領域25の交差部とフォトダイオードPD4との間に配置される。
 なお、フローティングディフュージョンFD1~FD4は、図示しない配線層を介して電気的に接続されていることから、フォトダイオードPD1~PD4はフローティングディフュージョンFDを共有している。
 転送ゲートTG1は、平面視でフローティングディフュージョンFD1に隣接するとともに、かかるフローティングディフュージョンFD1とフォトダイオードPD1とを遮るように配置される。
 転送ゲートTG2は、平面視でフローティングディフュージョンFD2に隣接するとともに、かかるフローティングディフュージョンFD2とフォトダイオードPD2とを遮るように配置される。
 転送ゲートTG3は、平面視でフローティングディフュージョンFD3に隣接するとともに、かかるフローティングディフュージョンFD3とフォトダイオードPD3とを遮るように配置される。
 転送ゲートTG4は、平面視でフローティングディフュージョンFD4に隣接するとともに、かかるフローティングディフュージョンFD4とフォトダイオードPD4とを遮るように配置される。
 また、第2実施形態では、平面視において、4つのフォトダイオードPDとそれぞれ重なるように、画素トランジスタおよびこの画素トランジスタの活性領域AAが配置される。
 たとえば、平面視において、フォトダイオードPD1と重なるように切替トランジスタFDGが配置され、フォトダイオードPD2と重なるように増幅トランジスタAMPが配置される。
 また、平面視において、フォトダイオードPD3と重なるように選択トランジスタSELが配置され、フォトダイオードPD4と重なるようにリセットトランジスタRSTが配置される。
 第2実施形態では、このような平面構成を有することにより、フローティングディフュージョンFD、コンタクト領域26および画素トランジスタを効率よく配置することができる。したがって、第2実施形態によれば、画素アレイ部10のレイアウト効率を向上させることができる。
 平坦化膜30は、図26などに示すように、半導体層20の光入射面20aに配置され、かかる光入射面20aを平坦化する。平坦化膜30は、たとえば、酸化シリコンで構成される。
 なお、第2実施形態では、フォトダイオードPDと第1分離領域24、第2分離領域25および平坦化膜30との間に、図示しない固定電荷膜が配置されてもよい。かかる固定電荷膜は、フォトダイオードPDと第1分離領域24、第2分離領域25および平坦化膜30との界面に電荷(ここでは、正孔)を固定する機能を有する。
 固定電荷膜の材料としては、固定電荷を多く有する高誘電材料を用いることが好ましい。固定電荷膜は、たとえば、上述の第1実施形態に係る固定電荷膜の材料と同様の材料を用いることができる。
 カラーフィルタ40は、入射する光Lのうちの所定の波長領域の光を透過させる光学的なフィルタであり、オンチップレンズ50と平坦化膜30との間に設けられる。
 オンチップレンズ50は、半導体層20に対して光Lが入射する側に設けられ、対応する受光画素11に向かって光Lを集光させる機能を有する。オンチップレンズ50は、たとえば、有機材料や酸化シリコンなどで構成される。
 第2実施形態では、図26および図27に示すように、1つの受光画素11ごとに1つのオンチップレンズ50(すなわち、4つのフォトダイオードPDごとに1つのオンチップレンズ50)が設けられる。これにより、受光画素11は、位相差検出画素として機能する。
[第2実施形態の各種変形例]
 つづいて、第2実施形態の各種変形例について、図28~図43を参照しながら説明する。
<変形例1>
 図28は、本開示の第2実施形態の変形例1に係る受光画素11の構成の一例を示す断面図であり、第2実施形態の図26に対応する図である。図28に示すように、第2実施形態の変形例1では、第2分離領域25が、半導体層20の光入射面20aとは反対側の面20bから半導体層20の途中まで(すなわち、半導体層20を貫通しないように)設けられる。
 これによっても、上述の第2実施形態と同様に、第1不純物領域21の底部のみならず側部にも第2不純物領域22を形成することができる。なぜなら、かかる第1分離領域24および第2分離領域25を形成する工程において、第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁からも第2導電型の不純物を拡散させることができるからである。
 したがって、第2実施形態の変形例1によれば、フォトダイオードPDのPN接合面の面積を拡大することができることから、フォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例1では、図28に示すように、第2分離領域25の光入射面20a側に第2不純物領域22が配置されることから、かかる第2不純物領域22も一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能させることができる。
 したがって、第2実施形態の変形例1によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例2>
 図29は、本開示の第2実施形態の変形例2に係る受光画素11の構成の一例を示す断面図である。図29に示すように、第2実施形態の変形例2では、第1分離領域24および第2分離領域25が、半導体層20の光入射面20aとは反対側の面20bから半導体層20の途中まで(すなわち、半導体層20を貫通しないように)設けられる。
 これによっても、上述の第2実施形態と同様に、第2不純物領域22の底部のみならず側部にも第2不純物領域22を形成することができる。なぜなら、かかる第1分離領域24および第2分離領域25を形成する工程において、第1分離領域24および第2分離領域25に対応する部位に形成されるトレンチの側壁からも第2導電型の不純物を拡散させることができるからである。
 したがって、第2実施形態の変形例2によれば、フォトダイオードPDのPN接合面の面積を拡大することができることから、フォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例2では、図29に示すように、第2分離領域25の光入射面20a側に第2不純物領域22が配置されることから、かかる第2不純物領域22も一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能させることができる。
 したがって、第2実施形態の変形例2によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例3>
