JP2010004896A - ポリペプチド及び生合成経路 - Google Patents
ポリペプチド及び生合成経路 Download PDFInfo
- Publication number
- JP2010004896A JP2010004896A JP2009237596A JP2009237596A JP2010004896A JP 2010004896 A JP2010004896 A JP 2010004896A JP 2009237596 A JP2009237596 A JP 2009237596A JP 2009237596 A JP2009237596 A JP 2009237596A JP 2010004896 A JP2010004896 A JP 2010004896A
- Authority
- JP
- Japan
- Prior art keywords
- tryptophan
- aminotransferase
- monatin
- indole
- pyruvate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0014—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0014—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
- C12N9/0016—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1096—Transferases (2.) transferring nitrogenous groups (2.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/10—Nitrogen as only ring hetero atom
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Indole Compounds (AREA)
- Peptides Or Proteins (AREA)
Abstract
【解決手段】グルコース、トリプトファン、インドール−3−乳酸、インドール−3−ピルビン酸塩、及び2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸からモナチンを生成するために使用されうる方法及び組成物が提供される。方法はまたインドール−3−ピルビン酸塩及び2−ヒドロキシ2−(インドール−3イルメチル)−4−ケトグルタル酸中間体の生成について開示される。提供される組成物は核酸分子、ポリペプチド、化学構造、及び細胞を含む。方法はin vitro及びin vivoプロセスを含み、及び上記in vitro方法は化学反応を含む。
【選択図】なし
Description
本出願は2002年4月23日出願の米国特許出願第60/374,831号に基づく優先権を主張する。
この開示はインドール−3−ピルビン酸塩、2−ヒドロキシ2−(インドール−3イルメチル)−4−ケトグルタル酸(MP)及び/又はモナチンの生成において有用なポリペプチド及び生合成経路を提供する。
インドールピルビン酸塩
インドール−3−ピルビン酸塩は高酸素濃度の組織において酸化ストレスを打ち消すと考えられる強い抗酸化剤である(Politi et al. “Recent advances in Tryptophan Research”, edited by G. A. Filippini et al. Plenum Press, New York, 1996, pp291−8)。インドールピルビン酸塩はまた、主要な植物成長ホルモンオーキシン(拡散性の成長促進因子)である、インドール−酢酸(IAA)を生成する経路における中間体である。IAAは頂部優性、屈性、苗条伸長、形成層細胞分裂の誘導、及び根開始を含む生理学的プロセスの範囲においてサブマイクログラムの量で活性である。合成オーキシンは発根を誘導するために及び果実の結実及び発達を促進するために園芸において使用される。高濃度では、上記合成オーキシンは広葉植物に対して有効な除草剤である。発酵により生成された天然オーキシンは化学的に生成された除草剤よりもより環境に調和したものであると考えられうる。成長制御剤は1999年において4億ポンド(14億米ドル)の世界需要を有した。
塩素化D−トリプトファンは非栄養素甘味料として同定されており、及び他の誘導体も追跡することについて増大する関心が存在する。モナチンはアミノ酸トリプトファンと組成において同様の天然甘味料である。それは南アフリカの低木、Sclerochiton ilicifoliusの根の皮から抽出されることができ、及び高強度甘味料として食物及び飲料産業において見込みを有する。モナチンについての特許のいくつかの例は:米国特許第5994559号 Synthesis of monatin−A high intensity natural sweetener(モナチン−高強度天然甘味料の合成)、米国特許第4975298号 3−(1−amino−1,3−dicarboxy−3−hydroxy−but−4−yl)−indole compounds(3−(1−アミノ−1,3−ヂカルボキシ−3−ヒドロキシ−ブト−4−イル)−インドール化合物)、米国特許第5128164号 Composition for human consumption containing 3−(1−amino−1,3−dicarboxy−3−hydroxy−but−4−yl)−indole compounds(3−(1−アミノ−1,3−ヂカルボキシ−3−ヒドロキシ−ブト−4−イル)−インドール化合物を含むヒト消費用組成物);及び米国特許第5128482号 Process for the production of 3−1(1−amino−1,3−dicarboxy−3−hydroxy−but−4−yl)indole(3−1(1−アミノ−1,3−ヂカルボキシ−3−ヒドロキシ−ブト−4−イル)インドールの生成用プロセス)を含む。
本開示はグルコース、トリプトファン、インドール−3−乳酸から及び/又はインドール−3−ピルビン酸塩及び2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸の如きモナチン前駆体をとおしてモナチンを生成するいくつかの生合成経路を提供する。モナチン、インドール−3−ピルビン酸塩、及び2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸を生成するために使用されうるポリペプチド及び核酸配列が開示される。
第一のポリペプチドを基質と接触させ、及び第一の生成物を作出し、及びその後作出された第一の生成物を第二のポリペプチドと接触させ、及び第二の生成物を作出し、及びその後作出された第二の生成物を第三のポリペプチドと接触させ、及び第三の生成物、例えば、モナチンを作出する方法もまた提供される。使用されるポリペプチド及び作出される生成物は図1〜3及び11〜13中に示される。
本開示のこれらの及び他の局面は以下の詳細な説明及び例示的な実施例から明らかである。
付属の配列リスト中に挙げられる核酸及びアミノ酸配列はヌクレオチド塩基についての標準の文字略語、及びアミノ酸についての3文字コードを用いて示される。それぞれの核酸配列の1の鎖のみが示されるが、相補的な鎖は示される鎖を引用して含まれることが理解される。
配列ID番号:3及び4は、それぞれ、Rhodobacter sphaeroides(2.4.1)からのチロシンアミノトランスフェラーゼの核酸及びアミノ酸配列を示す(tatA(配列ID番号:1及び2)とのホモロジーによりゲノムソフトウェアにより「アスパラギン酸塩アミノトランスフェラーゼ」であると予想される)。
配列ID番号:7及び8は、それぞれ、Leishmania majorからの広範囲基質アミノトランスフェラーゼ(bsat)の核酸及びアミノ酸配列を示す。
配列ID番号:9及び10は、それぞれ、Bacillus subtilisからの芳香族アミノトランスフェラーゼ(araT)の核酸及びアミノ酸配列を示す。
配列ID番号:13及び14は、それぞれ、R. sphaeroides(35053)からの多基質アミノトランスフェラーゼ(msa)の核酸及びアミノ酸配列を示す(アクセス番号AAAE01000093.1、bp−14743〜16155及びアクセス番号ZP00005082.1へのホモロジーにより多基質アミノトランスフェラーゼとして同定される)。
配列ID番号:17及び18はS. meliloti tatA配列をクローニングするために使用されるプライマーを示す。
配列ID番号:19及び20はB. subtilis araTアミノトランスフェラーゼ配列をクローニングするために使用されるプライマーを示す。
配列ID番号:23及び24はLeishmania major bsat配列をクローニングするために使用されるプライマーを示す。
配列ID番号:25及び26はLactobacillus amylovorus araT配列をクローニングするために使用されるプライマーを示す。
配列ID番号:29及び30はE. coli aspC配列(遺伝子配列Genbankアクセス番号:AE000195.1、タンパク質配列Genbankアクセス番号:AAC74014.1)をクローニングするために使用されるプライマーを示す。
配列ID番号:31及び32は、それぞれ、E. coliからの芳香族アミノトランスフェラーゼ(tyrB)の核酸及びアミノ酸配列を示す。
配列ID番号:33及び34はE. coli tyrB配列をクローニングするために使用されるプライマーを示す。
配列ID番号:41及び42は、それぞれ、タンパク質P00913(GI:401195)及びP31013(GI:401201)をコードする、E. coliからのトリプトファナーゼ(tna)及びCitrobacter freundiiからのチロシンフェノール−リアーゼ(tpl)の核酸配列を示す。
配列ID番号:43〜46はトリプトファナーゼポリペプチド及びβ−チロシナーゼ(チロシンフェノール−リアーゼ)ポリペプチドをクローニングするために使用されるプライマーを示す。
配列ID番号:55〜64は4−ヒドロキシ−4−メチル−2−オキソグルタル酸塩アルドラーゼ(EC 4.1.3.17)活性を有するポリペプチドをクローニングするために使用されるプライマーを示す。
配列ID番号:65及び66は、それぞれ、C. testosteroniからの4−ヒドロキシ−4−メチル−2−オキソグルタル酸塩アルドラーゼ(proA)の核酸及びアミノ酸配列を示す。
配列ID番号:69〜72はpESC−his内のE. coli aspC及びC. testosteroni proAをクローニングするために使用されるプライマーを示す。
配列ID番号:73〜74は本明細書中に開示される遺伝子をクローニングするために使用されるプライマーの5’末端に加えられる配列を示す。
略号及び用語
用語及び方法の以下の説明は本開示をよりよく示すために及び本開示の実施において当業者をガイドするために提供される。本明細書中で使用されるとき、「含む(comprising)」は「含む(including)」を意味し、及び単数形“a”若しくは“an”又は“the”は文脈が明らかに別段のように規定しない限り、複数の言及を含む。例えば、「タンパク質を含む(comprising a protein)」についての言及は1又は複数の上記タンパク質を含み、及び「細胞を含む(comprising the cell)」についての言及は1以上の細胞及び当業者に知られるその相当物についての言及を含む等。
