CN104465779A - 漏端隔离的高压ldmos的结构及制作方法 - Google Patents

漏端隔离的高压ldmos的结构及制作方法 Download PDF

Info

Publication number
CN104465779A
CN104465779A CN201410835958.2A CN201410835958A CN104465779A CN 104465779 A CN104465779 A CN 104465779A CN 201410835958 A CN201410835958 A CN 201410835958A CN 104465779 A CN104465779 A CN 104465779A
Authority
CN
China
Prior art keywords
type
trap
buried layer
drain terminal
light shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410835958.2A
Other languages
English (en)
Inventor
邢军军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201410835958.2A priority Critical patent/CN104465779A/zh
Publication of CN104465779A publication Critical patent/CN104465779A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

本发明公开了一种漏端隔离的高压LDMOS的结构,其N型漂移区和N型埋层之间有一层用于隔离漏端和N型埋层的P型区域,该P型区域与P阱相连。本发明还公开了上述结构的漏端隔离的高压LDMOS的制作方法,该方法在形成P阱后,生长栅氧前,通过高能量硼注入,在漂移区下方、N型埋层上方形成一层P型区域。本发明在常规LDMOS的制作工艺基础上,通过双深N阱扩散工艺,在漂移区下方注入一层P型区域,隔离漏端和N型埋层,使漏端对P型衬底形成N/P/N/P结构,从而使得LDMOS的漏端在有反向负载电压的情况下,和P型衬底隔离,避免了衬底漏电流的产生。

Description

漏端隔离的高压LDMOS的结构及制作方法
技术领域
本发明涉及集成电路制造领域,具体地说,是涉及高压BCD工艺中,漏端隔离的高压LDMOS的结构及制作方法。
背景技术
在高压BCD(bipolar CMOS DMOS)工艺中,常规的LDMOS(横向扩散金属氧化物半导体)由于其N型漏端和P型衬底(Sub)形成PN结,因此在漏端有反向偏压的时候,会造成衬底端有较大的衬底漏电流,从而很容易造成电路失效。
如图1所示,在常规LDMOS结构中,N型漏端和P型衬底端是个反向二极管结构,所以在N型漏端有反向偏压时候,该二极管正向导通,使得对P型衬底端漏电;常用的解决方法是在该种LDMOS的外围加上很宽的一圈P型衬底接地引出端,目的在于在该二极管正向导通时,尽量使该衬底电流流向地而不是芯片内部,但是这种办法会使芯片面积加大,并且往往没有效果。
发明内容
本发明要解决的技术问题之一是提供一种漏端隔离的高压LDMOS的结构,它可以避免因衬底端产生漏电流而导致的电路失效问题。
为解决上述技术问题,本发明的漏端隔离的高压LDMOS的结构,其N型漂移区和N型埋层之间有一层用于隔离漏端和N型埋层的P型区域,该P型区域与P阱相连。
本发明要解决的技术问题之二是提供上述漏端隔离的高压LDMOS的制作方法,该方法工艺简单,成本低。
为解决上述技术问题,本发明的漏端隔离的高压LDMOS的制作方法,包括以下步骤:
1)在P型衬底上,用光罩定义N型埋层注入区域,注入锑,高温推阱,形成N型埋层;
2)用光罩定义P型埋层注入区域,注入硼,快速热退火,形成P型埋层;
3)淀积P型外延;
4)用光罩定义深N阱注入区域,注入磷,高温推阱,形成深N阱;
5)淀积SiN,用光罩定义有源区,刻蚀掉有源区上的SiN,然后刻蚀浅沟槽隔离,并填充HTO,磨平,去掉SiN,形成浅沟槽隔离;
6)用光罩定义N阱注入区域,注入磷,形成N阱;
7)用光罩定义N型漂移区,注入磷,形成N型漂移区;
8)用光罩定义P阱注入区域,注入硼,形成P阱;
9)用光罩定义P型区域,进行高能量硼注入,在N型漂移区和N型埋层之间形成一层用于隔离N型埋层和漏端的P型区域;
10)生长栅氧化层,并淀积多晶硅,用光罩定义P型体区,进行多晶硅刻蚀,然后进行硼注入,形成P型体区,作为LDMOS的沟道;
11)多晶硅刻蚀,形成LDMOS的栅极、源极端的场板和漏极端的场板;
12)用光罩定义N+和P+的源漏注入区域,进行离子注入,形成高压端N+的引出和低压端P+的引出,后续按照常规方法完成LDMOS的制作。
本发明在常规LDMOS的制作工艺基础上,通过双深N阱扩散工艺,在漂移区下方注入了一层P型区域,将LDMOS的漏端和下面的N型埋层隔离开,从而使得LDMOS漏端对P型衬底形成N/P/N/P的结构,在使用的时候,只要保证N型埋层电位大于等于LDMOS漏端电位和P型区域,就可以使LDMOS的漏端在有反向负载电压(最高40V)的情况下,和P型衬底隔离,避免因N型漏端与P型衬底二极管导通而漏电;同时由于这层P型区域的引入,和N型漂移区形成RESURF结构,从而还能提高LDMOS的击穿电压,降低LDMOS的导通电阻(Rdson)。
附图说明
图1是常规LDMOS的结构示意图。
图2~图11是本发明实施例的漏端隔离的高压LDMOS的制作流程示意图。
图中附图标记说明如下:
1:P型衬底
2:N型埋层
3:P型埋层
4:P型外延
5:深N阱
6:浅沟槽隔离
7:N阱
8:Ndrift
9:P阱
10:P型区域
11:栅氧化层
12:多晶硅
13:P型体区
14:N+
15:P+
具体实施方式
为对本发明的技术内容、特点与功效有更具体的了解,现结合图示的实施方式,详述如下:
本实施例的漏端隔离的高压LDMOS的具体制作流程,包括以下步骤:
步骤1,准备一片P型硅片,如图2所示。该P型硅片的掺杂浓度由器件设计的耐压决定,对于设计电压在40V的BCD工艺,通常要求硅片的电阻率在13ohm.cm左右。
步骤2,如图3所示,通过光罩定义出N型埋层(NBL)注入区域,进行锑(Sb)注入(注入剂量5E14个/cm2,注入能量80Kev);注完之后1200℃高温推阱40分钟,形成N型埋层2;接着再通过光罩定义出P型埋层(PBL)注入区域,进行硼(B)注入(注入剂量6E12个/cm2,注入能量60Kev),并通过1100℃快速热退火(RTA)60秒处理,形成P型埋层3。
步骤3,淀积P型外延(PEPI)4,如图4所示。P型外延4的浓度和厚度由高压LDMOS器件的耐压以及漏端隔离需要的耐压共同决定,本实施例对于40V的BCD工艺,要同时满足漏端隔离需要的耐压,P型外延4的厚度为6μm,电阻率为10ohm.cm。
步骤4,如图5所示,通过光罩定义出深N阱(DNW)注入区域,进行磷(P)的注入(注入剂量3E12个/cm2,注入能量2000Kev),注完之后1175℃高温推阱120分钟,形成深N阱5。
深N阱5注入的区域是在漏端隔离LMDOS器件的外围一圈,其浓度和宽度需要满足横向PNP耐压的需求,深度需要和下面的N型埋层2短接在一起,使N型埋层2之内的P型区域和外面的P型区域隔离开。
步骤5,如图6所示,淀积SiN,然后通过光罩定义出有源区,刻蚀掉有源区上的SiN,然后刻蚀出浅沟槽隔离(STI),并填充二氧化硅(HTO),通过化学机械研磨(CMP)磨平后,去掉SiN,形成浅沟槽隔离6结构。该浅沟槽隔离6结构同时作为LDMOS的漂移区场氧。
步骤6,如图7所示,通过光罩定义出N阱(NW)注入区域,进行2次磷注入(第一次注入剂量5E12个/cm2,注入能量350Kev;第二次注入剂量2.2E12个/cm2,注入能量50Kev),形成N阱7。然后再通过光罩定义出LDMOS的N型漂移区(Ndrift),注入磷(注入剂量3E12个/cm2,注入能量300Kev),形成N型漂移区8。N型漂移区8注入的能量和剂量需要满足能和后续形成的P型区域10形成RESURF(Reduced Surface Field,降低表面电场)结构。
步骤7,如图8所示,通过光罩定义出P阱(PW)注入区域,进行3次硼注入(第一次注入剂量5E11个/cm2,注入能量1200Kev;第二次注入剂量2E12个/cm2,注入能量500Kev;第三次注入剂量6E12个/cm2,注入能量100Kev),形成P阱9;然后再通过光罩定义出用于隔离N型埋层2和漏端的P型区域,进行高能量硼注入(注入剂量3E12个/cm2,注入能量1500Kev),形成P型区域10。
P阱9的深度要求能够和P型埋层3、P型区域10相连,以形成隔离结构;P阱9的浓度需要满足横向耐压40V的要求。
P型区域10的深度和浓度要求能够满足隔离漏端的耐压要求和对N型埋层2的耐压要求,并且能和N型漂移区8形成RESURF效果。
步骤8,如图9所示,生长栅氧化层11,并淀积多晶硅12,通过光罩定义出P型体区(Pbody),进行多晶硅刻蚀,刻蚀完后进行硼注入(注入剂量3E13个/cm2,注入能量150Kev,注入角度30度),形成0.5μm左右的P型体区13作为LDMOS的沟道。
步骤9,如图10所示,通过光罩定义出栅极多晶硅(gate poly)和漂移区场氧上的场板多晶硅,进行多晶硅刻蚀,形成LDMOS的栅极、源极端的场板和漏极端的场板。
步骤10,如图11所示,通过光罩定义出N+和P+的源漏注入区域,进行N+离子注入(注入砷,注入剂量5E15个/cm2,注入能量50Kev),形成高压端N+的引出(N+14);进行P+离子注入(注入硼,注入剂量2E15个/cm2,注入能量20Kev),形成低压端P+的引出(P+15)。
步骤11,进行后续工艺(包括接触孔、金属层、钝化层等工艺),将电极引出,完成LDMOS的制作。

Claims (10)

1.漏端隔离的高压LDMOS的结构,其特征在于:N型漂移区和N型埋层之间有一层用于隔离漏端和N型埋层的P型区域,该P型区域与P阱相连。
2.权利要求1所述漏端隔离的高压LDMOS的制作方法,其特征在于,步骤包括:
1)在P型衬底上,用光罩定义N型埋层注入区域,注入锑,高温推阱,形成N型埋层;
2)用光罩定义P型埋层注入区域,注入硼,快速热退火,形成P型埋层;
3)淀积P型外延;
4)用光罩定义深N阱注入区域,注入磷,高温推阱,形成深N阱;
5)淀积SiN,用光罩定义有源区,刻蚀掉有源区上的SiN,然后刻蚀浅沟槽隔离,并填充HTO,磨平,去掉SiN,形成浅沟槽隔离;
6)用光罩定义N阱注入区域,注入磷,形成N阱;
7)用光罩定义N型漂移区,注入磷,形成N型漂移区;
8)用光罩定义P阱注入区域,注入硼,形成P阱;
9)用光罩定义P型区域,进行高能量硼注入,在N型漂移区和N型埋层之间形成一层用于隔离N型埋层和漏端的P型区域;
10)生长栅氧化层,并淀积多晶硅,用光罩定义P型体区,进行多晶硅刻蚀,然后进行硼注入,形成P型体区,作为LDMOS的沟道;
11)多晶硅刻蚀,形成LDMOS的栅极、源极端的场板和漏极端的场板;
12)用光罩定义N+和P+的源漏注入区域,进行离子注入,形成高压端N+的引出和低压端P+的引出,后续按照常规方法完成LDMOS的制作。
3.根据权利要求2所述的方法,其特征在于,步骤1),1200℃推阱40分钟。
4.根据权利要求2所述的方法,其特征在于,步骤3),P型外延厚度为6μm,电阻率为10ohm.cm。
5.根据权利要求2所述的方法,其特征在于,步骤4),1175℃推阱2小时。
6.根据权利要求2所述的方法,其特征在于,深N阱和N型埋层相连。
7.根据权利要求2所述的方法,其特征在于,P阱和P型埋层、P型区域相连。
8.根据权利要求2所述的方法,其特征在于,步骤9),硼注入能量为1500Kev。
9.根据权利要求2所述的方法,其特征在于,步骤10),硼注入角度为35度。
10.根据权利要求2所述的方法,其特征在于,P型体区的长度为0.5μm。
CN201410835958.2A 2014-12-24 2014-12-24 漏端隔离的高压ldmos的结构及制作方法 Pending CN104465779A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410835958.2A CN104465779A (zh) 2014-12-24 2014-12-24 漏端隔离的高压ldmos的结构及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410835958.2A CN104465779A (zh) 2014-12-24 2014-12-24 漏端隔离的高压ldmos的结构及制作方法

Publications (1)

Publication Number Publication Date
CN104465779A true CN104465779A (zh) 2015-03-25

Family

ID=52911527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410835958.2A Pending CN104465779A (zh) 2014-12-24 2014-12-24 漏端隔离的高压ldmos的结构及制作方法

Country Status (1)

Country Link
CN (1) CN104465779A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369711A (zh) * 2016-05-13 2017-11-21 北大方正集团有限公司 一种金属氧化物半导体mos器件及其制作方法
CN108122977A (zh) * 2016-11-29 2018-06-05 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN108511529A (zh) * 2018-06-08 2018-09-07 上海华虹宏力半导体制造有限公司 Nldmos器件和ldmos功率器件的制造方法
CN109494247A (zh) * 2018-12-17 2019-03-19 无锡麟力科技有限公司 低功耗高可靠性的双向夹层隔离阱
CN109494248A (zh) * 2018-12-17 2019-03-19 无锡麟力科技有限公司 低漏电高可靠性的夹层隔离阱
CN114188402A (zh) * 2022-02-14 2022-03-15 北京芯可鉴科技有限公司 一种ldmosfet、制备方法及芯片、电路
CN114664660A (zh) * 2020-12-23 2022-06-24 无锡华润上华科技有限公司 半导体器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288173A (zh) * 2005-08-25 2008-10-15 飞思卡尔半导体公司 采用多晶填充的沟槽的半导体器件
CN101755332A (zh) * 2007-07-31 2010-06-23 英特赛尔美国股份有限公司 改进的埋入式隔离层
US20100187606A1 (en) * 2009-01-27 2010-07-29 Yasushi Kobayashi Semiconductor device that includes ldmos transistor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288173A (zh) * 2005-08-25 2008-10-15 飞思卡尔半导体公司 采用多晶填充的沟槽的半导体器件
CN101755332A (zh) * 2007-07-31 2010-06-23 英特赛尔美国股份有限公司 改进的埋入式隔离层
US20100187606A1 (en) * 2009-01-27 2010-07-29 Yasushi Kobayashi Semiconductor device that includes ldmos transistor and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369711A (zh) * 2016-05-13 2017-11-21 北大方正集团有限公司 一种金属氧化物半导体mos器件及其制作方法
CN108122977A (zh) * 2016-11-29 2018-06-05 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN108511529A (zh) * 2018-06-08 2018-09-07 上海华虹宏力半导体制造有限公司 Nldmos器件和ldmos功率器件的制造方法
CN108511529B (zh) * 2018-06-08 2021-06-04 上海华虹宏力半导体制造有限公司 Nldmos器件和ldmos功率器件的制造方法
CN109494247A (zh) * 2018-12-17 2019-03-19 无锡麟力科技有限公司 低功耗高可靠性的双向夹层隔离阱
CN109494248A (zh) * 2018-12-17 2019-03-19 无锡麟力科技有限公司 低漏电高可靠性的夹层隔离阱
CN114664660A (zh) * 2020-12-23 2022-06-24 无锡华润上华科技有限公司 半导体器件及其制备方法
WO2022134571A1 (zh) * 2020-12-23 2022-06-30 无锡华润上华科技有限公司 半导体器件及其制备方法
CN114188402A (zh) * 2022-02-14 2022-03-15 北京芯可鉴科技有限公司 一种ldmosfet、制备方法及芯片、电路

Similar Documents

Publication Publication Date Title
CN104465779A (zh) 漏端隔离的高压ldmos的结构及制作方法
CN103035727B (zh) Rfldmos器件及制造方法
CN104867976B (zh) 垂直双极结型晶体管及其制造方法
US8823139B2 (en) Low leakage diodes
US8278710B2 (en) Guard ring integrated LDMOS
JP5534298B2 (ja) 半導体装置
US20190096744A1 (en) Sinker to buried layer connection region for narrow deep trenches
CN103178093B (zh) 高压结型场效应晶体管的结构及制备方法
US20140061715A1 (en) Zener diode device and fabrication
CN102136493B (zh) 高压隔离型ldnmos器件及其制造方法
CN105789311A (zh) 横向扩散场效应晶体管及其制造方法
EP3501040A2 (en) Dual deep trenches for high voltage isolation
CN103178087B (zh) 超高压ldmos器件结构及制备方法
JP2007287985A (ja) 半導体装置
CN104658913B (zh) Nldmos的制造方法
CN103219360A (zh) 半导体装置
US8673712B2 (en) Power transistor with high voltage counter implant
CN103035525B (zh) 高压隔离n型ldmos器件的制造方法
CN103545346B (zh) 隔离型n型ldmos器件及其制造方法
CN102723304B (zh) 用于直接驱动功率器件的n阱高压栅驱动芯片的制备方法
JP2014086723A (ja) 高電圧ダイオード
US9087708B2 (en) IC with floating buried layer ring for isolation of embedded islands
US9947783B2 (en) P-channel DEMOS device
CN109119458B (zh) 隔离结构及工艺方法
CN103811402B (zh) 一种超高压bcd工艺的隔离结构制作工艺方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150325