 図30は、本開示の第2実施形態の変形例3に係る受光画素11の構成の一例を示す断面図である。図30に示すように、第2実施形態の変形例3では、第2分離領域25が、半導体層20の光入射面20aから半導体層20の途中まで(すなわち、半導体層20を貫通しないように)設けられる。
 これによっても、上述の第2実施形態と同様に、4つのフォトダイオードPDを第2分離領域25で分離することができる。したがって、第2実施形態の変形例3によれば、受光画素11を位相差検出画素として機能させることができる。
 また、この変形例3では、図30に示すように、第2分離領域25の光入射面20aとは反対側に第2不純物領域22が配置されることから、かかる第2不純物領域22も一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能させることができる。
 したがって、第2実施形態の変形例3によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例4>
 図31は、本開示の第2実施形態の変形例4に係る受光画素11の構成の一例を示す断面図である。図31に示すように、第2実施形態の変形例4では、第1分離領域24および第2分離領域25が、半導体層20の光入射面20aから半導体層20の途中まで(すなわち、半導体層20を貫通しないように)設けられる。
 これによっても、上述の第2実施形態と同様に、4つのフォトダイオードPDを第2分離領域25で分離することができる。したがって、第2実施形態の変形例4によれば、受光画素11を位相差検出画素として機能させることができる。
 また、この変形例4では、図31に示すように、第2分離領域25の光入射面20aとは反対側に第2不純物領域22が配置されることから、かかる第2不純物領域22も一対のフォトダイオードPD同士を繋ぐオーバーフローパスとして機能させることができる。
 したがって、第2実施形態の変形例4によれば、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
<変形例5>
 図32は、本開示の第2実施形態の変形例5に係る受光画素11の構成の一例を示す平面図である。第2実施形態の変形例5では、第2分離領域25の構成が上述の第2実施形態(図25)と異なる。
 具体的には、図32に示すように、第2分離領域25が、平面視で第1分離領域24と接していない端部を有する。たとえば、この変形例5では、隅C2および隅C4において、第1分離領域24と第2分離領域25とが接していない。
 これにより、第1分離領域24と第2分離領域25との間に形成される隙間に、かかる隙間に隣接する一対のフォトダイオードPD同士を繋ぐオーバーフローパスを配置することができる。
 たとえば、隅C2に隣接する隙間に、フォトダイオードPD2とフォトダイオードPD3とを繋ぐオーバーフローパスを配置することができる。また、隅C4に隣接する隙間に、フォトダイオードPD1とフォトダイオードPD4とを繋ぐオーバーフローパスを配置することができる。
 すなわち、この変形例5では、かかるオーバーフローパスを別途形成することによってフォトダイオードPDの体積が減少することを抑制することができる。したがって、第2実施形態の変形例5によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例5では、第2分離領域25が平面視で第1分離領域24と接していない端部を有することにより、第1分離領域24と第2分離領域25との間に形成される隙間に、画素トランジスタなどを配置することができる。
 たとえば、図32の例では、平面視において、隅C2に沿って略L字形状の活性領域AAが配置されるとともに、この活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、増幅トランジスタAMPおよび選択トランジスタSEL)が配置される。
 また、平面視において、隅C4に沿って略L字形状の活性領域AAが配置されるとともに、この活性領域AAの2つの辺にそれぞれ異なる画素トランジスタ(たとえば、リセットトランジスタRSTおよび切替トランジスタFDG)が配置される。
 すなわち、この変形例5では、第2分離領域25が平面視で第1分離領域24と接していない端部を有することにより、画素アレイ部10のレイアウト効率を向上させることができる。
 また、この変形例5では、略L字形状の活性領域AAを受光画素11内に配置することにより、かかる活性領域AAの面積を大きく取ることができる。したがって、第2実施形態の変形例5によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
<変形例6>
 図33は、本開示の第2実施形態の変形例6に係る受光画素11の構成の一例を示す平面図である。第2実施形態の変形例6では、第2分離領域25の構成が上述の変形例5(図32)と異なる。
 具体的には、図33に示すように、第1分離領域24および第2分離領域25が互いに接していない。これにより、第1分離領域24と第2分離領域25との間に形成される隙間に、かかる隙間に隣接する一対のフォトダイオードPD同士を繋ぐオーバーフローパスを配置することができる。
 すなわち、この変形例6では、かかるオーバーフローパスを別途形成することによってフォトダイオードPDの体積が減少することを抑制することができる。したがって、第2実施形態の変形例6によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例6では、第1分離領域24および第2分離領域25が互いに接していないことにより、第1分離領域24と第2分離領域25との間に形成される隙間に、画素トランジスタなどを配置することができる。
 たとえば、図33の例では、平面視において、隅C3の近傍から隅C4、隅C1、隅C2および隅C3の近傍まで延びる略C字形状の活性領域AAが配置される。そして、この活性領域AAの4つの辺にそれぞれ異なる画素トランジスタ(たとえば、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRSTおよび切替トランジスタFDG)が配置される。また、コンタクト領域26は、隅C3の近傍に1つ配置される。
 すなわち、この変形例6では、第1分離領域24および第2分離領域25が互いに接していないことにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、この変形例6では、略C字形状の活性領域AAを受光画素11内に配置することにより、かかる活性領域AAの面積をさらに大きく取ることができる。したがって、第2実施形態の変形例6によれば、画素アレイ部10のレイアウト効率をさらに向上させることができる。
<変形例7>
 図34は、本開示の第2実施形態の変形例7に係る受光画素11の構成の一例を示す平面図である。第2実施形態の変形例7では、第2分離領域25の構成が上述の変形例6(図33)と異なる。
 具体的には、図33に示すように、平面視で略X字形状の第2分離領域25において、交差部に第2分離領域25が設けられていない。換言すると、この変形例7では、第2分離領域25が、交差部に切欠部25aを有する。
 これにより、かかる切欠部25aに形成される隙間に、かかる隙間に隣接する一対のフォトダイオードPD同士を繋ぐオーバーフローパスを配置することができる。
 すなわち、この変形例7では、かかるオーバーフローパスを別途形成することによってフォトダイオードPDの体積が減少することを抑制することができる。したがって、第2実施形態の変形例7によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができる。
 また、この変形例7では、第2分離領域25が切欠部25aを有することにより、かかる切欠部25aにフローティングディフュージョンFDを配置することができる。すなわち、この変形例7では、第2分離領域25が切欠部25aを有することにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、この変形例7では、平面視で受光画素11の中央部に第2分離領域25の切欠部25aを配置することにより、4つのフォトダイオードPDが共有する1つのフローティングディフュージョンFDを配置することができる。
 これにより、第2実施形態の変形例7では、フローティングディフュージョンFDの面積をさらに大きく取ることができることから、画素アレイ部10のレイアウト効率をさらに向上させることができる。
<変形例8~16>
 本開示における第2分離領域25の平面構成は、ここまで説明した第2実施形態および変形例5~7の例に限られない。図35~図43は、本開示の第2実施形態の変形例8~16に係る受光画素11の構成の一例を示す平面図である。なお、この図35~図16では、理解を容易にするため、受光画素11において第1分離領域24および第2分離領域25以外の各要素の図示を省略している。
 たとえば、図35に示すように、平面視で略X字形状である第2分離領域25の端部が、隅C2および隅C4で第1分離領域24と接する一方、隅C1および隅C3で第1分離領域24と接していなくてもよい。
 また、図36に示すように、平面視で略X字形状である第2分離領域25の端部が、すべての隅C1~C4で第1分離領域24と接するとともに、隅C1および隅C3から交差部に向けて延びる部位において、かかる交差部の近傍に切欠部25aを有していてもよい。
 また、図37に示すように、平面視で略X字形状である第2分離領域25の端部が、すべての隅C1~C4で第1分離領域24と接するとともに、隅C1および隅C3から交差部に向けて延びる部位の中間部に切欠部25aを有していてもよい。
 また、図38に示すように、平面視で略X字形状である第2分離領域25の端部が、隅C2および隅C4で第1分離領域24と接する。一方で、図38の例では、第2分離領域25の端部が、隅C1および隅C3で第1分離領域24と接しておらず、かつ隅C1および隅C3から交差部に向けて延びる部位において、かかる交差部の近傍に切欠部25aを有していてもよい。
 また、図39に示すように、平面視で略X字形状である第2分離領域25の端部が、すべての隅C1~C4で第1分離領域24と接するとともに、隅C2および隅C4から交差部に向けて延びる部位において、かかる交差部の近傍に切欠部25aを有していてもよい。
 また、図40に示すように、平面視で略X字形状である第2分離領域25の端部が、すべての隅C1~C4で第1分離領域24と接するとともに、隅C2および隅C4から交差部に向けて延びる部位の中間部に切欠部25aを有していてもよい。
 また、図41に示すように、平面視で略X字形状である第2分離領域25の端部が、隅C1および隅C3で第1分離領域24と接する。一方で、図41の例では、第2分離領域25の端部が、隅C2および隅C4で第1分離領域24と接しておらず、かつ隅C2および隅C4から交差部に向けて延びる部位において、かかる交差部の近傍に切欠部25aを有していてもよい。
 また、図42に示すように、平面視で略X字形状である第2分離領域25の端部が、すべての隅C1~C4で第1分離領域24と接するとともに、第2分離領域25の交差部に切欠部25aを有していてもよい。
 また、図43に示すように、平面視で略X字形状である第2分離領域25の端部が、すべての隅C1~C4で第1分離領域24と接するとともに、隅C1~C4から交差部に向けて延びる部位の中間部に切欠部25aを有していてもよい。
 図35~図43の例では、第2分離領域25が平面視で矩形状の第1分離領域24における2本の対角線に沿って配置されることにより、フォトダイオードPDの体積を増加させることができる。したがって、図35~図43の例によれば、位相差検出画素においてフォトダイオードPDの飽和信号電荷量を増加させることができる。
 また、図35~図43の例では、第2分離領域25が切欠部25aを有することから、画素アレイ部10のレイアウト効率を向上させることができる。
[効果]
 第1実施形態に係る固体撮像素子1は、半導体層20の内部に行列状に配列される複数の受光画素11を備える。また、受光画素11は、一対の光電変換部(フォトダイオードPD)と、第1分離領域24と、第2分離領域25とを有する。一対の光電変換部(フォトダイオードPD)は、互いに隣接して配置され、共有されたフローティングディフュージョンFDを有する。第1分離領域24は、一対の光電変換部(フォトダイオードPD)を囲むように配置される。第2分離領域25は、一対の光電変換部(フォトダイオードPD)同士の間に配置される。第1分離領域24は、平面視で矩形状であり、半導体層20の光入射面20aとは反対側の面20bから光入射面20aに向けて延びるように設けられる。第2分離領域25は、平面視で矩形状の第1分離領域24の対角線に沿って配置され、半導体層20の光入射面20aとは反対側の面20bから光入射面20aに向けて延びるように設けられる。
 これにより、位相差検出画素においてフォトダイオードPDの飽和信号電荷量を増加させることができる。
 また、第1実施形態に係る固体撮像素子1において、第1分離領域24と第2分離領域25とは、平面視で互いに接していない。
 これにより、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができるとともに、画素アレイ部10のレイアウト効率を向上させることができる。
 また、第1実施形態に係る固体撮像素子1は、半導体層20の光入射面20aとは反対側の面20bに設けられる画素トランジスタをさらに備える。また、画素トランジスタは、平面視で矩形状の第1分離領域24の4つの隅C1~C4のうち、第2分離領域25の端部に近接する一方の隅C3に配置される。また、フローティングディフュージョンFDは、平面視で矩形状の第1分離領域24の4つの隅C1~C4のうち、第2分離領域25の端部に近接する他方の隅C1に配置される。
 これにより、画素アレイ部10のレイアウト効率を向上させることができる。
 また、第1実施形態に係る固体撮像素子1は、半導体層20の光入射面20aとは反対側の面20bに設けられる画素トランジスタをさらに備える。また、画素トランジスタは、平面視で矩形状の第1分離領域24の4つの隅C1~C4のうち、第2分離領域25の端部に近接する2つの隅C1、C3に配置される、また、フローティングディフュージョンFDは、平面視で矩形状の第1分離領域24の4つの隅C1~C4のうち、第2分離領域25の端部に近接しない2つの隅C2、C4に配置される。
 これにより、画素アレイ部10のレイアウト効率を向上させることができる。
 また、第1実施形態に係る固体撮像素子1において、画素トランジスタの活性領域AAは、平面視で略L字形状を有する。
 これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第1実施形態に係る固体撮像素子1において、1つの活性領域AAに対して、画素トランジスタのうち、増幅トランジスタAMPと選択トランジスタSELとの組合せ、またはリセットトランジスタRSTと切替トランジスタFDGとの組合せが配置される。
 これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第1実施形態に係る固体撮像素子1において、画素トランジスタは、平面視で第2分離領域25に一部が重なっている。
 これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第1実施形態に係る固体撮像素子1において、受光画素11は、半導体層20の光入射面20aとは反対側の面20bに設けられ、基準電位線に電気的に接続されるコンタクト領域26をさらに有する。また、コンタクト領域26は、平面視で第2分離領域25に一部が重なっている。
 これにより、画素アレイ部10のレイアウト効率を向上させることができる。
 また、第1実施形態に係る固体撮像素子1は、複数の受光画素11を有する受光画素群100を備える。また、同じ受光画素群100に含まれる複数の受光画素11は、平面視で異なる方向に向いた第2分離領域25を有する。
 これにより、受光画素11を位相差検出画素としてさらに良好に機能させることができる。
 また、第1実施形態に係る固体撮像素子1は、光電変換部(フォトダイオードPD)に蓄積された電荷をフローティングディフュージョンFDに転送する転送トランジスタTRGをさらに備える。また、転送トランジスタTRGのゲート(転送ゲートTG1、TG2)は、平面視で第2分離領域25に一部が重なっている。
 これにより、画素アレイ部10のレイアウト効率を向上させることができる。
 また、第2実施形態に係る固体撮像素子1は、半導体層20の内部に行列状に配列される複数の受光画素11を備える。また、受光画素11は、4つの光電変換部(フォトダイオードPD)と、第1分離領域24と、第2分離領域25とを有する。4つの光電変換部(フォトダイオードPD)は、互いに隣接して配置され、共有されたフローティングディフュージョンFDを有する。第1分離領域24は、4つの光電変換部(フォトダイオードPD)を囲むように配置され、平面視で矩形状である。第2分離領域25は、4つの光電変換部(フォトダイオードPD)を分離するように配置され、平面視で矩形状の第1分離領域24における2本の対角線に沿って配置される。
 これにより、位相差検出画素においてフォトダイオードPDの飽和信号電荷量を増加させることができる。
 また、第2実施形態に係る固体撮像素子1において、第2分離領域25は、平面視で第1分離領域24と接していない端部を有する。
 これにより、位相差検出画素においてフォトダイオードPDの飽和信号電荷量をさらに増加させることができるとともに、画素アレイ部10のレイアウト効率を向上させることができる。
 また、第2実施形態に係る固体撮像素子1は、半導体層20の光入射面20aとは反対側の面20bに設けられる画素トランジスタをさらに備える。また、画素トランジスタの活性領域AAは、平面視で矩形状の第1分離領域24の4つの隅C1~C4のうち、第2分離領域25が接していない隅に配置される。
 これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第2実施形態に係る固体撮像素子1において、第2分離領域25は、交差部に切欠部25aを有する。
 これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
 また、第2実施形態に係る固体撮像素子1において、フローティングディフュージョンFDは、平面視で切欠部25aと重なるように配置される。
 これにより、画素アレイ部10のレイアウト効率をさらに向上させることができる。
[電子機器]
 なお、本開示は、固体撮像素子への適用に限られるものではない。すなわち、本開示は、固体撮像素子のほかにカメラモジュールや撮像装置、撮像機能を有する携帯端末装置、または画像読取部に固体撮像素子を用いる複写機など、固体撮像素子を有する電子機器全般に対して適用可能である。
 かかる撮像装置としては、たとえば、デジタルスチルカメラやビデオカメラなどが挙げられる。また、かかる撮像機能を有する携帯端末装置としては、たとえば、スマートフォンやタブレット型端末などが挙げられる。
 図44は、本開示に係る技術を適用した電子機器1000としての撮像装置の構成例を示すブロック図である。図44の電子機器1000は、たとえば、デジタルスチルカメラやビデオカメラなどの撮像装置や、スマートフォンやタブレット型端末などの携帯端末装置などの電子機器である。
 図44において、電子機器1000は、レンズ群1001と、固体撮像素子1002と、DSP回路1003と、フレームメモリ1004と、表示部1005と、記録部1006と、操作部1007と、電源部1008とから構成される。
 また、電子機器1000において、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008は、バスライン1009を介して相互に接続されている。
 レンズ群1001は、被写体からの入射光(像光)を取り込んで固体撮像素子1002の撮像面上に結像する。固体撮像素子1002は、上述した実施形態に係る固体撮像素子1に対応し、レンズ群1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
 DSP回路1003は、固体撮像素子1002から供給される信号を処理するカメラ信号処理回路である。フレームメモリ1004は、DSP回路1003により処理された画像データを、フレーム単位で一時的に保持する。
 表示部1005は、たとえば、液晶パネルや有機EL(Electro Luminescence)パネルなどのパネル型表示装置からなり、固体撮像素子1002で撮像された動画または静止画を表示する。記録部1006は、固体撮像素子1002で撮像された動画または静止画の画像データを、半導体メモリやハードディスクなどの記録媒体に記録する。
 操作部1007は、ユーザによる操作にしたがい、電子機器1000が有する各種の機能についての操作指令を発する。電源部1008は、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、および操作部1007の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 このように構成されている電子機器1000では、固体撮像素子1002として、上述した各実施形態の固体撮像素子1を適用することにより、信号品質を改善することができる。
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 半導体層の内部に行列状に配列される複数の受光画素を備え、
 前記受光画素は、
 互いに隣接して配置され、共有されたフローティングディフュージョンを有する一対の光電変換部と、
 前記一対の光電変換部を囲むように配置される第1分離領域と、
 前記一対の光電変換部同士の間に配置される第2分離領域と、
 を有し、
 前記第1分離領域は、平面視で矩形状であり、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられ、
 前記第2分離領域は、平面視で矩形状の前記第1分離領域の対角線に沿って配置され、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられる
 固体撮像素子。
(2)
 前記第1分離領域と前記第2分離領域とは、平面視で互いに接していない
 前記(1)に記載の固体撮像素子。
(3)
 前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに備え、
 前記画素トランジスタは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する一方の隅に配置され、
 前記フローティングディフュージョンは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する他方の隅に配置される
 前記(2)に記載の固体撮像素子。
(4)
 前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに備え、
 前記画素トランジスタは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する2つの隅に配置され、
 前記フローティングディフュージョンは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接しない2つの隅に配置される
 前記(2)に記載の固体撮像素子。
(5)
 前記画素トランジスタの活性領域は、平面視で略L字形状を有する
 前記(3)または(4)に記載の固体撮像素子。
(6)
 1つの前記活性領域に対して、前記画素トランジスタのうち、増幅トランジスタと選択トランジスタとの組合せ、またはリセットトランジスタと切替トランジスタとの組合せが配置される
 前記(5)に記載の固体撮像素子。
(7)
 前記画素トランジスタは、平面視で前記第2分離領域に一部が重なっている
 前記(3)~(6)のいずれか一つに記載の固体撮像素子。
(8)
 前記受光画素は、前記半導体層の光入射面とは反対側の面に設けられ、基準電位線に電気的に接続されるコンタクト領域をさらに有し、
 前記コンタクト領域は、平面視で前記第2分離領域に一部が重なっている
 前記(1)~(7)のいずれか一つに記載の固体撮像素子。
(9)
 複数の前記受光画素を有する受光画素群を備え、
 同じ前記受光画素群に含まれる複数の前記受光画素は、平面視で異なる方向に向いた前記第2分離領域を有する
 前記(1)~(8)のいずれか一つに記載の固体撮像素子。
(10)
 前記光電変換部に蓄積された電荷を前記フローティングディフュージョンに転送する転送トランジスタをさらに備え、
 前記転送トランジスタのゲートは、平面視で前記第2分離領域に一部が重なっている
 前記(1)~(9)のいずれか一つに記載の固体撮像素子。
(11)
 固体撮像素子と、
 被写体からの入射光を取り込んで前記固体撮像素子の撮像面上に結像させる光学系と、
 前記固体撮像素子からの出力信号に対して処理を行う信号処理回路と、を備え、
 前記固体撮像素子は、
 半導体層の内部に行列状に配列される複数の受光画素を有し、
 前記受光画素は、
 互いに隣接して配置され、共有されたフローティングディフュージョンを有する一対の光電変換部と、
 前記一対の光電変換部を囲むように配置される第1分離領域と、
 前記一対の光電変換部同士の間に配置される第2分離領域と、
 を有し、
 前記第1分離領域は、平面視で矩形状であり、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられ、
 前記第2分離領域は、平面視で矩形状の前記第1分離領域の対角線に沿って配置され、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられる
 電子機器。
(12)
 前記第1分離領域と前記第2分離領域とは、平面視で互いに接していない
 前記(11)に記載の電子機器。
(13)
 前記固体撮像素子は、
 前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに有し、
 前記画素トランジスタは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する一方の隅に配置され、
 前記フローティングディフュージョンは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する他方の隅に配置される
 前記(12)に記載の電子機器。
(14)
 前記固体撮像素子は、
 前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに有し、
 前記画素トランジスタは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する2つの隅に配置され、
 前記フローティングディフュージョンは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接しない2つの隅に配置される
 前記(12)に記載の電子機器。
(15)
 前記画素トランジスタの活性領域は、平面視で略L字形状を有する
 前記(13)または(14)に記載の電子機器。
(16)
 1つの前記活性領域に対して、前記画素トランジスタのうち、増幅トランジスタと選択トランジスタとの組合せ、またはリセットトランジスタと切替トランジスタとの組合せが配置される
 前記(15)に記載の電子機器。
(17)
 前記画素トランジスタは、平面視で前記第2分離領域に一部が重なっている
 前記(13)~(16)のいずれか一つに記載の電子機器。
(18)
 前記受光画素は、前記半導体層の光入射面とは反対側の面に設けられ、基準電位線に電気的に接続されるコンタクト領域をさらに有し、
 前記コンタクト領域は、平面視で前記第2分離領域に一部が重なっている
 前記(11)~(17)のいずれか一つに記載の電子機器。
(19)
 前記固体撮像素子は、
 複数の前記受光画素を有する受光画素群を有し、
 同じ前記受光画素群に含まれる複数の前記受光画素は、平面視で異なる方向に向いた前記第2分離領域を有する
 前記(11)~(18)のいずれか一つに記載の電子機器。
(20)
 前記固体撮像素子は、
 前記光電変換部に蓄積された電荷を前記フローティングディフュージョンに転送する転送トランジスタをさらに有し、
 前記転送トランジスタのゲートは、平面視で前記第2分離領域に一部が重なっている
 前記(11)~(19)のいずれか一つに記載の電子機器。
(21)
 半導体層の内部に行列状に配列される複数の受光画素を備え、
 前記受光画素は、
 互いに隣接して配置され、共有されたフローティングディフュージョンを有する4つの光電変換部と、
 前記4つの光電変換部を囲むように配置され、平面視で矩形状である第1分離領域と、
 前記4つの光電変換部を分離するように配置され、平面視で矩形状の前記第1分離領域における2本の対角線に沿って配置される第2分離領域と、
 を有する
 固体撮像素子。
(22)
 前記第2分離領域は、平面視で前記第1分離領域と接していない端部を有する
 前記(21)に記載の固体撮像素子。
(23)
 前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに備え、
 前記画素トランジスタの活性領域は、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域が接していない隅に配置される
 前記(22)に記載の固体撮像素子。
(24)
 前記第2分離領域は、交差部に切欠部を有する
 前記(21)~(23)のいずれか一つに記載の固体撮像素子。
(25)
 前記フローティングディフュージョンは、平面視で前記切欠部と重なるように配置される
 前記(24)に記載の固体撮像素子。
(26)
 固体撮像素子と、
 被写体からの入射光を取り込んで前記固体撮像素子の撮像面上に結像させる光学系と、
 前記固体撮像素子からの出力信号に対して処理を行う信号処理回路と、を備え、
 前記固体撮像素子は、
 半導体層の内部に行列状に配列される複数の受光画素を有し、
 前記受光画素は、
 互いに隣接して配置され、共有されたフローティングディフュージョンを有する4つの光電変換部と、
 前記4つの光電変換部を囲むように配置され、平面視で矩形状である第1分離領域と、
 前記4つの光電変換部を分離するように配置され、平面視で矩形状の前記第1分離領域における2本の対角線に沿って配置される第2分離領域と、
 を有する
 電子機器。
(27)
 前記第2分離領域は、平面視で前記第1分離領域と接していない端部を有する
 前記(26)に記載の電子機器。
(28)
 前記固体撮像素子は、
 前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに有し、
 前記画素トランジスタの活性領域は、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域が接していない隅に配置される
 前記(27)に記載の電子機器。
(29)
 前記第2分離領域は、交差部に切欠部を有する
 前記(26)~(28)のいずれか一つに記載の電子機器。
(30)
 前記フローティングディフュージョンは、平面視で前記切欠部と重なるように配置される
 前記(29)に記載の電子機器。
1  固体撮像素子
10 画素アレイ部
11 受光画素
20 半導体層
20a 光入射面
20b 面
24 第1分離領域
25 第2分離領域
25a 切欠部
100 受光画素群
1000 電子機器
C1~C4 隅
AMP 増幅トランジスタ(画素トランジスタの一例)
FD、FD1~FD4 フローティングディフュージョン
FDG 切替トランジスタ(画素トランジスタの一例)
PD、PD1~PD4 フォトダイオード(光電変換部の一例)
RST リセットトランジスタ(画素トランジスタの一例)
SEL 選択トランジスタ(画素トランジスタの一例)
TG1、TG2 転送ゲート(ゲートの一例)

Claims (11)

  1.  半導体層の内部に行列状に配列される複数の受光画素を備え、
     前記受光画素は、
     互いに隣接して配置され、共有されたフローティングディフュージョンを有する一対の光電変換部と、
     前記一対の光電変換部を囲むように配置される第1分離領域と、
     前記一対の光電変換部同士の間に配置される第2分離領域と、
     を有し、
     前記第1分離領域は、平面視で矩形状であり、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられ、
     前記第2分離領域は、平面視で矩形状の前記第1分離領域の対角線に沿って配置され、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられる
     固体撮像素子。
  2.  前記第1分離領域と前記第2分離領域とは、平面視で互いに接していない
     請求項1に記載の固体撮像素子。
  3.  前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに備え、
     前記画素トランジスタは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する一方の隅に配置され、
     前記フローティングディフュージョンは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する他方の隅に配置される
     請求項2に記載の固体撮像素子。
  4.  前記半導体層の光入射面とは反対側の面に設けられる画素トランジスタをさらに備え、
     前記画素トランジスタは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接する2つの隅に配置され、
     前記フローティングディフュージョンは、平面視で矩形状の前記第1分離領域の4つの隅のうち、前記第2分離領域の端部に近接しない2つの隅に配置される
     請求項2に記載の固体撮像素子。
  5.  前記画素トランジスタの活性領域は、平面視で略L字形状を有する
     請求項3に記載の固体撮像素子。
  6.  1つの前記活性領域に対して、前記画素トランジスタのうち、増幅トランジスタと選択トランジスタとの組合せ、またはリセットトランジスタと切替トランジスタとの組合せが配置される
     請求項5に記載の固体撮像素子。
  7.  前記画素トランジスタは、平面視で前記第2分離領域に一部が重なっている
     請求項3に記載の固体撮像素子。
  8.  前記受光画素は、前記半導体層の光入射面とは反対側の面に設けられ、基準電位線に電気的に接続されるコンタクト領域をさらに有し、
     前記コンタクト領域は、平面視で前記第2分離領域に一部が重なっている
     請求項1に記載の固体撮像素子。
  9.  複数の前記受光画素を有する受光画素群を備え、
     同じ前記受光画素群に含まれる複数の前記受光画素は、平面視で異なる方向に向いた前記第2分離領域を有する
     請求項1に記載の固体撮像素子。
  10.  前記光電変換部に蓄積された電荷を前記フローティングディフュージョンに転送する転送トランジスタをさらに備え、
     前記転送トランジスタのゲートは、平面視で前記第2分離領域に一部が重なっている
     請求項1に記載の固体撮像素子。
  11.  固体撮像素子と、
     被写体からの入射光を取り込んで前記固体撮像素子の撮像面上に結像させる光学系と、
     前記固体撮像素子からの出力信号に対して処理を行う信号処理回路と、を備え、
     前記固体撮像素子は、
     半導体層の内部に行列状に配列される複数の受光画素を有し、
     前記受光画素は、
     互いに隣接して配置され、共有されたフローティングディフュージョンを有する一対の光電変換部と、
     前記一対の光電変換部を囲むように配置される第1分離領域と、
     前記一対の光電変換部同士の間に配置される第2分離領域と、
     を有し、
     前記第1分離領域は、平面視で矩形状であり、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられ、
     前記第2分離領域は、平面視で矩形状の前記第1分離領域の対角線に沿って配置され、前記半導体層の光入射面とは反対側の面から前記光入射面に向けて延びるように設けられる
     電子機器。
PCT/JP2022/002609 2021-03-04 2022-01-25 固体撮像素子および電子機器 WO2022185785A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280015149.XA CN116848639A (zh) 2021-03-04 2022-01-25 固态摄像元件和电子设备
JP2023503631A JPWO2022185785A1 (ja) 2021-03-04 2022-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021034432A JP2021097241A (ja) 2021-03-04 2021-03-04 固体撮像素子および電子機器
JP2021-034432 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022185785A1 true WO2022185785A1 (ja) 2022-09-09

Family

ID=76431613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002609 WO2022185785A1 (ja) 2021-03-04 2022-01-25 固体撮像素子および電子機器

Country Status (3)

Country Link
JP (2) JP2021097241A (ja)
CN (1) CN116848639A (ja)
WO (1) WO2022185785A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023012890A (ja) * 2021-07-14 2023-01-26 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
CN117999653A (zh) * 2021-09-30 2024-05-07 索尼半导体解决方案公司 固态摄像装置和电子设备
JP7421532B2 (ja) 2021-11-12 2024-01-24 キヤノン株式会社 光電変換装置及び発光装置
WO2023153245A1 (ja) * 2022-02-08 2023-08-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2024007298A1 (en) * 2022-07-08 2024-01-11 Huawei Technologies Co., Ltd. Pixel structure, imaging device and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084930A (ja) * 2015-10-27 2017-05-18 キヤノン株式会社 撮像装置
US20170301718A1 (en) * 2016-04-13 2017-10-19 Taiwan Semiconductor Manufacturing Co., Ltd. Full-pdaf (phase detection autofocus) cmos image sensor structures
US20180006077A1 (en) * 2016-07-04 2018-01-04 SK Hynix Inc. Image sensor having photodiodes sharing one color filter and one micro-lens
JP2018195908A (ja) * 2017-05-15 2018-12-06 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、電子機器、及び、撮像モジュール
JP2018201015A (ja) * 2017-05-29 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084930A (ja) * 2015-10-27 2017-05-18 キヤノン株式会社 撮像装置
US20170301718A1 (en) * 2016-04-13 2017-10-19 Taiwan Semiconductor Manufacturing Co., Ltd. Full-pdaf (phase detection autofocus) cmos image sensor structures
US20180006077A1 (en) * 2016-07-04 2018-01-04 SK Hynix Inc. Image sensor having photodiodes sharing one color filter and one micro-lens
JP2018195908A (ja) * 2017-05-15 2018-12-06 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、電子機器、及び、撮像モジュール
JP2018201015A (ja) * 2017-05-29 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器

Also Published As

Publication number Publication date
JPWO2022185785A1 (ja) 2022-09-09
CN116848639A (zh) 2023-10-03
JP2021097241A (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
US11721715B2 (en) Image pickup device, method of manufacturing image pickup device, and electronic apparatus
US11575847B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
US11444115B2 (en) Solid-state imaging device and electronic apparatus
WO2022185785A1 (ja) 固体撮像素子および電子機器
US8810703B2 (en) Solid-state image pickup device, driving method of solid-state image pickup device, and electronic device
KR101708059B1 (ko) 고체 촬상 장치와 그 제조 방법, 및 전자 기기
TWI433307B (zh) 固態影像感測器、其驅動方法、成像裝置及電子器件
TWI539814B (zh) 電子設備及其驅動方法
TWI412273B (zh) 固態影像裝置及其驅動方法,以及電子裝置
CN104009051B (zh) 图像传感器和电子装置
US11812170B2 (en) Solid-state imaging element and electronic device
TW202205652A (zh) 固體攝像裝置、固體攝像裝置的製造方法、以及電子機器
US20240136371A1 (en) Solid-state imaging element and electronic equipment
WO2022209366A1 (ja) 固体撮像素子および電子機器
US20240089619A1 (en) Light detection device and electronic apparatus
US20240178254A1 (en) Light-receiving element and electronic apparatus
CN115550574A (zh) 固体摄像装置、固体摄像装置的制造方法、以及电子机器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503631

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280015149.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18548034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762844

Country of ref document: EP

Kind code of ref document: A1