JP2010184833A - 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ - Google Patents

炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ Download PDF

Info

Publication number
JP2010184833A
JP2010184833A JP2009029825A JP2009029825A JP2010184833A JP 2010184833 A JP2010184833 A JP 2010184833A JP 2009029825 A JP2009029825 A JP 2009029825A JP 2009029825 A JP2009029825 A JP 2009029825A JP 2010184833 A JP2010184833 A JP 2010184833A
Authority
JP
Japan
Prior art keywords
dislocation
single crystal
threading
silicon carbide
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009029825A
Other languages
English (en)
Inventor
Yasuo Kito
泰男 木藤
Hiroki Watanabe
弘紀 渡辺
Hironori Nagai
優典 永冶
Kensaku Yamamoto
建策 山本
Hidekazu Okuno
英一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009029825A priority Critical patent/JP2010184833A/ja
Priority to US12/656,210 priority patent/US8470091B2/en
Priority to SE1000082A priority patent/SE536926C2/sv
Priority to DE102010001720.5A priority patent/DE102010001720B4/de
Publication of JP2010184833A publication Critical patent/JP2010184833A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Abstract

【課題】デバイス特性の劣化や、歩留まりの低下を抑制するため、貫通転位の転位線の方向を規定する方法を提供する。
【解決手段】貫通転位3の転位線の方向が揃えられ、貫通転位3の転位線の方向と[0001]c軸との為す角度θが22.5°以下となるようにする。[0001]c軸方向に転位線を持つ貫通転位3は、基底面転位の転位線の方向と垂直であるため、C面内の拡張転位とはならず、積層欠陥を発生させることがない。このため、貫通転位3の転位線の方向が[0001]c軸であるSiC単結晶基板1に対して電子デバイスを形成すれば、デバイス特性は良好となり、劣化が無く、歩留まりも向上したSiC半導体装置。
【選択図】図1

Description

本発明は、炭化珪素(以下、SiCという)単結晶にて構成されたSiC単結晶基板およびSiC単結晶基板上にエピタキシャル膜を成長させて構成したSiC単結晶エピタキシャルウェハに関するものである。
従来、高品質SiC単結晶ウェハとして、特許文献1、2に開示されているものがある。これら特許文献1、2に開示されているSiC単結晶ウェハにおいては、デバイス特性に悪影響を与える転位の密度を規定値以下とすることで、デバイス作製に向くようにしている。ここでいう転位とは、線状に上る結晶欠陥であり対象としている転位の種類は、(0001)C面内に存在する基底面転位やc軸と平行な方向を持つ貫通らせん転位である。
特開2008−115034号公報 特表2008−515748号公報
しかしながら、特許文献1、2では、貫通刃状転位に関しては特に開示されておらず、貫通刃状転位がデバイスに及ぼす影響については不明である。また、貫通らせん転位や貫通刃状転位(以下、総称して貫通転位という)は、ダイオードやトランジスタなどのデバイス特性を劣化させたり、歩留まりを低下させると言われており、その密度を低減することが重要であるが、特許文献1、2では、転位の種類と密度について開示されているものの、貫通転位の転位線の方向については不明である。
なお、貫通らせん転位と貫通刃状転位とは、歪みの方向(バーガースベクトル)が異なっており、貫通らせん転位はc軸と平行、貫通刃状転位はc軸と垂直である。基底面転位は、らせん転位と刃状転位の両者が存在する。
本発明は上記点に鑑みて、デバイス特性の劣化させたり、歩留まりを低下させることを抑制できる貫通転位の転位線の方向を規定した炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハを提供することを目的とする。
上記目的を達成するために、本発明者らは、貫通転位の転位線の方向とデバイス特性の劣化や歩留まりとの関係について様々な実験を行ったところ、貫通転位の転位線の方向が揃っている程デバイス特性の劣化や歩留まりの低下を抑制できるということを見出した。特に、転位線が(0001)C面を貫通する貫通転位(以下、このような(0001)C面を貫通する貫通転位のことを単に貫通転位という)の転位線の方向と[0001]軸との為す角度が22.5°以下となるようにすることで、デバイス特性の劣化や歩留まりの低下できることを確認した。
また、本発明者らは、SiC単結晶の成長方向と結晶欠陥の成長方向について様々な試作検討を行った。その結果、従来のように昇華法によるC面オフ基板を用いた結晶成長では、貫通転位が成長方向に対して様々な方向に傾いて成長するが、CVD法によるC面オフ基板を用いたエピタキシャル成長では、引き継がれる貫通欠陥の成長方向が(11−2n)面もしくは(1−10n)面に限定されるという現象を見出した。SiC単結晶基板上にエピタキシャル膜を成長させる際のステップフローの方向が関係しており、転位線の傾斜方向とステップフロー方向が同一方向になり、転位線の角度が特定方向に限定されるのである。
また、その成長方向は、エピタキシャル成長させる際の不純物濃度と密接な関係を有しているということについても見出した。なお、ここでいうnとは、任意の整数であり、例えば、(11−1n)面には、(11−21)面、(11−22)面、(11−23)面等が含まれ、(1−10n)面には、(1−101)面、(1−102)面、(1−103)面等が含まれる。
図5は、4H−SiC、オフ方向を[11−20]方向として4°オフ角が付けられたSiC単結晶基板を用いて、SiC単結晶基板に形成された貫通転位の転位線の方向と、SiC単結晶基板上にエピタキシャル膜を形成したときにエピタキシャル膜中に引き継がれる貫通転位の転位線の方向との関係を不純物濃度別に示したグラフである。なお、SiC単結晶基板中やエピタキシャル膜中の貫通転位の転位線の方向は、[0001]c軸に対して基板法線方向と同じ側に傾斜する方をプラスとした角度で表してある。また、ここでは不純物として窒素を用いた場合の窒素濃度別に各特性を示してあるが、窒素濃度は一例であり、不純物が変わっても同様の特性となる。
この図に示されるように、窒素濃度が例えば1×1015cm-3以下の場合には、エピタキシャル膜中の貫通転位の転位線の方向が0°を中心として±3°、つまり[0001]方向とほぼ同方向となる。また、窒素濃度が例えば1×1015cm-3以上かつ1×1016cm-3以下の場合には、エピタキシャル膜中の貫通転位の転位線の方向が8.7°を中心として±3°、つまり[11−26]方向とほぼ同方向となる。また、窒素濃度が例えば1×1016cm-3以上かつ1×1017cm-3以下の場合には、エピタキシャル膜中の貫通転位の転位線の方向が17°を中心として±3°、つまり[11−23]方向とほぼ同方向となる。そして、窒素濃度が例えば1×1018cm-3以上の場合には、エピタキシャル膜中の貫通転位の転位線の方向が22.5°より大きくなる(特願2009−29584参照)。
そして、このように転位の方向が特定されたSiC単結晶基板を用いて、SiC単結晶基板に形成された貫通転位の転位線の方向と、そのSiC単結晶基板に対して電子デバイス、例えばダイオードやMOSトランジスタなどのパワー系の電子デバイスを形成したときの故障時間(故障する前に掛かった時間)との関係について調べた。図6は、この関係を示したグラフである。なお、貫通転位の転位線の方向は透過型の電子顕微鏡により観察して測定した。
この図に示されるように、貫通転位が形成されていても、貫通転位の角度が20(=17+3°)以下であれば、電子デバイスの故障時間を長くできている。そして、貫通転位として、らせん転位の場合よりも、刃状転位にて揃える方がよりその効果を高くすることができる。
特許文献1などの文献に記載されているが、基底面転位はデバイス特性と歩留まりの低下を招く。これは、基底面転位が(0001)C面内に存在し、拡張転位となり積層欠陥の発生核として作用するし、さらに積層欠陥がデバイス特性を劣化させるためである。これに対して、[0001]c軸方向に転位線を持つ貫通転位は、基底面転位の転位線の方向と垂直であるため、C面内の拡張転位とはならず、積層欠陥を発生させることがない。このため、貫通転位の転位線の方向が[0001]c軸であるSiC単結晶基板に対して電子デバイスを形成すれば、デバイス特性は良好となり、劣化が無く、歩留まりも向上する。また、貫通転位の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、歩留まりが向上する。
貫通転位の転位線の方向が[0001]c軸から外れた場合はその角度をθとするとsinθに比例した分の基底面内方向の成分が現れる。この成分が拡張転位となり、デバイス特性を劣化させる積層欠陥の発生原因となるが、角度θが小さい場合はその影響が少なくなることも確認した。
このように、図5で示したオフ方向を[11−20]方向としてオフ角が付けられたSiC単結晶基板を用いた場合においては、貫通転位の転位線の方向を20°以下に揃えることにより、デバイス特性の劣化や歩留まりの低下を抑制することができることを確認した。同様のことをオフ方向を[1−100]方向としてオフ角が付けられたSiC単結晶基板を用いて行ったところ、貫通転位の転位線の方向が[2−203]方向に相当する19.5°に対して±3°の範囲、つまり22.5(=19.5+3)°以下に揃えることで、オフ方向を[11−20]方向としてオフ角が付けられたSiC単結晶基板を用いた場合と同様の効果が得られることを確認した。
したがって、上述したように、貫通転位の転位線の方向、つまり転位線の方向と[0001]軸との為す角度θを22.5°(=19.5°+3°)以下に揃えることによりデバイス特性の劣化を少なくできる。また、特に、角度θ=17°([11−23]方向)や角度θ=19.5°([2−203]方向)などについては、エピタキシャル膜を成長させる際に不純物濃度に基づいて容易に制御することが可能であるため、そのような角度θに貫通転位の方向が揃えられたSiC単結晶基板を容易に作成することができる。
さらに、転位線は、[0001]c軸およびそれに対する垂直方向の特定方向(例えば[11−20]方向や[1−100]方向)を通る面内においてのみ[0001]c軸に対して傾いていると好ましい。
例えば、オフ方向を[11−20]方向としてオフ角が付けられたSiC単結晶基板を用いた場合には、(1−100)面内に転位線が有るように、転位線が[0001]c軸に対して傾く。このように、転位線が同じ面内のみで傾くように揃えられることで、よりデバイス特性の化や歩留まりの低下の抑制を図ることが可能となる。例えば、SiC単結晶基板に対して(1−100)面のチャネル面を持つ電界効果方トランジスタを作成した場合、転位線がチャネル面に交差することがなくなる。これにより、トランジスタの特性、信頼性を更に向上させることが可能となる。
また、同様のことがオフ方向を[1−100]方向としてオフ角が付けられたSiC単結晶基板を用いた場合にも言える。この場合には、(11−20)面内に転位線が有るように、転位線が[0001]c軸に対して傾く。このため、例えば、SiC単結晶基板に対して(11−20)面のチャネル面を持つ電界効果方トランジスタを作成した場合、転位線がチャネル面に交差することがなくなる。このため、トランジスタの特性、信頼性を更に向上させることが可能となる。
なお、電子デバイスが形成される基板としては、SiC単結晶基板やSiC単結晶基板上にエピタキシャル膜を成長させたSiC単結晶エピタキシャルウェハがある。SiC単結晶基板は、貫通転位が揃えられたエピタキシャル膜を成長させたのち、そのエピタキシャル膜上に例えばバルク成長をさせ、所望の面方位で切り出すことで、貫通転位が揃った状態のSiC単結晶基板を得ることができる。このSiC単結晶基板を用いる場合、SiC単結晶基板そのものに形成されている貫通転位の転位線の方向がデバイス特性に直接影響するため、SiC単結晶基板そのものに形成されている貫通転位の転位線の方向が上記ような関係を満たしている必要がある。ところが、SiC単結晶エピタキシャルウェハの場合にはデバイス特性に影響を与えるエピタキシャル膜内の貫通転位の転位線の方向である。このため、少なくともエピタキシャル膜内において貫通転位の転位線の方向が揃っていれば、下地となるSiC単結晶基板内の貫通転位の転位線の方向が揃っていなかったとしてもデバイス特性を良好にできる。
以上の知見に基づき、請求項1に記載の発明では、転位線が(0001)C面を貫通する貫通転位(3)を含み、該貫通転位(3)の転位線の方向と[0001]c軸との為す角度が22.5°以下とされていることを特徴としている。
[0001]c軸方向に転位線を持つ貫通転位(3)は、基底面転位の転位線の方向と垂直であるため、C面内の拡張転位とはならず、積層欠陥を発生させることがない。このため、貫通転位(3)の転位線の方向が[0001]c軸であるSiC単結晶基板とすることにより、このSiC単結晶基板に対して電子デバイスを形成するときに、デバイス特性は良好となり、劣化が無く、歩留まりも向上したSiC半導体装置とすることができる。
請求項2に記載の発明では、貫通転位(3)の転位線の方向は、[0001]c軸との為す角度が19.5°以下の特定方向に対して±3°の範囲内とされていることを特徴としている。
このように、貫通転位(3)の転位線の方向を特定方向に揃えている。このため、請求項1の効果に加えて、貫通転位(3)の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
例えば、請求項3に記載したように、貫通転位(3)の転位線の方向が[0001]c軸と平行な方向に対して±3°の範囲内とされると好ましい。これにより、C面内成分を小さくでき、デバイス特性の劣化を更に低減することができる。
さらに、請求項4に記載したように、貫通転位(3)の転位線の方向が[0001]c軸と平行な方向とされていると好ましい。これにより、C面内成分を無くすことができ、デバイス特性の劣化を更に低減することができる。
請求項5に記載の発明では、[11−20]方向をオフ方向とするSiC単結晶基板(1)と、SiC単結晶基板(1)に成長させられたエピタキシャル膜(2)とを有し、エピタキシャル膜(2)は、転位線が(0001)C面を貫通する貫通転位(3)を含み、該貫通転位(3)の転位線の方向が[0001]c軸から[11−20]方向の基板面の法線方向への角度が−3°以上かつ20°以下とされ、かつ、該貫通転位(3)が(1−100)面内にあることを特徴としている。
このように、貫通転位(3)の転位線の方向が揃えられ、貫通転位(3)の転位線の方向と[0001]c軸との為す角度θが−3°以上かつ20°以下となるようにしている。このようなSiC単結晶エピタキシャルウェハに対して電子デバイスを形成すれば、請求項1と同様、デバイス特性は良好となり、劣化が無く、歩留まりも向上させることができる。また、貫通転位(3)が(1−100)面内にあるようにしており、転位線が同じ面内のみで傾くように揃えている。これにより、よりデバイス特性の化や歩留まりの低下の抑制を図ることが可能となる。例えば、請求項16に記載したように、SiC単結晶基板に対して(1−100)面のチャネル面を持つ電界効果方トランジスタを作成した場合、転位線がチャネル面に交差することがなくなる。このため、トランジスタの特性、信頼性を更に向上させることが可能となる。
例えば、請求項6に記載したように、貫通転位(3)の転位線の方向を[0001]c軸から[11−20]方向の基板面の法線方向への角度が17°±3°の範囲とすることができる。また、請求項7に記載したように、貫通転位(3)の転位線の方向を[0001]c軸から[11−20]方向の基板面の法線方向への角度が8.7°±3°の範囲とすることもできる。
請求項8に記載の発明では、エピタキシャル膜(2)は、転位線が(0001)C面を貫通する貫通転位(3)を含み、該貫通転位(3)の転位線の方向が[0001]c軸から[1−100]方向の基板面の法線方向への角度が−3°以上かつ22.5°以下とされ、かつ、該貫通転位(3)が(11−20)面内にあることを特徴としている。
このように、貫通転位(3)の転位線の方向が揃えられ、貫通転位(3)の転位線の方向と[0001]c軸との為す角度θが−3°以上かつ22.5°以下となるようにしている。このようなSiC単結晶エピタキシャルウェハに対して電子デバイスを形成すれば、請求項1と同様、デバイス特性は良好となり、劣化が無く、歩留まりも向上させることができる。また、貫通転位(3)が(11−20)面内にあるようにしており、転位線が同じ面内のみで傾くように揃えている。これにより、よりデバイス特性の化や歩留まりの低下の抑制を図ることが可能となる。例えば、請求項17に記載したように、SiC単結晶基板に対して(11−20)面のチャネル面を持つ電界効果方トランジスタを作成した場合、転位線がチャネル面に交差することがなくなる。このため、トランジスタの特性、信頼性を更に向上させることが可能となる。
例えば、請求項9に記載したように、貫通転位(3)の転位線の方向を[0001]c軸から[1−100]方向の基板面の法線方向への角度が19.5°±3°の範囲とすることができる。また、請求項10に記載したように、貫通転位(3)の転位線の方向を[0001]c軸から[1−100]方向の基板面の法線方向への角度が15°±3°の範囲とすることもできる。さらに、請求項11に記載したように、貫通転位(3)の転位線の方向を[0001]c軸から[1−100]方向の基板面の法線方向への角度が7.6°±3°の範囲とすることもできる。
これら、請求項5ないし11に記載したようなSiC単結晶エピタキシャルウェハにおけるエピタキシャル膜(2)の貫通転位(3)の方向は、例えば不純物濃度によって決まる。例えば、請求項12に記載したように、エピタキシャル膜(2)の不純物濃度が1×1017cm-3以下とされることで、上記のように貫通転位(3)の方向を規定することができる。また、この場合、エピタキシャル膜(2)の不純物濃度の方がSiC単結晶基板(1)の不純物濃度よりも低くできるため、デバイス作成に適した濃度のエピタキシャル膜(2)とすることができる。
請求項13および14に記載の発明では、貫通転位(3)には貫通刃状転位が含まれていることを特徴としている。このように、貫通刃状転位が含まれたものとすることで、貫通らせん転位が含まれた場合よりもSiC単結晶エピタキシャルウェハや炭化珪素単結晶基板に対して電子デバイス、例えばダイオードやMOSトランジスタなどのパワー素子を形成したときの故障時間を長くでき、よりデバイス特性を良好にすることが可能となる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(a)は、本発明の第1実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、(b)は、SiC単結晶エピタキシャルウェハ内の貫通転位の転位線とc軸との為す角度の関係を示したベクトル図である。 (a)は、本発明の第4実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、(b)は、SiC単結晶エピタキシャルウェハ内の貫通転位の転位線とc軸との為す角度の関係を示したベクトル図である。 (a)は、本発明の第5実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、(b)は、オフ角や貫通転位の傾斜角度について説明するためのベクトル図である。 (a)は、本発明の第8実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、(b)は、オフ角や貫通転位の傾斜角度について説明するためのベクトル図である。 エピタキシャル膜中に引き継がれる貫通転位の転位線の方向との関係を不純物濃度別に示したグラフである。 貫通転位の方向とパワー系の電子デバイスを形成したときの故障時間との関係を示したグラフである。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
本発明の第1実施形態について説明する。図1(a)は、本実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、図1(b)は、SiC単結晶エピタキシャルウェハ内の貫通転位の転位線とc軸との為す角度の関係を示したベクトル図である。
図1(a)に示されるように、SiC単結晶エピタキシャルウェハは、4H−SiCからなるSiC単結晶基板1の上にエピタキシャル膜2を成長させることにより形成されている。SiC単結晶基板1およびエピタキシャル膜2には、貫通転位3が存在し、少なくともエピタキシャル膜2に形成されている貫通転位3は、転位線の方向と[0001]c軸との為す角度θが22.5°(=19.5°+3°)以下とされている。なお、SiC単結晶基板1中やエピタキシャル膜2中の貫通転位3の転位線の方向は、図1(b)に示したように、[0001]c軸に対してウェハ面の法線方向と同じ側に傾斜する方をプラスとした角度で表してある。
このように、本実施形態では、貫通転位3の転位線の方向が揃えられ、貫通転位3の転位線の方向と[0001]c軸との為す角度θが22.5°以下となるようにしている。[0001]c軸方向に転位線を持つ貫通転位3は、基底面転位の転位線の方向と垂直であるため、C面内の拡張転位とはならず、積層欠陥を発生させることがない。このため、貫通転位3の転位線の方向が[0001]c軸であるSiC単結晶基板に対して電子デバイスを形成すれば、デバイス特性は良好となり、劣化が無く、歩留まりも向上したSiC半導体装置とすることができる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態では、第1実施形態に対して、貫通転位3の転位線の方向をより限定的に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第1実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図1(a)に示したSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向と[0001]c軸との為す角度θが特定角度に対して±3°の範囲内となるようにしている。例えば、特定角度としては、19.5°([2−203]方向)や17°([11−23]方向)を挙げることができる。
このように、貫通転位3の転位線の方向を特定方向に揃えている。このため、第1実施形態と同様の効果に加えて、貫通転位3の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態では、第1実施形態に対して、貫通転位3の転位線の方向をc軸を中心する方向に限定的に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第1実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図1(a)に示したSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向が[0001]c軸に対して±3°の範囲内となるようにしている。
このように、貫通転位3の転位線の方向を[0001]c軸を中心として揃えている。このため、第1実施形態と同様の効果に加えて、C面内成分を小さくでき、デバイス特性の劣化を更に低減することができる。
(第4実施形態)
本発明の第4実施形態について説明する。本実施形態では、第1〜第3実施形態よりも更に貫通転位3の転位線の方向を特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第1実施形態と同様であるため、異なる部分についてのみ説明する。
図2(a)は、本実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、図2(b)は、SiC単結晶エピタキシャルウェハ内の貫通転位の転位線とc軸との為す角度の関係を示したベクトル図である。
図2(a)、(b)に示すように、本実施形態では、図1に示したSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向が[0001]c軸に平行となるようにしている。
このように、貫通転位3の転位線の方向を[0001]c軸に揃えている。このため、第1実施形態と同様の効果に加えて、C面内成分を無くすことができ、デバイス特性の劣化を更により低減することができる。
(第5実施形態)
本発明の第5実施形態について説明する。本実施形態では、第1実施形態に対して用いているSiC単結晶基板のオフ方向を規定したものである。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第1実施形態と同様であるため、異なる部分についてのみ説明する。
図3(a)は、本実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、図3(b)は、オフ角や貫通転位の傾斜角度について説明するためのベクトル図である。
図3(a)に示されるように、本実施形態では、オフ方向を[11−20]方向としてα°オフ角が付けられたSiC単結晶エピタキシャルウェハを用いている。SiC単結晶基板1は、例えば不純物濃度が5×1018cm-3という高濃度とされ、エピタキシャル膜2は、1×1017cm-3以下という低濃度とされている。そして、このSiC単結晶エピタキシャルウェハにおけるエピタキシャル膜2中に存在する貫通転位3の転位線の方向をオフ方向と同一方向に傾斜させて揃え、貫通転位3の転位線の方向と[0001]c軸との為す角度θが−3(=0°−3°)以上かつ20°(=17°+3°)以下となるようにしている。また、転位線は、[0001]c軸およびそれに対する垂直方向の特定方向(例えば[11−20]方向)を通る(1−100)面内においてのみ[0001]c軸に対して傾いている。
ここで、図3(b)に示すように、オフ方向が[11−20]方向の場合、オフ角αはウェハ面の法線方向が[0001]c軸に対して為す角度がα°となるものを意味する。また、貫通転位3の転位線は、[0001]c軸に対してウェハ面の法線方向と同じ方向に延ばして、法線側をプラスとして角度θを表してある。
なお、本実施形態では、貫通転位3の転位線の方向として、エピタキシャル膜2中に形成されているものについては上記角度となるようにしているが、SiC単結晶基板1内に形成された貫通転位3については、特に規定しておらず、どのような角度であっても構わない。
このように、本実施形態では、貫通転位3の転位線の方向が揃えられ、貫通転位3の転位線の方向と[0001]c軸との為す角度θが−3°以上かつ20°以下となるようにしている。このようなSiC単結晶エピタキシャルウェハに対して電子デバイスを形成すれば、第1実施形態と同様、デバイス特性は良好となり、劣化が無く、歩留まりも向上させることができる。また、本実施形態では、貫通転位3の転位線の方向について、エピタキシャル膜2内に形成されたものについてのみ規定しているが、電子デバイスはSiC単結晶エピタキシャルウェハの場合、SiC単結晶基板1ではなくエピタキシャル膜2に電子デバイスを形成することになるため、エピタキシャル膜2中において貫通転位3の転位線の方向が規定されていれば良い。
このような構造のSiC単結晶エピタキシャルウェハは、例えば以下のようにして製造される。まず、バルク状のSiC単結晶を用意して、そのSiC単結晶を[11−20]方向を含む面において切り出すことで、上記オフ方向のSiC単結晶基板1を用意することができる。そして、このSiC単結晶基板1の表面にCVD法にてSiC単結晶からなるエピタキシャル膜2を成長させる。
このようにすれば、図5中に示したように、SiC基板1内に含まれていた貫通転位3は、エピタキシャル膜2内において[0001]c軸に対する角度θが−3°以上かつ20°以下の範囲となるようにできる。これは、エピタキシャル膜2を成長させる際のステップフローの方向が関係していると考えられ、貫通転位3の転位線の傾斜方向とステップフロー方向が同一方向であることを確認している。
例えば、エピタキシャル膜2内の不純物として例えば窒素を用い、不純物濃度を例えば1×1016〜1×1017cm-3とする場合には、貫通転位3の転位線の方向は、例えば[11−23]方向に平行もしくは[11−23]方向に対して±3°の範囲内の方向に向き、角度θは17°±3°の範囲となる。また、エピタキシャル膜2内の不純物として例えば窒素を用い、不純物濃度を例えば1×1015〜1×1016cm-3とする場合には、貫通転位3の転位線の方向は、例えば[11−26]方向に平行もしくは[11−26]方向に対して±3°の範囲内の方向に向き、角度θは8.7°±3°の範囲となる。さらに、エピタキシャル膜2内の不純物として例えば窒素を用い、不純物濃度を例えば1×1015cm-3以下とする場合には、貫通転位3の転位線の方向は、例えば[0001]方向に平行もしくは[0001]方向に対して±3°の範囲内の方向に向き、角度θは0°±3°の範囲となる。
このように不純物濃度を例えば1×1017cm-3以下に設定することで、貫通転位3の転位線の方向を同一方向に揃えることができる。そして、このような不純物濃度は、デバイス作製に適した濃度であるので、デバイス特性は良好で劣化が無く、歩留まりも向上させられる。逆に、不純物濃度を例えば1×1018cm-3とする場合には、角度θが20°より大きくなり、基底面内方向の成分が大きくなるため、デバイス特性に悪影響を与えることになる。また、不純物濃度も濃く、デバイス作製に適した濃度ではないため、使用に適さない。なお、ここでは、不純物としてn型導電性を示す窒素を例に挙げたが、他の不純物を用いても良いし、p型導電性を示すアルミニウムやホウ素などを用いても良い。
さらに、本実施形態では、転位線は、[0001]c軸およびそれに対する垂直方向の特定方向(例えば[11−20]方向)を通る(1−100)面内においてのみ[0001]c軸に対して傾いている。
このように、転位線が同じ面内のみで傾くように揃えられることで、よりデバイス特性の化や歩留まりの低下の抑制を図ることが可能となる。例えば、SiC単結晶基板に対して(1−100)面のチャネル面を持つ電界効果方トランジスタを作成した場合、転位線がチャネル面に交差することがなくなる。このため、トランジスタの特性、信頼性を更に向上させることが可能となる。
なお、ここでは、オフ方向を[11−20]方向としてα°オフ角が付けられたものを用いたが、α°は0°より大きければ良く、エピタキシャル膜2がステップフロー成長する角度であれば、どのような角度でも良い。例えば、α°を4°とすることができる。
(第6実施形態)
本発明の第6実施形態について説明する。本実施形態では、第5実施形態に対して、貫通転位3の転位線の方向をより限定的に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第5実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図3(a)に示したオフ方向を[11−20]方向としてα°オフ角をつけたSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向と[0001]c軸との為す角度θが17°([11−23]方向)に対して±3°の範囲内となるようにしている。
このように、貫通転位3の転位線の方向を特定方向に揃えている。このため、第5実施形態と同様の効果に加えて、貫通転位3の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
なお、このような構造は、SiC単結晶基板1に対して、不純物濃度を例えば1×1016〜1×1017cm-3としてエピタキシャル膜2を成長させれば実現できる。
(第7実施形態)
本発明の第7実施形態について説明する。本実施形態も、第5実施形態に対して、貫通転位3の転位線の方向をより限定定期に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第5実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図3(a)に示したオフ方向を[11−20]方向としてα°オフ角をつけたSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向と[0001]c軸との為す角度θが8.7°([11−26]方向)に対して±3°の範囲内となるようにしている。
このように、貫通転位3の転位線の方向を特定方向に揃えている。このため、第5実施形態と同様の効果に加えて、貫通転位3の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
なお、このような構造は、SiC単結晶基板1に対して、不純物濃度を例えば1×1015〜1×1016cm-3としてエピタキシャル膜2を成長させれば実現できる。
(第8実施形態)
本発明の第8実施形態について説明する。本実施形態は、第1実施形態に対して用いているSiC単結晶基板のオフ方向を第5実施形態とは異なる方向で規定したものである。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第1実施形態と同様であるため、異なる部分についてのみ説明する。
図4(a)は、本実施形態にかかるSiC単結晶エピタキシャルウェハの断面図であり、図4(b)は、オフ角や貫通転位の傾斜角度について説明するためのベクトル図である。
図4(a)に示されるように、本実施形態では、オフ方向を[1−100]方向としてα°オフ角が付けられたSiC単結晶エピタキシャルウェハを用いている。SiC単結晶基板1は、例えば不純物濃度が5×1018cm-3という高濃度とされ、エピタキシャル膜2は、1×1017cm-3以下という低濃度とされている。そして、このSiC単結晶エピタキシャルウェハにおけるエピタキシャル膜2中に存在する貫通転位3の転位線の方向をオフ方向と同一方向に傾斜させて揃え、貫通転位3の転位線の方向と[0001]c軸との為す角度θが−3(=0°−3°)以上かつ22.5°(=19.5°+3°)以下となるようにしている。また、転位線は、[0001]c軸およびそれに対する垂直方向の特定方向(例えば[1−100]方向)を通る(11−20)面内においてのみ[0001]c軸に対して傾いている。
ここで、図4(b)に示すように、オフ方向が[1−100]方向の場合、オフ角αはウェハ面の法線方向が[0001]c軸に対して為す角度がα°となるものを意味する。また、貫通転位3の転位線は、[0001]c軸に対してウェハ面の法線方向と同じ方向に延ばして、法線側をプラスとして角度θを表してある。
なお、本実施形態でも、貫通転位3の転位線の方向として、エピタキシャル膜2中に形成されているものについては上記角度となるようにしているが、SiC単結晶基板1内に形成された貫通転位3については、特に規定しておらず、どのような角度であっても構わない。
このように、本実施形態では、貫通転位3の転位線の方向が揃えられ、転位線の方向と[0001]c軸との為す角度θが−3°以上かつ22.5°以下となるようにしている。このようなSiC単結晶エピタキシャルウェハに対して電子デバイスを形成しても、第5実施形態と同様の効果が得られる。
このような構造のSiC単結晶エピタキシャルウェハは、例えば以下のようにして製造される。まず、バルク状のSiC単結晶を用意して、そのSiC単結晶を[1−100]方向を含む面において切り出すことで、上記オフ方向のSiC単結晶基板1を用意することができる。そして、このSiC単結晶基板1の表面にCVD法にてSiC単結晶からなるエピタキシャル膜2を成長させる。
このようにすれば、SiC基板1内に含まれていた貫通転位3は、エピタキシャル膜2内において[0001]c軸に対する角度θが−3°以上かつ22.5°以下の範囲となるようにできる。これも、エピタキシャル膜2を成長させる際のステップフローの方向が関係していると考えられ、貫通転位3の転位線の傾斜方向とステップフロー方向が同一方向であることを確認している。
例えば、エピタキシャル膜2内の不純物濃度(例えば窒素濃度)を1×1017cm-3以下において調整することにより、貫通転位3の転位線の方向は、例えば[2−203]方向に平行もしくは[2−203]方向に対して±3°の範囲内の方向に向き、角度θは19.5°±3°の範囲となるか、[1−102]方向に平行もしくは[1−102]方向に対して±3°の範囲内の方向に向き、角度θは15°±3°の範囲となるか、もしくは、[1−104]方向に平行もしくは[1−104]方向に対して±3°の範囲内の方向に向き、角度θは7.6°±3°の範囲となる。
このように不純物濃度を例えば1×1017cm-3以下に設定することで、貫通転位3の転位線の方向を同一方向に揃えることができる。そして、このような不純物濃度は、デバイス作製に適した濃度であるので、デバイス特性は良好で劣化が無く、歩留まりも向上させられる。逆に、不純物濃度を例えば1×1018cm-3とする場合には、角度θが22.5°より大きくなり、基底面内方向の成分が大きくなるため、デバイス特性に悪影響を与えることになる。また、不純物濃度も濃く、デバイス作製に適した濃度ではないため、使用に適さない。なお、ここでは、不純物としてn型導電性を示す窒素を例に挙げたが、他の不純物を用いても良いし、p型導電性を示すアルミニウムやホウ素などを用いても良い。
さらに、本実施形態では、転位線は、[0001]c軸およびそれに対する垂直方向の特定方向(例えば[1−100]方向)を通る(11−20)面内においてのみ[0001]c軸に対して傾いてる。
このように、転位線が同じ面内のみで傾くように揃えられることで、よりデバイス特性の化や歩留まりの低下の抑制を図ることが可能となる。例えば、SiC単結晶基板に対して(11−20)面のチャネル面を持つ電界効果方トランジスタを作成した場合、転位線がチャネル面に交差することがなくなる。このため、トランジスタの特性、信頼性を更に向上させることが可能となる。
なお、ここでは、オフ方向を[1−100]方向としてα°オフ角が付けられたものを用いたが、α°は0°より大きければ良く、エピタキシャル膜2がステップフロー成長する角度であれば、どのような角度でも良い。例えば、α°を4°とすることができる。
(第9実施形態)
本発明の第9実施形態について説明する。本実施形態では、第8実施形態に対して、貫通転位3の転位線の方向をより限定的に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第5実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図4(a)に示したオフ方向を[1−100]方向としてα°オフ角をつけたSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向と[0001]c軸との為す角度θが19.5°([2−203]方向)に対して±3°の範囲内となるようにしている。
このように、貫通転位3の転位線の方向を特定方向に揃えている。このため、第8実施形態と同様の効果に加えて、貫通転位3の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
(第10実施形態)
本発明の第10実施形態について説明する。本実施形態も、第8実施形態に対して、貫通転位3の転位線の方向をより限定定期に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第5実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図4(a)に示したオフ方向を[1−100]方向としてα°オフ角をつけたSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向と[0001]c軸との為す角度θが15°([1−102]方向)に対して±3°の範囲内となるようにしている。
このように、貫通転位3の転位線の方向を特定方向に揃えている。このため、第8実施形態と同様の効果に加えて、貫通転位3の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
(第11実施形態)
本発明の第11実施形態について説明する。本実施形態も、第8実施形態に対して、貫通転位3の転位線の方向をより限定定期に特定して揃える。なお、本実施形態にかかるSiC単結晶エピタキシャルウェハの構造などについては第5実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、図4(a)に示したオフ方向を[1−100]方向としてα°オフ角をつけたSiC単結晶エピタキシャルウェハにおいて、エピタキシャル膜2に存在するすべての貫通転位3について、転位線の方向と[0001]c軸との為す角度θが7.6°([1−104]方向)に対して±3°の範囲内となるようにしている。
このように、貫通転位3の転位線の方向を特定方向に揃えている。このため、第8実施形態と同様の効果に加えて、貫通転位3の転位線の方向が揃っていることで、場所による特性のばらつきが少なくなり、さらに歩留まりを向上させることができる。
(第12実施形態)
本発明の第12実施形態について説明する。第1〜第11実施形態では、単に貫通転位3として説明したが、この貫通転位3の中に貫通刃状転位が含まれるようにすると好ましい。このような貫通刃状転位が含まれた貫通転位3が形成されている場合についても、上記第1〜第11実施形態と同様の効果となるが、図6に示したように、貫通刃状転位の場合には、貫通らせん転位よりもSiC単結晶エピタキシャルウェハに対して電子デバイス、例えばダイオードやMOSトランジスタなどのパワー素子を形成したときの故障時間が長くなる。これにより、よりデバイス特性を良好にすることが可能となる。
(他の実施形態)
上記各実施形態では、SiC単結晶基板1の上に例えばCVD法にてエピタキシャル膜2を製造する場合に、貫通転位3の転位線の方向が不純物濃度との関係に基づいて特定方向を向くことを利用している。しかしながら、これは貫通転位3の転位線の方向を容易に揃えることができる手法として載せたに過ぎず、デバイス特性や歩留まりの観点からは、SiC単結晶基板1もしくはSiC単結晶エピタキシャルウェハのエピタキシャル膜2に形成された貫通転位3の転位線の方向が上記各実施形態で示した角度範囲を満たしていれば、上記効果を得ることができるため、各実施形態で説明した製造方法に限定されるものではない。
上記各実施形態では、パワー系の電子デバイスに適した六方晶系の4H−SiCのSiC単結晶基板1を用いた場合について説明したが、他の結晶多形であっても本発明を適用できる。ただし、貫通転位3の転位線の方向を示す指数は他の結晶多形、例えば6H−SiCなどの場合は表記が変わる。
さらに、上記各実施形態では、電子デバイスが形成される基板として、SiC単結晶基板1上にエピタキシャル膜を成長させたSiC単結晶エピタキシャルウェハを例に挙げたが、エピタキシャル膜2の上にSiC単結晶をバルク成長させ、これを切り出すことで、貫通転位3の方向が揃ったSiC単結晶基板を形成すれば、そのSiC単結晶基板に対してデバイス形成することもできる。したがって、本発明は、SiC単結晶エピタキシャルウェハに限るものではなく、SiC単結晶基板も含まれる。
なお、結晶の方位を示す場合、本来ならば所望の数字の上にバー(−)を付すべきであるが、パソコン出願に基づく表現上の制限が存在するため、本明細書においては、所望の数字の前にバーを付すものとする。
1 SiC単結晶基板
2 エピタキシャル膜
3 貫通転位

Claims (17)

  1. 転位線が(0001)C面を貫通する貫通転位(3)を含み、該貫通転位(3)の転位線の方向と[0001]c軸との為す角度が22.5°以下とされていることを特徴とする炭化珪素単結晶基板。
  2. 前記貫通転位(3)の転位線の方向は、[0001]c軸との為す角度が19.5°以下の特定方向に対して±3°の範囲内とされていることを特徴とする請求項1に記載の炭化珪素単結晶基板。
  3. 前記貫通転位(3)の転位線の方向は、[0001]c軸と平行な方向に対して±3°の範囲内とされていることを特徴とする請求項2に記載の炭化珪素単結晶基板。
  4. 前記貫通転位(3)の転位線の方向は、[0001]c軸と平行な方向とされていることを特徴とする請求項1に記載の炭化珪素単結晶基板。
  5. [11−20]方向をオフ方向とする炭化珪素単結晶基板(1)と、
    前記炭化珪素単結晶基板(1)に成長させられたエピタキシャル膜(2)とを有し、
    前記エピタキシャル膜(2)は、転位線が(0001)C面を貫通する貫通転位(3)を含み、該貫通転位(3)の転位線の方向が[0001]c軸から[11−20]方向の基板面の法線方向への角度が−3°以上かつ20°以下とされ、かつ、該貫通転位(3)が(1−100)面内にあることを特徴とする炭化珪素単結晶エピタキシャルウェハ。
  6. 前記貫通転位(3)の転位線の方向が[0001]c軸から[11−20]方向の基板面の法線方向への角度が17°±3°の範囲とされていることを特徴とする請求項5に記載の炭化珪素単結晶エピタキシャルウェハ。
  7. 前記貫通転位(3)の転位線の方向が[0001]c軸から[11−20]方向の基板面の法線方向への角度が8.7°±3°の範囲とされていることを特徴とする請求項5に記載の炭化珪素単結晶エピタキシャルウェハ。
  8. [1−100]方向をオフ方向とする炭化珪素単結晶基板(1)と、
    前記炭化珪素単結晶基板(1)に成長させられたエピタキシャル膜(2)とを有し、
    前記エピタキシャル膜(2)は、転位線が(0001)C面を貫通する貫通転位(3)を含み、該貫通転位(3)の転位線の方向が[0001]c軸から[1−100]方向の基板面の法線方向への角度が−3°以上かつ22.5°以下とされ、かつ、該貫通転位(3)が(11−20)面内にあることを特徴とする炭化珪素単結晶エピタキシャルウェハ。
  9. 前記貫通転位(3)の転位線の方向が[0001]c軸から[1−100]方向の基板面の法線方向への角度が19.5°±3°の範囲とされていることを特徴とする請求項8に記載の炭化珪素単結晶エピタキシャルウェハ。
  10. 前記貫通転位(3)の転位線の方向が[0001]c軸から[1−100]方向の基板面の法線方向への角度が15°±3°の範囲とされていることを特徴とする請求項8に記載の炭化珪素単結晶エピタキシャルウェハ。
  11. 前記貫通転位(3)の転位線の方向が[0001]c軸から[1−100]方向の基板面の法線方向への角度が7.6°±3°の範囲とされていることを特徴とする請求項8に記載の炭化珪素単結晶エピタキシャルウェハ。
  12. 前記エピタキシャル膜(2)の不純物濃度の方が前記炭化珪素単結晶基板(1)の不純物濃度よりも低くされ、前記エピタキシャル膜(2)の不純物濃度が1×1017cm-3以下とされていることを特徴とする請求項5ないし11のいずれか1つに記載の炭化珪素単結晶エピタキシャルウェハ。
  13. 前記貫通転位(3)には貫通刃状転位が含まれていることを特徴とする請求項5ないし12のいずれか1つに記載の炭化珪素単結晶エピタキシャルウェハ。
  14. 前記貫通転位(3)には貫通刃状転位が含まれていることを特徴とする請求項1ないし4のいずれか1つに記載の炭化珪素単結晶基板。
  15. 請求項1ないし4および14のいずれか1つに記載の炭化珪素単結晶基板もしくは請求項5ないし13のいずれか1つに記載の炭化珪素単結晶エピタキシャルウェハに対して電子デバイスが形成されていることを特徴とする炭化珪素半導体装置。
  16. 請求項5ないし7のいずれか1つに記載の炭化珪素単結晶エピタキシャルウェハに対して、(1−100)面をチャネル面とする電界効果型トランジスタが電子デバイスとして形成されていることを特徴とする炭化珪素半導体装置。
  17. 請求項8ないし11のいずれか1つに記載の炭化珪素単結晶エピタキシャルウェハに対して、(11−20)面をチャネル面とする電界効果型トランジスタが電子デバイスとして形成されていることを特徴とする炭化珪素半導体装置。
JP2009029825A 2009-02-12 2009-02-12 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ Pending JP2010184833A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009029825A JP2010184833A (ja) 2009-02-12 2009-02-12 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ
US12/656,210 US8470091B2 (en) 2009-02-12 2010-01-21 SiC single crystal substrate, SiC single crystal epitaxial wafer, and SiC semiconductor device
SE1000082A SE536926C2 (sv) 2009-02-12 2010-01-28 Enkristallint kiselkarbidsubstrat, enkristallin epitaxiell kiselkarbidskiva och kiselkarbidhalvledaranordning
DE102010001720.5A DE102010001720B4 (de) 2009-02-12 2010-02-09 Einkristalliner epitaktischer SiC-Wafer und dessen Verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029825A JP2010184833A (ja) 2009-02-12 2009-02-12 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011139484A Division JP2011236124A (ja) 2011-06-23 2011-06-23 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ

Publications (1)

Publication Number Publication Date
JP2010184833A true JP2010184833A (ja) 2010-08-26

Family

ID=42338902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029825A Pending JP2010184833A (ja) 2009-02-12 2009-02-12 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ

Country Status (4)

Country Link
US (1) US8470091B2 (ja)
JP (1) JP2010184833A (ja)
DE (1) DE102010001720B4 (ja)
SE (1) SE536926C2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169944A (ja) * 2013-03-04 2014-09-18 Central Research Institute Of Electric Power Industry 炭化珪素基板又は炭化珪素半導体素子の検査方法及び炭化珪素基板又は炭化珪素半導体素子の製造方法
US8859387B2 (en) 2011-11-30 2014-10-14 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
JP2017048068A (ja) * 2015-08-31 2017-03-09 株式会社デンソー 炭化珪素単結晶、炭化珪素単結晶ウェハ、炭化珪素単結晶エピタキシャルウェハ、電子デバイス
US9653553B2 (en) 2015-03-10 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor substrate, semiconductor device and method of manufacturing semiconductor device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422388A (zh) * 2009-05-11 2012-04-18 住友电气工业株式会社 碳化硅衬底和半导体器件
JP5817204B2 (ja) * 2011-04-28 2015-11-18 トヨタ自動車株式会社 炭化珪素半導体装置
JP5750363B2 (ja) * 2011-12-02 2015-07-22 株式会社豊田中央研究所 SiC単結晶、SiCウェハ及び半導体デバイス
JP2014146748A (ja) * 2013-01-30 2014-08-14 Toshiba Corp 半導体装置及びその製造方法並びに半導体基板
JP5857986B2 (ja) * 2013-02-20 2016-02-10 株式会社デンソー 炭化珪素単結晶および炭化珪素単結晶の製造方法
JP6192948B2 (ja) * 2013-02-20 2017-09-06 株式会社豊田中央研究所 SiC単結晶、SiCウェハ、SiC基板、及び、SiCデバイス
JP6112712B2 (ja) * 2013-03-27 2017-04-12 国立研究開発法人産業技術総合研究所 炭化珪素エピタキシャルウエハの製造方法
US9425262B2 (en) * 2014-05-29 2016-08-23 Fairchild Semiconductor Corporation Configuration of portions of a power device within a silicon carbide crystal
DE112016004600T5 (de) * 2015-10-07 2018-06-21 Sumitomo Electric Industries, Ltd. Epitaktisches Siliziumkarbidsubstrat und Verfahren zum Herstellen einer Siliziumkarbid-Halbleitervorrichtung
CN109478569B (zh) 2016-07-21 2022-02-22 三菱电机株式会社 碳化硅半导体装置以及碳化硅半导体装置的制造方法
CN109791879B (zh) * 2016-10-04 2023-07-25 住友电气工业株式会社 碳化硅外延衬底和制造碳化硅半导体器件的方法
JP6768491B2 (ja) * 2016-12-26 2020-10-14 昭和電工株式会社 SiCウェハ及びSiCウェハの製造方法
JP6762484B2 (ja) * 2017-01-10 2020-09-30 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
JP7393900B2 (ja) * 2019-09-24 2023-12-07 一般財団法人電力中央研究所 炭化珪素単結晶ウェハ及び炭化珪素単結晶インゴットの製造方法
CN112397571B (zh) * 2021-01-18 2021-04-23 苏州纳维科技有限公司 一种氮化镓衬底及半导体复合衬底

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277193A (ja) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc エピタキシャル膜付きSiCウエハ及びその製造方法並びにSiC電子デバイス
JP2004262709A (ja) * 2003-02-28 2004-09-24 Shikusuon:Kk SiC単結晶の成長方法
JP2005350278A (ja) * 2004-06-08 2005-12-22 Denso Corp 炭化珪素単結晶、炭化珪素基板およびその製造方法
JP2007230823A (ja) * 2006-03-01 2007-09-13 Nippon Steel Corp 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2008311541A (ja) * 2007-06-18 2008-12-25 Fuji Electric Device Technology Co Ltd 炭化珪素半導体基板の製造方法
JP2010515661A (ja) * 2007-01-16 2010-05-13 トゥー‐シックス・インコーポレイテッド 多層成長ガイドを用いた誘導直径SiC昇華成長

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912064A (en) * 1987-10-26 1990-03-27 North Carolina State University Homoepitaxial growth of alpha-SiC thin films and semiconductor devices fabricated thereon
US5011549A (en) * 1987-10-26 1991-04-30 North Carolina State University Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
US5230768A (en) * 1990-03-26 1993-07-27 Sharp Kabushiki Kaisha Method for the production of SiC single crystals by using a specific substrate crystal orientation
EP0874405A3 (en) * 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
US5915194A (en) * 1997-07-03 1999-06-22 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon
US6329088B1 (en) * 1999-06-24 2001-12-11 Advanced Technology Materials, Inc. Silicon carbide epitaxial layers grown on substrates offcut towards <1{overscore (1)}00>
EP1215730B9 (en) * 1999-09-07 2007-08-01 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER
JP3761418B2 (ja) * 2001-05-10 2006-03-29 Hoya株式会社 化合物結晶およびその製造法
US6488771B1 (en) * 2001-09-25 2002-12-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for growing low-defect single crystal heteroepitaxial films
DE10247017B4 (de) 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC-Einkristall, Verfahren zur Herstellung eines SiC-Einkristalls, SiC-Wafer mit einem Epitaxiefilm und Verfahren zur Herstellung eines SiC-Wafers, der einen Epitaxiefilm aufweist
TWI285918B (en) * 2002-01-11 2007-08-21 Sumitomo Chemical Co Method of producing 3-5 group compound semiconductor and semiconductor element
US20050160965A1 (en) * 2002-04-04 2005-07-28 Nippon Steel Corporation Seed crystal of silicon carbide single crystal and method for producing ingot using same
US6869480B1 (en) * 2002-07-17 2005-03-22 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method for the production of nanometer scale step height reference specimens
JP4856350B2 (ja) * 2002-12-16 2012-01-18 Hoya株式会社 ダイオード
JP4360085B2 (ja) * 2002-12-25 2009-11-11 株式会社デンソー 炭化珪素半導体装置
JP4238357B2 (ja) 2003-08-19 2009-03-18 独立行政法人産業技術総合研究所 炭化珪素エピタキシャルウエハ、同ウエハの製造方法及び同ウエハ上に作製された半導体装置
US7407837B2 (en) * 2004-01-27 2008-08-05 Fuji Electric Holdings Co., Ltd. Method of manufacturing silicon carbide semiconductor device
US7230274B2 (en) * 2004-03-01 2007-06-12 Cree, Inc Reduction of carrot defects in silicon carbide epitaxy
KR100853991B1 (ko) * 2004-03-26 2008-08-25 간사이 덴료쿠 가부시키가이샤 바이폴라형 반도체 장치 및 그의 제조방법
DE102005017814B4 (de) * 2004-04-19 2016-08-11 Denso Corporation Siliziumkarbid-Halbleiterbauelement und Verfahren zu dessen Herstellung
EP1619276B1 (en) * 2004-07-19 2017-01-11 Norstel AB Homoepitaxial growth of SiC on low off-axis SiC wafers
US7294324B2 (en) 2004-09-21 2007-11-13 Cree, Inc. Low basal plane dislocation bulk grown SiC wafers
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
US7391058B2 (en) * 2005-06-27 2008-06-24 General Electric Company Semiconductor devices and methods of making same
JP4844330B2 (ja) * 2006-10-03 2011-12-28 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP4842094B2 (ja) 2006-11-02 2011-12-21 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法
EP2133906A4 (en) 2007-04-05 2011-11-02 Sumitomo Electric Industries SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP4964672B2 (ja) 2007-05-23 2012-07-04 新日本製鐵株式会社 低抵抗率炭化珪素単結晶基板
JP5194610B2 (ja) 2007-07-27 2013-05-08 シンフォニアテクノロジー株式会社 部品供給装置
US8293623B2 (en) * 2007-09-12 2012-10-23 Showa Denko K.K. Epitaxial SiC single crystal substrate and method of manufacture of epitaxial SiC single crystal substrate
US8823014B2 (en) * 2008-06-13 2014-09-02 Kansas State University Research Foundation Off-axis silicon carbide substrates
JP4730422B2 (ja) * 2008-10-24 2011-07-20 住友電気工業株式会社 Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法、及びiii族窒化物半導体エピタキシャルウエハ
JP4978637B2 (ja) * 2009-02-12 2012-07-18 株式会社デンソー 炭化珪素単結晶の製造方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277193A (ja) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc エピタキシャル膜付きSiCウエハ及びその製造方法並びにSiC電子デバイス
JP2004262709A (ja) * 2003-02-28 2004-09-24 Shikusuon:Kk SiC単結晶の成長方法
JP2005350278A (ja) * 2004-06-08 2005-12-22 Denso Corp 炭化珪素単結晶、炭化珪素基板およびその製造方法
JP2007230823A (ja) * 2006-03-01 2007-09-13 Nippon Steel Corp 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2010515661A (ja) * 2007-01-16 2010-05-13 トゥー‐シックス・インコーポレイテッド 多層成長ガイドを用いた誘導直径SiC昇華成長
JP2008311541A (ja) * 2007-06-18 2008-12-25 Fuji Electric Device Technology Co Ltd 炭化珪素半導体基板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859387B2 (en) 2011-11-30 2014-10-14 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
JP2014169944A (ja) * 2013-03-04 2014-09-18 Central Research Institute Of Electric Power Industry 炭化珪素基板又は炭化珪素半導体素子の検査方法及び炭化珪素基板又は炭化珪素半導体素子の製造方法
US9653553B2 (en) 2015-03-10 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor substrate, semiconductor device and method of manufacturing semiconductor device
JP2017048068A (ja) * 2015-08-31 2017-03-09 株式会社デンソー 炭化珪素単結晶、炭化珪素単結晶ウェハ、炭化珪素単結晶エピタキシャルウェハ、電子デバイス
WO2017038591A1 (ja) * 2015-08-31 2017-03-09 株式会社デンソー 炭化珪素単結晶、炭化珪素単結晶ウェハ、炭化珪素単結晶エピタキシャルウェハ、電子デバイス
KR20180044999A (ko) * 2015-08-31 2018-05-03 가부시키가이샤 덴소 탄화 규소 단결정, 탄화 규소 단결정 웨이퍼, 탄화 규소 단결정 에피택셜 웨이퍼, 전자 디바이스
CN108026661A (zh) * 2015-08-31 2018-05-11 株式会社电装 碳化硅单晶、碳化硅单晶晶片、碳化硅单晶外延晶片、电子器件
KR102132209B1 (ko) * 2015-08-31 2020-07-10 가부시키가이샤 덴소 탄화 규소 단결정, 탄화 규소 단결정 웨이퍼, 탄화 규소 단결정 에피택셜 웨이퍼, 전자 디바이스

Also Published As

Publication number Publication date
US8470091B2 (en) 2013-06-25
DE102010001720B4 (de) 2019-08-14
DE102010001720A1 (de) 2010-08-19
US20100200866A1 (en) 2010-08-12
SE536926C2 (sv) 2014-11-04
SE1000082A1 (sv) 2010-08-13

Similar Documents

Publication Publication Date Title
JP2010184833A (ja) 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ
US10774441B2 (en) Silicon carbide epitaxial substrate and silicon carbide semiconductor device
JP5319628B2 (ja) 窒化物半導体素子および半導体光学装置
KR101287787B1 (ko) 에피택셜 SiC 단결정 기판 및 에피택셜 SiC 단결정 기판의 제조 방법
US8324631B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
JP2007013154A (ja) 半導体デバイス及びその製作方法
JP6012841B2 (ja) SiCエピタキシャルウエハの製造方法
JPWO2011093481A1 (ja) 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板
JP5135708B2 (ja) Iii族窒化物系電子デバイスおよびエピタキシャル基板
CN110637109B (zh) SiC外延晶片及其制造方法
JP2010076967A (ja) 炭化ケイ素基板の製造方法および炭化ケイ素基板
US10985079B2 (en) Method of manufacturing SiC epitaxial wafer
JP2023093554A (ja) SiCエピタキシャルウェハ
JPWO2015005064A1 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP6147543B2 (ja) SiC単結晶及びその製造方法
JP5884804B2 (ja) 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ
JP2011236124A (ja) 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ
JP5857986B2 (ja) 炭化珪素単結晶および炭化珪素単結晶の製造方法
JP2016052994A (ja) 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ
JP2011165962A (ja) エピタキシャル成長基板及び半導体装置、エピタキシャル成長方法
JP2011093803A (ja) 窒化ガリウム系化合物半導体単結晶の製造方法
JP2014227319A (ja) SiC単結晶及びその製造方法
JP6527667B2 (ja) 窒化物半導体基板の製造方法
JP2013033983A (ja) Iii族窒化物系電子デバイス
JP2014192246A (ja) 半導体基板およびそれを用いた半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115