JP2010177292A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2010177292A
JP2010177292A JP2009015909A JP2009015909A JP2010177292A JP 2010177292 A JP2010177292 A JP 2010177292A JP 2009015909 A JP2009015909 A JP 2009015909A JP 2009015909 A JP2009015909 A JP 2009015909A JP 2010177292 A JP2010177292 A JP 2010177292A
Authority
JP
Japan
Prior art keywords
region
diffusion layer
conductivity type
semiconductor device
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009015909A
Other languages
English (en)
Inventor
Yasushi Kobayashi
靖司 小林
Masayuki Inoue
真幸 井上
Kohei Miyagawa
紘平 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009015909A priority Critical patent/JP2010177292A/ja
Priority to US12/690,766 priority patent/US20100187606A1/en
Publication of JP2010177292A publication Critical patent/JP2010177292A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】相補型LDMOSトランジスタとCMOSトランジスタとを混載した半導体装置を、トランジスタ毎の特性のばらつきを抑制して製造する。
【解決手段】同一半導体基板にCMOSトランジスタと相補型LDMOSトランジスタを混載した半導体装置の製造方法であって、LDMOSトランジスタのp型及びn型ボディ層を形成する際、ゲート電極形成に用いたフォトレジストをそのままマスクとして用いる。
【選択図】図5

Description

本発明は、LDMOSトランジスタを含む半導体装置の製造方法に関する。
近年、半導体集積回路装置の高集積化に伴って、高耐圧LDMOS(Laterally diffused Metal Oxide Semiconductor)素子、低耐圧CMOS(Complementary Metal Oxide Semiconductor)素子やバイポーラ素子等を同一基板に集積した半導体集積回路装置が求められるようになってきた。高耐圧LDMOS素子の一例であるLDMOSトランジスタは、携帯機器向けに低消費電力化やサイズ縮小が要求されている。さらに、低耐圧の他の素子を同一基板に混載した上で低閾値電圧および高耐圧、低オン抵抗などの特性を実現することが求められている。
ここで、特許文献1には、LDMOSトランジスタの小型化に関する技術が開示されている。また、非特許文献1には、LDMOSトランジスタの製造方法及び構造の一例が開示されている。
非特許文献1に開示されているnLDMOSトランジスタは、nウェル層内に高濃度のp型ボディ層を形成し、p型ボディ層及びnウェル層内に、それぞれn型ソース拡散層及びn型ドレイン拡散層を形成し、p型ボディ層の一部に重複するように、ゲート絶縁膜及びゲート電極を形成して製造される(Fig.1)。また、p型ボディ層は、nウェル層より十分不純物濃度が高く、nウェル領域より十分狭い。このように、高濃度のp型ボディ層と低濃度のnウェル領域とを設ける事で低い閾値電圧でp型ボディ層内に短いチャネルを形成し、高耐圧、低オン抵抗を実現することができる。
ここで、LDMOSトランジスタの省電力化には、チャネル長を短くし、閾値電圧を低下させることが有効であることが知られている。しかし、チャネル長が短いほど、チャネル長のわずかなばらつきが、LDMOSトランジスタの性能に与える影響が大きくなる。
従って、チャネル長を決定するp型ボディ層とゲート電極とを正確な位置に形成する必要がある。
しかし、非特許文献1に開示されている製造方法では、p型ボディ層を形成した後、ゲート電極を形成する。そのため、マスクずれなどにより、ゲート電極とp型ボディ層との相対位置がトランジスタ毎にばらつきやすい。
このような問題に対して、ゲート電極をマスクとして利用する自己整合技術が知られている(特許文献1、図3)。自己整合技術では、ボディ層を形成する領域以外をフォトレジスト膜でマスクし、p型不純物の注入を行う。このとき、不純物注入のマスクの役割を果たすゲート電極の端面を覆わない程度に、ゲート電極上にもフォトレジスト膜を形成することが知られている。
特開2001−060686号公報 International Symposium on Power Semiconductor Devices & IC’s 2008「BD180 - A New 0.18 um BCD (Bipolar-CMOS-DMOS) Technology from 7V to 60V」
しかし、特許文献1に開示されている自己整合技術を用いても、ゲート電極の端面とゲート電極上のフォトレジスト膜の位置がばらついたり、それまでの工程でばらつきが生じたりするので、必ずしも目標とする範囲にp型ボディ層を形成できないという問題がある。具体的には、ゲート電極のうちフォトレジスト膜に覆われていない領域を不純物イオンが貫通し、基板に到達する場合がある。このような現象が生じるので、ゲート電極の端面と、ゲート電極上に形成されたフォトレジスト膜の相対的な位置がばらつくと、p型ボディ層とゲート電極とが重畳する範囲及び面積がばらつく。その結果、製造されるトランジスタ毎にチャネル長がばらつき、低閾値電圧のトランジスタを安定的に製造することができない。
また、自己整合技術を用いて形成したp型ボディ層を横方向に拡散させるため、1000度を超える高熱処理が必要であるが、同一基板内にCMOSなど、他の素子が形成される場合、他の素子が高熱処理の影響を受けるという問題もある。
これらの問題について、nチャネル型のLDMOSトランジスタについて述べてきたが、pチャネル型のLDMOSトランジスタにも同様の問題が生じる。
上記の問題に鑑み、本発明は、チャネル長のばらつきの少ないLDMOSトランジスタを搭載した半導体装置を安定的に製造する製造方法及び半導体装置を提供することを目的とする。
上記の課題を解決するため本発明は、半導体基板に、第1導電型ドレイン拡散層と第2導電型ボディ層とを形成し、前記第2導電型ボディ層内に第1導電型ソース拡散層及びボディコンタクト層とを形成し、前記半導体基板のうち、前記第1導電型ドレイン拡散層と前記第1導電型ソース拡散層とに挟まれた領域上にゲート電極を形成した第1導電型LDMOSトランジスタを含む半導体装置の製造方法であって、半導体基板に第1導電型のウェル拡散層を形成する工程(a)と、
前記半導体基板内の前記ウェル拡散層に相当する領域上にゲート絶縁膜、ゲート用導電膜及びフォトレジスト膜を順次形成する工程(b)と、フォトリソグラフィーにより、前記フォトレジスト膜のうち所定の領域に形成された部分を除去し、残存するフォトレジスト膜をマスクとしてゲート用導電膜をエッチングして、所定の領域に開口部を形成する工程(c)と、前記半導体基板上に残存するゲート用導電膜及びフォトレジストをマスクとして、第2導電型の不純物イオンを注入し、ボディ層を形成する工程(d)と、前記ゲート用導電膜のうち、前記開口部側面の一部を基準として前記ゲート電極となる部分を残して、電極ゲート用導電膜を除去する工程(e)とを含むことを特徴とする。
また、本発明は、1個以上のLDMOSトランジスタを含み、上記の製造方法により製造されたことを特徴とする半導体装置であってもよい。
上記の製造方法によると、フォトレジスト膜をマスクとしてゲート用導電膜をエッチングして開口部を形成する。そのため、ゲート用導電膜とフォトレジストに一致していない部分はないので、ゲート用導電膜を貫通し半導体基板へ到達する不純物イオンは存在せずボディ層の形成される位置及び面積は、開口部の位置と面積により決まる。さらに、工程(d)により、前記開口部側面の一部を基準としてゲート電極が形成されるので、形成されるゲート電極とボディ層の位置関係の、トランジスタ毎のばらつきを抑制することができる。つまり、本発明の製造方法によると、トランジスタ毎のチャネル長ばらつきを抑制することができる。その結果、トランジスタ毎の閾値電圧のばらつきも抑制することができるという優れた効果を奏する。
また、前記半導体装置の製造方法において、前記工程(d)では、所定範囲で入射角を変動させながら、前記不純物イオンを注入してもよい。
この製造方法によると、ボディ層形成のための不純物イオンの入射角を半導体基板の法線方向から所定範囲傾けるので、不純物イオンは、開口部の直下のみならずその周辺にも拡散する。従って、横方向へボディ層を拡散するための高温での熱処理が不要となる。そのため、同一基板内に、他の素子が形成されている場合であっても、その素子に、高温処理による影響を及ぼすことはない。
また、前記工程(d)では、前記LDMOSトランジスタのチャネル長が0.1μm〜0.4μmの範囲になるように、前記不純物イオンを注入するとしてもよい。
この構成によると、LDMOSトランジスタの閾値電圧を1V以下に抑えることができる。
前記製造方法は、さらに、前記半導体基板内において、前記第1導電型ドレイン拡散層と、工程(e)により形成される前記ゲート電極との間に相当する位置に、絶縁膜を形成する工程を含んでもよい。
この製造方法により生成される半導体装置は、ゲート電極とドレイン拡散層の間に絶縁膜を備える。このように、絶縁膜を備えることで、ゲート電極とドレイン拡散層の距離が小さくなる付近での電界集中を抑制し、ゲート・ドレイン間及びソース・ドレイン間の耐圧を向上することができる。
また、本発明は、相補型MOSトランジスタと相補型LDMOSトランジスタとを同一半導体基板に混載する半導体装置の製造方法であって、複数の素子分離用絶縁膜が形成された半導体基板内において、前記素子分離絶縁膜により定まる第1領域、及び、前記第1領域とは異なる第2領域それぞれに、第1導電型の第1ウェル拡散層及び第2ウェル拡散層を形成する工程(a)と、第1及び第2領域とは異なる第3及び第4領域それぞれに、第2導電型の第3ウェル拡散層及び第4ウェル拡散層とを形成する工程(b)と、前記半導体基板の前記第1、第2、第3及び第4領域に相当する部分上に、ゲート絶縁膜とゲート用導電膜とフォトレジスト膜とを順次形成する工程(c)と、フォトリソグラフィーにより、フォトレジスト膜のうち第1領域内の所定の範囲に形成された部分を除去し、残存するフォトレジスト膜をマスクとしてゲート用導電膜をエッチングし、第1開口部を形成する工程と(d)、前記半導体基板上に残存するゲート用導電膜及びフォトレジスト膜をマスクとして、第2導電型の不純物イオンを注入し、第1ボディ層を形成する工程(e)と、前記半導体基板上に残存するフォトレジスト膜を除去し、前記半導体基板の前記第1、第2、第3及び第4領域に相当する部分に、再度、フォトレジスト膜を形成する工程(f)と、フォトリソグラフィーにより、新たなフォトレジスト膜のうち第2領域内の所定の範囲に形成された部分を除去し、残存する新たなフォトレジストをマスクとしてゲート用導電膜をエッチングし、第2開口部を形成する工程と(g)、前記半導体基板上に残されたゲート用導電膜及びフォトレジストをマスクとして、第1導電型の不純物イオンを注入し第1導電型の第2ボディ層を形成する工程(h)と、前記第1領域において、前記第1開口部側面の一部を基準としゲート電極となる部分と、前記第3領域において、前記第2開口部側面の一部を基準としてゲート電極となる部分と、前記第2領域及び第4領域内のゲート電極となる部分にを除き、前記ゲート用導電膜を除去する工程(i)と、前記第1領域に形成された前記第1ウェル拡散層内に第1導電型のドレイン拡散層を形成し、第1ボディ層内に第1導電型のソース拡散層を形成し、前記第2領域に形成された前記第2ウェル拡散層内に第1導電型のボディコンタクト層を形成し、前記第3領域に形成された前記第3ボディ層内にボ第1導電型のディコンタクト層を形成し、前記第4領域に形成された前記第4ウェル拡散層内に第1導電型のソース拡散層及びドレイン拡散層を形成する工程と(j)、前記第1領域に形成された第1ボディ層上に第2導電型ボディコンタクト層を形成し、前記第2領域に形成された前記第2ウェル拡散層内に第2導電型ソース拡散層及びドレイン拡散層を形成し、前記第3領域に形成された第3ウェル拡散層上に第2導電型ドレイン拡散層を形成し、前記第3ボディ層内に第2導電型ソース拡散層を形成し、前記第4領域に形成された前記第4ウェル拡散層内に第2導電型ボディコンタクト層を形成する工程(k)とを含むことを特徴とする半導体装置の製造方法であってもよいし、この製造方法により製造されたことを特徴とする半導体装置であってもよい。
上記の製造方法によると、第1領域に第1導電型のLDMOSトランジスタ、第2領域に第2導電型のMOSトランジスタ、第3領域に第2導電型のLDMOSトランジスタ、第4領域に第1導電型のMOSトランジスタを、並行して形成できる。
ここで、工程(i)において、ゲート用導電膜のうち、除去されずに残される部分が各トランジスタのゲート電極となる。
この製造方法では、フォトレジスト膜をマスクとしてゲート用導電膜をエッチングして第1及び第2開口部を形成する。そのため、ゲート用導電膜とフォトレジストに一致していない部分はないので、ゲート用導電膜を貫通し半導体基板へ到達する不純物イオンは存在せず第1及び第2ボディ層の形成される位置及び面積は、第1及び第2開口部の位置と面積により決まる。さらに、前記第1及び第2開口部側面の一部を基準として、LDMOSトランジスタのゲート電極を形成するので、LDMOSトランジスタのゲート電極とボディ層の位置関係ばらつき、つまり、トランジスタ毎のチャネル長のばらつきを抑制することができる。
また、本発明は、上記の半導体装置の製造方法の前記工程(c)において、第1及び第3領域には、第2及び第4領域に形成するゲート絶縁膜よりも、厚い膜厚のゲート絶縁膜を形成するとしてもよいし、この製造方法により製造され、前記相補型LDMOSトランジスタのゲート絶縁膜と、前記相補型MOSトランジスタのゲート絶縁膜の膜厚が異なることを特徴とする半導体装置であってもよい。
上記の製造方法によると、LDMOSトランジスタとMOSトランジスタとで、ゲート絶縁膜の膜厚を変えることができる。膜厚が変われば、そのトランジスタに印加可能な電圧もかわるので、用途・目的に応じて、自在に各トランジスタの電圧特性を代えることができる。
また、前記製造方法は、前記第1領域に第1導電型のLDMOSトランジスタを備え、前記第2領域に第2導電型のMOSトランジスタを備え、前記第3領域に第2導電型のLDMOSトランジスタを備え、前記第4領域に第1導電型のMOSトランジスタを備える前記半導体装置の製造方法であって、前記工程(c)において、第1領域及び第3領域内のゲート電極及び第1導電型又は第2導電型のボディ層が形成される予定の領域には、他の領域よりも、厚い膜厚のゲート絶縁膜を形成してもよい。
このように第1領域及び第3領域内のゲート電極及び第1導電型又は第2導電型のボディ層が形成される予定の領域には、他の領域よりも、厚い膜厚のゲート絶縁膜を形成しておくと、工程(i)において、エッチングされるゲート絶縁膜の膜厚がほぼ一定となるので、半導体基板のオーバーエッチや、素子分離膜の膜減りを抑制することができる。
以下に本発明の実施の形態について、図面を参照しながら説明する。
1. 実施の形態1
以下に本発明の実施の形態の一例である半導体装置の製造方法について説明する。
1.1 概要
本実施の形態では、同一半導体基板内に、相補型LDMOSトランジスタとCMOSトランジスタとを搭載した半導体装置の製造方法について説明する。
なお、相補型LDMOSトランジスタもCMOSトランジスタも電界効果トランジスタであるが、説明の便宜上、相補型LDMOSトランジスタを構成する2つのトランジスタをそれぞれpチャネルLDMOSトランジスタ、nチャネルLDMOSトランジスタと呼び、CMOSを構成する2つの一般的な構造の電界効果トランジスタを、pチャネルMOSトランジスタ、nチャネルMOSトランジスタと呼ぶ。
図1〜図10は、各製造工程における製造途中の半導体装置の断面図である。
以下、本発明の実施の形態1に係る半導体装置の製造方法について、図1〜図10を参照しながら説明する。
図に示すように、本実施の形態では、素子分離用絶縁膜014が形成されたp型の半導体基板011を基に半導体装置を製造する。ここでは、素子分離用絶縁膜014によって区切られる4つの領域(領域101、102、103及び104)に着目して説明する。これら4つの領域には、それぞれに、pチャネルLDMOSトランジスタ、nチャネルLDMOSトランジスタ、pチャネルMOSトランジスタ及びnチャネルMOSトランジスタを並行して形成する。詳細な工程については後述する。
本実施の形態の製造方法は、以下の工程からなる。
工程a:n型ウェル拡散層の形成
工程b:p型ウェル拡散層の形成
工程c:ゲート絶縁膜、ゲート用導電膜及びレジスト膜の形成
工程d:第1開口部形成
工程e:p型ボディ層形成
工程f:レジスト膜の再形成
工程g:第2の開口部形成
工程h:n型ボディ層形成
工程i:ゲート電極の形成
工程j:n型不純物イオン注入
工程k:p型不純物イオン注入
1.2 詳細
以下に、各工程について、詳細に説明する。
<工程a:n型ウェル拡散層の形成>
工程aでは、半導体基板011の領域101及び領域103に、n型の不純物イオンを選択的に注入し、図1に示すように、n型ウェル拡散層012及び013を形成する。図示していないが、このとき領域102及び領域104にマスクを施すことは言うまでもない。
<工程b:p型ウェル拡散層の形成>
工程bでは、半導体基板011の領域102及び領域104に、p型の不純物イオンを選択的に注入し、図2に示すように、p型ウェル拡散層016及び017を形成する。この際にも、領域101及び領域103が、マスクされていることは言うまでもない。
ここで半導体基板011と、p型ウェル拡散層016及び017は、同じ導電型であるが、p型ウェル拡散層016及び017の不純物イオンの濃度は、半導体基板の不純物濃度より高い。図2以降の図面においても、同様に、隣接する領域の導電型が同じであるとき、両者の不純物濃度が異なる。
<工程c:ゲート絶縁膜、ゲート用導電膜及びレジスト膜の形成>
工程cでは、先ず、半導体基板011を洗浄し、自然酸化膜を除去した後、800℃〜850℃でアニールし、表面にゲート絶縁膜021を形成する(図3)。
続いて、半導体基板011にゲート電極材料を積層し、ゲート用導電膜022を形成する。ここでは、一例として、膜厚5nm〜20nm程度のゲート絶縁膜021と、膜厚200nm〜500nm程度のゲート用導電膜022を形成する。
続いて、ゲート用導電膜022上にフォトレジストを塗布し、プリベークして、フォトレジスト膜023を形成する。
<工程d:第1開口部形成>
工程dでは、フォトマスクを用いてフォトリソグラフィーを行い、領域101に形成されているフォトレジスト膜023の一部を除去し、続いて、領域101に形成されているゲート用導電膜022とゲート絶縁膜021のうち、露出した部分をエッチングし、図4に示すような第1開口部027を形成する。一例として、第1開口部027は、幅2μm程度である。
ここで、フォトリソグラフィー及びエッチングは、一般的な技術で実現可能であるので、詳細な説明は省略する。
<工程e:p型ボディ層形成>
工程eでは、p型不純物イオンを、半導体基板011の主面へドーピングし、図5に示すようなp型ボディ層028を形成する。ドーピング条件は、例えば、5E12cm−2〜5E13cm−2程度のドーズ量で、50keV〜150keV程度の加速エネルギーで入射する。このとき、図5に示すように、半導体基板011の法線に対して、入射角を、20度〜45度の範囲で変動させながらドーピングする。なお、ここで挙げた入射角、加速エネルギーの値は、一例であって、形成しようとするp型ボディ層の形状や不純物イオンの濃度により決められる。
このような条件でドーピングを行う場合、残存するフォトレジスト膜023、ゲート用導電膜022及びゲート絶縁膜021がマスクの役割を果たし、第1開口部027へ入射したp型半導体イオンは、n型ウェル拡散層012内へ拡散し、p型ボディ層028を形成する。ここで、ゲート用導電膜022のうち、開口部027の内壁面の一部は、後に形成されるゲート電極041(図8)の一側面をなす。
<工程f:レジスト膜の再形成>
工程fでは、先ず、半導体基板011上に残存しているフォトレジスト膜023を除去する。続いて、図6に示すように、新たなフォトレジスト膜031を形成する。
<工程g:第2開口部形成>
工程gでは、工程dと同様の手順で、フォトリソグラフィーを行い、領域102に形成されているフォトレジスト膜031の一部を除去し、領域102に形成されているゲート用導電膜022とゲート絶縁膜021のうち、露出した部分をエッチングし、図7に示すような第2開口部033(一例として、幅2μm程度)を形成する。
<工程h:n型ボディ層形成>
工程hでは、工程eと同様の条件で、n型不純物イオンをドーピングし、図7に示すようなn型ボディ層034を領域102内に形成する。この場合も、第2開口部033の内壁面の一部は、後に形成されるゲート電極042(図8参照)の一側面をなす。
<工程i:ゲート電極の形成>
工程iでは、先ず、工程fと同様にして、フォトレジスト膜036を再形成し、フォトリソグラフィーによりフォトレジスト膜036の一部を除去する。次に、図8に示すように、露出したゲート用導電膜022及びゲート絶縁膜021をエッチングして、領域101、102、103及び104、それぞれにゲート電極041とゲート絶縁膜046、ゲート電極042とゲート絶縁膜047、ゲート電極043とゲート絶縁膜048、ゲート電極044とゲート絶縁膜049を形成する。 続いて、半導体基板011上に残存しているフォトレジスト膜を全て除去する。
<工程j:n型不純物イオン注入>
工程jでは、図9に示すように、半導体基板011の所定位置にn型不純物イオンを注入して、領域101内のn型ウェル拡散層012にドレイン拡散層051、p型ボディ層028にソース拡散層052を形成し、領域102内のn型ボディ層034にボディコンタクト層053を形成する。同時に、領域103内のn型ウェル拡散層013にボディコンタクト層054を形成し、領域104内のp型ウェル拡散層017にドレイン拡散層056及びソース拡散層057を形成する。
<工程k:p型不純物イオン注入>
工程kでは、半導体基板011の所定位置にn型不純物イオンを注入し、図10に示すように、領域101内のp型ボディ層028にボディコンタクト層061を形成し、領域102内のp型ウェル拡散層016にドレイン拡散層062形成し、n型ボディ層034にソース拡散層063を形成する。
同時に、領域103内のn型ウェル拡散層013に、ドレイン拡散層064及びソース拡散層066を形成し、領域104内のp型ウェル拡散層017にボディコンタクト層067を形成する。
なお、工程j及び工程kについては、既存の一般的な技術で実現可能であるので、詳細な説明は省略する。
1.3 まとめ・効果
以上説明した、工程a〜工程kを経て、半導体基板011の領域101に、pチャネルLDMOSトランジスタ、領域102に、nチャネルLDMOSトランジスタ、領域103に、pチャネルMOSトランジスタ、領域104にはnチャネルMOSトランジスタを形成する。
工程dの第1開口部027形成において、フォトレジスト膜023をゲート用導電膜022及びゲート絶縁膜021のエッチングのマスクとして用いている。また、第1開口部027の内壁面は、ゲート電極041の端面をなす。つまり、p型ボディ層028の形成において、マスクの役割を担うゲート電極041(本実施の形態の場合、ゲート電極041となるゲート用導電膜022のうち開口部027の内壁面を有する部分)とフォトレジスト膜023に一致していない部分がないので、注入された不純物イオンが、ゲート電極041を貫通してウェル拡散層に達することはない。従って、正確な自己整合により、ばらつきのないpボディ層を形成することができる。
また、フォトレジスト膜023の端面とゲート用導電膜022の端面(つまり、ゲート電極041の一側面)の位置関係がばらつかないので、断面方向から見て、p型ボディ層028とゲート電極041の重複する範囲のばらつきを抑制することができます。つまり、ゲート電極041とp型ボディ層028の重複範囲、言い換えるとnチャネルLDMOSトランジスタのチャネル長のトランジスタ毎のばらつきを抑制することができる。
工程g及び工程hにより形成されるpチャネルLDMOSトランジスタのチャネル長についても、同様の効果がある。
よって、実施の形態1の製造方法によると、確実な自己整合を実現し、LDMOSトランジスタ毎のチャネル長のばらつきを抑制し、性能の安定した半導体装置を製造することができると言う優れた効果を奏する。
以下に一例として、具体的数値を挙げて説明すると、nチャネルLDMOSトランジスタおよびpチャネルLDMOSトランジスタともに、低閾値電圧を1V以下にするためには、チャネル長が0.5μm以下である必要がある。本実施の形態において説明した製造方法を用いると、このように短いチャネル長であっても、製造ばらつきを非常に小さくできる。そのため、例えば、0.2μm〜0.3μm程度の短いチャネル長の半導体装置を安定して製造することができる。
また、工程e及び工程hにおいて、不純物イオンをドーピングする際に、半導体基板表面の法線方向から所定範囲の入射角(一例として法線方向から20°〜45°)で入射するため、不純物イオンは、第1開口部027の開口面よりも広い幅に拡散する。従って、実施の形態1の製造方法を用いた場合、不純物イオン注入による結晶損傷回復(850℃程度)とフォトレジスタのプリブレーク(300℃程度)などの比較的低温での熱処理は必要であるが、p型ボディ層028及びn型ボディ層034を横方向に拡散させるための高温での熱処理(1000℃以上)は不要である。そのため、同一半導体基板011内に形成される、MOSトランジスタの特性に与える影響も少なく、LDMOSトランジスタとMOSトランジスタとを並行して形成することが可能であるという優れた効果も奏する。
さらに、工程aおいて、nチャネル型LDMOSトランジスタとpチャネル型MOSトランジスタのn型ウェル拡散層(012、013)を、一つのマスクを用いて同時に形成する。
工程b、工程i、工程j及び工程kにおいても同様に、1つのマスクを用いて、LDMOSトランジスタの形成に係る処理とMOSトランジスタの形成に係る処理とを同時に行う。
そのため、実施の形態1の製造方法によると、複数のトランジスタを同一基板内に形成するために生じる工数の増加を抑制することができるという効果も奏する。
なお、上記の実施の形態1では、半導体基板内にnチャネル型LDMOSトランジスタ、pチャネル型LDMOSトランジスタ、pチャネル型MOSトランジスタ及びpチャネル型MOSトランジスタが横一列に並ぶ領域(領域101〜104)に形成される場合について説明したが、各トランジスタの形成位置は、任意である。
2.実施の形態2
以下、本発明の実施の形態2に係る半導体装置について、図面を参照しながら説明する。
図11は、実施の形態2に係る半導体装置の断面図である。当該半導体装置は、図11に示すように、相補型LDMOSトランジスタ106を含んで構成される。図11の相補型LDMOSトランジスタ106は、実施の形態1の製造方法により製造された半導体装置の一部であって、実施の形態1と同一の構成には、実施の形態1において用いた図面と同一の参照符号を付している。
相補型LDMOSトランジスタ106は、同一の半導体基板011に形成されたnチャネル型LDMOSトランジスタ101nと、pチャネル型LDMOSトランジスタ102pから構成される。両者は素子分離用絶縁膜014によって電気的に分離されている。
nチャネル型LDMOSトランジスタ101nは、n型ウェル拡散層012、n型ウェル拡散層012に形成されたp型ボディ層028及びドレイン拡散層051、p型ボディ層028に形成されたソース拡散層052、ボディコンタクト層061、n型ウェル拡散層012上に形成されたゲート絶縁膜046及びゲート電極041から構成される。
pチャネル型LDMOSトランジスタ102pは、p型ウェル拡散層017、p型ウェル拡散層017に形成されたn型ボディ層034及びドレイン拡散層062、n型ボディ層034に形成されたソース拡散層063、ボディコンタクト層053、n型ウェル拡散層012上に形成されたゲート絶縁膜047及びゲート電極041から構成される。
実施の形態1において説明したように、ゲート電極041形成のためのエッチングマスクとして用いられたフォトレジスト膜023(図5)をそのままp型ボディ層028形成用のマスクとしても用いるので、自己整合の精度は高く、ゲート電極041に対するp型ボディ層028の位置の、トランジスタ毎のばらつきが非常に小さくなる。従って、半導体装置毎のnチャネル型LDMOSトランジスタ101nのチャネル長ばらつきも非常に小さくなる。同様に、pチャネル型LDMOSトランジスタ102pのチャネル長ばらつきも非常に小さい。
そのため、チャネル長の短いトランジスタであっても、トランジスタ毎のチャネル長ばらつきが閾値電圧に与える影響を非常に小さくできる。
具体的な例として、低閾値電圧を1V以下にする為には、チャネル長0.5μm以下にする必要がある。ここで、本実施の形態の相補型LDMOSトランジスタ106であれば、チャネル長は、0.2μm〜0.3μm程度となる。チャネル長がこの範囲でほぼ一定となる為、低閾値電圧0.8V程度で、製品間ばらつきを5%程度に抑制する事ができる。
また、高加速エネルギーのp型不純物イオンを所定範囲(例えば、基板表面の法線方向に対して20°〜45°の範囲)の角度で注入することで、p型ボディ層028の範囲、つまりp型不純物イオンの拡散範囲を確保する。そのため、p型ボディ層028とn型ウェル拡散層012とのpn接合間の耐圧を向上させる事ができる。pチャネル型LDMOSトランジスタ102pのn型ボディ層034とp型ウェル拡散層017とのpn接合についても、同様の効果がある。例えば、耐圧15V〜30V程度の相補型LDMOSトランジスタを実現する事ができる。
以上のように、実施の形態2の相補型LDMOSトランジスタ106は、低閾値電圧かつ高耐圧で動作できるので、表示デバイスのドライバやモーター駆動用のドライバおよび電源制御IC等の機器に使用する事ができる。
3.実施の形態3
以下、本発明の実施の形態3に係る半導体装置について、図面を参照しながら説明する。
図12は、実施の形態3に係る半導体装置の断面図である。図12に示すように相補型LDMOSトランジスタ107の断面図である。
図12に示すように、相補型LDMOSトランジスタ107は、実施の形態2の半導体装置のゲート電極とドレイン拡散層の間に、絶縁膜を備えている。図12中において、実施の形態2の相補型LDMOSトランジスタ106と同様の構成には、同一の参照符号を付している。
相補型LDMOSトランジスタ107は、nチャネル型LDMOSトランジスタ108n及びpチャネル型LDMOSトランジスタ109pから構成される。
nチャネル型LDMOSトランジスタ108nは、実施の形態2において説明したnチャネル型LDMOSトランジスタ101nとほぼ同様の構成であるが、ゲート電極041とドレイン拡散層051との間に絶縁膜081を備えている点が異なる。絶縁膜081は、例えばLOCOS酸化膜やSTIのような絶縁膜などが考えられる。
pチャネル型LDMOSトランジスタ109pについても、実施の形態2のpチャネル型LDMOSトランジスタ102pとほぼ同様であるが、ゲート電極042とドレイン拡散層062との間に絶縁膜082を備えている。
このように、絶縁膜081を備えることで、ゲート電極041のドレイン拡散層051側の電界集中を抑制し、ゲート・ドレイン間およびソース・ドレイン間の耐圧を向上する。
例えば、具体的一例として、実施の形態2の相補型LDMOSトランジスタ106では、耐圧は15V〜30V程度であるが、実施の形態3の構造を有する相補型LDMOSトランジスタ107であれば、40V〜100V程度の高耐圧を実現することができる。
4. 実施の形態4
以下、本発明の実施の形態4に係る半導体装置の製造方法について、図面を参照しながら説明する。
4.1 概要
本実施の形態では、実施の形態1と同様に、同一基板内に、相補型LDMOSトランジスタとCMOSトランジスタとを搭載した半導体装置の製造方法について説明する。
ここでは、実施の形態1とは異なり、相補型LDMOSトランジスタのゲート絶縁膜よりも、CMOSトランジスタのゲート絶縁膜を薄く形成する。
図13〜図16は、本実施の形態における製造途中の半導体装置の断面図であり、実施の形態4に係る半導体装置の製造方法について、図13〜図16を参照しながら説明する。なお、実施の形態1と同様の工程については、詳細な説明を省略する。また、同一の工程については、実施の形態1で用いた図面も参照する。
実施の形態4においても、図1に示すように、素子分離用絶縁膜014によって区切られる4つの領域(領域101、102、103及び104)それぞれに、pチャネルLDMOSトランジスタ、nチャネルLDMOSトランジスタ、pチャネルMOSトランジスタ及びnチャネルMOSトランジスタを並行して形成する。
実施の形態4の製造方法は、以下の工程a4〜工程m4からなる。工程a4〜工程b4、工程f4〜工程m4は、それぞれ、実施の形態1の工程a〜工程b、工程d〜工程kと同様である。
工程a4:n型ウェル拡散層の形成(工程aと同様)
工程b4:p型ウェル拡散層の形成(工程bと同様)
工程c4:ゲート絶縁膜の形成
工程d4:薄型ゲート絶縁膜の形成
工程e4:ゲート用導電膜及びレジスト膜の形成
工程f4:第1開口部形成(工程dと同様)
工程g4:p型ボディ層形成(工程eと同様)
工程h4:レジスト膜の再形成(工程fと同様)
工程i4:第2開口部形成(工程gと同様)
工程j4:n型ボディ層形成(工程hと同様)
工程k4:ゲート電極の形成(工程iと同様)
工程l4:n型不純物イオン注入(工程jと同様)
工程m4:p型不純物イオン注入(工程kと同様)
4.2 詳細
以下に、実施の形態4の各製造工程について説明するが、実施の形態1と同一な工程については割愛し、実施の形態1との差異部分を中心に説明する。
<工程a4〜工程b4>
p型の半導体基板011に、実施の形態1の工程a及び工程bと同様の加工を施し、図2に示すように、領域101〜104内にそれぞれ、p型ウェル拡散層(016、017)及びn型ウェル拡散層(012、013)を形成する。
<工程c4:ゲート絶縁膜の形成>
先ず、実施の形態1と同様に基板表面を洗浄し、図13に示すようにゲート絶縁膜091を形成する。本実施の形態では、一例として、膜厚を10nm〜200nm程度に形成する(実施の形態1では、5〜20nm程度)。
続いて、図13に示すように、ゲート絶縁膜091上にフォトレジスト膜092を形成する。
<工程d4:薄型ゲート絶縁膜の形成>
工程d4では、フォトレジストにより、図14に示すように、フォトレジスト膜092のうち領域103及び領域104に形成されている部分を除去する。続いて、ゲート絶縁膜091のうち、露出した部分をエッチングする。
次に、半導体基板011上の領域103及び領域104の範囲にゲート絶縁膜を形成する。ここでは、工程c4で形成したゲート絶縁膜091よりも膜厚を薄くする。例えば、5nm〜20nm程度の膜厚にする。
以下、ゲート絶縁膜091と区別するため、工程d4で形成したゲート絶縁膜を薄型ゲート絶縁膜096と呼ぶ。
<工程e4:ゲート用導電膜及びレジスト膜の形成>
工程e4では、先ず、半導体基板011上に残存しているフォトレジスト膜092を除去する。
続いて、図15に示すように、半導体基板011上に、膜厚が200nm〜500nm程度のゲート用導電膜022を形成し、その上に、フォトレジスト膜023を形成する。
<工程f4〜工程m4>
工程f4〜工程m4では、実施の形態1の工程d〜工程kと同様に、開口部の形成、ボディ層の形成、ゲート電極の形成などの処理を行い、図16に示すように、半導体基板011の領域101及び領域102に相補型LDMOSトランジスタを形成し、領域103及び104にCMOSトランジスタを形成する。
ここで、領域101に形成されたnチャネル型LDMOSトランジスタのゲート絶縁膜151と領域102に形成されたpチャネル型LDMOSトランジスタのゲート絶縁膜152は、図15に示すゲート絶縁膜091の一部を除去して形成されたものである。領域103に形成されたpチャネル型MOSトランジスタのゲート絶縁膜153、及び、領域104に形成されたnチャネル型MOSトランジスタのゲート絶縁膜154は、図15に示す薄型ゲート絶縁膜096の一部を除去して形成されたものである。よって、相補型LDMOSトランジスタのゲート絶縁膜151及び152の膜厚は、CMOSトランジスタのゲート絶縁膜153及び154の膜厚よりも厚い。
4.3 まとめ・効果
実施の形態2においても、実施の形態1と同様に、開口部の形成、言い換えると、ゲート電極の1端面の形成に用いたフォトレジスト膜を除去せず、ゲート電極の及び該フォトレジスト膜をそのまま、マスクとして、p型ボディ層及びn型ボディ層の形成に用いる。そのため、ゲート電極とフォトレジスト膜とにずれがなく、正確な自己整合により、ボディ層を生成する、p型及びn型ボディ層を形成し、トランジスタ毎のチャネル長ばらつきを抑制することができるという優れた効果を奏する。
また、実施の形態1と同様に、p型及びn型ボディ層形成のために不純物イオンを注入する際に、入射角を半導体基板主面の法線方向から傾けるので、不純物イオンを横方向に拡散させるための高温(1000℃超)の不要になる。そのため、CMOSトランジスタに与える影響も少なくなる。
また、多くの工程で、相補型LDMOSトランジスタとCMOSトランジスタの形成に共通のマスクを用いるため、工数の増加を抑制できる。
これらの効果に加えて、実施の形態4の製造方法によれば、実施の形態1の製造方法を基準に、わずかな工程変更(工程c4〜工程e4)のみで、ゲート絶縁膜の厚さの異なるCMOSトランジスタと相補型LDMOSトランジスタを並行して形成する事ができるという優れた効果を奏する。相補型LDMOSトランジスタのゲート絶縁膜の膜厚をCMOSトランジスタより厚くする事で、たとえばゲート電圧が、10V〜100V程度の高電圧駆動の相補型LDMOSトランジスタを実現する。このように、本実施の形態の製造方法により製造された半導体装置は、高耐圧の相補型LDMOSトランジスタと他の素子を、1つの半導体基板内に、形成できる。そのため、表示デバイス(例えばプラズマテレビ)のように、高耐圧であることを望まれる機器において、ドライバ等のチップサイズ縮小することができる。
なお、実施の形態4では、LDMOSトランジスタをより高耐圧にするため、2つのLDMOSトランジスタのゲート絶縁膜を、2つのMOSトランジスタのゲート絶縁膜より薄くする製造方法について説明してきた。しかし、これは、一例であって、目的に応じて、LDMOSトランジスタのゲート絶縁膜の膜厚とMOSトランジスタのゲート絶縁膜の膜厚とを変えられるような製造方法であればよい。
4.4 実施の形態4の変形例
以下に、実施の形態4の変形例について説明する。
この変形例では、実施の形態4の製造方法の工程d4において、ゲート絶縁膜091のうち、相補型LDMOSトランジスタのドレイン拡散層が形成される予定の領域に形成された部分も除去し、相補型LDMOSトランジスタのドレイン拡散層が形成される予定の領域にも膜厚の薄い薄型ゲート絶縁膜096を形成する点が、実施の形態4と異なる。
以下に、本変形例について、図面を用いて詳細に説明する。
ここで用いる半導体基板011には、図17に示すように、素子分離用絶縁膜014が形成されており、これらにより、区分される各領域(領域101〜領域104)のうち、LDMOSトランジスタが形成される領域101及び領域102には、さらに、絶縁膜156及び157がそれぞれ形成されている。絶縁膜156は、nチャネル型LDMOSトランジスタのゲート電極とドレイン拡散層の間になる領域に形成されている。領域101内においてドレイン側の素子分離用絶縁膜014と絶縁膜156とに囲まれている領域をnドレイン形成領域161と呼ぶ。絶縁膜157は、pチャネル型LDMOSトランジスタのゲート電極とドレイン拡散層の間になる位置に形成されている。領域101において、ドレイン側の素子分離用絶縁膜014と絶縁膜157とに囲まれている領域をpドレイン形成領域162と呼ぶ。
まず、この半導体基板011に、実施の形態4の工程a4〜工程c4と同様にゲート絶縁膜091及びフォトレジスト膜092を、順次形成する(図13参照)。
<工程d4’>
次に、工程d4と同様にフォトレジスト膜の除去を行うが、nドレイン形成領域161、pドレイン形成領域162、領域103及び領域104に形成された部分を除去する。
次に、残存しているフォトレジスト膜092をマスクとしてエッチング処理を行い、ゲート絶縁膜091のうち、マスクされていない部分を除去する。次に、半導体基板011上で、フォトレジスト膜092によりマスクされていない領域、つまり、nドレイン形成領域161、pドレイン形成領域162、領域103及び領域104に、薄型ゲート絶縁膜096を形成する。図18は、この時点での半導体装置の断面を示している。・・・・・<工程d4’終わり>
続いて、上記の工程e4〜工程m4と同様の処理により、p型ボディ層028、n型ボディ層034の形成、続いて、各領域に、ソース拡散層、ドレイン拡散層コンタクト層を形成し、図16に示す半導体装置とほぼ同一の半導体装置(図20、後述)が完成する。
ここで、工程k4:ゲート電極の形成(工程iと同様)では、半導体基板011上に形成されたフォトレジスト膜036を、一部を残して除去する。具体的には、ボディ層(028、034)及び、ゲート用導電膜のうち、ゲート電極041、042、043、044となる予定の部分を覆うフォトレジスト膜を残し、残りを除去する。
続いて、ゲート用導電膜及びゲート絶縁膜のうち露出した部分をエッチングする。この工程により、図19に示すように、各領域のゲート電極及びゲート絶縁膜が形成される。
ところで、このとき、フォトレジスト膜036によりマスクされていない範囲に形成されているゲート絶縁膜は、工程d4’において形成された薄型ゲート絶縁膜096である。そのため、膜厚はほぼ一定であって、エッチングに要する時間もほぼ一定である。
一方、実施の形態4の製造方法の場合、領域101及び102と領域103及び104とで、形成されているゲート絶縁膜の膜厚異なる。そのため、工程k4では、領域101及び102内のゲート絶縁膜のエッチングに長時間を要し、領域103及び104では、ゲート絶縁膜が薄いため、過剰なエッチングが生じ、半導体基板011、ウェル領域(013、017)、素子分離用絶縁膜014を削ってしまう可能性がある。
しかし、本変形例では、nドレイン形成領域161及びpドレイン形成領域162に形成されているゲート絶縁膜も、領域103及び領域104に形成されているゲート絶縁膜も、薄型ゲート絶縁膜であって、エッチングに要する時間はほぼ同一である。そのため、過剰なエッチングは発生しにくい。つまり、領域103及び104において、半導体基板掘れや素子分離絶縁膜の膜減りを抑制する事ができるという優れた効果を奏する。
5.実施の形態5
本発明の実施の形態5に係る半導体装置について、以下に説明する。
図20は、実施の形態5に係る半導体装置166の断面を示している。図20に示す半導体装置166は、CMOSトランジスタと相補型LDMOSトランジスタとを同一基板内に混載しており、上記の実施の形態4の変形例において説明した製造方法により製造されたものである。
図20に示すように、半導体装置166は、半導体基板011の領域101及び102に相補型LDMOSトランジスタを備え、領域103及び104にCMOSトランジスタを備えている。相補型LDMOSトランジスタは、領域101に形成されているnチャネル型LDMOSトランジスタ167と領域102に形成されているpチャネル型LDMOSトランジスタ168からなる。CMOSトランジスタは、領域103に形成されているpチャネル型MOSトランジスタ169と領域104に形成されているnチャネル型MOSトランジスタ170とからなる。
相補型LDMOSトランジスタを構成するゲート絶縁膜151及び152の膜厚は、CMOSトランジスタを構成するゲート絶縁膜153及び154の膜厚よりも厚い。例えば、ゲート絶縁膜151及び152の膜厚は、10nm〜200nm程度であるのに対し、ゲート絶縁膜153及び154の膜厚は、5nm〜20nm程度である。
実施の形態4の変形例において説明したように、nドレイン形成領域161及びpドレイン形成領域162(図20参照)のゲート絶縁膜と、CMOSトランジスタの形成される領域103及び104に形成されたゲート絶縁膜のうち不要な部分とを同時にエッチングする。これらの領域に形成されているゲート絶縁膜は、膜厚がほぼ一定であるため、過剰なエッチングは起こりにくい。従って、半導体装置166は、半導体基板掘れや素子分離絶縁膜の膜減りが少ない。
このように、実施の形態5の半導体装置166は、半導体基板掘れや素子分離絶縁膜の膜減りが少ないことにより、CMOSトランジスタのソース、ドレイン間のリーク電流やホットキャリア発生を抑制することができるという優れた効果を有する。また、素子分離絶縁膜の膜減りが少ないことにより、寄生MOSトランジスタの閾値電圧低下が抑制されるという効果を有する。
さらに、実施の形態2、3の半導体装置と同様に、LDMOSトランジスタのn型ボディ層及びp型ボディ層は確実な自己整合により形成されているので、トランジスタ毎のチャネル長ばらつきは非常に小さい。そのため、低い閾値電圧を維持しつつ、トランジスタ毎の閾値電圧のばらつきも少ない。
6.その他の変形例
本発明を上記の実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。
(1)上記の実施の形態1及び4では、半導体基板011に、nチャネル型LDMOSトランジスタ、pチャネル型LDMOSトランジスタ、pチャネル型MOSトランジスタとnチャネル型MOSトランジスタを並列に形成しているが、本発明の半導体装置の構成は、これに限るものではなく、少なくとも一つのLDMOSトランジスタを含む半導体装置であればよい。
例えば、1個のLDMOSトランジスタからなる半導体装置を形成する場合であっても、ゲート用導電膜のエッチングのマスクとして用いられたフォトレジスト膜をそのまま、p型又はn型ボディ層を形成することで、正確な位置にボディ層を形成し、トランジスタ毎のチャネル長ばらつき、閾値電圧のばらつきの少ない半導体装置を生成することができると言う効果を奏する。
また、上記の実施の形態では、LDMOSトランジスタとMOSトランジスタとを混載した半導体装置の製造方法及びそのような構成を備える半導体装置について説明してきたが、LDMOSトランジスタと同一基板上に形成される素子はMOSトランジスタに限定されるものではない。
(2)上記の実施の形態1の工程d(第1開口部の形成)及び工程g(第2開口部の形成)において、ゲート用導電膜及びゲート絶縁膜をエッチングするとして説明してきたが、ゲート絶縁膜のエッチングは必須ではない。実施の形態4においても同様に、開口部形成に当たりゲート絶縁膜のエッチングは必須ではない。
(3)上記の実施の形態及び変形例では、LDMOSトランジスタのボディ層形成の際、不純物イオンの入射角を半導体基板の法線方向から所定範囲で、変動させながら入射し、ボディ層拡散のための熱処理を行わないとしてきたが、これも必須ではない。
不純物の入射角を半導体基板の法線方向としてもよいし、拡散のために、高温での熱処理をおこなってもよい。熱処理を行っても、開口部のゲート用導電膜端面とフォトレジスト膜の端面は一致しているので、正確な自己整合が可能であると言う効果を得ることができる。
(4)上記の実施の形態及び変形例において、ボディ層形成に当たり、不純物イオンの入射角を、半導体基板の法線方向に対して、所定範囲で変動させるとした。このようにすると、ゲート絶縁膜にも不純物イオンが混入し、ゲート電極となる部分の端面付近に不純物イオンが残ると考えられる。
この不純物イオンによる、電気的影響を回避するため、ゲート電極の側面のうち、開口部の壁面となっていた面を薄くエッチングしてもよい。
(5)実施の形態4の変形例では、既に絶縁膜156及び157が形成された半導体基板を用いて半導体装置を製造する方法について説明してきたが、これらの絶縁膜は、上記の工程a4の前に、例えば、LOCOS(Local Oxidation of Silicon)方式やSTI方式により、形成された酸化絶縁膜(SiO)である。
なお、絶縁膜156及び157の組成は、SiOに限るものではないし、LOCOS方式及びSTI方式以外の方式により形成しても良い。
(6)また、上記実施の形態及び上記変形例を、それぞれ組み合わせるとしてもよい。
本発明は、通常のCMOSトランジスタと相補型LDMOSトランジスタとを同一半導体基板に有する半導体装置を製造販売する産業、前記半導体装置を使用する産業において、継続的、反復的、経営的に利用可能である。
実施の形態1に係る製造方法の工程aにおける半導体装置の断面図である。 工程bにおける半導体装置の断面図である。 工程cにおける半導体装置の断面図である。 工程dにおける半導体装置の断面図である。 工程eにおける半導体装置の断面図である。 工程fにおける半導体装置の断面図である。 工程g及び工程hにおける半導体装置の断面図である。 工程iにおける半導体装置の断面図である。 工程jにおける半導体装置の断面図である。 工程kにおける半導体装置の断面図である。 実施の形態2に係る半導体装置の断面図である。 実施の形態3に係る半導体装置の断面図である。 実施の形態4の製造方法における、工程 に係る半導体装置の断面図である。 工程d4に係る半導体装置の断面図である。 工程e4に係る半導体装置の断面図である。 工程m4に係る半導体装置の断面図である。 実施の形態4の変形例である製造方法による加工が開始される前の半導体装置の断面図である。 工程d4’に係る半導体装置の断面図である。 実施の形態4の変形例における工程k4後の半導体装置の断面図である。 実施の形態4の変形例である製造方法により製造された半導体装置の断面図である。
011 半導体基板
012 n型ウェル拡散層
013 n型ウェル拡散層
014 素子分離用絶縁膜
016 p型ウェル拡散層
017 p型ウェル拡散層
021 ゲート絶縁膜
022 ゲート用導電膜
023 フォトレジスト膜
027 第1開口部
028 p型ボディ層
031 フォトレジスト膜
033 第2開口部
034 n型ボディ層
036 フォトレジスト膜
041 ゲート電極
042 ゲート電極
043 ゲート電極
044 ゲート電極
046 ゲート絶縁膜
047 ゲート絶縁膜
048 ゲート絶縁膜
049 ゲート絶縁膜
051 ドレイン拡散層
052 ソース拡散層
053 ボディコンタクト層
054 ボディコンタクト層
056 ドレイン拡散層
057 ソース拡散層
061 ボディコンタクト層
062 ドレイン拡散層
063 ソース拡散層
064 ドレイン拡散層
066 ソース拡散層
067 ボディコンタクト層
081 絶縁膜
082 絶縁膜
091 ゲート絶縁膜
092 フォトレジスト膜
096 薄型ゲート絶縁膜
101n nチャネル型LDMOSトランジスタ
102p pチャネル型LDMOSトランジスタ
106 相補型LDMOSトランジスタ
107 相補型LDMOSトランジスタ

Claims (10)

  1. 半導体基板に、第1導電型ドレイン拡散層と第2導電型ボディ層とを形成し、前記第2導電型ボディ層内に第1導電型ソース拡散層及びボディコンタクト層とを形成し、前記半導体基板のうち、前記第1導電型ドレイン拡散層と前記第1導電型ソース拡散層とに挟まれた領域上にゲート電極を形成した第1導電型LDMOSトランジスタを含む半導体装置の製造方法であって、
    半導体基板に第1導電型のウェル拡散層を形成する工程(a)と、
    前記半導体基板内の前記ウェル拡散層に相当する領域上にゲート絶縁膜、ゲート用導電膜及びフォトレジスト膜を順次形成する工程(b)と、
    フォトリソグラフィーにより、前記フォトレジスト膜のうち所定の領域に形成された部分を除去し、残存するフォトレジスト膜をマスクとしてゲート用導電膜をエッチングして、所定の領域に開口部を形成する工程(c)と、
    前記半導体基板上に残存するゲート用導電膜及びフォトレジストをマスクとして、第2導電型の不純物イオンを注入し、ボディ層を形成する工程(d)と、
    前記ゲート用導電膜のうち、前記開口部側面の一部を基準として前記ゲート電極となる部分を残して、電極ゲート用導電膜を除去する工程(e)
    とを含むことを特徴とする半導体装置の製造方法。
  2. 前記工程(d)では、所定範囲で入射角を変動させながら、前記不純物イオンを注入する
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記工程(d)では、前記LDMOSトランジスタのチャネル長が0.1μm〜0.4μmの範囲になるように、前記不純物イオンを注入する
    ことを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記製造方法は、さらに、
    前記半導体基板内において、前記第1導電型ドレイン拡散層と、工程(e)により形成される前記ゲート電極との間に相当する位置に、絶縁膜を形成する工程を含む
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  5. 相補型MOSトランジスタと相補型LDMOSトランジスタとを同一半導体基板に混載する半導体装置の製造方法であって、
    複数の素子分離用絶縁膜が形成された半導体基板内において、前記素子分離絶縁膜により定まる第1領域、及び、前記第1領域とは異なる第2領域それぞれに、第1導電型の第1ウェル拡散層及び第2ウェル拡散層を形成する工程(a)と、
    第1及び第2領域とは異なる第3及び第4領域それぞれに、第2導電型の第3ウェル拡散層及び第4ウェル拡散層とを形成する工程(b)と、
    前記半導体基板の前記第1、第2、第3及び第4領域に相当する部分上に、ゲート絶縁膜とゲート用導電膜とフォトレジスト膜とを順次形成する工程(c)と、
    フォトリソグラフィーにより、フォトレジスト膜のうち第1領域内の所定の範囲に形成された部分を除去し、残存するフォトレジスト膜をマスクとしてゲート用導電膜をエッチングし、第1開口部を形成する工程と(d)、
    前記半導体基板上に残存するゲート用導電膜及びフォトレジスト膜をマスクとして、第2導電型の不純物イオンを注入し、第1ボディ層を形成する工程(e)と、
    前記半導体基板上に残存するフォトレジスト膜を除去し、前記半導体基板の前記第1、第2、第3及び第4領域に相当する部分に、再度、フォトレジスト膜を形成する工程(f)と、
    フォトリソグラフィーにより、新たなフォトレジスト膜のうち第2領域内の所定の範囲に形成された部分を除去し、残存する新たなフォトレジストをマスクとしてゲート用導電膜をエッチングし、第2開口部を形成する工程と(g)、
    前記半導体基板上に残されたゲート用導電膜及びフォトレジストをマスクとして、第1導電型の不純物イオンを注入し第1導電型の第2ボディ層を形成する工程(h)と、
    前記第1領域において、前記第1開口部側面の一部を基準としゲート電極となる部分と、前記第3領域において、前記第2開口部側面の一部を基準としてゲート電極となる部分と、前記第2領域及び第4領域内のゲート電極となる部分にを除き、前記ゲート用導電膜を除去する工程(i)と、
    前記第1領域に形成された前記第1ウェル拡散層内に第1導電型のドレイン拡散層を形成し、第1ボディ層内に第1導電型のソース拡散層を形成し、前記第2領域に形成された前記第2ウェル拡散層内に第1導電型のボディコンタクト層を形成し、前記第3領域に形成された前記第3ボディ層内にボ第1導電型のディコンタクト層を形成し、前記第4領域に形成された前記第4ウェル拡散層内に第1導電型のソース拡散層及びドレイン拡散層を形成する工程と(j)、
    前記第1領域に形成された第1ボディ層上に第2導電型ボディコンタクト層を形成し、前記第2領域に形成された前記第2ウェル拡散層内に第2導電型ソース拡散層及びドレイン拡散層を形成し、前記第3領域に形成された第3ウェル拡散層上に第2導電型ドレイン拡散層を形成し、前記第3ボディ層内に第2導電型ソース拡散層を形成し、前記第4領域に形成された前記第4ウェル拡散層内に第2導電型ボディコンタクト層を形成する工程(k)とを含む
    ことを特徴とする半導体装置の製造方法。
  6. 前記工程(c)において、第1及び第3領域には、第2及び第4領域に形成するゲート絶縁膜よりも、厚い膜厚のゲート絶縁膜を形成する
    ことを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 前記製造方法は、
    前記第1領域に第1導電型のLDMOSトランジスタを備え、前記第2領域に第2導電型のMOSトランジスタを備え、前記第3領域に第2導電型のLDMOSトランジスタを備え、前記第4領域に第1導電型のMOSトランジスタを備える前記半導体装置の製造方法であって、
    前記工程(c)において、第1領域及び第3領域内のゲート電極及び第1導電型又は第2導電型のボディ層が形成される予定の領域には、他の領域よりも、厚い膜厚のゲート絶縁膜を形成する
    ことを特徴とする請求項5に記載の半導体装置の製造方法。
  8. 1個以上のLDMOSトランジスタを含む半導体装置であって、
    請求項1に記載の製造方法により製造された
    ことを特徴とする半導体装置。
  9. 相補型MOSトランジスタと相補型LDMOSトランジスタとを同一半導体基板に混載する半導体装置であって、
    請求項5に記載の製造方法により製造された
    ことを特徴とする半導体装置。
  10. 前記相補型LDMOSトランジスタのゲート絶縁膜と、前記相補型MOSトランジスタのゲート絶縁膜の膜厚が異なる
    ことを特徴とする請求項9に記載の半導体装置。
JP2009015909A 2009-01-27 2009-01-27 半導体装置及び半導体装置の製造方法 Withdrawn JP2010177292A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009015909A JP2010177292A (ja) 2009-01-27 2009-01-27 半導体装置及び半導体装置の製造方法
US12/690,766 US20100187606A1 (en) 2009-01-27 2010-01-20 Semiconductor device that includes ldmos transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015909A JP2010177292A (ja) 2009-01-27 2009-01-27 半導体装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010177292A true JP2010177292A (ja) 2010-08-12

Family

ID=42353478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015909A Withdrawn JP2010177292A (ja) 2009-01-27 2009-01-27 半導体装置及び半導体装置の製造方法

Country Status (2)

Country Link
US (1) US20100187606A1 (ja)
JP (1) JP2010177292A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054530A (ja) * 2010-08-05 2012-03-15 Renesas Electronics Corp 半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024638B1 (ko) * 2008-08-05 2011-03-25 매그나칩 반도체 유한회사 반도체 소자의 제조방법
CN104465779A (zh) * 2014-12-24 2015-03-25 上海华虹宏力半导体制造有限公司 漏端隔离的高压ldmos的结构及制作方法
CN105304714A (zh) * 2015-09-22 2016-02-03 上海华力微电子有限公司 具有低阈值电压的晶体管结构
US9633992B1 (en) * 2016-02-23 2017-04-25 Vanguard International Semiconductor Corporation Electrostatic discharge protection device
CN108847423B (zh) * 2018-05-30 2022-10-21 矽力杰半导体技术(杭州)有限公司 半导体器件及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US846236A (en) * 1903-10-29 1907-03-05 Nellie B Noble Bedstead.
US6897525B1 (en) * 1998-11-26 2005-05-24 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
JP3703643B2 (ja) * 1998-12-25 2005-10-05 三菱電機株式会社 半導体装置およびその製造方法
US6599782B1 (en) * 2000-01-20 2003-07-29 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054530A (ja) * 2010-08-05 2012-03-15 Renesas Electronics Corp 半導体装置

Also Published As

Publication number Publication date
US20100187606A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
TWI590457B (zh) 半導體裝置及其製造方法
JP4836427B2 (ja) 半導体装置及びその製造方法
JP5655195B2 (ja) 半導体装置
US20070158780A1 (en) Semiconductor integrated circuit device and method of fabricating the same
US9390983B1 (en) Semiconductor device and method for fabricating the same
JP5229626B2 (ja) ディープトレンチ構造を有する半導体素子の製造方法
JP4783050B2 (ja) 半導体装置及びその製造方法
CN108695389B (zh) 具有低导通电阻的半导体器件结构及其制造方法
US20100176449A1 (en) Semiconductor device and method for manufacturing same
JP2010177292A (ja) 半導体装置及び半導体装置の製造方法
JP2007019200A (ja) 半導体装置およびその製造方法
JP2009152442A (ja) 半導体装置及びその製造方法
JP4787709B2 (ja) 半導体装置および半導体装置の製造方法
JP2009158621A (ja) 半導体装置
KR100710194B1 (ko) 고전압 반도체소자의 제조방법
JP2014022487A (ja) 半導体装置
JP2011138886A (ja) 半導体装置及びその製造方法
US20150325486A1 (en) Semiconductor device and method for producing the same
JP5517691B2 (ja) 半導体装置およびその製造方法
JP2009088189A (ja) Dmosトランジスタ及びその製造方法
JP2007027175A (ja) 半導体装置及びその製造方法
KR100731092B1 (ko) 고전압 반도체소자 및 그 제조방법
KR101201499B1 (ko) 반도체 소자 및 그 제조방법
KR101090049B1 (ko) 반도체 디바이스 및 그의 제조 방법
JP4015086B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403