図1〜3及び11〜13中に示されるように、多くの生合成経路はモナチン又はインドール−3−ピルビン酸塩若しくはMPの如きその中間体を生成するために使用されうる。それぞれの基質(グルコース、トリプトファン、インドール−3−乳酸、インドール−3−ピルビン酸塩、及びMP)のそれぞれの生成物(トリプトファン、インドール−3−ピルビン酸塩、MP及びモナチン)への変換のために、いくつかの異なるポリペプチドが使用されうる。さらに、これらの反応はin vivo、in vitroで又は非酵素的化学反応を含むin vitro反応の如き、in vivo反応及びin vitro反応の組み合わせをとおして行われうる。それゆえ、図1〜3及び11〜13は例示であり、及び所望の生成物を得るために使用されうる複数の異なる経路を示す。
多くの生物はグルコースからトリプトファンを合成しうる。グルコース及び/又はトリプトファンからモナチン、MP、及び/又はインドール−3−ピルビン酸塩を生成するために必要な遺伝子(単数又は複数)を含む構築物(単数又は複数)は上記生物内にクローニングされうる。トリプトファンはモナチンに変換されうることが本明細書中で示される。
いくつかのポリペプチドはトリプトファンをインドール−3−ピルビン酸塩に変換するために使用されうる。例示的なポリペプチドは酵素クラス(EC)2.6.1.27、1.4.1.19、1.4.99.1、2.6.1.28、1.4.3.2、1.4.3.3、2.6.1.5、2.6.1.−、2.6.1.1、及び2.6.1.21のメンバーを含む。これらのクラスはL−トリプトファン及び2−オキソグルタル酸塩をインドール−3−ピルビン酸塩及びL−グルタミン酸塩に変換するトリプトファンアミノトランスフェラーゼ(L−フェニルアラニン−2−オキソグルタル酸塩アミノトランスフェラーゼ、トリプトファントランスアミナーゼ、5−ヒドロキシトリプトファン−ケトグルタル酸トランスアミナーゼ、ヒドロキシトリプトファンアミノトランスフェラーゼ、L−トリプトファンアミノトランスフェラーゼ、L−トリプトファントランスアミナーゼ、及びL−トリプトファン:2−オキソグルタル酸塩アミノトランスフェラーゼとも呼ばれる);D−トリプトファン及び2−オキソ酸をインドール−3−ピルビン酸塩及びアミノ酸に変換するD−トリプトファンアミノトランスフェラーゼ;L−トリプトファン及びNAD(P)をインドール−3−ピルビン酸塩及びNH3及びNAD(P)Hに変換するトリプトファンデヒドロゲナーゼ(NAD(P)−L−トリプトファンデヒドロゲナーゼ、L−トリプトファンデヒドロゲナーゼ、L−Trp−デヒドロゲナーゼ、TDH及びL−トリプトファン:NAD(P)酸化還元酵素(脱アミノ化)とも呼ばれる);D−アミノ酸及びFADをインドール−3−ピルビン酸塩及びNH3及びFADH2に変換するD−アミノ酸デヒドロゲナーゼ;L−トリプトファン及びフェニルピルビン酸塩をインドール−3−ピルビン酸塩及びL−フェニルアラニンに変換するトリプトファン−フェニルピルビン酸塩トランスアミナーゼ(L−トリプトファン−α−ケトイソカプロン酸塩アミノトランスフェラーゼ及びL−トリプトファン:フェニルピルビン酸塩アミノトランスフェラーゼとも呼ばれる);L−アミノ酸及びH2O及びO2を2−オキソ酸及びNH3及びH2O2に変換するL−アミノ酸オキシダーゼ(オフィオ−アミノ−酸オキシダーゼ及びL−アミノ−酸:酸素酸化還元酵素(脱アミノ化)とも呼ばれる);D−アミノ酸及びH2O及びO2を2−オキソ酸及びNH3及びH2O2に変換するD−アミノ酸オキシダーゼ(オフィオ−アミノ−酸オキシダーゼ及びD−アミノ−酸:酸素酸化還元酵素(脱アミノ化)とも呼ばれる);及びL−トリプトファン及びH2O及びO2をインドール−3−ピルビン酸塩及びNH3及びH2O2に変換するトリプトファンオキシダーゼと呼ばれるペプチドを含む。これらのクラスはまたチロシン(芳香族)アミノトランスフェラーゼ、アルパラギン酸塩アミノトランスフェラーゼ、D−アミノ酸(又はD−アラニン)アミノトランスフェラーゼ、及び複数のアミノトランスフェラーゼ活性を有し、それらのいくつかはトリプトファン及び2−オキソ酸をインドール−3−ピルビン酸塩及びアミノ酸に変換しうる広範囲(多基質)アミノトランスフェラーゼをも含む。
インドール−3−乳酸塩をインドール−3−ピルビン酸塩に変換する反応はポリペプチドの1.1.1.110、1.1.1.27、1.1.1.28、1.1.2.3、1.1.1.222、1.1.1.237、1.1.3.−又は1.1.1.111クラスのメンバーの如き、さまざまなポリペプチドにより触媒されうる。上記1.1.1.110クラスのポリペプチドはインドール乳酸塩デヒドロゲナーゼ(インドール乳酸:NAD+酸化還元酵素とも呼ばれる)を含む。上記1.1.1.27、1.1.1.28、及び1.1.2.3クラスは乳酸塩デヒドロゲナーゼ(乳酸デヒドロゲナーゼ、乳酸塩:NAD+酸化還元酵素とも呼ばれる)を含む。上記1.1.1.222クラスは(R)−4−ヒドロキシフェニル乳酸塩デヒドロゲナーゼ(D−芳香族乳酸塩デヒドロゲナーゼ、R−芳香族乳酸塩デヒドロゲナーゼ、及びR−3−(4−ヒドロキシフェニル)乳酸塩:NAD(P)+2−酸化還元酵素とも呼ばれる)を含み、及び上記1.1.1.237クラスは3−(4−ヒドロキシフェニルピルビン酸塩)還元酵素(ヒドロキシフェニルピルビン酸塩還元酵素及び4−ヒドロキシフェニル乳酸塩:NAD+酸化還元酵素とも呼ばれる)を含む。上記1.1.3.−クラスは乳酸塩オキシダーゼを含み、及び上記1.1.1.111クラスは(3−イミダゾール−5−イル)乳酸塩デヒドロゲナーゼ((S)−3−(イミダゾール−5−イル)乳酸塩:NAD(P)+酸化還元酵素とも呼ばれる)を含む。これらのクラス内のポリペプチドのいくつかはインドール−3−乳酸からのインドール−3−ピルビン酸塩の生成を許容するようである。この変換の例は実施例2中に提供される。
いくつかの既知のポリペプチドはインドール−3−ピルビン酸塩をMPに変換するために使用されうる。例示的なポリペプチドクラスは4.1.3.−、4.1.3.16、4.1.3.17、及び4.1.2.−を含む。これらのクラスは2のカルボン酸基質の縮合を触媒するアルドラーゼの如き炭素−炭素合成酵素/リアーゼを含む。ペプチドクラスEC4.1.3.−は(インドール−3−ピルビン酸塩の如き)オキソ酸基質を求電子剤として利用して炭素−炭素結合を形成する合成酵素/リアーゼであり、一方、EC4.1.2.−は(ベンズアルデヒドの如き)アルデヒド基質を求電子剤として利用して炭素−炭素結合を形成する合成酵素/リアーゼである。
MPはまた実施例5中に提供されるアルドール縮合の如き化学反応を用いて作出されうる。
MPのモナチンへの変換は1以上の:トリプトファンアミノトランスフェラーゼ(2.6.1.27)、トリプトファンデヒドロゲナーゼ(1.4.1.19)、D−アミノ酸デヒドロゲナーゼ(1.4.99.1)、グルタミン酸塩デヒドロゲナーゼ(1.4.1.2−4)、フェニルアラニンデヒドロゲナーゼ(EC 1.4.1.20)、トリプトファン−フェニルピルビン酸塩トランスアミナーゼ(2.6.1.28)又はより一般的にはアスパラギン酸塩アミノトランスフェラーゼ(EC 2.6.1.1)、チロシン(芳香族)アミノトランスフェラーゼ(2.6.1.5)、D−トリプトファンアミノトランスフェラーゼ又はD−アラニン(2.6.1.21)アミノトランスフェラーゼの如きアミノトランスフェラーゼファミリー(2.6.1.−)のメンバーにより触媒されうる(図2)。配列ID番号:11及び12中に示される上記クラスの新規メンバーを含む、アミノトランスフェラーゼクラスの11のメンバーは以下(実施例1)に示され、及びアミノトランスフェラーゼ及びデヒドロゲナーゼ酵素の活性を示す反応は実施例7中に提供される。
どのポリペプチドがインドール−3−ピルビン酸塩、MP及び/又はモナチンを作出するために使用されるかに因り、共因子、基質、及び/又は追加のポリペプチドが生成物形成を高めるために生成細胞に提供されうる。
過酸化水素(H2O2)は、生成された場合、生成細胞に対して毒性でありうる及びポリペプチド又は生成された中間体を損傷しうる生成物である。上記に示されるL−アミノ酸オキシダーゼはH2O2を生成物として作出する。それゆえ、L−アミノ酸オキシダーゼが使用される場合、細胞又は生成物への可能性のある損害を減少させるために生ずるH2O2は除去され又はその値は減少されうる。
図1中に示されるように、PLPは本明細書中に示される1以上の生合成段階において利用されうる。PLPの濃度は、PLPが反応の全体の効率に対する限界にならないように補充されうる。
トリプトファナーゼ反応はアンモニアをより入手可能にすることにより又は水の除去により合成方向(インドールからのトリプトファンの生成)に駆動されうる。グルタミン酸塩デヒドロゲナーゼにより触媒されるものの如き、還元的アミン化反応はまた過剰のアンモニウムにより駆動されうる。
反応がグルタミン酸塩を生成し、及び共基質2−オキソグルタル酸塩(α−ケトグルタル酸塩)を必要とするので、トリプトファンアミノトランスフェラーゼを介したトリプトファンのインドール−3−ピルビン酸塩への変換はインドール−3−ピルビン酸塩の生成速度に悪い影響を及ぼしうる。グルタミン酸塩はアミノトランスフェラーゼの阻害を引き起こしうる、及び上記反応は大量の共基質を消費するであろう。さらに、高いグルタミン酸塩濃度は下流の分離プロセスに有害である。
インドールプールはトリプトファン前駆体の生成を増大させること及び/又はインドール−3−ピルビン酸塩及び又はトリプトファンに関する異化経路を変化させることにより調節されうる。例えば、インドール−3−ピルビン酸塩からのインドール−3−酢酸の生成は宿主細胞においてEC 4.1.1.74をコードする遺伝子を機能的に欠失させることにより減少され又は消去されうる。トリプトファンからのインドールの生成は宿主細胞においてEC 4.1.99.1をコードする遺伝子を機能的に欠失させることにより減少され又は消去されうる。あるいは、過剰のインドールは増大された量のEC 4.1.99.1をコードする遺伝子と共にin vitro又はin vivoプロセスにおいて基質として利用されうる(Kawasaki et al., J. Ferm. and Bioeng., 82:604−6,1996)。遺伝子改変はD−エリスロース−4−フォスフェート及びコリスメートの如き中間体の値を増大させるためになされうる。
モナチンの味感プロファイルは分子の立体化学(キラリティ)を制御することにより変化されうる。例えば、異なるモナチン異性体は異なる食物系のための濃度の異なる配合において所望されうる。キラリティはpH及びポリペプチドの組み合わせを介して制御されうる。
フォスフォエノールピルビン酸塩(PEP)の如きリン酸化された基質は本明細書中に開示される反応において使用されうる。リン酸化された基質はよりエネルギー的に好まれうる、及びそれゆえ、反応速度及び/又は収率を増大させるために使用されうる。アルドール縮合において、リン酸基の添加は求核基質のエノール互変異性体を安定化させ、それをより反応性にさせる。他の反応においては、リン酸化された基質はしばしばよりよい脱離基を提供する。同様に、基質はCoA誘導体又はピロフォスフェート誘導体への変換により活性化されうる。
トリプトファンアミノトランスフェラーゼのクローニング及び発現
この実施例は、トリプトファンをインドール−3−ピルビン酸塩に変換するために使用されうるトリプトファンアミノトランスフェラーゼをクローニングするために使用された方法を示す。
アミノトランスフェラーゼをコードする11の遺伝子をE. coli内にクローニングした。これらの遺伝子はBacillus subtilis D−アラニンアミノトランスフェラーゼ(dat、Genbankアクセス番号Y14082.1 bp 28622−29470及びGenbankアクセス番号NP_388848.1、それぞれ核酸配列及びアミノ酸配列)、Sinorhizobium meliloti(Rhizobium melilotiとも呼ばれる)チロシンアミノトランスフェラーゼ(tatA、配列ID番号:1及び2、それぞれ核酸配列及びアミノ酸配列)、Rhodobacter sphaeroides株2.4.1チロシンアミノトランスフェラーゼ(ホモロジーにより断定されるtatA、配列ID番号:3及び4、それぞれ核酸配列及びアミノ酸配列)、R. sphaeroides 35053チロシンアミノトランスフェラーゼ(ホモロジーにより断定される、配列ID番号:5及び6、それぞれ核酸配列及びアミノ酸配列)、Leishmania major広範囲基質アミノトランスフェラーゼ(bsat、L. mexicanaからのペプチド断片へのホモロジーにより断定される、配列ID番号:7及び8、それぞれ核酸配列及びアミノ酸配列)、Bacillus subtilis芳香族アミノトランスフェラーゼ(araT、ホモロジーにより断定される、配列ID番号:9及び10、それぞれ核酸配列及びアミノ酸配列)、Lactobacillus amylovorus芳香族アミノトランスフェラーゼ(ホモロジーにより断定されるaraT、配列ID番号:11及び12、それぞれ核酸配列及びアミノ酸配列)、R. sphaeroides 35053多基質アミノトランスフェラーゼ(ホモロジーにより断定される、配列ID番号:13及び14、それぞれ核酸配列及びアミノ酸配列)、Rhodobacter sphaeroides株2.4.1多基質アミノトランスフェラーゼ(ホモロジーにより断定されるmsa、Genbankアクセス番号AAAB01000093.1、bp14743−16155及びGenbankアクセス番号ZP00005082.1、それぞれ核酸配列及びアミノ酸配列)、Escherichia coliアスパラギン酸塩アミノトランスフェラーゼ(aspC、Genbankアクセス番号AE000195.1 bp 2755−1565及びGenbankアクセス番号AAC74014.1、それぞれ核酸配列及びアミノ酸配列)、及びE. coliチロシンアミノトランスフェラーゼ(tyrB、配列ID番号:31及び32、それぞれ核酸配列及びアミノ酸配列)であった。
NCBI(National Center for Biotechnology Information)データベースにおけるどの遺伝子もトリプトファンアミノトランスフェラーゼとして指定されなかった。しかしながら、この酵素活性を有する生物は同定されている。L−トリプトファンアミノトランスフェラーゼ(TAT)活性は細胞抽出物において又は以下の源からの精製タンパク質から計測されている:Festuca octofloraからのリゾバクテリア単離物、マメミトコンドリア及び細胞質、ヒマワリクラウンゴール細胞、Rhizobium leguminosarum 生物型trifoli、Erwinia herbicola pvカスミソウ、Pseudomonas syringae pv. savastanoi、Agrobacterium tumefaciens、Azospirillum lipferum & brasilense、Enterobacter cloacae、Enterobacter agglomerans、Bradyrhizobium elkanii、Candida maltosa、Azotobacter vinelandii、ラット脳、ラット肝臓、Sinorhizobium meliloti、Pseudomonas fluorescens CHA0、Lactococcus lactis、Lactobacillus casel、Lactobacillus helveticus、小麦種苗、大麦、Phaseolus aureus(緑豆)、Saccharomyces uvarum(carlsbergensis)、Leishmania sp.、トウモロコシ、トマトの苗条、マメ植物、タバコ、ブタ、Clostridium sporogenes、及びStreptomyces griseus。
S. meliloti(ATCC番号9930)を25℃、pH7.2でTY培地中で生育させた。細胞を600nm(OD600)で1.85の光学濃度まで生育させ、及び2%接種をゲノムDNA調製物に使用した。Qiagenゲノムチップ20/Gキット(Valencia,CA)をゲノムDNA単離に使用した。
プライマーをpET 30Xa/LICベクター(Novagen,Madison,WI)についての融和性のオーバーハングと共に設計した。上記pETベクターはXa/LICサイトの5’側に12塩基の一重鎖オーバーハング及びXa/LICサイトの3’側に15塩基の一重鎖オーバーハングを有する。上記プラスミドはN−末端His及びS−タグ並びに場合によるC−末端His−タグを伴って、ライゲーション独立クローニングのために設計される。上記Xaプロテアーゼ認識部位(IEGR)は問題の遺伝子の開始コドンのすぐ前に位置するので、融合タンパク質のタグは除去されうる。
上記PCR産物をQiagenゲル抽出キット(Valencia, CA)を用いて0.8又は1%TAE−アガロースゲルからゲル精製した。上記PCR産物をアガロースゲル上の標準に比較して定量し、及びその後Ligation Independent Cloning(Novagen, Madison, WI)についての製造業者の推奨するプロトコルにしたがってT4 DNAポリメラーゼで処理した。
配列分析により実証されたプラスミドDNAをE. coli発現宿主BLR(DE3)又はBL21(DE3)(Novagen, Madison, WI)内にサブクローニングした。培養物を生育させ、及び上記プラスミドをQiagenミニプレップキットを用いて単離し、及び同一性を確認するために制限酵素消化により分析した。
インドール−3−乳酸塩のインドール−3−ピルビン酸塩への変換
図1及び3中に見られるように、インドール−3−乳酸はインドール−3−ピルビン酸塩を生成するために使用されうる。乳酸及びピルビン酸塩の間の変換は可逆反応であり、インドール−3−ピルビン酸塩及びインドール−3−乳酸塩の間の変換も同じである。インドール−乳酸塩の酸化は典型的に、インドール−3−ピルビン酸塩からの340nmでの高い量のバックグラウンドのために、続けられた。
L−アミノ酸オキシダーゼを利用したL−トリプトファンのインドール−3−ピルビン酸塩への変換
この実施例は、実施例1中に示されるようにトリプトファンアミノトランスフェラーゼを用いることの代わりに、オキシダーゼ(EC 1.4.3.2)を介してトリプトファンをインドール−3−ピルビン酸塩に変換するために使用される方法を示す。L−アミノ酸オキシダーゼはCrotalus durissus(Sigma, St. Louis, MO, カタログ番号A−2805)から精製された。分子クローニングのためのL−アミノ酸オキシダーゼのアクセス番号は:CAD21325.1、AAL14831、NP_490275、BAB78253、A38314、CAB71136、JB0266、T08202、S48644、CAC00499、P56742、P81383、O93364、P81382、P81375、S62692、P23623、AAD45200、AAC32267、CAA88452、AP003600、及びZ48565を含む。
アルドラーゼでインドール−3−ピルビン酸塩を2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸に変換すること
この例はアルドラーゼ(リアーゼ)を用いてインドール−3−ピルビン酸塩を2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸モナチン前駆体(MP)に変換するために使用されうる方法を示す(図2)。アルドール縮合はアルデヒド又はケトンのβ−炭素及び他のアルデヒド又はケトンのカルボニル炭素の間の炭素−炭素結合を形成する反応である。カルボアニオンは1の基質のカルボニル基の近隣の炭素上に形成され、及び第二の基質のカルボニル炭素(求電子炭素)を攻撃する求核剤としてはたらく。最も通常には、上記求電子基質はアルデヒドであり、そのためほとんどのアルドラーゼはEC 4.1.2.−カテゴリーに入る。かなりしばしば、上記求核基質はピルビン酸塩である。アルドラーゼが2のケト−酸又は2のアルデヒドの間の縮合を触媒することは珍しい。
4−ヒドロキシ−4−メチル−2−オキソグルタル酸塩ピルビン酸塩リアーゼ(ProA アルドラーゼ、EC 4.1.3.17)及び4−ヒドロキシ−2−オキソグルタル酸塩グルオキシル酸塩−リアーゼ(KHGアルドラーゼ、EC 4.1.3.16)は図2のアルドラーゼ反応に非常によく似た反応を触媒する。プライマーはpET30 Xa/LICベクター(Novagen, Madison, WI)についての融和性のオーバーハングと共に設計された。これらのプライマーの設計は上記実施例1中に示される。
1.Pseudomonas straminea proA遺伝子(Genbankアクセス番号:12964663バージョン:12964663)及びComamonas testosteroni proA遺伝子(配列ID番号:65−66、それぞれ核酸配列及びアミノ酸配列)前向き5’−GGTATTGAGGGTCGCATGTACGAACTGGGAGTTGT−3’及び逆向き5’−AGAGGAGAGTTAGAGCCTTAGTCAATATATTTCAGGC−3’(配列ID番号:55及び56)。
プラスミドDNA(配列分析により実証された)を発現宿主BL21(DE3)(Novagen)内にサブクローニングした。上記培養物を50mg/Lカナマイシンを有するLB培地中で生育させ、プラスミドをQiagenスピンプラスミドミニプレップキットを用いて単離し、及び続いて同一性を確認するために制限酵素消化により分析した。誘導実験を37℃で50mg/Lカナマイシンを含むLB培地中で生育させたBL21(DE3)構築物で行った。タンパク質発現を、OD600が約0.6に達した後、0.1mM IPTGを用いて誘導した。上記細胞を30℃で4時間生育させ、及び遠心分離により回収した。上記細胞をその後Bugbuster(商標)試薬(Novagen)を用いて溶解し、及びHis−タグ組換えタンパク質を上記(実施例1)に示されるようにHis−Bindカートリッヂを用いて精製した。精製タンパク質をPD−10ディスポーザブルカラム上で脱塩し、及び2mM MgCl2を有する50mM Tris−HCl緩衝液、pH7.3中で溶離した。
C. testosteroni proA及びS. meliloti SMc00502遺伝子構築物の両方はIPTGで誘導されたとき高い値の発現を有した。上記組換えタンパク質は総タンパク質及び細胞抽出サンプルのSDS−PAGE分析により決定されるように、高く可溶性であった。C. testosteroni遺伝子産物を>95%精製度まで精製した。S. meliloti遺伝子産物の収率はHis−Bindカートリッヂを用いたアフィニティ精製後非常に低かったので、細胞抽出物を酵素分析に使用した。
B. subtilis及びE. coli khg遺伝子構築物の両方はIPTGで誘導されたとき高い値のタンパク質発現を有し、一方、S. meliloti khgはより低い値の発現を有した。上記組換えタンパク質は、総タンパク質及び細胞抽出物のSDS−PAGE分析により判断されるように、高く可溶性であった。B. subtilis及びE. coli khg遺伝子産物を>95%精製度まで精製した;S. meliloti遺伝子産物の収率はHis−Bindカートリッヂを用いたアフィニティ精製後それほど高くなかった。
触媒抗体は天然アルドラーゼと同じくらい有効であり、広い範囲の基質を受けうる、及び図2中に示される反応を触媒するために使用されうる。
モナチン前駆体の化学合成
実施例4はインドール−3−ピルビン酸塩を2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸モナチン前駆体(MP)に変換するためにアルドラーゼを使用する方法を示した。この例はMPを化学的に合成する代替の方法を示す。
MPは典型的なアルドール型縮合を用いることにより形成される(図4)。簡単に述べると、典型的なアルドール−型反応はLDA(リチウムヂイソプロピルアミド)、リチウムヘキサメチルヂシラザン又はブチルリチウムの如き強い塩基を用いたピルビン酸塩エステルのカルボアニオンの生成に関する。生成されたカルボアニオンはインドール−ピルビン酸塩と反応し、連結された生成物を形成する。
トリプトファン又はインドール−3−ピルビン酸塩のモナチンへの変換
2の酵素、アミノトランスフェラーゼ及びアルドラーゼを利用するin vitroプロセスはトリプトファン及びピルビン酸塩からモナチンを生成した。第一の段階において、アルファ−ケトグルタル酸塩はインドール−3−ピルビン酸塩及びグルタミン酸塩を生成するアミン転移反応においてトリプトファンからのアミノ基の受容体であった。アルドラーゼは、Mg2+及びリン酸塩の存在下で、ピルビン酸塩がインドール−3−ピルビン酸塩と反応される第二の反応を触媒し、モナチンのアルファ−ケト誘導体(MP)、2−ヒドロキシ−2−(インドール−3−イルメチル)−4−ケトグルタル酸を生成した。第一の反応において形成されたグルタミン酸塩からのアミノ基の転移は所望の生成物、モナチンを生成した。上記生成物の精製及び特徴付けは、形成された異性体はS,S−モナチンであることを確立した。代替の基質、酵素、及び条件並びにこのプロセスになされた改善も示される。
Comamonas testosteroniからのアルドラーゼ、4−ヒドロキシ−4−メチル−2−オキソグルタル酸塩ピルビン酸塩リアーゼ(ProA アルドラーゼ、proA遺伝子)(EC 4.1.3.17)は実施例4中に示されるようにクローニングされ、発現され、及び精製された。B. subtilis、E. coli、及びS. melilotiからの4−ヒドロキシ−2−オキソグルタル酸塩グリオキシル酸塩リアーゼ(KHGアルドラーゼ)(EC 4.1.3.16)は実施例4中に示されるようにクローニングされ、発現され、及び精製された。
反応混合物は1リットル中に50mM酢酸アンモニウム、pH8.0、4mM MgCl2、3mMリン酸カリウム、0.05mMリン酸ピリドキサル、100mMピルビン酸塩アンモニウム、50mMトリプトファン、10mMアルファ−ケトグルタル酸塩、160mgの組換えC. testosteroni ProAアルドラーゼ(精製されていない細胞抽出物、〜30%アルドラーゼ)、233mgの組換えE. coli L−アスパラギン酸塩アミノトランスフェラーゼ(精製されていない細胞抽出物、〜40%アミノトランスフェラーゼ)を含んだ。酵素を除く全ての成分を共に混合し、及びトリプトファンが溶解されるまで30℃でインキュベートした。上記酵素をその後添加し、及び上記反応溶液を30℃でおだやかに振騰しながら(100rpm)3.5時間インキュベートした。酵素添加後0.5及び1時間に、固体トリプトファンの等分(それぞれ50mmoles)を上記反応に添加した。添加されたトリプトファンの全ては溶解しなかったが、濃度は50mM以上に維持された。3.5時間後、上記固体トリプトファンをろ過した。定義された量のトリプトファンを標準として用いたLC/MSによる上記反応混合物の分析は、上記溶液中のトリプトファン濃度は60.5mMであり、及びモナチン濃度は5.81mM(1.05g)であることを示した。
生ずる生成物を以下の方法を用いて特徴付けた。
試薬及び酵素濃度を含む反応条件を最適化し、及び10mg/mLの収率が以下の試薬混合物を用いて作出された:
50mM酢酸アンモニウムpH8.3、2mM MgCl2、200mMピルビン酸塩(ナトリウム又はアンモニウム塩)、5mMアルファ−ケトグルタル酸塩(ナトリウム塩)、0.05mMリン酸ピリドキサル、酵素の添加後1mLの最終容積を達成するための脱気水、3mMリン酸カリウム、50μg/mLの組換えProAアルドラーゼ(細胞抽出物;167μg/mLの総タンパク質濃度)、E. coli aspC遺伝子によりコードされる1000μg/mLのL−アスパラギン酸塩アミノトランスフェラーゼ(細胞抽出物;2500μg/mLの総タンパク質濃度)、及び>60mMの濃度を得るための固体トリプトファン(飽和;いくらかは反応をとおして溶解されないままである)。上記混合物を穏やかに攪拌しながら又は混合しながら30℃で4時間インキュベートした。
アルファ−ケトグルタル酸塩の濃度は1mMまで減少され、及び9mMアスパラギン酸塩で補充され、モナチンの相当収率を与える。オキサロ酢酸塩の如き、代替のアミノ酸受容体は第一段階において利用されうる。
組換えL. major広範囲基質アミノトランスフェラーゼがE. coliL−アスパラギン酸塩アミノトランスフェラーゼの代わりに使用されたとき、同様のモナチン収率が達成された。しかしながら、292の分子量を有する第二の同定されていない生成物(主要生成物の3〜10%)もまたLC−MS分析により検出された。E. coli tyrBをコードする酵素、S. meliloti tatAをコードする酵素又はブタ心臓からのグルタミン−オキサロ酢酸トランスアミナーゼ(IIa型)がアミノトランスフェラーゼとして添加されたとき、0.1〜0.5mg/mLのモナチン濃度が生成された。インドール−3−ピルビン酸塩から反応を出発するとき、還元的アミン化がグルタミン酸塩デヒドロゲナーゼ及びNADHで最終段階のためになされうる(実施例7中のように)。
MP及びモナチンの間の内部変換
モナチンを形成するためのMPのアミン化は実施例1及び6中に同定されるものの如きアミノトランスフェラーゼにより又はNADH若しくはNADPHの如き還元共因子を必要とするデヒドロゲナーゼにより触媒されうる。これらの反応は可逆であり、及びいずれかの方向で計測されうる。デヒドロゲナーゼ酵素を用いるとき、方向性はアンモニウム塩の濃度により主に制御されうる。
トリプトファン及びピルビン酸塩以外のC3源からのモナチン生成
上記実施例6中に示されるように、インドール−3−ピルビン酸塩又はトリプトファンはピルビン酸塩をC3分子として用いてモナチンに変換されうる。しかしながら、いくつかの場合、ピルビン酸塩は好ましい生の材料ではない場合もある。例えば、ピルビン酸塩は他のC3炭素源よりもより高価でありうる又は培地に添加される場合、発酵に悪い影響を及ぼしうる。アラニンは多くのPLP−酵素によりアミン転移され、ピルビン酸塩を生成しうる。
トリプトファナーゼポリペプチドは、例えば、Mouratou et al.(JBC 274:1320−5,1999)中で以前に報告されている。トリプトファナーゼポリペプチドをコードする遺伝子を単離するために、E. coli DH10BからのゲノムDNAを実施例1中に示されるようにPCRのための鋳型として使用した。
プライマーを上記実施例1中に示されるように、pET30 Xa/LICベクター(Novagen,Madison,WI)についての融和性のオーバーハングと共に設計した。
上記実施例1中に詳述されるクローニング及びポジティブクローン同定手順を適切なクローンを同定するために使用した。
(配列分析により実証された)プラスミドDNAを発現宿主BL21(DE3)(Novagen)内にサブクローニングした。培養物を30mg/Lのカナマイシンを含むLB培地中で生育させ、プラスミドをQiagenミニプレップキットを用いて単離し、及び同一性を確認するために制限酵素消化により分析した。
ポリペプチドクラス4.1.99.−(トリプトファナーゼ及びβ−チロシナーゼ)のいくつかのメンバーは改変なしにアスパラギン酸塩又は同様のアミノ酸でベータ−リアーゼ反応を行うであろう。しかしながら、上記クラスのいくつかのメンバーは上記基質の使用及び/又は生成物の作出を許容するために変異される必要がありうる。さらに、いくつかの場合、変換を行いうるポリペプチドは突然変異によりさらに最適化されうる。
位置特異的突然変異をPLP−結合ポリペプチドの3D構造分析に基づいて行った。ポリペプチドの基質特異性を変化させる2の例は以下に示される。
以下に提供される突然変異プロトコルはアミノ酸配列中に2のポイント突然変異を導入した。第一のポイント突然変異は103位のアルギニン(R)をスレオニン(T)に変え、及び第二のポイント突然変異は299位のバリン(V)をアルギニン(R)に変えた(E. coli成熟タンパク質についての番号システム)。突然変異実験をATG Laboratories(Eden Prairie, MN)により行った。突然変異を遺伝子断片のPCRにより連続して導入し、及び断片の再配列もPCRにより達成された。アルギニン(R)103をスレオニン(T)に変換するためのプライマー:5’−CCAGGGCACCGGCGCAGAGCAAATCTATATT−3’(配列ID番号:47)及び5’−TGCGCCGGTGCCCTGGTGAGTCGGAATGGT−3’(配列ID番号:48)。
2のポイント突然変異をチロシンフェノールリアーゼアミノ酸配列に行った。これらの突然変異は100位のアルギニン(R)をスレオニン(T)に及び283位のバリン(V)をアルギニン(R)に変換した(C. freundii成熟タンパク質配列において)。
モナチンの化学合成
インドール−3−ピルビン酸へのアラニンの添加はモナチンを生成し、及びこの反応はGrignard又は有機リチウム試薬で合成的に行われうる。
例えば、カルボキシル及びアミノ基で適切にブロックされた3−クロロ−又は3−ブロモ−アラニンに無水条件下でマグネシウムを添加する。(適切にブロックされた)インドール−3−ピルビン酸塩がその後添加され、連結した生成物を形成し、続いて保護基が除去され、モナチンを形成する。特に有用な保護基は、容易に結合され及び除去されるTHP(テトラヒドロピラニルエーテル)を含む。
モナチン及びMPの検出
この実施例はモナチン又はその前駆体2−ヒドロキシ2−(インドール−3−イルメチル)−4−ケトグルタル酸の存在を検出するために使用される方法を示す。
in vitro又はin vivo生化学反応に由来するモナチンのアルファ−ケト酸形(モナチン前駆体、MP)及びモナチンについての混合物の分析をクロマトグラフ及びMicromass Quattro Ultima triple quadrupoleマススペクトロメーターの間に直列に置かれたWaters 996 Photo−Diode Array(PDA)吸収モニターを有するWaters 2690液体クトマトグラフを含む、Waters/Micromass液体クロマトグラフィー−タンデムマススペクトロメトリー(LC/MS/MS)器械を用いて行った。LC分離をSupelco Discovery C18逆相クロマトグラフィーカラム、2.1mm×150mm又はXterra MS C8逆相クロマトグラフィーカラム、2.1mm×250mmを用いて室温で行った。LC移動相はA)0.05%(v/v)トリフルオロ酢酸を含む水及びB)0.05%(v/v)トリフルオロ酢酸を含むメタノールから成った。
LC/MS/MS娘イオン実験を以下のようにモナチンについて行った。娘イオン分析は問題の親イオン(例えば、モナチンについてm/z=293)の第一のマスアナライザー(Q1)からマススペクトロメーターの衝突セルへの伝達に関し、衝突セルではアルゴンが導入され、及び上記親を断片(娘)イオンに化学的に分離する。これらの断片イオンはその後第二のマスアナライザー(Q2)で検出され、及び上記親の構造割当てを確証するために使用されうる。
in vitro又はin vivo反応に由来するモナチンについての混合物のハイスループット分析(<5分/サンプル)を上記に示される器械、及びLC/MS/MSについて示される同じパラメーターを用いて行った。LC分離を0.3mL/分の流速で15%水性MeOH、0.25%酢酸中でイソクラティック溶離で室温でWaters Xterra MS C8(2.1mm×50mm)クロマトグラフィーを用いて行った。混合物中のモナチンの検出は選択反応モニタリング(SRM)−タンデムマススペクトロメトリーを用いて達成された。これはモナチンの検出のための感受性、選択性、及びスループットを最大限にするために、特定の衝突で誘導された親イオン([M+H]+=293.1)の娘イオン(例えば、m/z=168.1の断片イオン、3−ブタ−1,3−ヂエニル−1H−インドールカルボニウムイオンとして試しに割当てられた)移行をモニタリングすることに関する。PDA吸収データをモナチン同一性のさらなる実証のために並行して集めた。
細菌におけるモナチンの生成
この実施例はE. coli細胞においてモナチンを生成するために使用される方法を示す。当業者は、同様の方法が他の細菌細胞においてモナチンを生成するために使用されうることを理解するであろう。さらに、モナチン合成経路(図2)における他の遺伝子を含むベクターが使用されうる。
酵母におけるモナチン生成
この実施例は真核細胞においてモナチンを生成するために使用される方法を示す。当業者は、同様の方法が問題のどんな細胞においてもモナチンを生成するために使用されうることを理解するであろう。さらに、他の遺伝子が、この例において示されるものに加えて又はその代わりに使用されうる(例えば、図2中に挙げられるもの)。
以下のプライマーをpESC−His内へのクローニングのために設計した(制限部位は下線を引かれ、Kozak配列は太字である):aspC(BamHI/SalI),GAL1:5’−
カップリングした反応を用いた酵素プロセスの改善
理論的には、副反応又は基質若しくは中間体の分解が起こらない場合、図1中に例示される酵素反応から形成される生成物の最大量はそれぞれの反応の平衡定数、及びトリプトファン及びピルビン酸塩の濃度に直接的に比例する。トリプトファンは高く可溶性の基質ではなく、200mM超のピルビン酸塩の濃度は収率に悪い影響を及ぼすように見える(実施例6を参照のこと)。
図11は反応の例示である。トリプトファンオキシダーゼ及びカタラーゼはインドール−3−ピルビン酸塩生成の方向に反応を駆動するために利用される。カタラーゼは、過酸化水素が逆方向に反応するために又は酵素若しくは中間体を損傷するために利用できないように過剰に使用される。酸素はカタラーゼ反応の間に再生される。あるいは、インドール−3−ピルビン酸塩は基質として使用されうる。
リジンイプシロンアミノトランスフェラーゼ(L−リジン6−トランスアミナーゼ)は、Rhodococcus、Mycobacterium、Streptomyces、Nocardia、Flavobacterium、Candida utilis、及びStreptomycesを含むいくつかの生物において見られる。それはいくつかのベータ−ラクタム抗生物質の生成において第一段階として生物により利用される(Rius and Demain, J. Microbiol. Biotech., 7:95−100,1997)。この酵素は、アルファ−ケトグルタル酸塩をアミノ受容体として利用して、リジンのC−6のPLP仲介アミノ転移により、リジンをL−2−アミノアヂピン酸塩6−セミアルデヒド(アルリジン)に変換する。アルリジンは不安定であり、及び自発的に分子内脱水を経験し、1−ピペリデイン6−カルボキシレート、環状分子を形成する。これは逆反応が起こることを効果的に阻害する。反応スキームは図12中に示される。代替の酵素、リジン−ピルビン酸塩6−トランスアミナーゼ(EC 2.6.1.71)もまた使用されうる。
トリプトファン又はインドール−ピルビン酸塩からのモナチン収率を改善しうる他のカップリング反応は図13中に示される。蟻酸塩デヒドロゲナーゼ(EC 1.2.1.2又は1.2.1.43)は広く知られた酵素である。いくつかの蟻酸塩デヒドロゲナーゼはNADHを必要とし、一方、その他はNADPHを利用しうる。グルタミン酸塩デヒドロゲナーゼは以前の例において、アンモニウムを基礎とした緩衝液を用いて、モナチン前駆体及びモナチンの間の内部変換を触媒した。蟻酸アンモニウム及び蟻酸塩デヒドロゲナーゼの存在は共因子の再生のための効率のよい系であり、及び二酸化炭素の生成は逆反応の速度を減少させるための有効な方法である(Bommarius et al., Biocatalysis 10:37,1994及びGalkin et al. Appl. Environ. Microbiol. 63;4651−6,1997)。さらに、大量の蟻酸アンモニウムが反応緩衝液中に溶解されうる。グルタミン酸塩デヒドロゲナーゼ反応(又は同様の還元的アミノ化)により生成されるモナチンの収率は蟻酸塩デヒドロゲナーゼ及び蟻酸アンモニウムの添加により改善されうる。
組換え発現
公に入手可能な酵素cDNA及びアミノ酸配列、及び配列ID番号:11及び12の如き、本明細書中に開示される酵素及び配列、並びにそれらの変形、多形、突然変異体、断片及び融合で、標準の研究室技術による、酵素の如きタンパク質の発現及び精製が可能である。当業者は、酵素及びその断片は問題のいかなる細胞又は生物においても組換えとして作出され、及び使用前に、例えば、配列ID番号:12及びその誘導体の生成前に精製されうることを理解するであろう。
Claims (16)
- モナチンを生成することができる細胞であって、当該細胞は少なくとも1のポリペプチドをコードする少なくとも1の外因性核酸配列を含み、上記少なくとも1のポリペプチドはモナチン生成経路における第一の中間体を第二の中間体に又はモナチンに変換する、前記細胞。
- 前記少なくとも1のポリペプチドは:トリプトファンアミノトランスフェラーゼ(EC 2.6.1.27)、トリプトファンデヒドロゲナーゼ(EC 1.4.1.19)、チロシン(芳香族)アミノトランスフェラーゼ(EC 2.6.1.5)、トリプトファン−フェニルピルビン酸塩トランスアミナーゼ(EC 2.6.1.28)、多基質アミノトランスフェラーゼ(EC 2.6.1.−)、トリプトファンオキシダーゼ、L−アミノ酸オキシダーゼ(EC 1.4.3.2)、アスパラギン酸塩アミノトランスフェラーゼ(EC 2.6.1.1)、D−アミノ酸デヒドロゲナーゼ(EC 1.4.99.1)、D−アミノ酸オキシダーゼ(EC 1.4.3.3)、D−アラニンアミノトランスフェラーゼ(EC 2.6.1.21)、D−トリプトファンアミノトランスフェラーゼ、インドール乳酸塩デヒドロゲナーゼ(EC 1.1.1.110)、R−4−ヒドロキシフェニル乳酸塩デヒドロゲナーゼ(EC 1.1.1.222)、3−(4)−ヒドロキシフェニルピルビン酸塩還元酵素(EC 1.1.1.237)、乳酸塩デヒドロゲナーゼ(EC 1.1.1.27、1.1.1.28、1.1.2.3)、(3−イミダゾール−5−イル)乳酸塩デヒドロゲナーゼ(EC 1.1.1.111)、乳酸塩オキシダーゼ(EC 1.1.3.−)、合成酵素/リアーゼ(4.1.2.−)、合成酵素/リアーゼ(4.1.3.−)、フェニルアラニンデヒドロゲナーゼ(EC 1.4.1.20)、グルタミン酸塩デヒドロゲナーゼ(EC 1.4.1.2、1.4.1.3、1.4.1.4)、及びそれらの組み合わせから成る群から選ばれる、請求項1に記載の細胞。
- 前記少なくとも1のポリペプチドは:トリプトファンアミノトランスフェラーゼ(EC 2.6.1.27)、トリプトファンデヒドロゲナーゼ(EC 1.4.1.19)、チロシン(芳香族)アミノトランスフェラーゼ(EC 2.6.1.5)、トリプトファン−フェニルピルビン酸塩トランスアミナーゼ(EC 2.6.1.28)、多基質アミノトランスフェラーゼ(EC 2.6.1.−)、アスパラギン酸塩アミノトランスフェラーゼ(EC 2.6.1.1)、トリプトファンオキシダーゼ、L−アミノ酸オキシダーゼ(EC 1.4.3.2)、D−アミノ酸デヒドロゲナーゼ(EC 1.4.99.1)、D−アミノ酸オキシダーゼ(EC 1.4.3.3)、D−アラニンアミノトランスフェラーゼ(EC 2.6.1.21)、D−トリプトファンアミノトランスフェラーゼ、合成酵素/リアーゼ(EC 4.1.3.−)、合成酵素/リアーゼ(4.1.2.−)、フェニルアラニンデヒドロゲナーゼ(EC 1.4.1.20)、グルタミン酸塩デヒドロゲナーゼ(EC 1.4.1.2、1.4.1.3、1.4.1.4)及びそれらの組み合わせから成る群から選ばれる、請求項2に記載の細胞。
- 前記少なくとも1のポリペプチドは:インドール乳酸塩デヒドロゲナーゼ(EC 1.1.1.110)、R−4−ヒドロキシフェニル乳酸塩デヒドロゲナーゼ(EC 1.1.1.222)、3−(4)−ヒドロキシフェニルピルビン酸塩還元酵素(EC 1.1.1.237)、乳酸塩デヒドロゲナーゼ(EC 1.1.1.27、1.1.1.28、1.1.2.3)、(3−イミダゾール−5−イル)乳酸塩デヒドロゲナーゼ(EC 1.1.1.111)、乳酸塩オキシダーゼ(EC 1.1.3.−)、合成酵素/リアーゼ(4.1.2.−)、合成酵素/リアーゼ(4.1.3.−)、トリプトファンデヒドロゲナーゼ(EC 1.4.1.19)、トリプトファン−フェニルピルビン酸塩トランスアミナーゼ(EC 2.6.1.28)、トリプトファンアミノトランスフェラーゼ(EC 2.6.1.27)、チロシン(芳香族)アミノトランスフェラーゼ(EC 2.6.1.5)、多基質アミノトランスフェラーゼ(EC 2.6.1.−)、アスパラギン酸塩アミノトランスフェラーゼ(EC 2.6.1.1)、グルタミン酸塩デヒドロゲナーゼ(EC 1.4.1.2、1.4.1.3、1.4.1.4)、フェニルアラニンデヒドロゲナーゼ(EC 1.4.1.20)、D−トリプトファンアミノトランスフェラーゼ、D−アミノ酸デヒドロゲナーゼ(EC 1.4.99.1)、D−アラニンアミノトランスフェラーゼ(EC 2.6.1.21)及びそれらの組み合わせから成る群から選ばれる活性を含む、請求項2に記載の細胞。
- 前記合成酵素/リアーゼ(EC 4.1.3.−)は4−ヒドロキシ−2−オキソグルタル酸塩アルドラーゼ(EC 4.1.3.16)又は4−ヒドロキシ−4−メチル−2−オキソグルタル酸塩アルドラーゼ(EC 4.1.3.17)を含む、請求項2に記載の細胞。
- 前記細胞は細菌細胞である、請求項1に記載の組換え細胞。
- 前記細胞は酵母細胞である、請求項1に記載の組換え細胞。
- 前記細胞はさらに少なくとも1の外因性核酸配列上にコードされる1以上のポリペプチドを含み、上記ポリペプチドは:カタラーゼ、オキサロ酢酸塩デカルボキシラーゼ、リジンイプシロンアミノトランスフェラーゼ、及び蟻酸塩デヒドロゲナーゼから成る群から選ばれる活性を含む、請求項2に記載の細胞。
- Genbankアクセス番号:P00913、Genbankアクセス番号:NP_290344、Genbankアクセス番号:CAA34096、Genbankアクセス番号:NP_246359、Genbankアクセス番号:AAB96579、Genbankアクセス番号:NP_232561、Genbankアクセス番号:Q59342、Genbankアクセス番号:P28796、Genbankアクセス番号:1AX4_A、Genbankアクセス番号:BAA34638、Genbankアクセス番号:P31014、Genbankアクセス番号:P31015、Genbankアクセス番号:NP_280989、Genbankアクセス番号:AAC33284、Genbankアクセス番号:NP_147838、Genbankアクセス番号:AAF63441又はGenbankアクセス番号:AAA24679から成る群から選ばれるアミノ酸配列を含むポリペプチドであって、Genbankアクセス番号:NP_418164についての103及び299位のアミノ酸残基はヂカルボン酸アミノ酸基質を受けるために前記ポリペプチドの特異性を広くするよう変化されている、前記ポリペプチド。
- アミノ酸配列における前記変化はアルギニン103をスレオニンに変えること、アルギニン103をスレオニンに及びバリン299をアルギニンに変えること;及びバリン299をアルギニンに変えることから成る群から選ばれる、請求項9に記載のポリペプチド。
- Genbankアクセス番号:2TPL_A、Genbankアクセス番号:P31012、Genbankアクセス番号:P31013、A49493、Genbankアクセス番号:P31011、Genbankアクセス番号:AAB24234、Genbankアクセス番号:1TPL_A、Genbankアクセス番号:1TPL_B、Genbankアクセス番号:NP_245748、Genbankアクセス番号:AAB41499、Genbankアクセス番号:Q08897、Genbankアクセス番号:T45297、及びGenbankアクセス番号:AAA71928から成る群から選ばれるアミノ酸配列を含むポリペプチドであって、Genbankアクセス番号:X66978についての100及び283位のアミノ酸残基はヂカルボン酸アミノ酸基質を受けるために前記ポリペプチドの特異性を広くするよう変化されている、前記ポリペプチド。
- アミノ酸配列における前記変化は:アルギニン100をスレオニンに変えること、アルギニン100をスレオニンに及びバリン283をアルギニンに変えること;及びバリン283をアルギニンに変えることから成る群から選ばれる、請求項11に記載のポリペプチド。
- 前記基質はアルパラギン酸塩である、請求項9又は11に記載のポリペプチド。
- 配列ID番号:11に対して少なくとも90%配列同一性を含む、単離された核酸。
- 上記核酸は配列ID番号:11を含む、請求項14に記載の単離された核酸。
- 前記核酸は配列ID番号:11の少なくとも20の連続したヌクレオチドを含む、請求項14に記載の単離された核酸。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37483102P | 2002-04-23 | 2002-04-23 | |
US60/374,831 | 2002-04-23 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003587932A Division JP2005523696A (ja) | 2002-04-23 | 2003-04-23 | ポリペプチド及び生合成経路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010004896A true JP2010004896A (ja) | 2010-01-14 |
JP4988803B2 JP4988803B2 (ja) | 2012-08-01 |
Family
ID=29270554
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003587932A Withdrawn JP2005523696A (ja) | 2002-04-23 | 2003-04-23 | ポリペプチド及び生合成経路 |
JP2009237596A Expired - Fee Related JP4988803B2 (ja) | 2002-04-23 | 2009-10-14 | ポリペプチド及び生合成経路 |
JP2011204605A Expired - Fee Related JP5351230B2 (ja) | 2002-04-23 | 2011-09-20 | ポリペプチド及び生合成経路 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003587932A Withdrawn JP2005523696A (ja) | 2002-04-23 | 2003-04-23 | ポリペプチド及び生合成経路 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011204605A Expired - Fee Related JP5351230B2 (ja) | 2002-04-23 | 2011-09-20 | ポリペプチド及び生合成経路 |
Country Status (24)
Country | Link |
---|---|
US (1) | US20040063175A1 (ja) |
EP (2) | EP1503985B1 (ja) |
JP (3) | JP2005523696A (ja) |
KR (1) | KR100902813B1 (ja) |
CN (1) | CN100516043C (ja) |
AT (1) | ATE491803T1 (ja) |
AU (2) | AU2003263097A1 (ja) |
BR (1) | BRPI0309527B1 (ja) |
CA (1) | CA2483126C (ja) |
CO (1) | CO5631430A2 (ja) |
DE (1) | DE60335361D1 (ja) |
EA (1) | EA009284B1 (ja) |
EC (1) | ECSP045381A (ja) |
ES (1) | ES2356132T3 (ja) |
GE (1) | GEP20084387B (ja) |
IL (1) | IL164548A0 (ja) |
MX (1) | MXPA04010522A (ja) |
NO (1) | NO20045029L (ja) |
NZ (2) | NZ555884A (ja) |
PL (2) | PL208998B1 (ja) |
RS (1) | RS92604A (ja) |
SG (1) | SG146453A1 (ja) |
WO (1) | WO2003091396A2 (ja) |
ZA (1) | ZA200408379B (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE552242T1 (de) | 2001-12-27 | 2012-04-15 | Ajinomoto Kk | ßVERFAHREN ZUR HERSTELLUNG VON GLUTAMINSÄUREVERBINDUNGEN UND ZWISCHENPRODUKTEN DAVON, UND IN DEN VERFAHREN VERWENDETE NEUE ZWISCHENPRODUKTEß |
US7297800B2 (en) * | 2001-12-27 | 2007-11-20 | Ajinomoto Co., Inc. | Process of producing glutamate derivatives |
ATE497013T1 (de) * | 2001-12-27 | 2011-02-15 | Ajinomoto Kk | Verfahren zur herstellung von glutaminsäurederivaten |
US8372989B2 (en) * | 2002-04-23 | 2013-02-12 | Cargill, Incorporated | Polypeptides and biosynthetic pathways for the production of monatin and its precursors |
US7572607B2 (en) * | 2002-04-23 | 2009-08-11 | Cargill, Incorporated | Polypeptides and biosynthetic pathways for the production of monatin and its precursors |
CN103525847A (zh) | 2002-08-26 | 2014-01-22 | 味之素株式会社 | 新型醛缩酶和取代α-酮酸的制备方法 |
WO2004027075A2 (en) * | 2002-09-20 | 2004-04-01 | Diversa Corporation | Chemoenzymatic methods for the synthesis of statins and stain intermediates |
KR100723826B1 (ko) | 2002-12-09 | 2007-06-04 | 아지노모토 가부시키가이샤 | 변이형 d-아미노트랜스퍼라제 및 이를 사용하는 광학활성글루탐산 유도체의 제조방법 |
JP4760375B2 (ja) * | 2003-06-26 | 2011-08-31 | 味の素株式会社 | Ihogの回収方法およびモナティンの製造方法 |
US20050112260A1 (en) * | 2003-08-01 | 2005-05-26 | Cargill, Inc. | Monatin tabletop sweetener compositions and methods of making same |
JP2007502117A (ja) * | 2003-08-14 | 2007-02-08 | カーギル,インコーポレイティド | モナチンを含有するチューインガムとその製造法 |
KR101191542B1 (ko) * | 2003-08-25 | 2012-10-15 | 카아길, 인코포레이팃드 | 모나틴을 포함하는 음료 조성물 및 이의 제조 방법 |
AU2004286207B2 (en) * | 2003-10-21 | 2011-02-24 | Cargill, Incorporated | Production of monatin and monatin precursors |
CA2506247C (en) | 2004-06-07 | 2012-02-21 | Ajinomoto Co., Inc. | Novel aldolase, and method for producing optically active ihog and monatin |
JP4797452B2 (ja) * | 2004-06-07 | 2011-10-19 | 味の素株式会社 | 新規アルドラーゼ並びに光学活性ihog及びモナティンの製造方法 |
US7180370B2 (en) * | 2004-09-01 | 2007-02-20 | Micron Technology, Inc. | CMOS amplifiers with frequency compensating capacitors |
WO2006113897A2 (en) | 2005-04-20 | 2006-10-26 | Cargill, Incorporated | Products and methods for in vivo secretion of monatin |
US8158389B2 (en) * | 2005-04-20 | 2012-04-17 | Cargill, Incorporated | Products and methods for in vivo secretion of monatin |
US7582455B2 (en) * | 2005-04-26 | 2009-09-01 | Cargill, Incorporated | Polypeptides and biosynthetic pathways for the production of stereoisomers of monatin and their precursors |
US8076108B2 (en) | 2005-04-26 | 2011-12-13 | Cargill, Incorporated | Polypeptides and biosynthetic pathways for the production of stereoisomers of monatin and their precursors |
CN101365787B (zh) | 2005-04-26 | 2014-03-05 | 嘉吉有限公司 | 用于生产莫纳甜的立体异构体和其前体的多肽和生物合成途径 |
CA2643416C (en) | 2006-03-07 | 2016-07-26 | Cargill, Incorporated | Aldolases, nucleic acids encoding them and methods for making and using them |
EP3153580A3 (en) | 2006-03-07 | 2017-04-19 | BASF Enzymes LLC | Aldolases, nucleic acids encoding them and methods for making and using them |
US20090198072A1 (en) * | 2006-05-24 | 2009-08-06 | Cargill, Incorporated | Methods and systems for increasing production of equilibrium reactions |
JP2009538145A (ja) | 2006-05-24 | 2009-11-05 | カーギル・インコーポレイテッド | 平衡反応の収量を増加させるための方法およびシステム |
CN101239941B (zh) * | 2007-02-08 | 2012-02-29 | 味之素株式会社 | 光学活性化合物的制造方法 |
CN102027117B (zh) | 2007-08-24 | 2012-11-07 | 味之素株式会社 | 新的氧化酶基因及使用该基因生产3-吲哚-丙酮酸的方法 |
US8367847B2 (en) * | 2007-10-01 | 2013-02-05 | Cargill, Incorporated | Production of monatin enantiomers |
US8003361B2 (en) * | 2007-10-01 | 2011-08-23 | Cargill Incorporated | Production of monatin enantiomers |
US8076107B2 (en) | 2007-10-01 | 2011-12-13 | Cargill, Incorporated | Production of monatin stereoisomers |
ES2531290T3 (es) | 2008-01-03 | 2015-03-12 | Basf Enzymes Llc | Transferasas y oxidorreductasas, ácidos nucleicos que las codifican y métodos para prepararlas y usarlas |
AU2008347048B2 (en) * | 2008-01-03 | 2014-06-05 | Cargill, Incorporated | Aminotransferase and oxidoreductase nucleic acids and polypeptides and methods of using |
EP2434910B1 (en) | 2009-05-28 | 2015-10-21 | Cargill, Incorporated | Shelf stable monatin sweetened beverage |
CN102686391A (zh) | 2009-12-30 | 2012-09-19 | 嘉吉公司 | 聚合物及制备和使用聚合物的方法 |
US8445226B2 (en) * | 2010-02-01 | 2013-05-21 | Microbios, Inc. | Process and composition for the manufacture of a microbial-based product |
WO2012037413A2 (en) | 2010-09-15 | 2012-03-22 | University Of Washington Through Its Center For Commercialization | Systems and methods for biotransformation of carbon dioxide into higher carbon compounds |
JPWO2012050125A1 (ja) | 2010-10-14 | 2014-02-24 | 味の素株式会社 | モナティンの製造方法 |
WO2012135389A2 (en) * | 2011-03-28 | 2012-10-04 | The Regents Of The University Of California | Host cells and methods for oxidizing aromatic amino acids |
WO2012147674A1 (ja) * | 2011-04-25 | 2012-11-01 | 味の素株式会社 | モナティンの製造方法 |
GB201412545D0 (en) * | 2014-07-15 | 2014-08-27 | Univ Manchester The And Manchester Metropolitan University | Enzymatic processes and uses |
CN112931181A (zh) * | 2021-01-28 | 2021-06-11 | 西北农林科技大学 | 一种抗根肿病橙色大白菜新种质的选育方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5771397A (en) * | 1980-08-22 | 1982-05-04 | Ajinomoto Co Inc | Preparation of l-tryptophan by fermentation method |
JP2002060382A (ja) * | 2000-08-22 | 2002-02-26 | Ajinomoto Co Inc | モナティンの立体異性体及びその使用、並びにモナティン類の製造方法及びそのための中間体 |
WO2003056026A1 (fr) * | 2001-12-27 | 2003-07-10 | Ajinomoto Co., Inc. | Procede de production de derives d'acide glutamique |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3002889A (en) * | 1960-06-20 | 1961-10-03 | Kyowa Hakko Kogyo Kk | Method of producing l-glutamic acid |
US3128237A (en) * | 1961-02-24 | 1964-04-07 | Ajinomoto Kk | Process for producing l-glutamic acid by bacterial fermentation |
JPH0691827B2 (ja) * | 1981-12-17 | 1994-11-16 | 協和醗酵工業株式会社 | 新規ベクタ−プラスミド |
JPS60176593A (ja) * | 1984-02-22 | 1985-09-10 | Kyowa Hakko Kogyo Co Ltd | L−トリプトフアンの製造法 |
US5264550A (en) * | 1985-04-15 | 1993-11-23 | Scios Nova Inc. | Human anti-inflammatory phospholipase inhibitor protein |
WO1987001130A1 (en) | 1985-08-15 | 1987-02-26 | Stauffer Chemical Company | Tryptophan producing microorganism |
US5260203A (en) | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
GB2205834B (en) | 1987-06-15 | 1990-10-31 | South African Inventions | 3-(1-amino-1,3-dicarboxy-3-hydroxy-but-4-yl)-indole compounds |
US5300437A (en) * | 1989-06-22 | 1994-04-05 | Celgene Corporation | Enantiomeric enrichment and stereoselective synthesis of chiral amines |
ATE104961T1 (de) | 1990-01-19 | 1994-05-15 | Technology Finance Corp | Verfahren zur herstellung von 3-(1-amino-1,3dicarboxy-3-hydroxy-but-4-yl)-indol. |
US5173497A (en) * | 1990-05-17 | 1992-12-22 | Hoechst-Roussel Pharmaceuticals Incorporated | Alpha-oxopyrrolo[2,3-B]indole acetic acids, esters, amides and related analogs |
US7018809B1 (en) | 1991-09-19 | 2006-03-28 | Genentech, Inc. | Expression of functional antibody fragments |
FR2686899B1 (fr) | 1992-01-31 | 1995-09-01 | Rhone Poulenc Rorer Sa | Nouveaux polypeptides biologiquement actifs, leur preparation et compositions pharmaceutiques les contenant. |
US5360724A (en) * | 1992-12-18 | 1994-11-01 | Celgene Corporation | Process for the preparation of chiral 1-aryl-2-aminopropanes |
US5691188A (en) * | 1994-02-14 | 1997-11-25 | American Cyanamid Company | Transformed yeast cells expressing heterologous G-protein coupled receptor |
JP3698742B2 (ja) | 1994-03-01 | 2005-09-21 | 協和醗酵工業株式会社 | 光学活性4−ヒドロキシ−2−ケトグルタル酸の製造法 |
JP3709564B2 (ja) * | 1994-08-30 | 2005-10-26 | 味の素株式会社 | L−バリン及びl−ロイシンの製造法 |
CA2199853C (en) * | 1994-09-16 | 2009-03-24 | James C. Liao | Microorganisms and methods for overproduction of dahp by cloned pps gene |
US5985617A (en) * | 1997-02-18 | 1999-11-16 | Liao; James C. | Microorganisms and methods for overproduction of DAHP by cloned PPS gene |
US5843782A (en) * | 1995-02-09 | 1998-12-01 | Novaflora, Inc. | Micropropagation of rose plants |
GB2304718B (en) | 1995-09-05 | 2000-01-19 | Degussa | The production of tryptophan by the bacterium escherichia coli |
CA2234412C (en) * | 1997-06-09 | 2008-09-02 | Kyowa Hakko Kogyo Co., Ltd. | Method for producing optically active compound |
US5994559A (en) * | 1998-08-06 | 1999-11-30 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Synthesis of monatin-A high intensity natural sweetener |
JP2002544174A (ja) | 1999-05-07 | 2002-12-24 | ジェネンテック・インコーポレーテッド | B細胞表面マーカーに結合するアンタゴニストを用いた自己免疫疾患の治療 |
US6428504B1 (en) * | 2000-04-06 | 2002-08-06 | Varian Medical Systems, Inc. | Multipurpose template and needles for the delivery and monitoring of multiple minimally invasive therapies |
JP3713224B2 (ja) * | 2001-08-10 | 2005-11-09 | 株式会社三栄水栓製作所 | 水栓取替方法 |
-
2003
- 2003-04-23 BR BRPI0309527-4A patent/BRPI0309527B1/pt not_active IP Right Cessation
- 2003-04-23 NZ NZ555884A patent/NZ555884A/en not_active IP Right Cessation
- 2003-04-23 JP JP2003587932A patent/JP2005523696A/ja not_active Withdrawn
- 2003-04-23 KR KR1020087010523A patent/KR100902813B1/ko active IP Right Grant
- 2003-04-23 DE DE60335361T patent/DE60335361D1/de not_active Expired - Lifetime
- 2003-04-23 CA CA2483126A patent/CA2483126C/en not_active Expired - Fee Related
- 2003-04-23 EP EP03747304A patent/EP1503985B1/en not_active Expired - Lifetime
- 2003-04-23 MX MXPA04010522A patent/MXPA04010522A/es active IP Right Grant
- 2003-04-23 US US10/422,366 patent/US20040063175A1/en not_active Abandoned
- 2003-04-23 WO PCT/US2003/012588 patent/WO2003091396A2/en not_active Application Discontinuation
- 2003-04-23 PL PL373423A patent/PL208998B1/pl not_active IP Right Cessation
- 2003-04-23 AU AU2003263097A patent/AU2003263097A1/en not_active Abandoned
- 2003-04-23 NZ NZ535297A patent/NZ535297A/en not_active IP Right Cessation
- 2003-04-23 CN CNB038121484A patent/CN100516043C/zh not_active Expired - Fee Related
- 2003-04-23 ES ES03747304T patent/ES2356132T3/es not_active Expired - Lifetime
- 2003-04-23 AT AT03747304T patent/ATE491803T1/de not_active IP Right Cessation
- 2003-04-23 RS YUP-926/04A patent/RS92604A/sr unknown
- 2003-04-23 GE GEAP8509A patent/GEP20084387B/en unknown
- 2003-04-23 SG SG200607401-7A patent/SG146453A1/en unknown
- 2003-04-23 EP EP10010240.9A patent/EP2354240B1/en not_active Expired - Lifetime
- 2003-04-23 PL PL386514A patent/PL208481B1/pl unknown
- 2003-04-23 EA EA200401228A patent/EA009284B1/ru not_active IP Right Cessation
-
2004
- 2004-10-13 IL IL16454804A patent/IL164548A0/xx unknown
- 2004-10-15 ZA ZA200408379A patent/ZA200408379B/en unknown
- 2004-10-22 EC EC2004005381A patent/ECSP045381A/es unknown
- 2004-11-19 NO NO20045029A patent/NO20045029L/no not_active Application Discontinuation
- 2004-11-23 CO CO04117741A patent/CO5631430A2/es not_active Application Discontinuation
-
2009
- 2009-10-14 JP JP2009237596A patent/JP4988803B2/ja not_active Expired - Fee Related
-
2010
- 2010-04-28 AU AU2010201699A patent/AU2010201699B2/en not_active Ceased
-
2011
- 2011-09-20 JP JP2011204605A patent/JP5351230B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5771397A (en) * | 1980-08-22 | 1982-05-04 | Ajinomoto Co Inc | Preparation of l-tryptophan by fermentation method |
JP2002060382A (ja) * | 2000-08-22 | 2002-02-26 | Ajinomoto Co Inc | モナティンの立体異性体及びその使用、並びにモナティン類の製造方法及びそのための中間体 |
WO2003056026A1 (fr) * | 2001-12-27 | 2003-07-10 | Ajinomoto Co., Inc. | Procede de production de derives d'acide glutamique |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5351230B2 (ja) | ポリペプチド及び生合成経路 | |
US9034610B2 (en) | Polypeptides and biosynthetic pathways for the production of monatin and its precursors | |
US8440434B2 (en) | Polypeptides and biosynthetic pathways for the production of monatin and its precursors | |
KR100906179B1 (ko) | 폴리펩티드 및 생합성 경로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110517 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110802 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120426 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4988803 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |