JP2010501349A - 基板研磨液のユースポイント処理のための方法及びシステム - Google Patents

基板研磨液のユースポイント処理のための方法及びシステム Download PDF

Info

Publication number
JP2010501349A
JP2010501349A JP2009526849A JP2009526849A JP2010501349A JP 2010501349 A JP2010501349 A JP 2010501349A JP 2009526849 A JP2009526849 A JP 2009526849A JP 2009526849 A JP2009526849 A JP 2009526849A JP 2010501349 A JP2010501349 A JP 2010501349A
Authority
JP
Japan
Prior art keywords
ecmp
polishing
medium
organoclay
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009526849A
Other languages
English (en)
Other versions
JP5530179B2 (ja
Inventor
ジョシュ エイチ. ゴールデン,
ピーター アイ. ポーシェヴェヴ,
マイケル アール. ウールストン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2010501349A publication Critical patent/JP2010501349A/ja
Application granted granted Critical
Publication of JP5530179B2 publication Critical patent/JP5530179B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers

Abstract

【課題】 基板プロセス、例えば、電気化学機械的研磨(ECMP)プロセスからの廃水を処理するための方法及び装置を提供する。
【解決手段】 一実施形態においては、基板プロセスの間に生成した廃水混合物を処理する方法であって、基板処理システムからキレート化金属錯体を含む廃水を流すステップと、酸化剤と廃水とを混ぜ合わせて、遊離キレート化物質を得るステップと、廃水を有機粘土媒体と活性炭媒体に流し込み、遊離キレート化物質を除去するステップと、廃水をアニオン交換樹脂に流し込み、金属イオンを除去すると共に廃水を得るステップと、を含む、前記方法を提供する。
【選択図】 図3

Description

発明の背景
発明の分野
[0001]本発明の実施形態は、一般的には、電気化学機械的研磨液のような基板研磨液を処理する方法及び装置に関する。
関連技術の説明
[0002]集積回路、ディスプレイ、他の電気デバイスの製造において、導電体、半導体、誘電体物質の多層膜は、基板の特徴部側に堆積されるか特徴部側から除去される。製造プロセスの間、電気化学機械的研磨(ECMP)や化学機械的研磨(CMP)は、基板の特徴部側面を研磨又は平坦化するために、また、引っかき傷、表面の粗さ、汚染物質のような欠陥を基板から取り除くために行われる。
[0003]ECMPとCMPは、基板の特徴部側から物質を除去するために用いられる二つのプロセスである。典型的なCMPプロセスにおいて、基板は処理パッドに押し付けられ、液状媒体は処理パッドと基板の間の接合部に供給される。液状媒体は、他の化学薬品の中でも化学エッチング液を含有する液状媒体に懸濁された研磨粒子を含有する場合がある。同様に、典型的なECMPプロセスにおいて、基板は、処理パッドに押し付けられ、液状媒体は、処理パッドと基板の間の接合部に供給される。この場合、基板と処理パッドの一方或いは双方が電力に結合されるので、液状媒体は、電解液として機能して、基板上の物質の電気化学的溶解を容易にすることになる。
[0004]これらのプロセスのいずれにおいても、使用済みの処理液の廃液は、研磨プロセスから放出させることができる。廃液は、研磨粒子、金属粒子、金属イオン、研磨副生成物、試薬、懸濁液、溶媒を含有することがある。廃液は、また、他の物質の中でも、有機化合物や無機化合物、緩衝剤、酸化剤、界面活性剤、キレート化剤、エッチング液、腐食防止剤、酸、塩、錯化剤を含有することがあり得る。金属粒子及び/又は金属イオンには、銅、アルミニウム、タングステン、基板上に電子デバイスを形成するために用いることができる他の金属が含まれることがある。
[0005]ECMP或いはCMPプロセスの使用者がこの廃液を処分することを望む場合には、これらの物質は、処分する前に除去されることを必要とする。特に、環境保護庁(EPA)は、処分する前にこれらの廃液から有害物質の除去を要求している。ある用途において、使用者は、廃液の少なくとも一部を捕捉すると共に処理システムにおいて再使用の廃液を処理することを望む場合がある。
[0006]処理廃液を処理するために幾つかのシステムが開発され、更に/又は処分する前に処理廃液から物質を除去或いは減少させるシステムが開発されてきた。しかしながら、これらのシステムは、典型的には、処理廃液が個別的な方法で処理されるような廃液の特定の一部を処理し更に/又は除去を容易にするように準備される。例えば、イオン除去は、イオン交換媒体によって得られてもよいが、廃液中の化学複合体及び/又は不溶性化合物の存在は、イオン交換を認めない。従って、廃液は、イオン交換媒体に導入する前に他の処理装置内でろ過され更に/又は前処理されなければならない。処理の他の欠点は、ツールの休止時間を増加させ更に/又はシステムの動作コストを増加させることになる、種々の個別処理デバイスへの廃液の搬送や処理間の廃液の断続的保存を要する独立型デバイス又は“オフ・ツール”デバイスである廃液処理デバイスから生じる。
[0007]それ故、研磨システムから処理廃液のユースポイント処理のための方法及び総合装置が求められている。
[0008]本発明の実施形態は、一般的には、電気化学機械的研磨(ECMP)プロセスのような基板プロセスからの研磨液の廃水を処理するための方法及び装置を提供する。一実施形態において、基板プロセスの間に生成した廃水混合物を処理する方法であって、基板処理システムからキレート化金属錯体を含む廃水を流すステップと、酸化剤と廃水とを混ぜ合わせて、遊離キレート化物質を得るステップと、廃水を有機粘土媒体と活性炭媒体に流し込み、遊離キレート化物質を除去するステップと、廃水をアニオン交換樹脂に流し込み、金属イオンを除去すると共に廃水を得るステップと、を含む、前記方法を提供する。
[0009]他の実施形態において、基板プロセスの間に生成された廃水混合物を処理する方法であって、基板処理システムからのキレート化金属錯体を含む廃水を流すステップと、有機粘土媒体と活性炭媒体に廃水を流し込み、キレート化金属錯体或いは遊離キレート物質を除去するステップと、廃水をイオン交換樹脂に流し込むステップとを含む、前記方法を提供する。
[0010]酸化剤が、過酸化水素或いはオゾンを含有してもよく、廃水から分離された或いは廃水と組み合わせた紫外線放射によって放射されてもよい方法を提供する。一実施形態において、廃水は、有機粘土媒体に流し込まれ、続いて活性炭媒体に流し込まれる。他の実施形態において、廃水は、活性炭媒体に流し込まれ、続いて有機粘土媒体に流し込まれる。他の実施形態において、廃水は、有機粘土媒体と活性炭媒体の組み合わせに流し込まれる。一実施例において、廃水は研磨溶液を含有し、キレート化金属錯体は、銅とEDTAを含有する。廃水が基板処理システムから流れているゆすぎ水から分離を保っていてもよく、廃水が廃水と酸化剤とを混ぜ合わせる前にフィルター媒体によってろ過されてもよい方法を更に提供する。
[0011]他の実施形態において、基板プロセスの間に生成された廃水混合物を処理するための装置であって、基板処理システムと結合するように構成されたコンジットシステムと、コンジットシステムに結合し且つ酸化剤供給源と液体が連通している酸化剤セルとを含む、前記装置を提供する。装置は、更に、コンジットシステムに結合し、有機粘土媒体を含む有機粘土フィルターセルと、コンジットシステムに結合し、活性炭媒体を含む活性炭フィルターセルと、コンジットシステムと結合し、アニオン交換樹脂を含む樹脂カラムを含有する。一実施例において、フィルター媒体は、コンジットシステムに結合し、基板処理システムと有機粘土フィルターセルの間で液体が連通していてもよい。他の例において、紫外線源は、酸化剤供給源或いは酸化剤セルを放射するように構成されている。他の例において、酸化剤セルは、有機粘土フィルターセルから上流に位置決めされていてもよい。他の例において、有機粘土フィルターセルは、活性炭フィルターセルから上流に位置決めされていてもよい。
[0012]本発明の上記特徴が詳細に理解され得るように、上で簡単にまとめられた本発明のより具体的な説明は、実施形態によって参照されてもよく、これらの一部は添付の図面に示されている。しかしながら、添付の図面は、本発明の典型的な実施形態のみを示すので、本発明の範囲を制限するとみなすべきではなく、本発明が他の等しく有効な実施形態を含んでもよいことは留意すべきである。
図1は、処理システム100を示す平面図である。 図2は、研磨ステーションの一実施形態を示す断面図である。 図3は、ユースポイント処理を示す概略図である。 図4は、イオン交換装置の一実施形態を示す断面図である。 図5は、研磨液処理サイクルの一実施形態を示すフローチャートである。 図6は、研磨液処理サイクルの他の実施形態を示すフローチャートである。
[0019]理解を容易にするために、可能であれば、図に共通している同一の要素を指定するために同一の符号が用いられている。一実施形態に開示された要素は、個々に示すことなく他の実施形態に有益に用いることができることが企図されている。
詳細な説明
[0020]本発明の実施形態は、一般的には、研磨モジュールに用いられる処理液及び/又は電気化学機械的研磨(ECMP)プロセスのような一つ以上の研磨ステーションを持つ基板処理システムを処理するための方法及び装置を含む。本明細書に記載される実施形態は、また、電気化学めっき(ECP)プロセスにおいて使用済み処理液を処理するために実施されてもよい。使用済み処理液の選択された部分、或いは廃液は、液体が処理されることになるユースポイント(POU)処理ユニットに分配されてもよい。
[0021]図1は、基板の特徴部側から物質を除去するように適合された処理システム100の一部の一実施形態を示す平面図である。一実施形態において、システム100は、半導体基板を平坦化或いは研磨するように構成されており、一般的には、その中に配置された一つ以上の研磨ステーション120A-120Cを含む、研磨モジュール108を含む。各研磨ステーション120A-120Cは、研磨物質125を支持するプラテン130を含む。処理中、基板は、基板キャリアヘッド124によって研磨物質125に押し付けられ、プラテン130は、基板と研磨物質125の間の相対的な研磨動作の少なくとも一部を与えるように回転させる。基板は、回転可能でインデックス付け可能なフレーム構造105に配置されている、キャリアヘッド124におけるステーションの間に搬送される。
[0022]図1に示される実施形態において、研磨モジュール108は、第一研磨ステーション120Aと、第二研磨ステーション120Bと、第三研磨ステーション120Cとを含んでいる。一つの作用的用途において、基板上に配置される導電物質の大部分の除去は、第一研磨ステーション120AでECMPによって行われるのがよい。第一研磨ステーション120Aにおける大部分の物質除去後に、残存する導電物質を多段階ECMPプロセスによって第二研磨ステーション120Bにおいて基板から除去し、ここで、多段階プロセスの一部は、残りの導電物質を除去するように構成されている。第三物質除去プロセスは、基板上に配置されたバリア物質を除去するように構成されたCMPプロセスであるのがよい、第三研磨ステーション120Cで行われてもよい。システム100は、ECMPプロセスを行う二つのステーションと、CMPプロセスを行う一つのステーションを持つように記載されているが、ステーション120A-120Cは限定せずにいずれかのプロセスを行うように構成されてもよいことが企図される。本明細書に記載される実施形態から利益を得るように適合されていてもよい処理システムとしては、カリフォルニア州サンタクララにあるAppliedMaterials社から入手できるREFLEXION(登録商標)、REFEXION(登録商標)LK、REFLEXION(登録商標)LKECMPTM、MIRRA MESA(登録商標)研磨システムが挙げられるが、他の研磨システムが用いられてもよい。他のタイプの処理パッド、ベルト、平坦化ウェブ、又はこれらの組み合わせを用いるものと、回転運動、線形運動或いは他の平面運動で研磨面に相対して基板を移動させるものを含む、他の研磨モジュールもまた、本発明の実施形態から利益を得るように構成されていてもよい。
[0023]コントローラ110は、システム100のモジュールの制御と統合を容易にするように提供されている。コントローラ110は、中央処理装置(CPU)と、メモリと、支持回路を備えるのがよい。コントローラ110は、システム100によって容易にされ更に/又はシステム100に設けられる、例えば、研磨プロセス、洗浄プロセス、再循環プロセス/修復プロセス、搬送プロセスの制御を容易にするためにシステム100の種々の要素に結合するのがよい。
[0024]研磨液は、各プラテン130に隣接して配置されたノズル115によって研磨物質125の少なくとも上面に供給され、各プラテン130は、研磨を増強し更に/又は基板から物質を除去する異なる流体を必要とする場合がある。例えば、研磨ステーション120Aと120Bは、ECMPプロセスを容易にする特性を持つ研磨液を必要とする場合があり、研磨ステーション120Cは、CMPプロセスを容易にする特性を持つ研磨液を必要とする場合がある。
[0025]図2は、研磨ステーション120Bの一実施形態を示す断面図である。研磨ステーション120Bは、研磨物質125がその中に配置されたプラテンアセンブリ230を含む。研磨ステーション120Bは、また、キャリアヘッド204に保持される基板122が、処理中、研磨物質125の処理面218に対して配置されることになるように、研磨ステーション120Bに向かって作動させることができるキャリアヘッド204を持つキャリアヘッドアセンブリ124を含む。
[0026]一実施形態において、研磨物質125は、CMPプロセス或いはECMPプロセスに適合された処理パッドアセンブリ222を備えている。処理パッドアセンブリ222は、単一層であってもよく、硬さ或いは柔軟性のために構成された種々の層の積み重ねられた配置を含んでもよい。処理パッドアセンブリ222は、誘電物質、導電物質、又はこれらの組み合わせから作られていてもよい。処理パッドアセンブリ222の少なくとも上面は、ECMPプロセス或いはCMPプロセスに適合された導電物質或いは研磨物質から作られてもよい粒子250を含む場合がある。一用途において、処理パッドアセンブリ222は、入れ替え可能であり、磁力、真空、ファスナー、クランプ、接着剤等によってプラテンアセンブリ230に保持されてもよい。
[0027]CMPプロセス用の処理パッドアセンブリの場合には、処理パッドアセンブリ222は、ポリウレタン、ポリカーボネート、フッ素重合体、PTFE、PTFA、ポリフェニレンスルフィド(PPS)、又はこれらの組み合わせと、基板表面の研磨に用いられる他の研磨物質のようなポリマー材料から作られてもよい。ECMPプロセス用の処理パッドアセンブリの場合には、処理パッドアセンブリは、少なくとも部分的に導電性である上面を含んでもよい。上面は、導電粒子がその中に配置された導電性ポリマー或いは誘電体ポリマーから作られていてもよい。上面は、プラテンアセンブリ230により密接に近接している、電極上に配置されてもよい。上面と電極の間に絶縁層を配置して、上面と電極の電気的分離を容易にすることができるが、通路210は、上面から電極まで形成されて、電解特性を有する処理液によって上面と電極の間に電気的連通を容易にする。本発明の実施形態から利益を得るように適合される場合がある処理パッドアセンブリの例は、2003年6月6日に出願され、米国公開第2004-0020789号として公開された共同譲渡された米国特許第6,991,528号と米国出願第10/455,895号に記載され、これらのいずれもが本明細書に全体で援用されている。
[0028]基板122の処理を容易にするために用いられる研磨液214は、処理パッドアセンブリ222の上面にノズル115によって供給されるのがよい。過剰の或いは使用済みの研磨液214は、研磨液214の一部をドレイン226にチャネルで導く、プラテンアセンブリ230を囲むエンクロージャ内に含有されてもよい。ユースポイント(POU)処理ユニット275は、コントローラ110からの命令に基づいて、POU処理ユニット298と、研磨ステーション120Bと、研磨液供給源248の内外に液体214の流れを制御するために開閉することができる、多数のバルブ296によってドレイン226に結合されてもよい。以下により詳細に説明されるように、POU処理ユニット275は、研磨ステーション120Bに用いられる研磨液214の減少或いは再循環のために、改善、解析、薬品注入、及びこれらの組み合わせをするように構成されていてもよい。使用者の選択、或いは分析結果のような因子に基づいて、POU処理ユニット275は、研磨ステーション120Bに流体を再循環させてもよく、バルブ249を通ってドレインに処理された液体を放出させてもよい。使用し処理することができる研磨液の配合と組成の例は、米国特許第6,899,804号と同第6,863,797号、及び2005年5月5日に出願され米国公開第2005-0218010号として公開された米国出願第11/123,274号に開示され、これらの開示内容は本明細書に全体で援用されている。
[0029]研磨プロセスが完了する間或いは完了した後に、処理パッドアセンブリ222及び/又はプラテンアセンブリ230は、純水で洗浄されてもよい。研磨液と混合される場合には、純水は研磨液を希釈し、処理すべき研磨液の容量を増加させる。純水と研磨液とを混合する場合には、純水は、研磨液から分離する必要がある場合がある。純水は、透析、逆浸透、揚水抜気のようなプロセスを用いて研磨液から分離されてもよい。研磨液希釈を避けるために、研磨液とすすぐ純水が、別々のドレインを通って研磨ステーションを排出するように別々のドレインが設けられてもよい。研磨ステーション120Bと結合したコントローラは、ゆすぎ純水が適切なドレインを通って排出し且つ研磨液が適切なドレインを通って排出することを確実にするために適切な時間に適切なバルブが開放することを確実にすることができる。
[0030]一実施形態において、研磨液とゆすぐ水は、同じドレインに流れ込んでもよく、これはドレイン226であってもよい。従って、ゆすぐ水は、使用済み研磨液がドレインに流れるときに、ドレインに存在することがある。使用済み研磨液ができる限りゆすぐ水を含まないことを確実にするために、使用済み研磨液の選択された部分(即ち、純粋留分)を研磨ステーション120Bから排出された研磨液から取るのがよい。使用済み研磨液は、三つの別々の部分に分けることができる。第一部分は、ゆすぎ水が流し込まれた排水コンジットを通過するステーションから排出される最初のECMP液である。残りのゆすぎ水がコンジット内に存在することがあることから、第一部分は過剰なゆすぎ水を持つことがある。第二部分は、ステーションから排出されたECMP液の最後の部分である。ECMP液が排出されるにつれて、ゆすぎ水が基板処理能力を加速し始めることになる。このようにして、ゆすぎ水はステーションから排出する最後の部分に存在することが可能である。第三部分は、ECMP液の残存する部分である。言い換えると、選択された部分である第三部分は、ドレインに入る第一部分とドレインに入る最後の部分の間の部分である。第三部分或いは選択された部分は、少なくともゆすぎ水がその中に存在するようであるECMPステーションから排出される使用済みECMP液の部分である。
[0031]図3は、基板処理液の減少及び/又は再循環を与えるように構成されたPOU処理ユニット275の断面図である。POU処理ユニット300は、貯蔵タンク336を備えてもよく、ここで、キレート化金属錯体を含む使用済み研磨液の少なくとも一部を含む廃液が処理システム100から集めることができる。使用済み研磨液は、タンク336に入る前にバルブ321にフィルター媒体セル340まで流し込まれてもよい。フィルター媒体セル340は、研磨副生成物、例えば、処理パッドアセンブリの除去部分、裂けた部分、又は使用済み部分のような微粒子、及び/又は使用済み研磨液からの研磨粒子を除去するように適合されている。一実施形態において、フィルター媒体セル340は、サイズが約100μm〜約300μmの穿孔を持つフィルター要素を含み、サイズが少なくとも約100μmの微粒子物質を除去するように適合されている。他の実施形態において、フィルター媒体セル340は、サイズが少なくとも約100μmの微粒子物質を除去するように適合された砂媒体を備えている。更に他の実施形態において、フィルター媒体セル340は、サイズが少なくとも約100μmの微粒子物質を除去するように適合された複数の微細孔フィルターカートリッジを備えている。
[0032]その中に廃液314を持つタンク336は、処理システム100からの廃液314の流れをユースポイント処理するように構成される幾つかの分離しているが統合されたデバイスに結合している。従って、処理システム100とタンク336は、前処理デバイス370と、測定デバイス380と、薬品注入デバイス390A、390Bに結合している。ある実施形態において、フィルター媒体セル340は、前処理デバイス370の不可欠な部分である。一旦使用済み研磨液がタンク336に入ると、廃液314は、再循環するデバイス370、380、390A、390Bの一つ又は全部を進んでもよく、これらによって作用させてもよく、処理システム100に廃液314の少なくとも一部を戻してもよい。廃液314は、処理システム100においてECMP研磨液或いはCMP研磨液として用いられる物質を含有することがあり、廃液314の少なくとも一部は、ECMP研磨液或いはCMP研磨液として用いられるシステム100に戻ることができる。ある実施形態において、廃液314は、CMP研磨液として処理システム100において用いられてきてもよく、廃液314の少なくとも一部は、ECMP研磨液として処理システム100に戻り、或いは逆もまた同様である。ポンプデバイス(図示せず)は、POU処理ユニット275のコントローラ110と種々のコンジットに結合して、その中の液体の流れを確実にすることができる。コントローラ110は、POU処理ユニット275のバルブ311、312、313、315、316、321、323、327と電気的に結合して、その中の液体の流れを制御することができる。
[0033]前処理デバイス370は、タンク336を第一セル342、第二セル344、酸化剤セル346に、更に必要により酸化活性化ソース348に、選択的に結合する種々のバルブ312を含む。ある実施形態において、前処理デバイスは、また、再生廃液タンク352に結合されるイオン交換装置350を含んでもよい。バルブ312の一部は、廃液314が前処理デバイス370の要素のすべて、又はその選択された部分に、任意の順序で、単独か或いは組み合わせて流し込むことができるように、前処理デバイス370の一つ以上の要素にタンク336を結合する。
[0034]測定デバイス380は、ラマン分光計322、紫外線可視分光計324、赤外分光計、近赤外分光計328、屈折率測定ソース330、流体導電性測定ソース332、pH測定ソース334を含んでもよく、これらはバルブ323によって選択的に結合される。他の実施形態において、測定デバイス380にガスクロマトグラフィーシステム或いは質量分析計が結合していてもよい。タンク336と前処理デバイス370は、廃液314が前処理デバイス370のいかなる部分に流れ込んでもよく、前処理デバイス370をバイパスして測定デバイス380に直接流れてもよいように、バルブ312の一部によって測定デバイス380に選択的に結合される。
[0035]薬品注入デバイス390Aは、促進剤供給源304、阻害剤供給源306、界面活性剤供給源308、湿潤剤供給源310、酸供給源318、塩基供給源320、又は研磨液の修復に有用で必要であると考えられるいかなる他の化学成分を含んでもよい。薬品注入デバイス390Aの各要素は、バルブ327によって選択的に結合することができる。測定デバイス380から取られる測定に基づいて、これらの化学成分の一つ以上は、薬品注入デバイス390Aによって廃液314の選択された部分に加えることができる。或いはまた、測定デバイス380からの測定によって、流体が再循環可能ではないことが示され;流体は、バルブ311の作動によってシステムから排出することができる。再循環できない廃液が排出されるので、廃液は実質的に金属粒子も金属イオンも含まず、廃液の安全な処分を容易にすることができる。
[0036]任意の薬品注入デバイス390Bは、また、バルブ315によってタンク336に、又はバルブ313及び/又は316によって処理システム100に結合される一つ以上のコンジットに結合してもよい。薬品注入デバイス390Bは、未使用研磨液をタンク336に及び/又は処理システム100につながるタンク336の排出口に薬品注入するように適合された未使用研磨液供給源302を含む。未使用研磨液は、測定デバイス380からの測定に基づく量で処理後に廃液314の選択された部分と混合してもよく、或いは未使用の研磨液は所定の量で混合されてもよい。コントローラ100は、測定デバイスとバルブ327、313、及び/又は315と電気的に結合して、測定が行われるときに、たとえ測定が行われるとしても、研磨液に薬品注入された各成分の量、廃液314の選択された部分に加えられた未使用の研磨液の量、処理システム100に再循環された修復された研磨液の量を制御することができる。
[0037]前処理デバイス370の第一セル342と第二セル344は、廃液314中のキレート化金属錯体から有機分子を除去し更に/又は分解するように構成されている。一実施形態において、第一セル342は、有機粘土媒体或いは有機粘土物質を収容する容器を含む。容器は、タンク或いはエンクロージャであってもよく、簡単に交換されるカートリッジタイプのデバイスを含む。しばしば有機質粘土と言われる有機粘土としては、第三級アルキルアンモニウム分子で変性されるシリカモンモリロナイト層状鉱物、又は変性ベントナイト及び/又は第四級アミンで変性されている無煙炭粘土やベントナイト粘土が挙げられる。有機粘土は、廃液314から炭素含有物質の少なくとも一部を除去するように適合されている。一実施形態において、第一セル342は、有機粘土の容積を廃液314から除去すべき有機物質2.0ポンドに対して0.1ポンド毎につき約1.0ポンドの割合で含む。
[0038]前処理デバイス370の第二セル344もまた、廃液314から炭素含有物質だけでなくハロゲン化学種を除去するように適合されている。一実施形態において、第二セル344は、活性炭媒体或いは活性炭物質を収容する容器を備えている。容器は、活性化炭素を収容するタンク或いはエンクロージャであってもよく、或いは簡単に交換されるように適合されたカートリッジタイプのデバイスであってもよい。活性炭物質は、結合部位として機能する木炭の表面上に何百万もの微細孔を持つ含酸素木炭であってもよい。一実施形態において、活性炭は、約300m/g〜約2,000m/gの表面積を含む。一適用において、活性炭は、約500m/gを超える、例えば、約1,000m/gを超える表面積を持つ。一実施形態において、活性炭の平均細孔サイズは、約1fm〜約25fm、例えば、約15fm未満など、例えば、約10fm未満である。
[0039]他の実施形態において、単一収容が第一セル342と第二セル344の双方に用いられるように、第一セル342か又は第二セル344が有機粘土と活性炭の混合物を含む。単一収容は、双方の媒体を収容するタンク或いはエンクロージャを含んでもよく、或いはその中に配置された二つの媒体を持つ一つ以上のカートリッジデバイスを含んでもよい。
[0040]酸化剤セル346もまた、有機物質を除去し更に/又は廃液314中のキレート化金属錯体を分解するために単独で又は第一セル342と第二セル344のどちらか或いは双方と組み合わせて用いることができる。酸化剤セル346は、酸化剤又は還元剤を収容し更に/又は分配するように適合された容器を含む。容器は、また、熱源(図示せず)を含んでもよく、更に負圧又は正圧に耐えるように変更されてもよく、これらは、真空源又はコンプレッサ(共に図示せず)によって与えることができる。
[0041]一実施形態において、酸化剤セル346は、酸化剤供給源347から廃液314に酸化剤を供給する。酸化剤供給源347は、過酸化水素(H)、オゾン(O)、パーマグネイト(MnO )、硝酸、又は他の酸化剤のような酸化剤を含有するのがよい。過酸化水素を用いて、二硫化炭素、炭水化物、有機リン酸エステル、窒素化合物、及び種々のポリマーや炭化水素を加水分解することができる。触媒作用による過酸化水素は、フェノール、溶媒、可塑剤、キレート化剤、また、廃液314中に存在する実質的にすべての他の有機分子を除去する。酸化剤セル346と過酸化水素を用いて行われた試験結果は、全有機炭素(TOC)レベルが40%の減少を示した。更に、処理前後のガスクロマトグラフィー(GC)試験から、有機ファウラントのピーク強度の約70%の減少が得られた。
[0042]酸化剤セル346が、酸化剤を供給して有機物質を最少限にするように記載してきたが、還元剤、例えば、重硫酸塩化合物など、例えば、重硫酸ナトリウム(NaHSO)を廃液314に供給することも企図される。重硫酸ナトリウムは、銅とキレート剤の間の結合をゆるくする働きをする。更に、酸化剤セル346は、第一セル342と第二セル344のいずれか或いは双方と連通して廃液314流に酸化剤を供給することができる。
[0043]必要により、酸化剤セル346は、酸化活性化ソース348と連通し且つ組み合わせて用いてもよい。酸化活性化ソース348は、放射線源或いは触媒源を含んでもよく、これらは密封可能なエンクロージャに配置されてもよい。放射線源は、廃液314にUVエネルギーを与えるように適合される紫外光(UV)処理モジュールであってもよい。一実施例において、酸化剤セル346は、廃液314に過酸化水素を供給することができ、過酸化水素と廃液の混合を可能にする時間の後、UVエネルギー源を廃液314に進め、過酸化水素を活性化させる。この手順は、廃液314流においてより大きい有機分子を分解するように作用する。一実施形態において、廃液314への過酸化水素の添加と活性化ソース348にさらす間の時間は、約1秒〜約5秒である。
[0044]酸化活性化ソース348は、また、フェントン反応において酸化触媒を与える触媒表面を含むことができる。触媒表面は、金属プレートを含み、廃液314流は、Hのような酸化剤が廃液314流に添加された後に、プレートの上を流れるように適合される。廃液314は、加熱されたコンジットによって、酸化剤セル346に不可欠な、或いは酸化剤セル346と結合した加熱素子を加熱するか、又はこれらの組み合わせによって加熱されてもよい。酸化剤セル346と酸化活性化ソース348の一つ或いは双方に負圧を与えて、触媒反応を容易にすることができる。一実施形態において、廃液314の温度は、約100℃であってもよく、少なくとも酸化活性化ソース348の圧力は、約1ATMを超えてもよい。フェントン触媒過酸化水素を用いた試験結果から、TOCによる有機物質は70%の減少が得られた。更に、処理前後のGC試験から、有機ファウラントのピーク強度のほぼ完全な消滅と生成物による有機酸の増加分が得られた。
[0045]いかなる単一セル(342、344、346)も或いはセル(342、344、346)の組み合わせを用いて、任意の順序で廃液流を処理することができる。例えば、廃液314の流れをバルブ312の一部によって制御することができるので、第一セル342と、第二セル344と、酸化剤セル346は、一緒に又は別々にさせて、廃液314からの有機物質を除去し、更に/又は廃液314中のキレート化金属錯体を分解することができる。酸化剤セル346は、また、単独で、或いは第一セル342と第二セル344のいかなる組み合わせとも組み合わせて用いることができる。更に、廃液流の流路の順序は、図3に示される実施形態に限定されない。一旦実質的にすべての有機物質が、第一セル342と、第二セル344と、酸化剤セル346の一つ又は組み合わせによって除去されると、廃液から金属イオンを除去するイオン交換装置350に廃液314を流すことができる。イオン交換装置350に導入する前に廃液314を前処理すると、銅のような金属イオンのイオン交換装置350の能力を低下させる可能性があるイオン交換装置350への有機分子とファウラントの導入を防止するか又は最少限になる。
[0046]図4は、イオン交換装置350の一実施形態の断面図である。イオン交換装置350は、一つ以上のイオン交換カラム402A、402Bを含み、廃液314を処理するPOU廃液処理システムを設け、更に/又は研磨液再循環プロセスのイオン除去を与えるために使用できる。イオン交換装置350は、完全に使われていない“リード・ラグ”構成を用い、複数のカラム402A、402B、典型的には2〜6カラムを用いて、維持のためのダウンタイムがほとんど又は全くない、実質的に連続した廃液処理及び/又は再循環を与える。図示された変形例において、イオン交換装置350は、各々が一組の二つのタンク404A、404Bと404C、404Dを含むそれぞれ二つのイオン交換カラム402A、402Bを持つ。各タンク404A-404Dは、それぞれ、底部拡散器を持つ下位ポートと最上部拡散器を持つ上位ポートを有する。タンク404A-404Dは、各々、廃液314中の金属又は他の有害なイオンを無害なイオンに交換することができる樹脂ビーズ406A-406Dを含むイオン交換樹脂床405A-405Dを含有する。タンク404Aとタンク404Cにおいて、下位ポート410A、410Cと底部拡散器418A、418Cは、それぞれチューブ442A、442C内にあり、タンク内に伸びており、樹脂ビーズ406A-406Cを含有するように構成されている。
[0047]タンク404A-404Dのそれぞれにおける樹脂ビーズ406A-406Dは、廃液314の組成、特に廃液314に存在することがある金属イオン、キレート化剤、有機ファウラントの存在に基づいて選択されるイオン交換樹脂物質を含む。例えば、樹脂ビーズ406A-406Dは、銅、コバルト、タングステン、他の金属のような具体的なイオンを廃液314からの除去することを高め或いは妨げることができる特性を持つように選択されたイオン交換物質を含むことができる。一用途において、金属イオン錯体を含有する廃液314流は、負電荷分子と金属錯体を捕捉することができるアニオンイオン交換樹脂ビーズを用いて処理される。エポキシポリアミン縮合によって形成することができるアニオン交換樹脂ビーズは、遷移金属イオンをキレート化する多座配位子(multidentate ligand)を含むので、優先的に、EDTA-金属イオン錯体のようなキレート化金属錯体からの金属イオンを除去するか又はキレート化金属錯体の形成を防止する。
[0048]多座配位子は、分子が幾つかの単一金属イオンに結合することができる配位子である。適切な多座配位子は、R-NH(CH) やNR のようなアミン配位子、カルボキシレート多座配位子、ヒドロキシル多座配位子を含む。廃液314は、約30秒〜約10分間、樹脂床のアニオンイオン交換樹脂ビーズにさらされる。樹脂ビーズは、1サイクルにつき銅のような抽出された金属の約0.1kg〜約5kgのイオン交換容量を持つことが望ましい。
[0049]一実施例において、アミン多座配位子を含むアニオンイオン交換樹脂は、正電荷を持つ弱塩基ゲルタイプ樹脂であり、Resin, Tech、米国ニュージャージ州ウェストベルリンから入手できるRESINTECHTMWBG30-Gのようなエポキシポリアミン縮合によって製造されたエポキシポリアミン縮合樹脂を含む。しかしながら、これは、単に、適切な樹脂の一実施例であり、DowChemicals,Bayer、又はRohm&Haasによって製造された他の樹脂も当業者に明らかであるように適切である。
[0050]アミン多座配位子を含むアニオン交換樹脂は、ビスピコリルアミンを含み且つ遷移金属イオンと強い結合を形成するアミン多座基を持つ樹脂を含む。多座アミノ基を有する適切なビスピコリルアミン樹脂は、マクロ多孔性でありビスピコリルアミンを含有するスチレンDVBである、DOWEXTMM4195キレート化樹脂である。DOWEXTM M4195は、一般に認められるように硫酸によって部分的に四級化される特別なキレート化アミン配位子に基づいている。この結合体において硫酸塩が形成される場合、樹脂は、十分に膨潤し水和され、廃液流から金属イオンを取り除く準備ができている。特に銅のキレート化樹脂として適切であり、約35Lpm〜約42Lpmの廃液流量の場合、廃液溶液pH約2で負荷する銅約6グラム/Lを与えることができる。
[0051]アニオンイオン交換樹脂は、流出溶液から遷移金属イオンを除去するときに幾つかのユニークな利点を持つ。例えば、アニオン交換樹脂は、遷移金属を含有するアニオン有機金属錯体、特にEDTA銅錯体が高効率で廃液から除去されることを可能にする。アニオン交換樹脂は、また、EDTA銅錯体だけでなく、他の有機金属錯体を除去する。予想外に、アニオンイオン交換樹脂は、更に、有機酸や錯形成剤を除去する利点を持ち、毒性の銅やイオン交換プロセスから下流で他の処理を破壊することができる他の物質を含まない処理された廃液を与える。更にまた、ECMPのような基板処理プロセスからの廃液は、錯化銅イオンだけでなく、液体の緩衝化に関与する圧倒的多数の負に荷電した化学種をしばしば持つ。有利には、アニオンイオン交換樹脂は、ECMP処理溶液に用いられるpH値で負に荷電しているEDTA錯体や他の錯体化合物の形で銅を除去しつつ、これらの液体の緩衝容量を破壊するためにこれらの化学種をトラップする。Cu-EDTA化合物は、アニオンイオン交換樹脂によって除去することができる二重の負の錯体として存在する。
[0052]アニオンイオン交換樹脂がH2L-、HL2-、L3-としてクエン酸アニオンを捕捉し、それにより、これらの化合物を廃液から除去することから、更に他の利点が生じる。ECMP廃液は、廃液に存在する遷移金属イオンとクエン酸錯体を形成する有意量のクエン酸アニオンを含有する。これらは水において望まない生体成長を促進させることになる生体成長のソースとして働くので、下水道にこのようなクエン酸錯体を放出することは望ましくない。
[0053]更に他の変形例において、銅のような二重に荷電された遷移金属カチオンを捕捉する選択的なカチオンイオン交換樹脂を用いて、廃液流から銅を除去する。この変形例において、アニオン交換樹脂ビーズとカチオン樹脂ビーズの組み合わせを用いて、一イオン交換システムにおいて、また、一サイクルにおいて潜在的に有害な有機物質と銅イオンの双方を除去する。アニオンビーズとカチオン樹脂ビーズは、異なるタンクにおいて別々の或いは分離された樹脂床に維持することができ、或いは単一の混合樹脂床に混ぜ合わせることができる。
[0054]一実施形態において、タンクの大きな封入容積を樹脂ビーズで充填する樹脂床が流動化樹脂床より良好なイオン交換を与えることが決定された。従来、タンクの典型的には約60%未満の小さい容積を樹脂ビーズで充填して、樹脂ビーズを流動化させて、樹脂ビーズの運動と回転がより良好でより一貫したイオン交換を与えるとされることを可能にする流動化樹脂床を形成する。また、多くの樹脂ビーズは、水と接触する際に膨潤し、タンク内に比較的小さな容積の樹脂床を持つことにより水と接触する際に膨張する。
[0055]しかしながら、直感的に対抗して、イオン交換タンクの封入容積内の樹脂床が、例えば、タンクの封入容積の少なくとも約75%の容積を充填するのに充分なより多量のアニオン交換樹脂ビーズを含有する場合に最適な結果が得られた。このことは、樹脂床のより大きな充填容積が上流方向に(重力に対抗する上向きの流れ方向に)タンクを通過する廃液の上方への圧力の結果として互いに、また、上位拡散器に対して強固に充填することを可能にしたためである。
[0056]強固に充填された樹脂床は、また、床内の樹脂ビーズを通って廃液314のより複雑で入り組んだ流路を生成させる。路程の増加と樹脂ビーズのより大きな全表面積にさらすことにより、廃液から遷移金属イオンがより効率的に抽出する。更にまた、タンク内により大きな充填容積を持つ樹脂ビーズを形成する樹脂ビーズの充填が、処理された廃液内にあらかじめ生じた金属イオン含量の散発的な変化を効果的に減少させることが決定された。樹脂床の過度の流動化によって、その特定の時間にタンクを通る短流路を生成する樹脂ビーズの不規則に生成された位置が生じることが推測される。廃液の少なくとも一部が樹脂床に急速に流れ込むことを可能にする、樹脂ビーズを通る非常に短い流路長が形成すると、廃液流内の遷移金属イオンを完全にイオン交換せずに、この廃液がタンクを通って運ばれる。より多量の樹脂ビーズもまた、非常に大きな全イオン交換容量の利点を加えた。また、樹脂床を通る基板処理廃液314の上向流によって、基板処理廃液108に存在することがあるいかなる粒子も析出し重力のために下向きに流れることが可能になる。
[0057]しかしながら、樹脂ビーズの膨潤が樹脂床内に用いられる場合、樹脂ビーズを互いに粉砕させ、それにより、ビーズを通る廃液の通過を防止させることができるように、樹脂床は封入タンクを完全に充填すべきではない。従って、樹脂床は、タンクの封入容積の約90%未満の容積を充填するのに充分な量の樹脂ビーズを含有すべきである。このことにより、タンクの封入容積内に廃液の流れの方向によっては、樹脂床の上又は下に少なくとも約10%のタンクの空き容積が生じる。空き容積は、膨張する樹脂ビーズの膨潤を可能にし、また、樹脂ビーズを通る廃液流の通過によって引き起こされる樹脂ビーズのある運動を可能にした。タンクの全容積は、典型的には、少なくとも約2ft、より典型的には約1ft〜約4ftである。タンクはポリエステルから作られており、Pentairof GoldenValley、MNが提供した。
[0058]図4に示されるイオン交換タンク404A-404Dのすべて又はいずれかの使用の他の実施形態において、廃液314は、下向流方向で(重力で下向きの流れ方向で)タンクを下向きに通過することができる。この変形例は、廃液が多量の固体微粒子を含有しない場合に有用である。例えば、電気化学めっきプロセス(ECP)からの廃液314は、微粒子をほとんど又は全く持たず、実質的に金属イオンと有機物から構成されるだけである。この用途において、イオン交換タンクは、また、例えば、タンクの封入容積の少なくとも約75%の容積を充填するのに充分な、より多量のアニオンイオン交換樹脂ビーズを含有することができる。しかしながら、廃液の下降流は、樹脂ビーズが底部拡散器に強固に充填されている樹脂床を形成するように重力と共に作動させる。充填された樹脂床は、樹脂ビーズのより大きな全表面積をさらす樹脂ビーズを通って廃液の更により複雑な流路を生成し、廃液から遷移金属イオンの良好な抽出を与える。より多量の樹脂ビーズは、非常に大きな全イオン交換能力の利点を加える。
[0059]その他の態様と組み合わせて又は独立して使用し得る他の様態において、樹脂ビーズの単一分散を含む樹脂床は、樹脂ビーズの多分散より良好なイオン交換プロセスを与えることが決定された。単一分散は、実質的に同一のサイズ、例えば、実質的に同一の直径又は面積を有する樹脂ビーズの分散である。樹脂ビーズの分散が実質的に同一サイズの場合、ビーズをタンクの壁に対して一緒に強固に充填することができ、樹脂ビーズがすべて実質的に同一サイズであることから、樹脂ビーズ間の連続ギャップスペースが形成され、これらは実質的に一様なサイズを持っている。結果として、樹脂ビーズの単一分散を通る経路は、廃液溶液からのイオン交換抽出効率を上げる複数の均一なサイズの複雑な流路を与える。一変形例において、樹脂ビーズの単一分散は、平均直径が約0.1μm〜約10μm、又は約0.3μm〜1.0μm、例えば、約0.6μm〜約1.0μmの樹脂ビーズを含む。
[0060]イオン交換カラム402A、402Bの各々において、タンク404Aと404Cは主タンクとして働き、タンク404Bと404Dは研磨タンクとして働く。研磨タンク404B、404Dは、それぞれ、コンジット434A、434Bを経て主タンク404A、404Cの下流に位置し、液体で接続されている。このシステムにおいて、廃液314は、処理のために第一カラム402Aを通過し、第二カラム402Bは再生成され、逆もまた同様である。各カラム402A、402Bにおいて、主タンク404A、404Cは、金属又は他の望ましくないイオンの大部分を除去し、研磨タンク404B、404Dは、更に、廃液314中に存在する微量元素を除去しつつ、主タンク404A、404Cから出力された廃液314中の金属イオン濃度を一桁より大きい分だけ減少させる。研磨タンク404B、404Dと主タンク404A、404Cのシステムと合わせたカラム402A、402Bは、処理されたスラリー112中の銅の濃度を約0.5ppm未満、更に約0.2ppm未満、典型的には約0.1ppm〜約0.2ppmを示す。各カラム402A、402Bのサイクル当たりの容量は、約0.1kg〜約5kgの抽出された銅の範囲にあり、入るときの基板処理廃液314の化学とカラム402A、402Bのイオン交換容量に左右される。
[0061]イオン交換装置350は、更に、他の図面に示されている同じコントローラでああってもよく、或いはマスターコントローラにつながれたサブコントローラであってもよい、コントローラ110を備えている。例えば、コントローラ110は、制御パネル或いは制御室に遠く離れて位置し、リモートアクチュエータで制御されてもよい。コントローラ110は、マイクロコントローラ、マイクロプロセッサ、汎用コンピュータ、又は他の既知の適用できるいかなるタイプのコンピュータであってもよい。コントローラ110は、典型的には、ハードウエアとソフトウエアの適切な構成を含み、イオン交換装置350の構成要素を作動させる。例えば、コントローラ110は、メモリ及び他の構成要素に接続されている中央処理装置(CPU)を含んでもよい。CPUは、コンピュータ可読プログラムを実行することができるマイクロプロセッサを備える。メモリは、ハードディスク、光学コンパクトディスク、フロッピーディスク、ランダムアクセスメモリ、及び/又は、他のタイプのメモリのようなコンピュータ可読媒体を備えることができる。人間オペレータとコントローラの間の接合部は、例えば、モニターのようなディスプレイ445やキーボードのような入力デバイス449を介することができる。コントローラ110は、アナログやデジタル入力/出力ボード、リニアモータドライバボード、又はステッピングモータコントローラボードのようなドライブエレクトロニクスを含んでもよい。
[0062]コントローラ110を用いて、バルブを制御して、基板処理システム100から廃液を制御することができる。イオン交換サイクルの間、コントローラ110は、ポンプ446A、446Bのどちらか一つを作動させて、カラム402A、402Bのどちらか一つに廃液314の上向流を通過させて、廃液314からの金属又は他の有害なイオンを無害なイオンに交換する。
[0063]例えば、イオン交換サイクルにおいて、コントローラ110は、ポンプ446Aを作動させて、廃液314をタンク336からイオン交換カラム402Aにポンプで送ることができる。カラム402Aは、チューブ442Aを通って基板処理廃液314を受け取り、廃液314は、底部拡散器418Aを通過して、下部ポート410Aからタンク404Aに排出する。廃液314は、樹脂床405Aの樹脂ビーズ406Aを通って上向流(重力に対抗する上昇流方向)としてタンク404A全体を通過し、最上部拡散器420Aを通って上部ポート414Aから排出し、次に、研磨タンク404Bまでコンジット434Aを通過する。上向流は、樹脂ビーズが重力のためにタンク404A内で下向きに流れることを可能にしつつ、樹脂床405Aを流動化するのに充分な流量で供給して、金属イオンと樹脂ビーズ406Aのイオン交換表面の相互作用を援助する。この段階でタンク404C、404D内の樹脂ビーズによって廃液314における金属のほとんどが抽出されてもよい。
[0064]主タンク404Aに処理した後、廃液314は、その援助された下流研磨タンク404Bに移され、残留微量の望ましくないイオンと化合物を除去する。廃液314流は、底部拡散器418Bを経て下部ポート410Bを通って研磨タンク404Bへ入り、樹脂床405Bの樹脂ビーズ406Bを通って上に向かって流れ、バルブ311の動作によって排出される処理されたスラリーを取るドレインコンジット136まで最上部拡散器420Bを通って上部ポート114Bから排出される。それぞれ主タンク404A、404Cと研磨タンク404B、404Dを備える二つの異なるイオン交換カラム402A、402Bを持つことによって、カラム402Aが再生されることを必要とする場合、カラム402Bは、イオン交換のために用いられ、逆もまた同様である。カラム402Bの動作は、カラム402Aの動作と同一であり、簡潔にするために繰り返さない。
[0065]一実施例として、銅イオンを含有する基板処理廃液314は、カラム402A、402Bにおいて処理される。主タンク404A、404Cの銅の除去効率は、典型的には、約95%超えることがわかり、主タンク404A、404Cの下流に取り付けられた研磨タンク404B、404Dは、更に、銅の濃度を一桁分だけ減少させ、スラリー中の銅濃度全体が約0.2ppm未満、又は更に約0.1ppm未満になる。1サイクル当たりのイオン交換容量は、約100g〜約5kgの銅の除去を可能にし、基板プロセス廃液314の化学とタンク404A-404Dの容量に左右される。一変形例において、主タンク404A、404Bは、廃液のpHレベルを低下させ、少なくとも約0.3、より典型的には約0.4〜約0.7によって処理される。低pHレベルが、樹脂ビーズ406B-406Dのイオン交換容量を改善するので、研磨タンク404b、404Dに移されたスラリーのより低いpHレベルは、研磨タンク404B、404D内の樹脂ビーズ406-406Dが廃液314からのイオンをより効率的に抽出させることを可能にする。この方法で、全体のカラム402A又は402Bは、二つのタンクでより効率的に機能する。
[0066]コントローラ110は、処理された或いは部分的に処理された廃液314中の、銅のような高レベルの金属の検出を示す、検出器448A、448Bからの信号を受け取る際に自動的にイオン交換処理からカラム402A、402Bの再生に操作を切り替える。検出器448A、448Bは、404A-404Dの一つから出る処理流が過度に高pHレベルを持つ場合に検出するpHレベル検出器でもよい。検出器448A、448Bは、処理されたスラリー中に銅のような過度に高レベルの金属を検出する金属濃度検出器でもよい。一変形例において、検出器448A、448Bは、主タンク404A、404Cと研磨タンク404B、404Dの間に位置するので、主タンク404A、404C内の樹脂ビーズ406A、406Cの消耗は、研磨タンク404B、404D内の樹脂ビーズ406B、405Dの消耗より前に検出することができる。このことは、過度に高レベルの金属を含有する基板処理廃液が外部環境に放出される金属イオン漏出の機会を減少させるという利点を更に与える。処理されたスラリー中の銅レベルを検出するのに適切な検出器448A、448Bは、銅の比色分析器、例えば、マサチューセッツ州ローエルのGalVanicApplied Sciencesが製造したデュアルセルTYTRONICSTMモデルを含む。
[0067]一実施例において、コントローラ110は、主タンク404Aのポート414Aから出る処理廃液314において測定された銅の濃度の急な増加、例えば、一桁分の増加である、タンク404Aに流れ込む100ガロンの廃液314当たりの処理廃液中の銅濃度の約10倍の増加を検出た場合に、再生に切り替える。このとき、主タンク404Aは、再生モードに切り替えられて、タンク404A内の樹脂ビーズ406Aのイオン交換容量を再生し、廃液314は、イオン交換のために第二カラム402Bの主タンク404Cを通過する。従って、コントローラ110は、第一カラム402Aの上部ポートから出る処理廃液中の100ガロンの廃液の流れ当たり銅濃度の約10倍の増加を検出する際に第一カラムから第二カラムにスラリーの流れを切り替える。コントローラ110は、廃液が第一カラム402の主タンクから排出された後に、約0.5未満の廃液のpHレベルの変化を検出する際に第一カラム402Aから第二カラム402Bに廃液の流れを切り替えるようにプログラムすることができる。
[0068]再生モードにおいて、樹脂ビーズ406Aに取り込まれた金属イオン、例えば、銅イオンは、再生物質のpHが約0.6〜約0.8の範囲にある場合に樹脂を取り除く。再生サイクル中、コントローラ110は、ポンプ446Cとバルブを制御して、再生タンク450からの再生溶液にそれぞれのポートを経て樹脂タンク404A-404Dを通過させて、樹脂ビーズ406A-406Dを再生させる。イオン交換装置350は、タンク404A-404D内の樹脂ビーズ406A-406Dを通過させる、再生物質、例えば、希酸溶液など、例えば、水で希釈した硫酸を含有する再生タンク450を持つことができる。酸供給源(図示せず)は、再生タンク450へ追加の酸を供給してもよい。希硫酸を用いて、樹脂再生のための低pH溶液を生成させる。一実施例として、再生流量は、樹脂ビーズ406A-406Dに充分な時間を与えるように1分につき1ガロン(gpm)に設定して、金属イオンをプロトンに交換する。再生サイクルの完了時に、タンク404A-404Dを純水でフラッシュして、樹脂ビーズ406A-406Dに残存する残留酸を除去することができる。再生タンク450は、約10ガロン〜約118ガロンの容積を持つことができる。
[0069]図5は、研磨液処理サイクルの一実施形態のフローチャート500である。ステップ502において、一つ以上の基板は、図1の研磨モジュール108の研磨ステーション120A-120Cの一つ以上で処理されてもよい。504において、研磨ステーション120A-120Cの一つ又は組み合わせで用いられる研磨液は、図3に示された前処理装置370のいかなる順列をも含む、前処理装置に流されてもよい。例えば、フィルター媒体セル340、第一セル342、第二セル344、酸化剤セル346のいずれか一つ或いは組み合わせであってもよい。新しい研磨液(例えば、未使用の液体、再循環された液体、又はこれらの組み合わせ)は、リアルタイムの方法で研磨ステーションに供給されるので、研磨サイクル中、使用済み研磨液を一つ又は複数の研磨ステーションからの前処理装置370に流してもよく、或いはまた、一つ又は複数のステーションで行われた研磨サイクルが完了してもよく、使用済み研磨液は、前処理装置370に導入されるまでタンク336によって一時的に保存されてもよいことが企図されている。
[0070]ステップ506において、使用者は廃液流を減少させるべきであることを決定することができる。廃液を減少させる場合には、廃液をイオン交換装置350に流して、廃液からの金属を除去し、排出させる。また、ステップ506において、使用者が廃液を再循環させたい場合には、ステップ508は、廃液を解析用測定装置380に流すことを示している。測定装置380による解析後に、ステップ510は、廃液を再循環するか減少させるかを決定するための解析データに基づいて使用者決定を示している。減少の場合には、廃液をイオン交換装置350に流して、廃液から金属を除去し、排出させる。再循環の場合には、ステップ512は、廃液を修復用薬品注入装置390Aに流すことを示している。ステップ514は、修復された廃液が未使用の研磨液のいかなる追加部分を必要とするかについて決定を示している。肯定的であれば、薬品注入装置390Bが、処理された廃液に選択された量の未使用の研磨液を加え、処理された廃液と未使用の研磨液は、研磨モジュール108に流される。ステップ514の質問が否定である場合には、処理された廃液は、薬品注入装置390Bから液体を追加せずに研磨モジュール108に流される。
[0071]図6は、研磨液処理サイクルの他の実施形態のフローチャートである。ステップ602において、一つ以上の基板は、図1の研磨モジュール108の一つ以上の研磨ステーション120A-120Cで処理されてもよい。ステップ604は、使用済み研磨液或いは廃液をフィルター媒体セル340にろ過することを示している。ステップ606において、廃液は、図3と図4に記載されるように前処理装置370のような前処理装置へ導入される。一旦廃液が前処理装置に導入される場合には、廃液流は、ステップ608、610、612のいずれか一つ又は組み合わせに流してもよく、ステップ608は、有機粘土媒体を示し、ステップ610は、活性炭媒体を示し、ステップ612は、有機粘土と活性炭の混合物を示している。ステップ614は、ステップ608、610、612のいずれか一つ又は組み合わせに酸化剤を供給することができる酸化剤供給源を示す。廃液流がステップ606で前処理装置に流し込まれた後、廃液は、ステップ616でイオン交換媒体に流れてもよい。イオン交換媒体は、図3と図4に記載されるように構成されてもよく、ステップ620において処分するか或いはステップ618において修復するために廃液から金属イオンをスクラブするように適合されている。
[0072]別の実施形態において、一旦ECMP液がECMPステーションから除去されると、後の再循環のために貯蔵タンクに入れられてもよく、使用前に修復するためにPOU処理ユニットへ直接送られてもよい。修復されたECMP液は、同じプラテンで用いられてもよく、異なるプラテンで用いられてもよい。例えば、図1に示されるECMPツールが用いる場合、第一ECMPステーション128から再循環されたECMP液は、第二、第三ECMPステーション130、132で用いられてもよい。第二と第三のECMPステーション130、132から再循環されたECMP液は、同様の方法で用いられてもよい。一実施形態において、再循環されたECMP液は、使用済みECMP液が取り出される同じECMPステーション内で用いられる。
[0073]ECMP液は、CMPスラリーの重要な構成要素であるスラリー粒子の均一性、濃度、サイズ分布がECMP液に不可欠ではないことから、CMPスラリーより簡単に再循環させることができる。CMPスラリーにおいて、再循環されたCMPスラリーの粒子均一性、濃度、サイズ分布を未使用のCMPスラリーに充分に適合させることは難しい。注意深いろ過、銅の除去、化学的再構成は、再循環された銅CMPスラリーが未使用の銅CMPスラリーによって達成される要件を充分に満たすことを確実にする必要がある場合がある。副生成物とCMPスラリーの希釈は、再循環の能力と効果を決定する場合がある。
[0074]一方、ECMP液は、1%未満の固形分を含有してもよい。銅を研磨する場合、銅は電気化学的減めっきによるECMP液を用いて除去されるので、研磨粒子濃度、均一性、サイズ分布に左右されない。研磨の後、ECMP液は、研磨剤又は更に幾つかの研磨剤を用いたステップを含むECMPプロセス又はハイブリッドECMPプロセス後に行われる場合がある緩衝化プロセスからの高度に緩衝化された水性イオン電解液と幾つかの懸濁した固形分の混合物を含んでもよい。使用済みECMP液は、緩衝剤、阻害剤、界面活性剤、金属錯化剤、若干の銅を含有する場合がある。一実施形態において、銅の量は、約100ppm未満である。
[0075]ECMP液は、ろ過、銅の除去、化学的再構成、水除去、これらの組み合わせによって再循環されてもよい。直ちに再使用する位置によるECMPPOU処理ユニットの研磨とECMPの再循環が有益である。一実施形態において、ECMPPOU処理ユニットは、ECMPツールと結合して、使用した直後にECMP液を再循環し修復することができる。他の実施形態において、ECMP液は、現場から離れて除去されてもよく、しばらく経って同じ又は異なるECMPツールで使用するために修復され再循環されてもよい。
[0076]ECMP液中の銅の存在量を測定して、銅濃度が所定の閾値未満であるかを決定することができる。銅含量が閾値を超える場合には、銅は、イオン交換、沈殿、他の媒体への吸収、電気化学的還元等によって除去することができる。銅カチオンが捕捉され除去され、他のカチオンが残存することを確実にするために、キレート化剤及び銅特異的イオン交換樹脂を用いることができる。銅カチオン以外の追加のカチオンが除去される場合には、ECMP液の化学的構成が変化するので、再循環されたECMP液を所望のECMP液の混合物の中で用いるのに不適切になる。このような状況において、ECMP液は、追加の化学成分で薬品注入される必要があり、ECMP液を修復する。一実施形態において、カリウム含有キレート剤及び/又は緩衝剤が用いられてもよい。他の実施形態において、アンモニアキレート剤及び/又は緩衝剤が用いられてもよい。用いることができる銅特異的キレート化樹脂は、グループ1又はグループ2のカチオンの上に遷移金属イオンを取り込む樹脂を含み、ResinTech、Dow、Purolite、Bayer、Rohm & Haas等の供給業者から購入することができる。用いることができる個々の樹脂としては、イミノ二酢酸樹脂(IDA)、アミノホスホン樹脂、及びビスピコリルアミン樹脂が挙げられる。
[0077]一実施形態において、銅カチオンは、プロトンベース、ナトリウムベース、カリウムベース、又はアンモニアベースである樹脂と交換されてもよい。例えば、二つのプロトンを一つの銅2+イオンを交換することによって、ECMP液のpHが最終的には低下することになる。銅除去のイオン交換メカニズムの主要な点は、銅カチオンを交換する化学的物質が再使用されるECMP液に負に影響されないことである。
[0078]ECMP液は、液体のpHを調整することによって修復されてもよい。ECMP液のpHを測定することができ(以下に述べるように)、次に、適切な量の塩基又は酸を、所望の値にECMP液のpHを変えるようにECMP液に選択的に薬品注入されてもよい。所望の範囲内で或いは一定の値でpHの制御のためにクエン酸又はリン酸のようなpH緩衝剤を添加することは、望ましい場合がある。
[0079]一実施形態において、ECMP液は、特定の化学物質を液体に加えることによって修復することができる。促進剤、阻害剤、界面活性剤、湿潤剤、他の化学物質が、未使用のECMP液中に存在する化学特性や濃度を得ることを可能にする充分な量でECMP液に選択的に添加されてもよい。個々の成分が、未使用のECMP液中に存在する所定の化学濃度と比較して成分の測定された化学濃度に基づいて使用済みECMP液の選択された部分に選択的に添加されても、薬品注入されてもよい。一旦測定された濃度が所定の濃度と比較されると、使用済みECMP液の選択された部分に添加されるのに必要な量の化学成分がわかる。一実施形態において、測定が行われず、所定量の選択された成分が選択された部分に薬品注入される。
[0080]一実施形態において、使用済みECMP液は、所定の量の未使用のECMP液を選択された部分に添加することによって修復される場合がある。一実施形態において、未使用のECMP液は、ECMP液の測定された化学成分濃度と未使用のECMP液との比較に基づく量で選択された部分に添加することができる。未使用のECMP液は、使用済みECMP液の選択された部分に存在するいかなる銅も希釈することができ、また、更に使用するために新たな化学成分をECMP液に供給することができる。一実施形態において、測定が行われず、所定の量の未使用のECMP液が選択された部分に薬品注入される。
[0081]ECMP液に存在する成分の濃度は、ECMP再循環ステーションと統合した測定デバイスによって決定することができる。測定は、ECMP処理の前、ECMP処理の後、又はこれらの双方で行われてもよい。処理前と処理後の双方で測定することによって、ECMP液前後の状態を、流体処理の効率及び/又はECMP液の事前資格及び/又はECMPプロセスに負に影響することになるいかなる望まない化学成分もの同定を確実にするように比較することができる。プロセスの後に行われる測定は、所定の濃度と比較して、個々の成分の多くを使用済みECMP液の選択された部分にどのように薬品注入されるかを決定することができる。化学特性と行うことができる測定の例としては、総有機炭素濃度、pH、導電性、銅濃度、総懸濁固形分、濁度等が挙げられる。測定は、ラマン分光計、UV可視分光計、赤外分光計、近赤外分光計、屈折率、及び他の良く知られている測定プロセスによって行われるのがよい。
[0082]ECMP液は、再使用されるまでループ或いは代替の経路を通って再循環されてもよい。ループ又は経路の再循環において、ろ過、減少、再構成、計測、又は他のプロセスが、液体について行われ、液体の生理化学特性を最適化することができる。液体は、バッチモードで或いはタンク内で或いは連続的モードで再処理されてもよい。
[0083]一実施形態において、プロセス順序は、次のように進むことができる。基板は、少なくとも二つの別々のECMPステーションを持つECMPツール内で第一ECMPステーションの第一プラテンに最初に準備される。次に、ECMP液が、準備され、基板が大量研磨ステップにおいて研磨される。大量研磨が完了した後、使用済みECMP液が第一ECMPステーションから排出されてもよく、使用済みECMP液の選択された部分が捕捉されてもよい。第一ECMPステーションからの使用済みECMP液の選択された部分を測定して、銅濃度、汚染濃度、開始物質濃度、導電性、及び/又はpHを決定することができる。同時に、第一ECMPステーションは純水ですすいでもよい。測定の後、使用済みECMP液の選択された部分は、銅を取り除くこと、汚染物質を除去すること、ECMP液を未使用の流体で希釈すること、及び/又は使用済みECMP液の選択された部分をECMP液の個々の成分で薬品注入することによって修復することができる。次に、基板を、未使用のECMP液と第一ECMPステーションからの再循環されたECMP液の少なくとも一部が研磨のために供給される、第二ECMPステーションに移動することができる。次に、基板を研磨して、大量除去プロセスにおいて除去されなかった残留物質を除去する。第二ECMPステーションでの基板の研磨の間、他の基板は、上記のような方法で第一ECMPステーションで処理されている。第二ECMPステーションからECMP液の選択された部分は、第一ステーションからのECMP液を再循環するために用いられるのと同じPOU処理ユニットへ排出されてもよい。第二ECMPステーションからの使用済みECMP液の選択された部分は、上記のように測定され、第一ECMPステーションから使用済み液体の選択された部分と合わせることができる。その後、使用済みECMP液の合わせた選択された部分は、処理され、更に基板を処理するように、第一及び第二ECMPステーションの双方に処理することができる。
[0084]他の実施形態において、プロセス順序は、次のように進むことができる。基板は、少なくとも二つの別々のECMPステーションを持つECMPツールの第一ECMPステーションに準備されるのがよい。第一ECMPステーションは、第一ECMPステーションに準備して基板を研磨することができる。その後、使用済みECMP液の選択された部分を、POU処理ユニットに排出することができ、測定して、銅濃度、汚染濃度、出発物質濃度、導電性、及び/又はpHを決定することができる。同時に、純水を、第一ECMPステーションに準備して、第一ECMPステーションをすすぐことができる。第一ECMPステーションからの使用済みECMP液の選択された部分は、上述された方法で修復させることができる。基板は、第二ECMP液を供給して基板を研磨することができる第二ECMPステーションに移動することができる。第二ECMPステーションからの使用済みECMP液の選択された部分は、第一ECMPステーションから使用済みECMP液の選択された部分に行われるのと同様の方法で再循環することができるが、第二ECMPステーションから使用済みECMP液の選択された部分は別々のPOU処理ユニットにおいて再循環することができる。基板が第二ECMPステーションに移動される場合、他の基板は、第一ECMPステーションに準備することができ、未使用の第一ECMP液に加えて、第一ECMPステーションから再循環されたECMP液が第一ECMPステーションに供給することができる。双方の基板が処理された後、第一ECMP液は、第一ECMPステーションに再び再循環されてもよく、基板は第二ECMPステーションに移動され、そこで、再循環された第二ECMP液と未使用のECMP液の組み合わせで研磨する。
[0085]更に他の実施形態において、プロセス順序は、次のように進むことができる。基板はECMPステーションに準備されるのがよい。第一ECMP液を研磨ステーションに供給して、基板を研磨することができる。研磨の後、第一ECMP液の選択された部分は、上記のように再循環することができる第一POU処理ユニットへ排出することができる。ECMP液の選択された部分が排出された後、純水は、ECMPステーションに供給されて、ステーションをすすぐことができる。その後、第一ECMP液と異なる第二ECMP液を、ECMPステーションに供給することができ、基板を研磨することができる。その後、第二ECMP液の選択された部分は、上記のように再循環することができる第二POU処理ユニットに排出することができる。その後、基板を取り出し、ECMPステーションを再びすすぐことができる。その後、第二基板は、ECMPステーションに準備されるのがよい。第二基板は、未使用のECMP液と再循環されたECMP液で研磨することができる。使用済みECMP液の選択された部分は、ECMPステーションから排出され、上記のように再循環されてもよい。ECMPステーションは、純水を用いてすすぐことができる。次に、基板を、未使用の第二ECMP液で研磨し、第二ECMP液を再循環することができる。次に、使用済みECMP液の選択された部分が排出され、上記のように再び再循環することができる。
[0086]更に他の実施形態において、プロセス順序は、次のように進むことができる。基板は、ECMPステーションに準備されるのがよい。第一ECMP液を、ECMPステーションに供給して、基板を研磨することができる。研磨後、第一ECMP液の選択された部分は、POU処理ユニットに排出させることができ、そこで、上記のように再循環されて、第二ECMP液の特性を適合させることができる。ECMP液の選択された部分が排出された後に、純水をECMPステーションに準備して、ステーションをすすぐことができる。その後、第一ECMP液と異なる第二ECMP液を、再循環されたECMP液と共にECMPステーションに供給されて、基板を研磨することができる。その後、第二ECMP液の選択された部分を、POU処理ユニットへ排出させることができ、そこで、上記のように再循環されて、第一ECMP液の特性を適合させることができる。その後、基板を取り出すのがよく、ECMPステーションを再びすすぐのがよい。次に、第二基板をECMPステーションに準備するのがよい。その後、第二基板を未使用のECMP液で研磨することができ、第一基板に相対して上記と同じ方法でECMP液を再循環させることができる。
[0087]上記実施形態をECMP液に関連して記載してきたが、本発明のその他の実施形態は、ハイブリッドECMP液へ同等に適用できる、ここで、ハイブリッドECMP液は液体内に研磨粒子を含有することは理解されるべきである。ハイブリッドECMP液が用いられる場合、補充は、更に研磨粒子の析出を伴うことがある。研磨粒子が研磨剤を含有しないECMP液と混ざらないように、ハイブリッドECMP液は、研磨粒子を含有しないECMP液より別々のドレインから排出されるべきである。混ぜることにより、研磨粒子を含有しないECMP液が汚染する場合がある。
[0088]従って、ECMP液を再循環させ修復して、複数回用いられるようにすることができる。再循環し修復することにより、再循環され修復されたECMP液が、再循環或いは修復されたECMP液が未使用のECMP液よりより効果的且つ効率的に動作させることができるように、シーズニング効果を与えることができる。使用済みECMP液の選択された部分の再循環によって、ECMP処理を、より効果的な方法で進めることができる。
[0089]上記は、本発明の幾つかの実施形態に関するものであるが、更に多くの本発明の実施形態は、その基本的な範囲から逸脱せずに構成されてもよく、この範囲は、以下の特許請求の範囲によって決定される。
100…システム、105…フレーム構造、108…研磨モジュール、110…コントローラ、115…ノズル、120A-120C…研磨ステーション、122…基板、124…キャリヤヘッド、125…研磨物質、130…プラテン、204…キャリヤヘッド、210…通路、218…処理面、222…処理パッドアセンブリ、226…ドレイン、230…プラテンアセンブリ、250…粒子、275…POU処理ユニット、296…バルブ、298…POU処理ユニット、300…POU処理ユニット、304…促進剤供給源、306…阻害剤供給源、308…界面活性剤供給源、310…湿潤剤供給源、311-313…バルブ、314…廃液、315…バルブ、316…バルブ、318…酸供給源、320…塩基供給源、321…バルブ、323…バルブ、324…UV可視分光計、326…赤外分光計、327…バルブ、328…近赤外分光計、330…屈折率測定ソース、332…液体導電性測定源、334…pH測定ソース、336…貯蔵タンク、340…フィルター媒体セル、342…第一セル、344…第二セル、346…酸化剤セル、347…酸化剤供給源、348…酸化活性化ソース、350…イオン交換装置、352…再生廃液タンク、370…前処理デバイス、380…測定デバイス、390A…薬品注入デバイス、390B…薬品注入デバイス、402A…イオン交換カラム、402B…イオン交換カラム、404A-404D…タンク、406A-406D…樹脂ビーズ、410A-410D…下部ポート、410A…下部ポート、410C…下部ポート、410D…上部ポート、414A…ポート、418A…底部拡散器、418D…底部拡散器、420A-420D…最上部拡散器、434A…コンジット、434B…コンジット、442A…チューブ、442C…チューブ、446C…ポンプ、448A…検出器、448B…検出器、450…再生タンク。

Claims (15)

  1. 基板プロセスの間に生成した廃水混合物を処理する方法であって:
    基板処理システムからキレート化金属錯体を含む廃水を流すステップと;
    該廃水を有機粘土媒体と活性炭媒体に流し込み、キレート化金属錯体又は遊離キレート化物質を除去するステップと;
    該廃水をイオン交換樹脂に流し込むステップと;
    を含む、前記方法。
  2. 酸化剤と該廃水とを混ぜ合わせるステップ;
    を更に含む、請求項1に記載の方法。
  3. 該酸化剤が、過酸化水素又はオゾンを含む、請求項2に記載の方法。
  4. 該酸化剤が、紫外線によって放射される、請求項3に記載の方法。
  5. 該廃水が、該有機粘土媒体に流し込まれ、続いて、該活性炭媒体に流し込まれる、請求項1に記載の方法。
  6. 該廃水が、該活性炭媒体に流し込まれ、続いて、該有機粘土媒体に流し込まれる、請求項1に記載の方法。
  7. 該廃水が、該有機粘土媒体と該活性炭媒体の混合物に流し込まれる、請求項1に記載の方法。
  8. 該廃水が、研磨溶液を含み、該キレート化金属錯体が、銅とEDTAを含む、請求項1に記載の方法。
  9. 該廃水が、該有機粘土媒体に流し込まれる前に、フィルター媒体によってろ過される、請求項5に記載の方法。
  10. 該イオン交換樹脂が、金属イオンを除去すると共に廃水を得るためのアニオン交換樹脂である、請求項1に記載の方法。
  11. 基板プロセスの間に生成した廃水混合物を処理するための装置であって:
    基板プロセスシステムに結合するように構成されたコンジットシステムと;
    該コンジットシステムに結合し且つ酸化剤供給源と液体が連通している酸化剤セルと;
    該コンジットシステムに結合し且つ有機粘土媒体を含む有機粘土フィルターセルと;
    該コンジットシステムに結合し且つ活性炭媒体を含む活性炭フィルターセルと;
    該コンジットシステムに結合し且つアニオン交換樹脂を含む樹脂カラムと;
    を備える、前記装置。
  12. 該コンジットシステムに結合し且つ該基板プロセスシステムと該有機粘土フィルターセルの間に液体が連通しているフィルター媒体を更に備える、請求項11に記載の装置。
  13. 該酸化剤供給源又は酸化剤セルを放射するように構成された紫外線源を更に備える、請求項11に記載の装置。
  14. 該酸化剤セルが、該有機粘土フィルターセルから上流に位置決めされている、請求項11に記載の装置。
  15. 該有機粘土フィルターセルが、該活性炭フィルターセルから上流に位置決めされている、請求項11に記載の装置。
JP2009526849A 2006-08-25 2007-08-27 基板研磨液のユースポイント処理のための方法及びシステム Expired - Fee Related JP5530179B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US84016706P 2006-08-25 2006-08-25
US60/840,167 2006-08-25
PCT/US2007/076890 WO2008025030A2 (en) 2006-08-25 2007-08-27 Method and system for point of use treatment of substrate polishing fluids

Publications (2)

Publication Number Publication Date
JP2010501349A true JP2010501349A (ja) 2010-01-21
JP5530179B2 JP5530179B2 (ja) 2014-06-25

Family

ID=39107754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009526849A Expired - Fee Related JP5530179B2 (ja) 2006-08-25 2007-08-27 基板研磨液のユースポイント処理のための方法及びシステム

Country Status (5)

Country Link
US (1) US7947170B2 (ja)
JP (1) JP5530179B2 (ja)
KR (1) KR101216198B1 (ja)
TW (1) TWI417430B (ja)
WO (1) WO2008025030A2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019342A2 (en) * 2005-08-05 2007-02-15 Advanced Technology Materials, Inc. High throughput chemical mechanical polishing composition for metal film planarization
US10023487B2 (en) * 2006-12-12 2018-07-17 Veolia Water Solutions & Technologies Support Method of recovering oil or gas and treating the resulting produced water
US20110070811A1 (en) * 2009-03-25 2011-03-24 Applied Materials, Inc. Point of use recycling system for cmp slurry
US9656887B2 (en) * 2012-10-25 2017-05-23 The Water Company Removal of ions from aqueous fluid
EP4330338A1 (en) * 2021-04-26 2024-03-06 Chempower Corporation Pad surface regeneration and metal recovery

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149858A (en) * 1976-06-07 1977-12-13 Teijin Ltd Method of treating water with talc powder
JPS59162989A (ja) * 1983-03-07 1984-09-13 Kanagawaken 金属イオンの捕集法
JPS59162944A (ja) * 1983-03-07 1984-09-13 Kanagawaken 界面活性剤の捕集法
JPS59162988A (ja) * 1983-03-07 1984-09-13 Kanagawaken キレ−トを形成する金属イオン及び/又は非金属イオンの捕集法
JPS6133287A (ja) * 1984-07-25 1986-02-17 Kanagawaken 排水中の乳化或いは可溶化油の捕集法
JPS61167494A (ja) * 1985-01-18 1986-07-29 Asahi Chem Ind Co Ltd シリコンウエ−ハ−研磨排水の処理方法
JPH03504818A (ja) * 1988-06-08 1991-10-24 レオツクス・インターナシヨナル,インコーポレイテツド 水中油型懸濁液から油相を分離するための親有機性クレーの使用
JPH04235789A (ja) * 1991-01-17 1992-08-24 Nec Kyushu Ltd 製造廃液の処理方法及びその処理生成物
JPH09314466A (ja) * 1996-03-25 1997-12-09 Shin Etsu Handotai Co Ltd 半導体ウェーハの研磨装置および研磨方法
US5827362A (en) * 1995-05-20 1998-10-27 Envirotreat Limited Modified organoclays
JPH1110540A (ja) * 1997-06-23 1999-01-19 Speedfam Co Ltd Cmp装置のスラリリサイクルシステム及びその方法
JPH11300352A (ja) * 1998-04-23 1999-11-02 Japan Organo Co Ltd Cmp工程排水処理装置
US6238571B1 (en) * 1998-09-15 2001-05-29 Massachusetts Institute Of Technology Removal of contaminant metals from waste water
JP2001170652A (ja) * 1999-12-13 2001-06-26 Kurita Water Ind Ltd Cmp用研磨スラリー含有排水処理装置
JP2002016036A (ja) * 2000-06-27 2002-01-18 Shin Etsu Handotai Co Ltd 排水排熱利用方法
JP2002075929A (ja) * 2000-08-24 2002-03-15 Nippon Chem Ind Co Ltd 研磨使用済み液の再生方法
JP2002119964A (ja) * 2000-10-13 2002-04-23 Enzan Seisakusho:Kk 半導体製造工程における排水循環システム
JP2002520142A (ja) * 1998-07-10 2002-07-09 ユナイテッド・ステイツ・フィルター・コーポレイション 廃水からの金属イオンのイオン交換除去
JP2003170182A (ja) * 2001-12-07 2003-06-17 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2003181476A (ja) * 2001-12-18 2003-07-02 Azusaa:Kk キレート剤の分解方法
JP2003236571A (ja) * 2002-02-14 2003-08-26 Hitachi Plant Eng & Constr Co Ltd 銅含有有機性廃水の処理方法
JP2004075859A (ja) * 2002-08-19 2004-03-11 Chubu Kiresuto Kk 研磨スラリーの清浄化法
JP2004074088A (ja) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc 化学研磨液含有廃液の処理方法
WO2004084287A1 (ja) * 2003-03-18 2004-09-30 Nomura Micro Science Co., Ltd. 半導体研磨スラリー精製用素材、半導体研磨スラリー精製用モジュールおよび半導体研磨スラリーの精製方法
US20050076581A1 (en) * 2003-10-10 2005-04-14 Small Robert J. Particulate or particle-bound chelating agents
JP2005161138A (ja) * 2003-11-28 2005-06-23 Nomura Micro Sci Co Ltd 水処理方法および水処理装置
JP2005262061A (ja) * 2004-03-17 2005-09-29 Nomura Micro Sci Co Ltd 使用済み半導体研磨用スラリーの再生方法
US7651384B2 (en) * 2007-01-09 2010-01-26 Applied Materials, Inc. Method and system for point of use recycling of ECMP fluids

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740488A (en) * 1985-11-25 1988-04-26 The University Of Michigan Modified clay sorbents
US5244570A (en) * 1991-05-06 1993-09-14 Champion International Corporation Apparatus for treating wastewater
US5604264A (en) * 1995-04-03 1997-02-18 Reilly Industries, Inc. Polyvinylpyridinium anion-exchangers for recovery of technetium and plutonium anions
US6921467B2 (en) 1996-07-15 2005-07-26 Semitool, Inc. Processing tools, components of processing tools, and method of making and using same for electrochemical processing of microelectronic workpieces
US5922206A (en) * 1997-09-15 1999-07-13 Amcol International Corporation Process for treating water for removal of oil and water-soluble petroleum oil components
US6522010B2 (en) * 1998-06-30 2003-02-18 Micron Technology, Inc. Semiconductor constructions comprising aluminum-containing layers
US6916412B2 (en) 1999-04-13 2005-07-12 Semitool, Inc. Adaptable electrochemical processing chamber
US7048857B2 (en) * 2000-01-03 2006-05-23 The Boc Group, Inc. Method and apparatus for metal removal ion exchange
US6527920B1 (en) 2000-05-10 2003-03-04 Novellus Systems, Inc. Copper electroplating apparatus
US7160441B2 (en) * 2001-03-29 2007-01-09 Clear Creek Systems, Inc. Urban runoff water treatment methods and systems
US7542132B2 (en) * 2006-07-31 2009-06-02 Applied Materials, Inc. Raman spectroscopy as integrated chemical metrology
US7601264B2 (en) * 2006-10-04 2009-10-13 Applied Materials, Inc. Method for treatment of plating solutions

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149858A (en) * 1976-06-07 1977-12-13 Teijin Ltd Method of treating water with talc powder
JPS59162989A (ja) * 1983-03-07 1984-09-13 Kanagawaken 金属イオンの捕集法
JPS59162944A (ja) * 1983-03-07 1984-09-13 Kanagawaken 界面活性剤の捕集法
JPS59162988A (ja) * 1983-03-07 1984-09-13 Kanagawaken キレ−トを形成する金属イオン及び/又は非金属イオンの捕集法
JPS6133287A (ja) * 1984-07-25 1986-02-17 Kanagawaken 排水中の乳化或いは可溶化油の捕集法
JPS61167494A (ja) * 1985-01-18 1986-07-29 Asahi Chem Ind Co Ltd シリコンウエ−ハ−研磨排水の処理方法
JPH03504818A (ja) * 1988-06-08 1991-10-24 レオツクス・インターナシヨナル,インコーポレイテツド 水中油型懸濁液から油相を分離するための親有機性クレーの使用
JPH04235789A (ja) * 1991-01-17 1992-08-24 Nec Kyushu Ltd 製造廃液の処理方法及びその処理生成物
US5827362A (en) * 1995-05-20 1998-10-27 Envirotreat Limited Modified organoclays
JPH09314466A (ja) * 1996-03-25 1997-12-09 Shin Etsu Handotai Co Ltd 半導体ウェーハの研磨装置および研磨方法
JPH1110540A (ja) * 1997-06-23 1999-01-19 Speedfam Co Ltd Cmp装置のスラリリサイクルシステム及びその方法
JPH11300352A (ja) * 1998-04-23 1999-11-02 Japan Organo Co Ltd Cmp工程排水処理装置
JP2002520142A (ja) * 1998-07-10 2002-07-09 ユナイテッド・ステイツ・フィルター・コーポレイション 廃水からの金属イオンのイオン交換除去
US6238571B1 (en) * 1998-09-15 2001-05-29 Massachusetts Institute Of Technology Removal of contaminant metals from waste water
JP2001170652A (ja) * 1999-12-13 2001-06-26 Kurita Water Ind Ltd Cmp用研磨スラリー含有排水処理装置
JP2002016036A (ja) * 2000-06-27 2002-01-18 Shin Etsu Handotai Co Ltd 排水排熱利用方法
JP2002075929A (ja) * 2000-08-24 2002-03-15 Nippon Chem Ind Co Ltd 研磨使用済み液の再生方法
JP2002119964A (ja) * 2000-10-13 2002-04-23 Enzan Seisakusho:Kk 半導体製造工程における排水循環システム
JP2003170182A (ja) * 2001-12-07 2003-06-17 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2003181476A (ja) * 2001-12-18 2003-07-02 Azusaa:Kk キレート剤の分解方法
JP2003236571A (ja) * 2002-02-14 2003-08-26 Hitachi Plant Eng & Constr Co Ltd 銅含有有機性廃水の処理方法
JP2004075859A (ja) * 2002-08-19 2004-03-11 Chubu Kiresuto Kk 研磨スラリーの清浄化法
JP2004074088A (ja) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc 化学研磨液含有廃液の処理方法
WO2004084287A1 (ja) * 2003-03-18 2004-09-30 Nomura Micro Science Co., Ltd. 半導体研磨スラリー精製用素材、半導体研磨スラリー精製用モジュールおよび半導体研磨スラリーの精製方法
US20050076581A1 (en) * 2003-10-10 2005-04-14 Small Robert J. Particulate or particle-bound chelating agents
JP2005161138A (ja) * 2003-11-28 2005-06-23 Nomura Micro Sci Co Ltd 水処理方法および水処理装置
JP2005262061A (ja) * 2004-03-17 2005-09-29 Nomura Micro Sci Co Ltd 使用済み半導体研磨用スラリーの再生方法
US7651384B2 (en) * 2007-01-09 2010-01-26 Applied Materials, Inc. Method and system for point of use recycling of ECMP fluids

Also Published As

Publication number Publication date
TW200829728A (en) 2008-07-16
KR20090049077A (ko) 2009-05-15
WO2008025030B1 (en) 2008-10-02
TWI417430B (zh) 2013-12-01
JP5530179B2 (ja) 2014-06-25
WO2008025030A3 (en) 2008-05-22
WO2008025030A2 (en) 2008-02-28
KR101216198B1 (ko) 2012-12-28
US7947170B2 (en) 2011-05-24
US20080047901A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US6818129B2 (en) Ion exchange removal of metal ions from wastewater
US7488423B2 (en) System and method of slurry treatment
JP5530179B2 (ja) 基板研磨液のユースポイント処理のための方法及びシステム
MXPA00011558A (en) Ion exchange removal of metal ions from wastewater
TW200307647A (en) Ion exchange regeneration system for UPW treatment
JP6298275B2 (ja) 特に超純水を得るための水の処理
KR20020086883A (ko) 이온 교환에 의해 금속을 제거하는 방법 및 장치
JP4353991B2 (ja) スラリー廃液の再生方法及び装置
JP2018086619A (ja) 超純水製造システム及び超純水製造方法
JP2009023061A5 (ja)
JP2012016673A (ja) よう素・ほう素含有液の処理装置およびよう素・ほう素含有液の処理方法
US20100108609A1 (en) System and method of slurry treatment
JP2742976B2 (ja) 混床式イオン交換装置並びにこの混床式イオン交換装置を使用した純水及び超純水の製造方法
JP3951456B2 (ja) 純水製造装置
JP2019030839A (ja) 再生式イオン交換装置及びその運転方法
JPH11192480A (ja) アルカリ系シリカ研磨排水の回収処理装置
TWI393675B (zh) 漿體處理系統和方法
Michael et al. II 1 METAL RECOVERY BY ION EXCHANGE-SEVEN CRUCIAL ISSUES
JP2001162276A (ja) 有機物含有水の処理方法
CN112759031A (zh) 一种超纯水的处理工艺及系统
WO2008008711A2 (en) Ion exchange treatment of chemical mechanical polishing slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees