JP2010028005A - 半導体複合膜、半導体複合膜の形成方法、薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器 - Google Patents

半導体複合膜、半導体複合膜の形成方法、薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器 Download PDF

Info

Publication number
JP2010028005A
JP2010028005A JP2008190602A JP2008190602A JP2010028005A JP 2010028005 A JP2010028005 A JP 2010028005A JP 2008190602 A JP2008190602 A JP 2008190602A JP 2008190602 A JP2008190602 A JP 2008190602A JP 2010028005 A JP2010028005 A JP 2010028005A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
layer
substrate
organic semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190602A
Other languages
English (en)
Other versions
JP4730623B2 (ja
Inventor
Noriyuki Kawashima
紀之 川島
Takahiro Oe
貴裕 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008190602A priority Critical patent/JP4730623B2/ja
Priority to US12/502,606 priority patent/US8481993B2/en
Priority to CN2009101582263A priority patent/CN101635333B/zh
Publication of JP2010028005A publication Critical patent/JP2010028005A/ja
Application granted granted Critical
Publication of JP4730623B2 publication Critical patent/JP4730623B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/478Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a layer of composite material comprising interpenetrating or embedded materials, e.g. TiO2 particles in a polymer matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

【課題】印刷特性が良好であり、なおかつ得られる膜の相状態の制御が容易な半導体複合膜およびその形成方法を提供する。
【解決手段】有機半導体材料aと、有機半導体材料aとは異なる高分子材料bとを溶剤cに溶解させると共に、溶剤c中に微粒子材料dを分散させたインク3を調整する。印刷法によってインク3を用いた材料層3aを基板1上に形成する。材料層3a中の溶剤cを除去することにより、材料層3a中の有機半導体材料aと高分子材料bとを膜厚方向に相分離させると共に固化させ、有機半導体材料aを含有する半導体薄膜層5aと高分子材料bを含有する絶縁性薄膜層5bとを積層させると共に微粒子材料dが分散された半導体複合膜5を形成する。
【選択図】図1

Description

本発明は、有機半導体薄膜を備えた半導体複合膜と、その形成方法、およびこの半導体複合膜を用いた薄膜トランジスタとのその製造方法、ならびに電子機器に関する。
有機薄膜トランジスタ(organic thin film transistor:OTFT)は、従来のアモルファスシリコンTFTや低温ポリシリコンTFTよりも低温プロセスで形成できるため、フレキシブルな屈曲性を有するプラスチック基板上にもストレス無く形成される。このため、薄型ディスプレイをはじめとした様々な新規アプリケーション展開が期待されている。さらに、溶媒に可溶な塗布材料を用いることで、真空プロセスやフォトリソグラフィーを用いない塗布・印刷などの安価なプロセスでの基板作製が可能であるため、低コスト化が期待されている。
OTFT製造においての有機半導体薄膜のパターン印刷では、印刷性の観点から高分子系の有機半導体材料を用いることが有利である。例えばこれまでに報告例が多いインクジェット法による有機半導体薄膜層の形成においては、ポリ(9,9−ジオクチルフルオレン−コ−ビチオフェン)(F8T2)(下記非特許文献1参照)や、ポリ(5,5’−ビス(3−ドデシル−2−チエニル)−2,2’−ビチオフェン)(PQT−12)(下記非特許文献2参照)などの高分子系の有機半導体材料が用いられてきた。
一方、有機半導体薄膜そのものの特性からすると、低分子系の有機半導体材料を用いることが有利である。例えばスピンコート法やその他の塗布方法を適用して成膜された有機半導体薄膜では、高分子系の有機半導体材料を用いた場合には移動度が0.1cm2/Vs程度にとどまる。これに対して、低分子系の有機半導体材料を用いた場合には移動度が1cm2/Vsを超える報告が多数なされている。J.Jangらは、低分子系の有機半導体材料であるジヘキシルクォーターチオフェン(DH4T)のジクロロベンゼン溶液をインクジェット法にて塗布して、ボトムゲート型のOTFTを作製し、移動度0.043cm2/Vsを達成している。ただし、基板温度等のパラメータを精密に制御しなければならず、コーヒーステイン現象等による膜形成の不安定性やそれに起因した特性バラツキ等が問題になると予想される。
そこで、低分子系の有機半導体材料を用いながらも、膜質の制御性良好に有機半導体薄膜をパターン印刷する手法が望まれている。
このようななか、半導体材料と共に高分子材料を用いて有機半導体薄膜を形成するポリマーブレンド法が提案されている。
ポリマーブレンド法においては、例えば低分子系の有機半導体材料に絶縁性の高分子材料をポリマーブレンドしたインクを用いてパターン印刷を行ない、膜厚方向に有機半導体材料と高分子材料とを相分離させる。この際、下地の表面エネルギー制御によって相分離を促進させる手法が報告されており、この手法によって形成された半導体薄膜層を用いた薄膜トランジスタ動作が確認されている(下記特許文献1,2参照)。
また、このようなポリマーブレンド法に関しては、アセン系などの低分子半導体材料に結合剤樹脂をポリマーブレンドすることにより、電荷移動度の向上と半導体薄膜層の安定性が改善されるとしている(下記特許文献3参照)。
以上のような相分離を伴うポリマーブレンド法においては、さらに均一な膜形成が期待される。これは、例えばインクジェットにて塗布形成されるような微小液滴の場合、溶媒乾燥時に表面張力分布に起因したマランゴニ対流が発生し、溶質移動による膜形成のムラが生じ易い。しかしながら、ポリマーブレンド法には、そのような溶質移動を制限し、さらに下地との濡れ性を改善という効果があるため、均一な膜形成が促進されるのである。
またポリマーブレンド法には、インクの粘度向上という利点もあるため、インクジェット法に限らず、スクリーン印刷やグラビア印刷などのスループットの高い印刷手法を適用した有機半導体薄膜のパターン印刷への適用も期待される。
C. W. Sele et al., Advanced Materials vol.17 p.997 (2005) A. C. Arias et al., Applied Physics Letters vol.85 p.3304 (2004) D. H. Song et al., Applied Physics Letters vol.90 p.053504-1 (2007) 特開2005-243822号公報 特開2006-179905号公報 特表2007-519227号公報
ところが、上述したスループットの高い印刷法に用いられるインクの粘度としては、例えばスクリーン印刷では10000mPa・s以上必要であり、グラビア印刷では500mPa・s程度必要である。このため、上記のポリマーブレンド法で粘度を向上させるには、インクに含有する高分子材料の濃度を高くする必要がある。このため、低分子系の有機半導体材料を用いる場合には、必然的に高分子材料の比率が増大する。
図5には、ポリマーアロイの2元系状態図を示す。一般的に2成分系のポリマーアロイでは、Flory-Hugginsの相互作用パラメータの大小で相分離の可否が決まる。このため、スピノーダル線αの内側においては、核生成を伴わない相分離が進行して膜厚方向に相分離が起こる。これに対して、スピノーダル線αとバイノーダル線βとの間では核生成・成長を伴う相分離が進行し、膜厚方向での相分離は起こらない。またバイノーダル線βの外側では相分離は起こらない。
そのため、例えば高分子材料Aと有機半導体材料Bとを用い、印刷性向上のための粘度となるように有機半導体材料B/高分子材料Aの比率x1とした場合には、2成分の状態はバイノーダル線βの外側となり、相分離現象を示さない。つまり、高分子材料Aの比率がスピノーダル線αの範囲x2でなければ、相分離現象を示さないのである。
さらに、スクリーン印刷の場合には粘度だけではなくチクソトロピー性も加えたトータルのレオロジーコントロールが必須となり、もはやポリマーブレンドのみでは所望の粘度のインクを調合することは不可能となる。つまり、上記先行特許文献に記載の有機半導体と高分子材料とを用いたポリマーブレンド法では、スクリーン印刷やグラビア印刷等の高スループットの印刷法における印刷性と、印刷によって得られる膜の相分離状態とを両立することが極めて難しい。
そこで本発明は、印刷特性が良好であり、なおかつ得られる膜の相状態の制御が容易な半導体複合膜およびその形成方法を提供すること、さらにはこの半導体複合膜を用いた薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器を提供することを目的とする。
このような目的を達成するための本発明の半導体複合膜は、有機半導体材料を含有する半導体薄膜層と、前記有機半導体材料に対して膜厚方向に相分離した高分子材料によって構成された絶縁性薄膜層と、これらの半導体薄膜層および絶縁性薄膜層の少なくとも一方に分散された微粒子材料とを備えている。
また本発明はこのような半導体複合膜の形成方法でもあり、次のように行う。先ず第1工程では、有機半導体材料と当該有機半導体材料とは異なる高分子材料とを溶剤に溶解させると共に、当該溶剤中に微粒子材料を分散させたインクを調整する。次の第2工程では、調整したインクを用いた印刷法によって基板上に材料層を形成する。その後第3工程では、材料層中の溶剤を除去することにより、当該材料層中の有機半導体材料と高分子材料とを膜厚方向に相分離させると共に固化させ、当該有機半導体材料を含有する半導体薄膜層と当該高分子材料を含有する絶縁性薄膜層とを積層させると共に、微粒子材料が分散された半導体複合膜を形成する。
このような構成では、互いに相分離させる有機半導体材料および高分子材料と共に、微粒子材料を分散させたことにより、半導体材料と高分子材料との含有比によって相分離を制御しつつ、微粒子材料の分散量によって膜形成のためのインクの粘度およびチクソトロピー性を良好に制御することができる。
本発明は、以上のようにして形成した半導体複合膜を用いて構成された薄膜トランジスタ、および電子機器でもある。薄膜トランジスタの場合であれば、ソース電極とドレイン電極との上部に、半導体薄膜層を下層側にして半導体複合膜が設けられた構成とする。
以上説明したように本発明によれば、半導体材料と高分子材料との含有比によって相分離を制御しつつ、微粒子材料の分散量によって膜形成のためのインクの粘度およびチクソトロピー性を良好に制御することが可能である。これにより、印刷性良好な粘度およびチクソトロピー性を有して形状精度良好に印刷形成された膜において、半導体材料と高分子材料とを確実に相分離させた半導体複合膜を得ることが可能である。
以下、本発明の実施の形態を、半導体複合膜、薄膜トランジスタ、電子機器の順に図面に基づいて詳細に説明する。尚、それぞれの実施形態においては、製造工程順に沿って説明を行なう。
≪半導体複合膜≫
先ず、図1(1)に示すように、第1工程では、有機半導体材料aと高分子材料bとを溶剤cに溶解させると共に、溶剤c中に微粒子材料dを分散させた印刷用のインク3を調整する。ここで用いる各材料は次のようである。
<有機半導体材料a>
有機半導体材料aは、低分子系の有機半導体材料または高分子系の有機半導体材料が用いられる。
低分子系の有機半導体材料としては、6,13−ビス(トリイソプロピル−シリルエチニル)ペンタセン[TIPSペンタセン]、またはこの他の塗布形成可能なペンタセン誘導体、アントラジチオフェン誘導体、ルブレン誘導体、チオフェンオリゴマー誘導体、ナフタセン誘導体、アントラセン誘導体、ポルフィリン誘導体、フタロシアニン誘導体などが用いられる。
また高分子系の有機半導体材料としては、ポリチオフェン及びその誘導体、ポリフェニレンビニレン及びその誘導体、フルオレン−チオフェンコポリマー、ポリアリルアミン及びその誘導体等が用いられる。
以上のような有機半導体材料aは、2種類以上の異なる材料を混合して用いても良い。また有機半導体材料aは、ここで形成される半導体複合膜における半導体薄膜層に必要な特性が得られるものを選択して用いて良い。例えば半導体薄膜層のキャリア移動度を確保したい場合には、TIPSペンタセンのような低分子系の有機半導体材料aが好ましく用いられる。
<高分子材料b>
高分子材料bは、絶縁性の材料を選択して用いることとする。例えば、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリイソプレン、ポリオレフィン、ポリカーボネート、ポリイミド、ポリアミド、ポリ(α−メチルスチレン)、ポリ(α−エチルスチレン)、ポリ(α−プロピルスチレン)、ポリ(α−ブチルスチレン)、ポリ(4−メチルスチレン)、ポリアクリルニトリル、ポリビニルカルバゾール、ポリフッ化ビニリデン、ポリビニルブチラール、ポリビニルトルエン、ポリ(4−ビニルビフェニル)及び上記ポリマーの共重合体から選択することができる。
なかでも高分子材料bは、有機半導体材料aと同一の溶媒に対する溶解性が高い材料が好ましく用いられる。このため、有機半導体材料aとしてTIPSペンタセンを用いた場合には、例えば、ポリスチレンが好適に用いられる。また高分子材料bは、相分離促進の観点からは、重量平均分子量が10000〜500000程度であることが好ましい。
<溶剤c>
溶剤cは、印刷時に乾燥速度の遅い高沸点溶媒が好ましく、かつ有機半導体材料aおよび高分子材料bを十分に溶解し、次に説明する微粒子材料dの分散性が高い溶媒が好ましい。有機半導体材料aとしてTIPSペンタセンを用い、高分子材料bとしてポリスチレンを用いた場合であれば、これらに対する溶解性が高くかつ高沸点溶媒であるテトラリンが好ましく用いられる。
<微粒子材料d>
微粒子材料dは、印刷用のインクにおける粘度およびチクソトロピー性のコントロールのために加えるものであり、無機微粒子または有機微粒子などが用いられる。
無機微粒子としては、シリカ、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム、窒化シリコン、チタン酸カリウム、チタン酸バリウム、炭酸カルシウム、炭酸アルミニウム、珪酸アルミニウム、珪酸マグネシウム、ホウ酸アルミニウム、ガラスなどが用いられる。
有機微粒子としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート等のアクリル、ポリカーボネート、ポリイミド、ポリアミド、ポリウレタン、ポリエステル、ポリ塩化ビニル、ポリアクリルニトリル、ポリビニルトルエン、メラミン樹脂、シリコーン樹脂、エポキシ樹脂などの有機微粒子およびその共重合体微粒子、および上記2種類以上の混合物でもよい。
また、上記微粒子材料dは、球形またはそれ以外の形状であっても良く、分散性の観点から平均粒子径5〜1000nm程度であることが好ましい。尚、この微粒子材料dは、絶縁性材料からなるものであって良いが、半導体微粒子であっても良い。また微粒子材料dは、ここで形成される半導体複合膜中においての体積比が50%以下となるように用いられることが好ましい。
さらに、以降に行なう有機半導体材料aと高分子材料bとの相分離において、微粒子材料dを表面側に移動させたい場合には、表面エネルギーの低い修飾基を上述した材料からなる微粒子材料dの表面に付与させて用いれば良い。
以上のような各材料は混合して十分に攪拌することにより印刷用のインク3が調整される。このインク3は、微粒子材料dの分散量によって粘度およびチクソトロピー性が制御されたものとなる。
次に、図1(2)に示すように、第2工程では、調整したインク3を用いた印刷法により、基板1上にインク3をパターン印刷してなる材料層3aを形成する。
ここで適用する印刷法が特に限定されることはないが、スクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷、またはグラビアオフセット印刷などを適用することにより、スループットの高いパターン印刷が行なわれる。またインクジェット法によるパターン印刷であっても良い。さらに、塗布印刷法によって、基板1上に材料層3aを膜状に成膜形成しても良い。
ここで用いる基板1は、少なくとも材料層3aが形成される面側が絶縁性を備えている材料が用いられる。また基板1は、次に行なう材料層3aの相分離において、基板1側に層形成したい材料(例えば有機半導体材料a)との親和性が、他の材料(例えば高分子材料b)との親和性よりも高い材料を用いることが好ましい。
このような基板1は、ガラス基板の他、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリカーボネート(PC)、ポリアクリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリエチレンテレフタラート(PET)などのプラスチック基板が用いられる。また基板1は、ステンレス等からなる金属薄膜基板(金属フォイル)の表面を絶縁処理して用いても良い。さらに基板1は、上記親和性を得るための親和性処理を施したものであっても良い。
一例として、有機半導体材料aにTIPSペンタセンを用い、高分子材料bにポリスチレンを用いた場合であれば、基板1としてポリエーテルスルホン(PES)等からなる基板が好適に用いられる。
その後、図1(3)に示すように、第3工程では、材料層3a中の溶剤(d)を除去する。これにより、材料層3aを固化させると共に、材料層3a中の有機半導体材料(a)と高分子材料(b)とを膜厚方向に相分離させる。そして、材料層3aを、有機半導体材料(a)を含有する半導体薄膜層5aと、高分子材料(b)を含有する絶縁性薄膜層5bとが積層された半導体複合膜5とする。この半導体複合膜5は、微粒子材料dが分散されたものとなる。
ここでは、例えば溶剤(d)によって適する温度で基板1を加熱処理すれば良い。これにより、材料層3a中において有機半導体材料(a)と高分子材料(b)とを相分離させながら溶剤(d)を除去する。
例えば、溶媒(d)としてテトラリンを用いた場合であれば、100℃で2時間の熱処理を行うことにより、材料層3a中から溶媒(d)が除去される。この際、溶媒(d)の除去によって材料層3aが固化すると共に、基板1との親和性の高い有機半導体材料(a)が基板1側に、基板1との親和性が低い高分子半導体材料(b)が材料層3aの表面側に、膜厚方向の相分離を示す。そして、基板1側には有機半導体材料(a)を含有する半導体薄膜層5aが形成され、この上部に高分子材料(b)を含有する絶縁性薄膜層5bが積層された半導体複合膜5が形成される。
また、材料層3a中の微粒子材料dは、半導体複合膜5中に分散された状態となる。この際、表面エネルギーが低い修飾基が微粒子材料dの表面に付与されている場合であれば、この熱処理中に微粒子材料dは材料層3aの表面付近に移動する。このため、主に絶縁性薄膜層5b内に微粒子材料dが分散された状態となり、絶縁性の微粒子材料dを用いた場合であれば絶縁性薄膜層5bの絶縁性が妨げられることはなく、しかも半導体薄膜層5aの半導体特性の妨げになることもない。
以上のようにして形成された半導体複合膜5は、半導体薄膜5a上に自己整合的に絶縁性薄膜層5bが保護膜として形成された構成となる。尚、相分離後の半導体複合膜5の全体膜厚は、印刷条件およびインク(3)内の固形分濃度に依存するが、0.1〜20.0μmの範囲となる。
以上のような半導体複合膜5の形成方法では、有機半導体材料aおよび高分子材料bと共に、溶媒cに微粒子材料dを分散させたインク3を調整して印刷を行う構成である。このため、半導体材料aと高分子材料bとは、印刷性を考慮せずに、相分離性や膜特性を考慮した含有比にすれば良く、微粒子材料の分散量によって膜形成のためのインクの粘度およびチクソトロピー性を良好に制御することができる。
これにより、印刷性良好な粘度およびチクソトロピー性を有して形状精度良好に印刷形成された材料層3aにおいて、半導体材料aと高分子材料bとを確実に相分離させた半導体複合膜5を得ることが可能になる。
この結果、これまで高い移動度を示す低分子系の有機半導体材料の印刷方式は、低粘度インクに適したインクジェット法のみが適応可能であったが、さらに高い粘度およびチクソトロピー性が求められていたスクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷、さらにはグラビアオフセット印刷など様々な印刷方式で印刷することが可能となり、半導体複合膜5をパターン印刷する際のスループットの向上と、低コスト化とを実現可能である。
また上述したようなインクジェット法と比較して高い粘度のインクを用いることが可能な印刷法であれば、相分離が生じる範囲内においてインク中にける高分子材料の含有比を高めることができる。これにより、絶縁性薄膜層5bの膜厚を厚膜化することが可能である。具体的には、インクジェット法を適用した従来のポリマーブレンド法で形成される絶縁性薄膜は、膜厚100nm程度である。これに対して、上述した高い粘度のインクを用いることが可能な印刷方法を適用して形成される絶縁性薄膜は、膜厚1μm以上となる。したがって、上述した印刷方の適用により、絶縁性薄膜層5bを半導体薄膜層5aの保護膜として用いることが可能であり、半導体薄膜層5aと保護膜(絶縁性薄膜層5b)との一括形成が可能になる。
しかも、絶縁性材料からなる微粒子材料dを絶縁性薄膜層5bに分散させることにより、微粒子材料dの含有量だけさらに絶縁性薄膜層5bを厚膜化することも可能である。
≪薄膜トランジスタ−1≫
次に、以上で説明した半導体複合膜の形成方法を適用したボトムゲート構造(スタガ型)の薄膜トランジスタの実施の形態を図2に基づいて説明する。
先ず、図2(1)に示すように、基板11を用意し、この上部にゲート電極13をパターン形成する。
ここで用いる基板11は、少なくともゲート電極13が形成される面側が絶縁性を備えていれば良く、ガラス基板の他、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリカーボネート(PC)、ポリアクリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリエチレンテレフタラート(PET)などのプラスチック基板が用いられる。また基板11は、ステンレス等からなる金属薄膜基板(金属フォイル)の表面を絶縁処理して用いても良い。
このような基板11上へのゲート電極13のパターン形成は、例えば次のように行う。先ず、例えばダイコート法によって、ポリエーテルスルホン(PES)からなるプラスチック製の基板11上に、平均粒子径10nmの銀微粒子を用いた導電性インクを塗布し、次いで150℃で1時間の熱処理を行うことで、銀からなる導電性膜を50nmの膜厚で成膜する。その後、スクリーン印刷により所望形状のレジストパターンを導電性膜上に形成する。続いて、銀エッチング液を用いレジストパターンをマスクにした導電性膜のウェットエッチングにより、導電性膜をパターニングしてなるゲート電極13を形成する。ゲート電極3の形成後にはレジストインクを除去する。
以上のようなゲート電極13形成において、導電性膜のウェットエッチングの際にマスクとして用いるレジストパターンは、インクジェット法、フォトリソグラフィー法、オフセット印刷法またはレーザー描画法を用いて形成しても良い。さらにゲート電極13の形成は、インクジェット法、スクリーン印刷法、マイクロコンタクトプリンティング法、フレキソ印刷法、グラビア印刷法、オフセット印刷法によって、導電性インクを直接パターン形成しても良い。ただし、次の工程においてゲート電極13を覆う状態で設けられるゲート絶縁膜に対して、良好な絶縁特性を確保するためには、ゲート電極13の表面は平坦でかつ膜厚が100nm以下と出来るだけ薄いことが好ましい。
また、ゲート電極13は、銀を用いたものに限定されることはなく、金、白金、パラジウム、銅、ニッケル、アルミニウム等の金属や、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(4−スチレンスルホナート)[PEDOT/PSS]、ポリアニリン(PANI)からなる導電性有機材料を用いることもできる。
次に、ゲート電極13を覆う状態でゲート絶縁膜15を成膜する。ここで用いるゲート絶縁膜15は、以降の工程で行う材料層の相分離において、ゲート絶縁膜15側に層形成したい材料(例えば有機半導体材料)との親和性が、他の材料(例えば高分子材料)との親和性よりも高い材料を用いることが好ましい。
このようなゲート絶縁膜15の成膜は、例えばダイコート法によって行う。ここでは一例として、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に、高分子材料ポリビニルフェノール(PVP)10重量%と架橋剤ポリ(メラミン−コ−ホルムアルデヒド)を溶解させた溶液を調整する。そして、ゲート電極13が形成された基板11上に調整した溶液を塗布し、180℃で1時間熱処理することにより、ゲート絶縁膜15を形成する。このゲート絶縁膜15は、トランジスタの低電圧動作のために1μm以下の膜厚で、かつ表面平坦に成膜されることが望ましい。
尚、ゲート絶縁膜15の成膜は、ダイコート法の他、グラビアコート法、ロールコート法、キスコート法、ナイフコート法、ダイコート法、スリットコート法、ブレードコート法、スピンコート法、インクジェット法など、他の塗布方法を用いることもできる。また、ゲート絶縁膜15を構成する材料としては、PVPの他、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、ポリビニルアルコール、エポキシ樹脂、ノボラック樹脂などを用いることができる。
次に、ゲート絶縁膜15上にソース電極17sおよびドレイン電極17dをパターン形成する。これらのソース電極17sおよびドレイン電極17dは、ゲート絶縁膜15を介してゲート電極13上において端部を対向配置させた状態で形成される。
このようなソース電極17sおよびドレイン電極17dは、例えばゲート電極13と同様に形成される。すなわち先ず、ダイコート法により銀インクを均一塗布し、次いで150℃で熱処理することで、銀からなる導電性膜を50nmの膜厚で形成する。その後、レジストインクをスクリーン印刷法にて導電性膜上にパターン形成する。続いて、銀エッチング液を用いレジストパターンをマスクにして導電性膜をウェットエッチングすることにより、導電性膜をパターニングしてなるソース電極17sおよびドレイン電極17dをパターン形成する。ソース電極17sおよびドレイン電極17dの形成後にはレジストインクを除去する。
ここで、ソース電極17s、ドレイン電極17dとしては、銀の他にp型半導体と良好なオーミック接触を有する金、白金、パラジウム、銅、ニッケル等の金属や、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(4−スチレンスルホナート)[PEDOT/PSS]、ポリアニリン(PANI)からなる導電性有機材料を用いることもできる。
また、ソース電極17sおよびドレイン電極17d形成における導電膜のウェットエッチングの際にマスクとして用いるレジストパターンは、インクジェット法、フォトリソグラフィー法、またはレーザー描画法を用いてもよい。さらにソース電極17sおよびドレイン電極17dの形成は、インクジェット法、スクリーン印刷法、マイクロコンタクトプリンティング法、オフセット印刷法によって、直接パターン形成しても良い。
尚、これらのソース電極17sおよびドレイン電極17dは、次の工程で行う材料層の相分離において、ゲート絶縁膜15やソース電極17sおよびドレイン電極17d側に層形成したい材料(例えば有機半導体材料)との親和性が、他の材料(例えば高分子材料)との親和性よりも高い材料を用いることが好ましい。
以上の後、図2(2)に示すように、ゲート絶縁膜13とこの上部に形成されたソース電極17sおよびドレイン電極17dとを下地とし、この下地上にインクを用いて材料層3aをパターン印刷する。ここで用いるインクは、先の半導体複合膜の形成方法で説明したと同様のものであり、有機半導体材料aと高分子材料bとを溶剤cに溶解させると共に、溶剤c中に微粒子材料dを分散させた印刷用のインク(3)である。
このインク(3)を用いた材料層3aのパターン印刷に適用する印刷法が特に限定されることはないが、少なくともソース電極17s−ドレイン電極17d間にわたって材料層3aが設けられるようにパターン印刷を行う。またこのパターン印刷には、スクリーン印刷やグラビア印刷などを適用することにより、スループットの高いパターン印刷が行なわれる。またインクジェット法によるパターン印刷であっても良い。さらに、例えば素子分離の必要がない場合には、塗布印刷法によって材料層3aを膜状に成膜形成しても良い。
その後、図2(3)に示すように材料層3a中の溶剤(d)を除去し、材料層3aを固化させると共に、材料層3a中の有機半導体材料(a)と高分子材料(b)とを膜厚方向に相分離させることは、先の半導体複合膜の形成方法で述べたと同様である。
これにより、先に述べた通りに、下地であるゲート絶縁膜15、さらにはソース電極17sおよびドレイン電極17dと親和性の高い有機半導体材料(a)が下地側に、親和性が低い高分子半導体材料(b)が材料層3aの表面側に、膜厚方向の相分離を示す。そして、ソース電極17s、ドレイン電極17d、およびこれらの間のゲート絶縁膜15に接する状態で有機半導体材料(a)を含有する半導体薄膜層5aが形成され、この上部に高分子材料(b)を含有する絶縁性薄膜層5bが積層された半導体複合膜5が形成される。
材料層3a中の微粒子材料dは、半導体複合膜5中に分散された状態となる。この際、表面エネルギーが低い修飾基が微粒子材料dの表面に付与されている場合であれば、この熱処理中に微粒子材料dは材料層3aの表面付近に移動し、主に絶縁性薄膜層5bに分散した状態となる。
以上のようにしてボトムゲート構造(スタガ型)の薄膜トランジスタ19が得られる。この薄膜トランジスタ19は、ボトムゲート・ボトムコンタクト型となる。そして、形成された半導体複合膜5のうち、ソース電極17s、ドレイン電極17d、およびこれらの間のゲート絶縁膜15に接する半導体薄膜層5aが、チャネル形成領域となる。
以上のような実施形態では、先に図1を用いて説明した半導体複合膜5の形成方法を適用して、ソース電極17sとドレイン電極17dとの上部に半導体複合膜5をパターン印刷によって形成している。したがって、先に述べたように、この半導体複合薄膜5は、印刷性良好な粘度およびチクソトロピー性を有して形状精度良好に印刷形成された材料層3aにおいて、半導体材料aと高分子材料bとを確実に相分離させたものとなる。
この結果、これまで高い移動度を示す低分子系の有機半導体材料の印刷方式は、低粘度インクに適したインクジェット法のみが適応可能であったが、さらに高いチクソトロピー性が求められていたスクリーン印刷やグラビアオフセット印刷など様々な印刷方式で印刷することが可能となり、半導体複合膜5をパターン印刷する際のスループットの向上と、低コスト化とを実現可能である。
また、先にも述べたように、絶縁性材料からなる微粒子材料dを絶縁性薄膜層5bに分散させることにより、絶縁性薄膜層5bの膜厚を1μm以上に厚膜化することが可能になる。したがって、この絶縁性薄膜層5bを、半導体薄膜層5aの保護膜として用いることが可能であり、半導体薄膜層5aと保護膜(絶縁性薄膜層5b)との一括形成が可能である。
尚、絶縁性材料からなる微粒子材料dを絶縁性薄膜層5bに分散させることにより、この微粒子材料dが半導体薄膜層5aの半導体特性の妨げになることもなく、キャリア走行の妨げになることはない。
≪薄膜トランジスタ−2≫
次に、以上で説明した半導体複合膜の形成方法を適用したトップゲート構造(逆スタガ型)の薄膜トランジスタの実施の形態を図3に基づいて説明する。
先ず、図3(1)に示すように、基板21を用意し、この上部にソース電極23aおよびドレイン電極23dをパターン形成する。
ここで用いる基板21は、少なくとも材料層3aが形成される面側が絶縁性を備えている材料が用いられる。また基板1は、次に行なう材料層3aの相分離において、基板1側に層形成したい材料(例えば有機半導体材料a)との親和性が、他の材料(例えば高分子材料b)との親和性よりも高い材料を用いることが好ましい。
このような基板21は、半導体複合膜の形成で述べたと同様のものが用いられる。すなわち、ガラス基板の他、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリカーボネート(PC)、ポリアクリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリエチレンテレフタラート(PET)などのプラスチック基板が用いられる。また基板1は、ステンレス等からなる金属薄膜基板(金属フォイル)の表面を絶縁処理して用いても良い。さらに基板1は、上記親和性を得るための親和性処理を施したものであっても良い。
このような基板21上へのソース電極23aおよびドレイン電極23dのパターン形成は、先ノボトムゲート構造(スタガ型)の薄膜トランジスタ(19)の製造におけるソース電極(17s)およびドレイン電極(17d)の形成と同様に行われる。すなわち、平均粒子径10nmの銀微粒子を用いた導電性インクを塗布し、次いで150℃で1時間の熱処理を行うことで、銀からなる導電性膜を50nmの膜厚で成膜する。その後、スクリーン印刷により所望形状のレジストパターンを導電性膜上に形成する。続いて、銀エッチング液を用いレジストパターンをマスクにした導電性膜のウェットエッチングにより、導電性膜をパターニングしてなるソース電極23aおよびドレイン電極23dを形成する。
その後、図3(2)に示すように、基板21とこの上部に形成されたソース電極23sおよびドレイン電極23dとを下地とし、この下地上にインクを用いて材料層3aをパターン印刷する。ここで用いるインクは、先の半導体複合膜の形成方法で説明したと同様のものであり、有機半導体材料aと高分子材料bとを溶剤cに溶解させると共に、溶剤c中に微粒子材料dを分散させた印刷用のインク(3)である。ただし、ここで用いる微粒子材料dは、絶縁性であることが好ましい。
このインク(3)を用いた材料層3aのパターン印刷に適用する印刷法が特に限定されることはないが、少なくともソース電極23s−ドレイン電極23d間にわたって材料層3aが設けられるようにパターン印刷を行うことは、先の例と同様である。またこのパターン印刷には、スクリーン印刷やグラビア印刷などを適用することにより、スループットの高いパターン印刷が行なわれる。またインクジェット法によるパターン印刷であっても良い。さらに、例えば素子分離の必要がない場合には、塗布印刷法によって材料層3aを膜状に成膜形成しても良いことも、先の例と同様である。
その後、図3(3)に示すように材料層3a中の溶剤(d)を除去し、材料層3aを固化させると共に、材料層3a中の有機半導体材料(a)と高分子材料(b)とを膜厚方向に相分離させることは、先の半導体複合膜の形成方法で述べたと同様である。
これにより、先に述べた通りに、下地である基板21、さらにはソース電極23sおよびドレイン電極23dと親和性の高い有機半導体材料(a)が下地側に、親和性が低い高分子半導体材料(b)が材料層3aの表面側に、膜厚方向の相分離を示す。そして、ソース電極23sおよびドレイン電極23dに接する状態で有機半導体材料(a)を含有する半導体薄膜層5aが形成され、この上部に高分子材料(b)を含有する絶縁性薄膜層5bがゲート絶縁膜として積層された半導体複合膜5が形成される。
材料層3a中の微粒子材料dは、半導体複合膜5中に分散された状態となる。この際、表面エネルギーが低い修飾基が微粒子材料dの表面に付与されている場合であれば、この熱処理中に微粒子材料dは材料層3aの表面付近に移動し、主に絶縁性薄膜層5bに分散した状態となる。
以上の後には、図3(4)に示すように、半導体複合膜5上に、ゲート電極25をパターン形成する。
このような半導体複合膜5上へのゲート電極25のパターン形成は、例えばインクジェット法によって行う。この際、例えば平均粒子径10nmの銀微粒子を用いた導電性インク用い、所望形状に導電性インクをパターン印刷する。その後、120℃で2時間熱処理することにより、銀からなるゲート電極25を形成する。
以上のようなゲート電極25形成は、インクジェット法の他に、スクリーン印刷法、マイクロコンタクトプリンティング法、フレキソ印刷法、グラビア印刷法、オフセット印刷法等、導電性インクを直接パターン形成する方法が好適に適用される。また、ゲート電極13は、銀を用いたものに限定されることはなく、金、白金、パラジウム、銅、ニッケル、アルミニウム等の金属や、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(4−スチレンスルホナート)[PEDOT/PSS]、ポリアニリン(PANI)からなる導電性有機材料を用いることもできる。
以上のようにしてトップゲート構造(逆スタガ型)の薄膜トランジスタ29が得られる。この薄膜トランジスタ29は、トップゲート・ボトムコンタクト型となる。そして、形成された半導体複合膜5のうち、ソース電極23sおよびドレイン電極23dに接する半導体薄膜層5aがチャネル形成領域となる。一方、この半導体薄膜層5a上部の絶縁性薄膜層5bがゲート絶縁膜となる。
以上のような実施形態であっても、先に図1を用いて説明した半導体複合膜5の形成方法を適用してソース電極23sとドレイン電極23dとの上部に半導体複合膜5をパターン印刷によって形成している。したがって、先に述べたと同様に、この半導体複合薄膜5は、印刷性良好な粘度およびチクソトロピー性を有して形状精度良好に印刷形成された材料層3aにおいて、半導体材料aと高分子材料bとを確実に相分離させたものとなる。
この結果、これまで高い移動度を示す低分子系の有機半導体材料の印刷方式は、低粘度インクに適したインクジェット法のみが適応可能であったが、さらに高いチクソトロピー性が求められていたスクリーン印刷やグラビアオフセット印刷など様々な印刷方式で印刷することが可能となり、半導体複合膜5をパターン印刷する際のスループットの向上と、低コスト化とを実現可能である。
また、先にも述べたように、絶縁性材料からなる微粒子材料dを絶縁性薄膜層5bに分散させることにより、絶縁性薄膜層5bの膜厚を1μm以上に厚膜化することが可能になる。したがって、この絶縁性薄膜層5bを、半導体薄膜層5aの保護膜として用いることが可能であり、半導体薄膜層5aと保護膜(絶縁性薄膜層5b)との一括形成が可能である。
尚、絶縁性材料からなる微粒子材料dを絶縁性薄膜層5bに分散させることにより、この微粒子材料dが半導体薄膜層5aの半導体特性の妨げになることもなく、キャリア走行の妨げになることはないことも、先の実施形態と同様である。
≪電子機器≫
図4には、上述した半導体複合膜5を備えた電子機器の一例を示す。この電子機器は、有機EL表示装置30であり、上述した半導体複合膜5を用いて構成された薄膜トランジスタを駆動回路に設けてなる。薄膜トランジスタとしては、例えば図2を用いて説明したボトムゲート型の薄膜トランジスタ19、または図3を用いて説明したトップゲート型の薄膜トランジスタ29であっても良い。ここでは、例えば図2を用いて説明したボトムゲート型の薄膜トランジスタ19を用いた構成を図示した。
この図に示す有機EL表示装置30は、次のように構成されている。
すなわち、基板11の表面側に、例えば図2を用いて説明したボトムゲート型の薄膜トランジスタ19が設けられており、これを覆う状態で層間化絶縁膜31が設けられている。層間絶縁膜31には、薄膜トランジスタ19のドレイン電極19dに達する接続孔31aが設けられている。
そして、層間絶縁膜31上の各画素に、接続孔31aを介して有機薄膜トランジスタ19のドレイン電極17dに接続された有機電界発光素子ELが設けられている。この有機電界発光素子ELは、層間絶縁膜31上に設けられた絶縁性パターン33で素子分離されている。
そして有機電界発光素子ELは、有機薄膜トランジスタTrのドレイン電極17dに接続された導電性パターンからなる画素電極35を備えている。この画素電極35は、各画素毎にパターン形成されており、例えば陽極として用いられるものであり、光反射性を有して構成されていることとする。
そして、この画素電極35の周縁が、有機電界発光素子ELを素子分離するための絶縁性パターン33で覆われている。この絶縁性パターン33は、画素電極35を広く露出させる開口窓33aを備えており、この開口窓33aが有機電界発光素子ELの画素開口となる。このような絶縁性パターン33は、例えば感光性樹脂を用いて構成され、リソグラフィー法を適用してパターニングされたものであることとする。
そして、このような絶縁性パターン33から露出する画素電極35上を覆う状態で、有機層37が設けられている。この有機層37は、少なくとも有機発光層を備えた積層構造からなり、必要に応じて陽極(ここでは画素電極55)側から順に、正孔注入層、正孔輸送層、有機発光層、電子輸送層、電子注入層、さらには他の層を積層してなる。また有機層37は、例えば各有機電界発光素子ELで発生させる発光光の波長毎に、少なくとも有機発光層を含む層が画素毎に異なる構成でパターン形成されていることとする。また、各波長の画素で共通の層を有していても良い。さらに、この有機電界発光素子ELが、微小共振器構造として構成されている場合、各有機電界発光素子ELから取り出す波長に合わせて有機層37の膜厚が調整されていることとする。
以上のような有機層37を覆い、画素電極35との間に有機層37を狭持する状態で、共通電極39が設けられている。この共通電極39は、有機電界発光素子ELの有機発光層で発生させた光を取り出す側の電極であり、光透過性を有する材料で構成されていることとする。またここでは、画素電極35が陽極として機能するものであるため、この共通電極39は、少なくとも有機層37に接する側が陰極として機能する材料を用いて構成されていることとする。さらに、この有機電界発光素子ELが、微小共振器構造として構成されている場合、この共通電極39は、半透過半反射性を有する構成であることとする。
そして、以上のような画素電極35と共通電極39との間に有機層37が挟持された各画素部分が、有機電界発光素子ELとして機能する部分となる。
またここでの図示は省略したが、各有機電界発光素子ELの形成面側は、光透過性材料からなる封止樹脂で覆われ、さらにこの封止樹脂を介して光透過性材料からなる対向基板が張り合わされた状態で有機EL表示装置30が構成されている。
尚、上述した実施形態においては、図2で説明したボトムゲート・ボトムコンタクト構造の薄膜トランジスタ19を備えた電子機器の一例として、有機電界発光素子ELを用いたアクティブマトリックス型の表示装置を例示した。しかしながら本発明の電子機器は、薄膜トランジスタを搭載した電子機器に広く適用可能である。例えば、表示装置であれば、液晶表示装置のようなフレキシブルディスプレイに適用できる。また表示装置以外にも、IDタグ、センサー等の電子機器への適用が可能であり、同様の効果を得ることができる。
図2を用いて説明したボトムゲート型の薄膜トランジスタ19を次のように作製した。
一方、ポリエーテルスルホン(PES)からなる基板11上に、銀からなる導電性膜をパターニングしてなるゲート電極13を形成した。これを覆う状態でPVPからなるゲート絶縁膜15を形成し、さらにこの上部に銀からなる導電性膜をパターニングしてなるソース電極17sおよびドレイン電極17dを形成した。
一方、材料層3aのパターン印刷に用いるインクを次のように調整した。先ず、高沸点溶媒であるテトラリン80重量部に対し、高分子材料bとして重量平均分子量5万のポリスチレンを20重量部、有機半導体材料aとして6,13−ビス(トリイソプロピル−シリルエチニル)ペンタセン(TIPSペンタセン)を5重量部加え十分に攪拌した。次に、攪拌した溶液中に、チクソトロピー性のコントロールのため微粒子材料dを加えて十分に分散させてインクを調整した。
実施例1では、微粒子材料dとして1次粒子平均粒径16nmのシリカフィラー(R972:日本アエロジル社製)を、3重量部加えた。
実施例2では、微粒子材料dとして、1次平均粒子径100nmのスチレン/アクリル微粒子を、3重量部加えた。
比較例では、微粒子材料dを加えずにインクを調整した。
以上のようにして調整した各インクを、スクリーン印刷によって、ソース電極17sおよびドレイン電極17dが形成されたゲート絶縁膜15上にパターン形成し、材料層3aを得た。基板11を100℃で2時間熱処理することにより、材料層3a中の溶剤を除去すると共に固化させ、相分離を進めて半導体複合膜5とした。
以上のようにして得られた薄膜トランジスタ19について、その特性値として1)半導体複合膜5を構成する半導体薄膜層5aの移動度、2)電流のon/of比、3)閾値電圧を測定した。この結果を、下記表1に示す。
Figure 2010028005
この表1に示すように、粘度およびチクソトロピー性制御のための微粒子材料dを分散させたインクを用いて半導体薄膜層5aを形成した実施例1,2共に、微粒子材料を用いずに半導体薄膜層を形成した比較例と同程度の特性を有する薄膜トランジスタが得られていることがわかる。これにより、本発明の適用により、粘度およびチクソトロピー性を制御して良好な形状精度でのパターン印刷を可能にしながらも、有機半導体材料と高分子材料との確実な相分離による半導体薄膜層5aに形成が可能であることが確認された。
本発明の半導体複合膜の形成を説明する図である。 本発明の薄膜トランジスタの製造手順の一例を説明する図である。 本発明の薄膜トランジスタの製造手順の他の例を説明する図である。 本発明の電子機器の一例を説明する図である。 ポリマーアロイの2元系状態図である。
符号の説明
1,11,21…基板、3…インク、3a…材料層、5…半導体複合膜、5a…半導体薄膜層、5b…絶縁性薄膜層、13,25…ゲート電極、15,5b…ゲート絶縁膜、17s,23s…ソース電極、17d,23d…ドレイン電極、19,29…薄膜トランジスタ、30…有機EL表示装置(電子機器)、a…有機半導体材料、b…高分子材料、c…溶剤、d…微粒子材料

Claims (16)

  1. 有機半導体材料を含有する半導体薄膜層と、
    前記有機半導体材料に対して膜厚方向に相分離した高分子材料によって構成された絶縁性薄膜層と、
    前記半導体薄膜層および絶縁性薄膜層の少なくとも一方に分散された微粒子材料とを備えた
    半導体複合膜。
  2. 前記微粒子材料が絶縁性材料からなる
    請求項1記載の半導体複合膜。
  3. 前記微粒子材料が前記絶縁性薄膜層に分散されている
    請求項1または2に記載の半導体複合膜。
  4. 前記半導体複合膜は基板上に形成され、
    前記微粒子材料が表面側の層に分散されている
    請求項1または2に記載の半導体複合膜。
  5. 前記半導体材料が低分子材料からなる
    請求項1〜4の何れか1項に記載の半導体複合膜。
  6. 前記半導体複合膜は基板上に形成され、前記半導体薄膜層は当該基板側に相分離され、前記絶縁性薄膜層は当該半導体薄膜層の表面側に相分離された膜である
    請求項1〜5の何れか1項に記載の半導体複合膜。
  7. 前記基板に対する前記半導体材料の親和性は、当該基板に対する前記高分子材料の親和性よりも高い
    請求項6記載の半導体複合膜。
  8. 有機半導体材料と当該有機半導体材料とは異なる高分子材料とを溶剤に溶解させると共に、当該溶剤中に微粒子材料を分散させたインクを調整する第1工程と、
    印刷法によって前記インクを用いた材料層を基板上に形成する第2工程と、
    前記材料層中の前記溶剤を除去することにより、当該材料層中の前記有機半導体材料と前記高分子材料とを膜厚方向に相分離させると共に固化させ、当該有機半導体材料を含有する半導体薄膜層と当該高分子材料を含有する絶縁性薄膜層とを積層させると共に前記微粒子材料が分散された半導体複合膜を形成する第3工程とを行う
    ことを特徴とする半導体複合膜の形成方法。
  9. 前記インクのチクソトロピー性を、当該インクに対する前記微粒子材料の分散量によって制御する
    請求項8記載の半導体複合膜の形成方法。
  10. 前記第3工程では、前記基板との親和性が前記高分子材料よりも高い前記有機半導体材料を当該基板側に相分離させる
    請求項8または9に記載の半導体複合膜の形成方法。
  11. 前記第3工程では、熱処理を行なうことにより前記溶剤を除去する
    請求項8〜10の何れか1項に記載の半導体複合膜の形成方法。
  12. 有機半導体材料を含有して基板上に設けられた半導体薄膜層と、
    前記有機半導体材料に対して膜厚方向に相分離した高分子材料によって構成され前記半導体薄膜層と共に半導体複合膜を構成する絶縁性薄膜層と、
    前記半導体薄膜層および前記絶縁性材料層の少なくとも一方に分散された微粒子材料と、
    前記半導体複合膜における前記半導体薄膜層と前記基板との層間に設けられたソース電極およびドレイン電極とを備えた
    薄膜トランジスタ。
  13. 前記基板の表面側には、ゲート電極を介してゲート絶縁膜が形成されており、当該ゲート絶縁膜上に前記ソース電極とドレイン電極とが形成されている
    請求項12記載の薄膜トランジスタ。
  14. 前記半導体複合膜における前記絶縁性薄膜層をゲート絶縁膜とし、この上部にゲート電極が設けられている
    請求項12記載の薄膜トランジスタ。
  15. 基板上にソース電極およびドレイン電極を形成する工程と、
    有機半導体材料と当該有機半導体材料とは異なる高分子材料とを溶剤に溶解させると共に、当該溶剤中に微粒子材料を分散させたインクを調整する工程と、
    前記ソース電極およびドレイン電極が形成された前記基板上に、印刷法によって前記インクを用いた材料層を形成する工程と、
    前記材料層中の前記溶剤を除去することにより、前記有機半導体材料を前記基板側に前記高分子材料を表面側に相分離させると共に当該材料層を固化させ、当該有機半導体材料を含有する半導体薄膜層と当該高分子材料を含有する絶縁性薄膜層とを積層させると共に前記微粒子材料が分散された半導体複合膜を形成する第3工程とを行う
    ことを特徴とする薄膜トランジスタの製造方法。
  16. 有機半導体材料を含有する半導体薄膜層と、
    前記有機半導体材料に対して膜厚方向に相分離した高分子材料によって構成された絶縁性薄膜層と、
    前記半導体薄膜層および絶縁性薄膜層の少なくとも一方に分散された微粒子材料とを備えた複合半導体膜を有する
    電子機器。
JP2008190602A 2008-07-24 2008-07-24 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器 Expired - Fee Related JP4730623B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008190602A JP4730623B2 (ja) 2008-07-24 2008-07-24 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器
US12/502,606 US8481993B2 (en) 2008-07-24 2009-07-14 Semiconductor composite film, method for forming semiconductor composite film, thin film transistor, method for manufacturing thin film transistor, and electronic apparatus
CN2009101582263A CN101635333B (zh) 2008-07-24 2009-07-22 半导体复合膜及其形成方法、薄膜晶体管及其制造方法和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190602A JP4730623B2 (ja) 2008-07-24 2008-07-24 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器

Publications (2)

Publication Number Publication Date
JP2010028005A true JP2010028005A (ja) 2010-02-04
JP4730623B2 JP4730623B2 (ja) 2011-07-20

Family

ID=41567827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190602A Expired - Fee Related JP4730623B2 (ja) 2008-07-24 2008-07-24 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器

Country Status (3)

Country Link
US (1) US8481993B2 (ja)
JP (1) JP4730623B2 (ja)
CN (1) CN101635333B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132674A1 (ja) * 2011-03-30 2012-10-04 ソニー株式会社 有機トランジスタの製造方法、有機トランジスタ、半導体装置の製造方法、半導体装置および電子機器
JP2014143403A (ja) * 2012-12-27 2014-08-07 National Institute Of Advanced Industrial & Technology 多成分系酸化物半導体の前駆体塗布液及び該塗布液を用いた多成分系酸化物半導体膜の製造方法
JP2022091095A (ja) * 2020-12-08 2022-06-20 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0612929D0 (en) * 2006-06-29 2006-08-09 Univ Cambridge Tech High-performance organic field-effect transistors based on dilute, crystalline-crystalline polymer blends and block copolymers
WO2012088445A1 (en) * 2010-12-22 2012-06-28 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of cabazitaxel-based compounds
JP6002894B2 (ja) * 2013-01-17 2016-10-05 国立大学法人山形大学 電子デバイスの製造方法
WO2014136942A1 (ja) * 2013-03-07 2014-09-12 国立大学法人 千葉大学 有機薄膜の形成方法
JP6106114B2 (ja) * 2014-03-03 2017-03-29 富士フイルム株式会社 有機薄膜トランジスタ及びその製造方法
JP6140626B2 (ja) * 2014-03-03 2017-05-31 富士フイルム株式会社 有機薄膜トランジスタ及びその製造方法
WO2017038944A1 (ja) * 2015-09-02 2017-03-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機半導体組成物、有機半導体膜および有機半導体膜の製造方法
CN106129001B (zh) * 2016-08-09 2018-11-20 上海交通大学 一种阵列背板电路及其制备方法
US20220045274A1 (en) * 2020-08-06 2022-02-10 Facebook Technologies Llc Ofets having organic semiconductor layer with high carrier mobility and in situ isolation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110999A (ja) * 2000-09-29 2002-04-12 Toshiba Corp トランジスタおよびその製造方法
WO2006098416A1 (ja) * 2005-03-15 2006-09-21 Pioneer Corporation 有機薄膜トランジスタ及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498456A4 (en) * 2002-04-22 2009-06-10 Konica Corp ORGANIC SEMICONDUCTOR COMPOSITION, ORGANIC SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREFOR
JP5089986B2 (ja) 2003-11-28 2012-12-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導体層およびその改善
JP2005243822A (ja) 2004-02-25 2005-09-08 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器
TWI228833B (en) * 2004-05-04 2005-03-01 Ind Tech Res Inst Method for enhancing the electrical characteristics of organic electronic devices
US7964440B2 (en) 2004-12-20 2011-06-21 Palo Alto Research Center Incorporated Phase-separated composite films and methods of preparing the same
JP4424341B2 (ja) * 2005-12-02 2010-03-03 セイコーエプソン株式会社 薄膜トランジスタ、電子回路、表示装置および電子機器
TW200737520A (en) * 2006-03-17 2007-10-01 Univ Nat Chiao Tung Gate dielectric structure and an organic thin film transistor based thereon
US20090014716A1 (en) * 2007-07-11 2009-01-15 Takumi Yamaga Organic thin-film transistor and method of manufacturing the same
US7855097B2 (en) * 2008-07-11 2010-12-21 Organicid, Inc. Method of increasing yield in OFETs by using a high-K dielectric layer in a dual dielectric layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110999A (ja) * 2000-09-29 2002-04-12 Toshiba Corp トランジスタおよびその製造方法
WO2006098416A1 (ja) * 2005-03-15 2006-09-21 Pioneer Corporation 有機薄膜トランジスタ及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132674A1 (ja) * 2011-03-30 2012-10-04 ソニー株式会社 有機トランジスタの製造方法、有機トランジスタ、半導体装置の製造方法、半導体装置および電子機器
JP2012209487A (ja) * 2011-03-30 2012-10-25 Sony Corp 有機トランジスタの製造方法、有機トランジスタ、半導体装置の製造方法、半導体装置および電子機器
US9040966B2 (en) 2011-03-30 2015-05-26 Sony Corporation Method for producing organic transistor, organic transistor, method for producing semiconductor device, semiconductor device, and electronic apparatus
JP2014143403A (ja) * 2012-12-27 2014-08-07 National Institute Of Advanced Industrial & Technology 多成分系酸化物半導体の前駆体塗布液及び該塗布液を用いた多成分系酸化物半導体膜の製造方法
JP2022091095A (ja) * 2020-12-08 2022-06-20 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
JP7257440B2 (ja) 2020-12-08 2023-04-13 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子

Also Published As

Publication number Publication date
CN101635333A (zh) 2010-01-27
JP4730623B2 (ja) 2011-07-20
US20100019233A1 (en) 2010-01-28
CN101635333B (zh) 2012-05-23
US8481993B2 (en) 2013-07-09

Similar Documents

Publication Publication Date Title
JP4730623B2 (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器
Pierre et al. All‐printed flexible organic transistors enabled by surface tension‐guided blade coating
Xu et al. Flexible all-organic, all-solution processed thin film transistor array with ultrashort channel
JP5428104B2 (ja) 有機半導体組成物
JP2006186294A (ja) 薄膜トランジスタ及びその製造方法
US9865664B2 (en) Thin film transistor array and manufacturing method of the same
JP5256676B2 (ja) 有機半導体素子、有機半導体素子の製造方法、有機トランジスタアレイ、およびディスプレイ
CN101743623A (zh) 层状结构、电子器件以及显示设备
JP2008311630A (ja) ポリマー薄膜における自己整合ビアホールの形成
JP2006049891A (ja) リバースプリンティング
GB2552488A (en) Field-effect transistor and method for the production thereof
JP5715664B2 (ja) 有機半導体組成物
JP2005123290A (ja) 薄膜トランジスタおよびその製造方法
TW201410802A (zh) 反向印刷用導電性墨水及薄膜電晶體之製造方法、以及以該製造方法形成之薄膜電晶體
JP2007324510A (ja) 半導体装置の製造方法
JP5870502B2 (ja) 有機半導体素子およびその製造方法
JP6233548B1 (ja) 薄膜トランジスタの製造方法
JP2010219447A (ja) 有機トランジスタ用インク、有機トランジスタの電極及びその形成方法並びに有機トランジスタ
Wong et al. Materials and novel patterning methods for flexible electronics
JP5098159B2 (ja) 薄膜トランジスタの製造方法
JP2016163029A (ja) 薄膜トランジスタ、薄膜トランジスタアレイの製造方法及び画素表示装置
JP4951868B2 (ja) 薄膜トランジスタの製造方法
JP2007234974A (ja) 有機薄膜トランジスタ
JP5205894B2 (ja) 有機半導体素子、有機半導体素子の製造方法、有機トランジスタアレイ、およびディスプレイ
WO2015004847A1 (en) Electronic device and manufacturing method therefor and image display apparatus and substrate for constituting image display apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4730623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees