JP2009267411A - 複数メモリ層を有するメモリセルを含む記憶装置 - Google Patents

複数メモリ層を有するメモリセルを含む記憶装置 Download PDF

Info

Publication number
JP2009267411A
JP2009267411A JP2009106010A JP2009106010A JP2009267411A JP 2009267411 A JP2009267411 A JP 2009267411A JP 2009106010 A JP2009106010 A JP 2009106010A JP 2009106010 A JP2009106010 A JP 2009106010A JP 2009267411 A JP2009267411 A JP 2009267411A
Authority
JP
Japan
Prior art keywords
memory
layers
layer
electrode
resistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009106010A
Other languages
English (en)
Other versions
JP5429738B2 (ja
Inventor
Michael A Seigler
エイ.セイグラー マイケル
Oleg N Mryasov
エヌ.ミリャソフ オレグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of JP2009267411A publication Critical patent/JP2009267411A/ja
Application granted granted Critical
Publication of JP5429738B2 publication Critical patent/JP5429738B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2273Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5671Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge trapping in an insulator
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/54Structure including a tunneling barrier layer, the memory effect implying the modification of tunnel barrier conductivity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】各種干渉を排除し、寸法を縮小するため積層した複数メモリ層を有し、複数データ値を記憶するよう適合された非磁気メモリセルを用いた記憶装置を提供する。
【解決手段】記憶装置100は制御器102と制御器102を介してアクセス可能な複数個の抵抗性基本メモリセル106とを含む。複数個の抵抗性基本メモリセル106の各抵抗性基本メモリセルは、複数個のデータ値を記憶するヒステリシス特性を有するように選択された複数個のメモリ層130,132、134、136を含み、第1外部電極122と第2外部電極124との間に挟まれる。第1外部電極122は第1スイッチ108に結合され、第2外部電極124は第2スイッチ110に結合される。
【選択図】図1

Description

本発明は複数メモリ層を有するメモリセルを含む記憶装置に一般的に関係する。特に、本開示は複数データ値を記憶するよう適合された非磁気メモリセルに関係する。
記憶装置は情報を記憶する多くの電子応用例で広範囲に使用されている。このような記憶装置はハードディスク・ドライブ、フラッシュメモリ素子、磁気ランダムアクセスメモリ(MRAM)素子、電気的に消去可能なプログラム可能読取専用メモリ(EEPROM)素子、その他のメモリ素子、またはその任意の組合せを含む。このような記憶装置は、コンピュータ・システム、個人用ディジタルアシスタント(PDA)、移動電話、オーディオプレーヤ、ディジタルカメラ、ディジタルビデオレコーダ、セットトップボックス装置、その他の電子装置、またはその任意の組合せを含む各種の応用例で使用される。
一般に、技術的進歩はより小さな記憶装置を有するより小さく軽い電子装置をもたらす。しかしながら、記憶容量を犠牲にすることなく関係する記憶装置の寸法を縮小することは困難である。さらに、寸法が減少するにつれて、このような記憶素子を動作させるために用いられる物理現象は実施するのが困難となり、記号間干渉、相互結合雑音、その他の信号雑音のような前記物理現象に悪影響する雑音やその他の干渉がより顕著になってくる。
特定の説明的実施例では、記憶装置は制御器と制御器を介してアクセス可能な複数個の抵抗性基本メモリセルとを含む。複数個の抵抗性基本メモリセルの各抵抗性基本メモリセルは、複数個のデータ値を記憶するためのヒステリシス特性を有するように選択された複数個のメモリ層を含む。
その他の特定の実施例では、メモリ装置は第1電極と、第2電極と、第1及び第2電極間で複数のデータ値を記憶する複数のメモリ層とを含む。複数のメモリ層の各メモリ層は複数のデータ値のデータ値を記憶するためのヒステリシス特性を有する。メモリ装置はさらに、第1及び第2電極の少なくとも一方を介して複数のメモリ層に結合された制御器を含む。制御器は、複数のデータ値を変更することなく1つ以上の複数のメモリ層から複数のデータ値を読み取る。
さらにその他の特定の実施例では、メモリ装置は複数個の抵抗性メモリセルを含む。各抵抗性メモリセルは複数のデータ値を記憶する複数個の積層メモリ層を含む。複数の積層メモリ層の各メモリ層は固有のデータ値を表現するよう構成可能な固有のヒステリシス特性を有する。メモリ装置はさらに複数個の抵抗性メモリセルへのアクセスを有する制御器を含む。制御器は複数個の抵抗性メモリセルの内の抵抗性メモリセルを選択し、選択した抵抗性メモリセルの選択したメモリ層へデータを読み書きするようにする。
複数の積層メモリ層を有するメモリセルを含む記憶装置の特定の説明的な実施例の図。 複数の積層メモリ層を有する複数メモリセルを含むシステムの第2の特定の説明的実施例の図。 Aは複数の積層メモリ層を有する、メモリセル内のメモリ配置の特定の説明的実施例のブロック線図。 Bは図3Aに図示したメモリ配置に記憶した特定のデータ値の電圧対電流の説明的実施例のグラフ。 Aは複数の積層メモリ層を含む、メモリセルのメモリ配置の第2の特定の説明的実施例のブロック線図。 Bは図4Aに図示したメモリ配置に記憶した特定のデータ値の電圧対電流の説明的実施例のグラフ。 Aは複数の積層メモリ層を有する、メモリセルのメモリ配置の第3の特定の説明的実施例のブロック線図。 Bは図5Aに図示したメモリ配置に記憶した特定のデータ値の電圧対電流の説明的実施例のグラフ。 Aは複数の積層メモリ層を有する、メモリセルのメモリ配置の第4の特定の説明的実施例のブロック線図。 Bは複数の積層メモリ層を含む、メモリセルのメモリ配置の第5の特定の説明的実施例のブロック線図。 Aは異なるヒステリシス特性の複数の積層メモリ層を含むメモリセルの特定の説明的実施例のブロック線図。 Bは絶縁層により分離された複数の積層メモリ層を含むメモリセルの第2の特定の説明的実施例のブロック線図。 Cは内部電極により分離された複数の積層メモリ層を含むメモリセルの第3の特定の説明的実施例のブロック線図。 異なるヒステリシス特性の4つの積層メモリ層を含むメモリセルの伝達曲線(装置電圧対抵抗)の特定の説明的実施例のグラフ。 異なるヒステリシス特性の複数の積層メモリ層を含むメモリセル内のメモリ層に記憶したデータをアクセスする方法の特定の説明的実施例の流れ図。 異なるヒステリシス特性の複数の積層メモリ層を含むメモリセルを製造する方法の特定の説明的実施例の流れ図。
図1は複数の積層メモリ層を有するメモリセル106を含む記憶装置100の特定の説明的実施例である。記憶装置100は線路114と116とを介してメモリセル106へ印加信号を与える信号発生器105と通信する制御器102を含む。特定の実施例では、制御器102は信号発生器104を含むことも可能である。制御器102はまた線路118を介して第1スイッチ108へ、線路120を介して第2スイッチ110へも結合されてメモリセル106を選択的にアクセスする。記憶装置100はさらに第2スイッチ110を介してメモリセル106に選択的に結合されて電流(I)を受け取るセンス回路112も含み、この電流はメモリセル106に記憶されたデータを表現する。センス回路112はメモリセルと関連するトンネル抵抗値を決定し、メモリセル106に記憶されたデータ値、またはその組合せを決定するようにする。特定の例では、制御器102は線路150を介してセンス回路112から検出したトンネル抵抗値に関係するデータを受け取る。
メモリセル106は、第1外部電極122と第2外部電極124との間に挟まれた、第1メモリ層130と、第2メモリ層132と、第3メモリ層134と、第Nメモリ層136とを含む。第1外部電極122は第1スイッチ108に結合され、第2外部電極124は第2スイッチ110に結合される。
特定の説明的実施例では、第1、第2、第3、及び第Nメモリ層、130、132、134、136はヒステリシス特性を有するように選択される。本明細書で使用するように、「ヒステリシス特性」とは、電場の分極、捕獲電子電荷、その他の非磁気特性、またはその任意の組合せのような、電気特性による2つ以上の安定な状態を有する材料から起因する不揮発性メモリ効果を言う。特定の実施例では、ヒステリシス特性は、分極が電子電荷分布に影響してトンネル抵抗を制御する電気二重極モーメントである強誘電材料に関係する電気的ヒステリシスを含む。他の例では、ヒステリシス特性は自発分極特性を含む。例えば、特定の実施例では、第1、第2、第3、及び第Nメモリ層、130、132、134、136は分極方向を有する電場を担持するようにされた強誘電材料から形成してもよい。他の特定の実施例では、第1、第2、第3、及び第4メモリ層、130、132、134、136は、データ値を表現するよう構成可能なヒステリシス特性を有する相変化材料、電荷捕獲材料、またはその他の材料から形成してもよい。特定の実施例では、第1、第2、第3、及び第Nメモリ層、130、132、134、136の各々は、特定のメモリ層に記憶されたデータ値がトンネル抵抗に固有の影響を与え、メモリセル106内のその他の記憶されたデータ値に影響を与えることなく、固有の書き込み信号により変更されるような、固有のヒステリシス特性を生成する異なるドーピング濃度、異なる厚さ、またはその他の差を有する強誘電材料から形成される。
特定の例では、第1、第2、第3、及び第Nメモリ層、130、132、134、136の各々は異なる(固有の)ヒステリシス特性を有する強誘電材料から形成される。例えば、第1メモリ層130は第1の厚さ(T)を有し、第1分極方向140を有する第1電場を担持する。第2メモリ層132は第2の厚さ(T)を有し、第2分極方向142を有する第2電場を担持する。第3メモリ層134は第3の厚さ(T)を有し、第3分極方向144を有する第3電場を担持する。第nメモリ層136は第nの厚さ(T)を有し、第n分極方向146を有する第n電場を担持する。特定の実施例では、メモリセル106は固有のヒステリシス特性を有する任意数のメモリ層を含むことが可能である。特定の実施例では、第1、第2、第3、及び第n分極方向、140、142、144、146は第1、第2、第3、及び第nメモリ層、130、132、134、136の各々の内部に電荷分布を誘起する。メモリ層130、132、134、136内の電荷分布はまた第1及び第2外部電極、122と124に電荷分布を発生させる。さらに、この電荷分布はメモリセル106のトンネル抵抗値に影響を与える。特定の実施例では、メモリセル106のトンネル抵抗値は第1、第2、第3、及び第nメモリ層、130、132、134、136の各々に記憶されたデータ値を表す。
その他の特定の例では、第1、第2、第3、第nメモリ層、130、132、134、136の各々は内部電極により分離されてもよい。この特定の例では、第1、第2、第3及び第n分極方向、140、142、144、146は隣接する内部電極内に反対の電荷の集合を誘導する。
特定の実施例では、制御器102は各々線路118と120に印加された制御信号を介して第1及び第2電極、108と110を選択的に作動させることによりメモリセル106へのデータを読み書きするようにされている。信号発生器104から線路114の印加信号はメモリセル106中に電流を流させ、センス回路112が電流(I)を基にメモリセル106と関係するトンネル抵抗値を決定するようにされている。このトンネル抵抗値は第1、第2、第3、及び第nメモリ層、130、132、134、136の1つ以上に記憶されたデータ値を表現する。
一般に、上述の説明は第1、第2、第3、及び第nメモリ層、130、132、134、136を強誘電材料から形成してもよいことを示したが、酸化物抵抗(RO)材料、相変化(PC)材料、電荷捕獲(CT)材料、またはその任意の組合せを含むその他の材料を使用してもよいことを理解すべきである。図1に図示した実施例では、第1、第2、第3、及び第nメモリ層、130、132、134、136は、複数の抵抗値状態が自発電気分極に起因する強誘電メモリ層が可能である。しかしながら、メモリ層がRO、PC、またはCT材から形成されている場合、複数レベルの抵抗値状態はメモリセル106のトンネル抵抗の変化を生じさせる同様な電荷分布機構から起因しうる。
特定の実施例では、第1、第2、第3、及び第nメモリ層、130、132、134、136のトンネル抵抗(すなわちコンダクタンス)は分極方向140、142、144、146に依存しうる。特定の例では、分極方向140が常誘電から強誘電に変化するにつれて第1層130のトンネル抵抗が顕著に変化する。特定の例では、トンネル抵抗の変化を用いてメモリセル106に記憶したデータ値を決定するように、上向き方向から下向き方向への分極方向の変化が、メモリセル106のトンネル抵抗値を検出可能な状態で変化させる。
特定の説明的な例では、メモリセル106は、データ値を記憶する抵抗性記憶素子として動作する第1、第2、第3、及び第nメモリ層、130、132、134、136を含む。特に、第1、第2、第3、及び第nメモリ層、130、132、134、136はデータ値を表現するために利用可能な双安定、または三安定状態を有する。メモリセル106は不揮発性メモリである。さらに、制御器102は、書込み動作の前に読取り動作を実行する必要なしに記憶データを検索するためにメモリセル106にアクセスするようにされている。特に、メモリセル106は記憶データを破壊することなく(すなわち読取り動作が破壊読取りではない)アクセス可能である。さらに、メモリセル106は、メモリ層当たり2から3状態の、任意数のメモリセルを有する複数レベル固体メモリ装置の一部として使用される、ここでNはメモリ層の数を表す。
一般に、メモリセル106は、mのメモリセルを有した、複数レベル固体メモリ素子の一部として使用可能で、ここでCはメモリセルの数を表し、mは各メモリセルに記憶されるデータレベルの数を表す。例えば、図3Aに示したメモリセルのm値は2であり(すなわち、m=2)、図5Aに示したメモリセルのm値は3である(すなわち、m=3)。(K)メモリ層のメモリセルはm=2メモリレベルを提供可能である。従って、この特定の例では、2つのヒステリシス・メモリ層のメモリセルは4データレベルのメモリセルである。
特定の説明的実施例では、第1、第2、第3、及び第nメモリ層、130、132、134、136は対称である。この例では、「1」のビット値は上向きまたは下向き分極方向により表現される、何故なら、対称接合はどちらの方向でも同じトンネル抵抗値を与えるからである。「0」のビット値は常誘電方向により表現される。この例では、各メモリ配置は2つの可能な状態を有し、メモリセル106はNのメモリ配置を有する(すなわち、2メモリ状態)。他の特定の説明的実施例では、第1、第2、第3、及び第nメモリ層、130、132、134、136は非対称である。
他の特定の実施例では、第1、第2、第3、及び第nメモリ層、130、132、134、136は異なるヒステリシス特性を有してもよい。他の特定の実施例では、第1、第2、第3、及び第nメモリ層、130、132、134、136は、内部電極(図7Cに図示する電極752、754、756のように)により、電気絶縁層(図7Bに図示する電気絶縁層722、724、726のように)により、絶縁体と電極両方(図6Bに図示する電極610と絶縁層622のように)により、またはその任意の組合せにより、分離されてもよい。他の特定の例では、メモリセル内の内部電極は異なる材料または異なる組成物(異なるドーピング濃度のような)から形成してもよい。同様に、絶縁層も異なる絶縁特性を有する異なる材料から形成してもよい。
他の特定の実施例では、(第1メモリ層130により担持される分極方向140のような)各メモリ層の分極を変化させる臨界電圧は、メモリ層材料、メモリ層組成、及びメモリ層厚のような設計パラメータにより制御してもよい。さらに、隣接する材料も臨界電圧に影響を与える。さらに、層間材料の厚さや型式も臨界電圧に影響を与える。複数の積層メモリ層を有するメモリセル内のメモリ層の厚さを調節することにより、各々のメモリ配置が異なる臨界電圧を有し、信号発生器104を介して制御器102により選択的にこの臨界電圧を印加して、他のメモリ層の分極方向を変更することなく複数の積層メモリ層内の特定のメモリ層の分極方向を変更してもよい。
特定の例では、第1メモリ層130は第2メモリ層132の厚さ(T)より大きな厚さ(T)を有する。この例では、センス回路112を使用して、メモリセル106のトンネル抵抗値を基に第1メモリ配置130のような特定のメモリ配置の記憶データ値を決定可能であるように、第1メモリ層130と第2メモリ層132に関係するトンネル抵抗値を固有のものにしてもよい。
特定の実施例では、記憶装置100は制御器102と、制御器102を介してアクセス可能であるメモリセル106のような、複数個の抵抗性基本メモリ素子とを含む。抵抗性基本メモリセル106は、複数のデータ値を記憶するヒステリシス特性を有するように選択された、第1、第2、第3、及び第nメモリ層、130、132、134、136のような複数個のメモリ層を含む。特定の実施例では、第1メモリ層130は第1ヒステリシス特性を有し、第2メモリ層132は第2ヒステリシス特性を有する。さらに他の特定の実施例では、抵抗性基本メモリセル106は固有のトンネル抵抗値により表現される複数のデータ値を記憶する。特定の実施例では、制御器102は抵抗性基本メモリセル106に固有の書込み信号を印加して抵抗性基本メモリセル106の固有のトンネル抵抗値を変更し、異なるデータ値を表現するようにされている。特定の例では、メモリセル106は複数のメモリセルから選択される、またはメモリセルの群またはブロックの一部として選択されてもよい。
他の特定の例では、メモリ装置100は、複数のデータ値を記憶するため第1電極122と、第2電極124と、第1及び第2電極、122と124との間の複数のメモリ層130、132、134、136とを含む。メモリ層130、132、134、136の各々はヒステリシス特性を有し複数のデータ値を記憶する。メモリ装置100はさらに、第1及び第2電極、122と124の少なくとも一方を介して複数のメモリ層130、132、134、136に結合された制御器102を含む。制御器は複数のデータ値を変更することなく複数のメモリ層130、132、134、136から複数のデータ値を読取る。特定の例では、複数のメモリ層130、132、134、136は固有のデータ値を表現する電子電荷分布を誘起する独立した分極電場を担持するようにされた強誘電層である。他の特定の例では、複数のメモリ層130、132、134、136は固有のデータ値を表現するよう独立して構成可能であるヒステリシス特性を有する相変化媒体層である。さらに他の特定の例では、複数のメモリ層130、132、134、136は電荷を捕獲する電荷捕獲層である。電荷捕獲層は電荷捕獲層内に電荷分布を誘起するよう構成可能であり、隣接する層でトンネル抵抗値を変更して固有のデータ値を表現する。
一般に、図1に与えた記憶装置100の特定の例は代表的な例のみであり、制限的な意図ではないことを理解すべきである。電圧または電流を印加してメモリセル106のトンネル抵抗値を決定する他の構造を使用してもよい。さらに、ビットアドレス可能な記憶部に関して特定の記憶装置100を記載していることを理解すべきである。しかしながら、特定の実施例では、記憶装置100はブロックアクセス可能な記憶部を供給するためにメモリセルのブロックをアクセスしてもよい。さらに、特定の実装に応じて他の構成を使用してもよい。
図2は複数の積層メモリ配置を有するメモリセルを有する記憶装置202を含むシステムの第2の特定の説明的な実施例の図面である。システム200は、コンピュータ、無線電話、個人用ディジタルアシスタント(PDA)、音楽プレーヤ装置(MP3プレーヤのような)、その他の電子装置、処理論理部、またはその任意の組合せである、ホストシステム204を含む。ホストシステム204は、アドバンスト・テクノロジー・アタッチメント(ATA)インターフェース、インテグレイテッド・ドライブ・エレクトロニクス(IDE)インターフェース、ユニバーサル・シリアル・バス(USB)インターフェース、スモール・コンピュータ・システム・インターフェース(SCSI)、その他のインターフェース、又はその任意の組合せのようなインターフェース206を介して記憶装置202に結合される。特定の例では、ホストシステム204は無線通信プロトコルを介して記憶装置202のインターフェース206と無線で通信してもよい。この特定の例では、インターフェース206は無線送受信器を含む(図示せず)。
記憶装置202はさらにインターフェース206に結合された制御器208を含む。制御器208はまた線路216を介して信号発生器210に結合される。信号発生器210は選択した電圧または電流レベルで信号を発生するようにされている。さらに、信号発生器210は第1の複数個のスイッチ220を介してメモリセル212のアレイを含む記憶媒体に結合される。メモリセルのアレイ212は第2の複数個のスイッチ230を介してセンス回路214に結合される。第1の複数個のスイッチ220と第2の複数個のスイッチ230は第1及び第2線路、228と238とを介して、制御器208により選択的に活性化されてメモリセルのアレイ212の選択したメモリセルをアクセスする。センス回路214はデータ線路218を介して制御器208に結合される。特定の実施例では、センス回路214は、第1メモリセル240のような、メモリセルのアレイ212の特定のメモリセルのトンネル抵抗値を決定し、決定したトンネル抵抗値を基に特定のメモリセルに記憶したデータ値を決定するようにされている。
メモリセルのアレイ212は、第1の複数個の積層メモリ層241を有する第1メモリセル240を含む。第1メモリセル240は第1スイッチ222を介して信号発生器210に結合され、第2スイッチ232を介してセンス回路214に結合される。さらに、メモリセルのアレイ212は第2の複数個の積層メモリ層243を有する第2メモリセル242を含む。第2メモリセル242は第3スイッチ224を介して信号発生器210に結合され、第4スイッチ234を介してセンス回路214に結合される。さらに、メモリセルのアレイ212は第n複数個の積層メモリ層245を有する第nメモリセル244を含む。第nメモリセル244は第5スイッチ226を介して信号発生器210に結合され、第6スイッチ236を介してセンス回路214に結合される。特定の実施例では、第1、第3、及び第5スイッチ、222、224、226を含む複数個の第1スイッチ220の各々は、第1線路228を介して制御器208により選択的に印加される制御信号を介して独立に作動されてもよい。さらに、第2、第4、及び第6スイッチ、232、234、236を含む複数個の第2スイッチ230の各々は、第2線路238を介して制御器208により選択的に印加される制御信号を介して独立に作動されてもよい。
特定の実施例では、システム204はソフトウェア・アプリケーションを実行し、記憶装置202と通信してメモリセルのアレイ212に記憶したデータをアクセスする。制御器208はインターフェース206を介してメモリアクセス要求を受け取り、複数個の第1スイッチ220の内の少なくとも1つと複数個の第2スイッチ230の内の1つを選択的に作動させて、第1メモリセル240のような特定のメモリセルを、信号発生器210とセンス回路214に選択的に結合する。制御器208は線路216を介して信号発生器210を制御して選択した信号を選択したメモリセルに印加する。センス回路214は受信した信号(I_read)を基に、選択したメモリセルと関係するトンネル抵抗値を検出する。さらに、センス回路214は検出したトンネル抵抗値を基に第1メモリセル240に記憶されたデータ値を決定するようにされている。センス回路214は制御器208に決定したデータ値を与えることが可能であり、この制御器は決定されたデータ値と関係するデータをインターフェース206を介してホストシステム204に通信する。特定の例では、決定されたデータ値は暗号化され、制御器208はホストシステム204に与える前にデータ値を復号する。他の特定の例では、決定されたデータ値はホストシステム204に直接与えられる。
図3Aは複数の積層メモリ層を含む、メモリセルの非対称メモリ配置300の特定の説明的実施例のブロック線図である。メモリ配置300は第1電極層(M1)302、強誘電(FE)材料から形成されたメモリ層304、及び第2電極層(M2)306を含む。第1電極層(M1)302と第2電極層(M2)306は異なるスクリーニング距離(コンダクタンス)を有する。この例では、メモリ層304は、2つの抵抗状態(上向きまたは下向き分極方向)または3つの抵抗状態(上向き、下向き、または常誘電分極方向)を供給してもよく、これをデータを表現するために使用してもよい。
図3Bは、図3Aに図示したメモリ層304に記憶された特定のデータ値の、電圧対電流の説明的な実施例のグラフ320である。グラフ320は第1線322と第2線332を含み、これはメモリ配置300と関係する異なる抵抗状態に対応する。特定の読出し電圧(V)に対して、各状態は324と334の異なる読出し電流に対応する。この特定の例では、第1線322と第2線332により図示された異なる抵抗状態はメモリ層304により担持された異なる分極方向に関係する。特定の例では、第1電極層302は図3Aに図示した第2電極層306より高ドーピング濃度を有する。特定の実施例では、第1電極層302と第2電極層306は、その各々の電導度を制御するため選択されたドーピング濃度を有する半導体材料から形成される。メモリ層304が上向き方向の分極方向を担持する場合、印加した読取り電圧(V)は324で指示した電流レベルを発生する。対照的に、メモリ層304が下向き方向の分極方向を有する場合、印加した読取り電圧(V)は334で指示した電流レベルを発生する。グラフ320はまた、メモリ層304の分極方向が変化する臨界電圧(V)と負の臨界電圧(−V)も含む。
図4Aは、複数の積層メモリ層を含む、メモリセルの対称メモリ配置400の第2の特定の説明的実施例のブロック線図である。メモリ配置400は第1電極層(M1)402と、強誘電(FE)材料から形成したメモリ層404と、第2電極層(M1)406とを含む。この例では、メモリ層404を使用して2つの抵抗状態(上向き/下向き分極方向または常誘電方向)を与える。この例では、第1電極層(M1)402と第2電極層(M1)406は実質的に等しいスクリーニング長(コンダクタンス)を有する。メモリ配置400は対称であるため、上向きまたは下向き分極は実質的に等しいトンネル抵抗値を発生し、一方常誘電方向は実質的に異なるトンネル抵抗値を有するであろう。
図4Bは図4Aに図示したメモリ層404に記憶した特定のデータ値の電圧対電流の説明的実施例のグラフ420である。グラフ420は第1線422と第2線432とを含み、これはメモリ配置400に関係する異なる抵抗状態に対応する。特定の読出し電圧(V)に対して、各状態は424と434の異なる読出し電流に対応する。この特定の例では、第1線422と第2線432により図示された異なる抵抗状態は、上または下向き分極方向、または常誘電(非分極)方向に各々対応する。グラフ420はまた、メモリ層404の分極方向が変化する臨界電圧(V)と負の臨界電圧(−V)も含む。
図5Aは、複数の積層メモリ層を含む、メモリセルのメモリ配置500の第3の特定の説明的実施例のブロック線図である。メモリ配置500は、第1電極層(M1)502と、強誘電(FE)材料から形成したメモリ層504と、第2電極層(M2)506とを含む。この例では、第1電極層(M1)502と第2電極層(M2)506は異なるスクリーニング距離(コンダクタンス)を有する。第1及び第2電極層、502と506が異なるコンダクタンスを有するため、メモリ配置500を使用して、メモリ層504により担持される電場の方向に対して3つまでの抵抗状態(上向き、下向き、または常誘電分極方向)を提供してもよい。
図5Bは、図5Aに図示したメモリ層504に記憶した特定のデータ値の電圧対電流の説明的実施例のグラフ520である。グラフ520は第1線522、第2線532、及び第3線534を含み、これはメモリ配置500に関係する分極方向と関連する異なる抵抗状態に対応する。特定の読出し電圧(V)に対して、各分極方向状態は524、534、及び534の異なる読出し電流に対応する。この特定の例では、第1線522、第2線532、および第3線542により図示された異なる抵抗状態は、メモリ層504により担持された異なる分極方向と関係するトンネル抵抗値に対応する傾きを有する。
特定の例では、第1電極層502は図5Aに図示した第2電極層506より高いドーピング濃度を有する。メモリ層504が上向き方向の分極方向を担持している場合、印加した読取り電圧(V)は524で指示した電流レベルを発生する。これと対照的に、メモリ層504が下向き方向の分極方向を有している場合、印加した読取り電圧(V)は534で指示した電流レベルを発生する。メモリ層504が常誘電分極方向を担持している場合、印加した読取り電圧(V)は544で指示した電圧レベルを発生する。グラフ520はまた、メモリ層504の分極方向が変化する臨界電圧(V)と負の臨界電圧(−V)も含む。
一般に、図3A、4A及び5Aに図示した電極層は導電体またはドープした半導体材料から形成してもよいことを理解すべきである。異なる電極材料から電極を作製することにより、2つの異なる電極/メモリ層インターフェースが形成され、これは分極方向を基にした異なるトンネル抵抗値を有する。
特定の実施例では、図3A、4A、及び5Aに図示したメモリセル300、400、500は、強誘電層を成長させるために使用可能なストロンチウム3酸化2ルテニウム(SrRu)のような、底部電極材を堆積することにより半導体基板上に形成してもよい。他の特定の実施例では、絶縁層を強誘電メモリ層と電極の1つとの間に堆積して非対称メモリセルを形成することも可能である。
図6Aは、非対称メモリ配置を含む複数の積層メモリ配置を含む、メモリセルのメモリ配置600の第4の特定実施例のブロック線図である。メモリ配置600は第1外部電極602と第2外部電極604とを含む。メモリ配置600はまた第1外部電極602に結合した第1内部電極606と、第2外部電極604に結合した第2内部電極610と、第1及び第2内部電極、606と610の間に挟まれたメモリ層608とを含む。
特定の説明的実施例では、メモリ配置600が双安定接合(すなわち、第1状態の上向きまたは下向き分極、または第2状態の常誘電分極)を有するように、第1内部電極606と第2内部電極610は同じ材料と同じ組成から形成される。他の特定の実施例では、メモリ配置600が、3つの異なるトンネル抵抗値に応じて3つの異なる記憶値を表現するようにされた、三安定接合(すなわち、上向き分極方向、下向き分極方向、または常誘電(非分極)分極方向)を有するように、第1内部電極606と第2内部電極610は異なる材料から、または同じ材料ではあるが異なる組成から形成される。
図6Bは複数の積層メモリ層を含む、メモリセル内のメモリ配置600の第5の特定実施例のブロック線図である。メモリ配置600は第1外部電極602と第2外部電極604とを含む。メモリ配置600はまた、第1外部電極602に結合した第1内部電極604と、第2外部電極604に結合した第2内部電極610と、第2電極610に結合した絶縁層622とを含む。メモリ配置600はさらに第1内部電極606と絶縁層622との間に挟まれているメモリ層608を含む。
特定の実施例では、第1及び第2内部電極、606と610は同じ材料から形成されてもよく、絶縁層622の存在がメモリ層604を非対称メモリセルにする。絶縁層622は第2内部電極610をメモリ層608から分離し、メモリ配置600上のトンネル抵抗値を増大する。特定の実施例では、絶縁層622は電気的絶縁材から形成してもよい。
一般にメモリセルは、図示したメモリ層304、404、504、及び604や、図3A−6Aに関して記載したように複数の積層メモリ層を含み、複数のデータ値を記憶する。特定の実施例では、メモリ装置は複数のメモリセルを含み、各メモリセルは複数の積層メモリ層を含む。複数のメモリセルが実質的に同時に読み書きされるように、データはメモリ装置からデータブロックで読み書きされる。
図7Aは複数の積層メモリ層を含むメモリセル700の特定の説明的実施例のブロック線図である。メモリセル700は、信号発生器(図2に図示した信号発生器210のような)に結合されて印加信号を受け取る第1外部電極702と第2外部電極704とを含む。複数の積層メモリ層は、第1及び第2外部電極、702と704との間に挟まれた第1メモリ層706と、第2メモリ層708と、第2メモリ層710と、第4メモリ層712とを含む。
特定の実施例では、メモリ層706、708、710、712の各々が、全メモリセル700のトンネル抵抗値を基に、特定のメモリ層の記憶した値を決定するために、検出が可能である固有のトンネル抵抗値を有するように、メモリ層706、708、710、712は固有の構成を有する。
図7Bは絶縁層により分離された複数の積層メモリ層を含むメモリセル720の第2の特定の説明的実施例のブロック線図である。メモリセル720は、信号発生器に結合されて印加信号を受け取る、第1外部電極702と第2外部電極704とを含む。複数の積層メモリ層は、第1及び第2外部電極、702と704との間に挟まれた、第1メモリ層706と、第1絶縁層722と、第2メモリ層708と、第2絶縁層724と、第3メモリ層710と、第3絶縁層726と、第4メモリ層712とを含む。
特定の実施例では、第1、第2、及び第3絶縁層、722、724、726は異なる材料から形成されてもよく、異なるドーピング濃度を有してもよく、異なる厚さを有してもよく、またはその任意の組合せでもよい。この例では、第1、第2、第3、及び第4メモリ層、706、708、710、712が同じ材料から形成される場合、第1、第2、及び第3絶縁層、722、724、726を使用して固有のトンネル抵抗値を定義可能であり、これを使用して、全メモリセル720のトンネル抵抗値を基に第2メモリ層708に記憶したデータ値のような、特定メモリ配置に記憶したデータ値を決定できる。
図7Cは複数の積層メモリ層を含むメモリセル750の第3の特定の説明的実施例のブロック線図である。メモリセル750は、信号発生器に結合されて印加信号を受け取る第1外部電極702と第2外部電極704とを含む。複数の積層メモリ層は、第1および第2外部電極、702と704との間に挟まれた、第1メモリ層706と、第1内部電極層752と、第2メモリ層708と、第2内部電極層754と、第3メモリ層710と、第3内部電極層756と、第4メモリ層712とを含む。
特定の実施例では、第1、第2、及び第3内部電極、752、754、756は異なる材料から形成されてもよく、異なるドーピング濃度を有してもよく、異なる厚さを有してもよく、またはその任意の組合せでもよい。この例では、第1、第2、第3、及び第4メモリ層、706、708、710、712が同じ材料から形成されている場合、第1、第2、及び第3内部電極層、752、754、756を使用して固有のトンネル抵抗値を定義可能であり、これを使用して、全メモリセル750のトンネル抵抗値を基に第2メモリ層708に記憶したデータ値のような、特定のメモリ配置に記憶したデータ値を決定できる。
特定の例では、第1及び第2外部電極、702と704と、第1、第2、及び第3内部電極、752、754、756は導電体または半導体が可能である。第1、第2、第3内部電極、752、754、756を形成するために使用した特定の材料を選択してメモリ層706、708、710及び712間で連続したエピタキシャル成長が可能である。このようなエピタキシャル成長は、例えば、第1と第2メモリ層、706と708、第2と第3メモリ層、708と710、及び第3と第4メモリ層、710と712のような、隣接するメモリ層の抵抗値の変化を強化するよう制御してもよい。さらに、第1、第2、及び第3内部電極、752、754、756を形成するために使用する特定の材料が、連続エピタキシャル成長を可能にして後続の層の特性を変化させ、分極方向の変化による抵抗値の変化を調節し、各層の臨界電圧(V)を調節する。臨界電圧(V)は特定の層がそのトンネル抵抗値を変化させる電圧である。
特定の実施例では、第1、第2、第3、及び第4メモリ層、706、708、710、712と第1、第2、及び第3内部電極、752、754、756との間のインターフェースは、トンネル抵抗値の3倍までその抵抗値が変化する。この差は、異なる内部電極を使用することにより、または第1メモリ層706のようなメモリ層の一端と、第1内部電極752のような隣接する電極との間に非強誘電酸化物を挿入することにより利用できる。第1、第2、及び第3内部電極、752、754、756を含むこのような内部電極は、ショットキー熱イオン放出、プール・フレンケル電導、ファウラー・ノードハイム・トンネリング、その他の輸送機構、またはその任意の組合せを含む競合する輸送機構がある場合には、全メモリ要素スタックを電子がトンネル通過する必要がある代わりに、一連の薄いメモリ層の一連のトンネル事象を介した電導を可能とする。
特定の実施例では、メモリセル750は複数個のメモリ層、706、708、710、712と関係している複数個の電極層、702、704、752、754、756を含み、各メモリ層、706、708、710、712は複数個の電極層、752、754、756の電極層により隣接するメモリ層から分離されている。特定の例では、複数個の電極層、702、704、752、754、756は対称または非対称でもよい。
図8は挿入図に図示したメモリセル850の伝達曲線(ボルトで表わした素子電圧対オームで表わした抵抗値)の特定の説明的実施例のグラフ800である。メモリセル850は4つの積層メモリ層(A、B、C、D)、852、854、856、858を含み、これは電極862、864、866により分離される。図解のため、メモリ層(A)852の臨界電圧(Vc)(すなわちVc_A)は、メモリ層(A)852をその分極方向右(−Vc_A)または左(+Vc_A)にスイッチさせるために印加することが必要な臨界電圧であるものとする。一般に、正及び負のスイッチング電圧は同じ大きさを有し、かつ第1メモリ層(A)852の臨界電圧(Vc_A)の大きさは第2メモリ層(B)854の臨界電圧(Vc_B)より大きく、またこの臨界電圧(Vc_B)は第3メモリ層(C)856の臨界電圧(Vc_C)より大きく、またこの臨界電圧(Vc_C)は第4メモリ層(D)858の臨界電圧(Vc_D)より大きいものとする(すなわち、Vc_A>Vc_B>Vc_C>Vc_D)。第1メモリ層(A)852の抵抗の変化(ΔR)(ΔR_A)は、第1メモリ層(A)852がその分極方向を右向きから左向きへ変化させた時を表す。第1メモリ層(A)852の抵抗の変化(ΔR_A)は第2メモリ層(B)854の抵抗の変化(ΔR_B)より大きく、この抵抗の変化(ΔR_B)は第3メモリ層(C)856の抵抗の変化(ΔR_C)より大きく、この抵抗の変化(ΔR_C)は第4メモリ層(D)858の抵抗の変化(ΔR_D)より大きいものとする(すなわち、ΔR_A>ΔR_B>ΔR_C>ΔR_D)。さらに、810に示すように、メモリ層は左向きの時にその高抵抗状態であるものとする。さらに、メモリ層852、854、856、858を非分極化することにより、各接合部の第3抵抗状態が追加可能である。
図8を再び参照して、伝達曲線全体を通してメモリセル850に以下の説明を与える。大きな負電圧(−V>Vc_A)を印加することにより、802に示すように全てのメモリ層852、854、856、858の分極方向は右向きとなる。これはメモリセル850の最低の抵抗値状態(R1)であるものとする。この抵抗値状態(R1)のレベルはメモリ層852、854、856、858を形成するために使用した材料のタイプにより、また内部電極層862、864、866を形成するために使用した材料により決定される。印加した電圧がゼロボルトまで減少した場合、メモリセル850は802に図示した抵抗値状態(R1)を有し、メモリセル850は安定な抵抗値状態に留まる。
印加電圧(Vapplied)がメモリ層856と関連する臨界電圧(Vc_C)より低く、メモリ層858と関連する臨界電圧(Vc_D)より大きい場合、メモリ層(D)858の分極方向は左向きに変化するが、残りの層はその方向を維持する。メモリ層(D)858の分極の変化は、メモリセル850のトンネル抵抗値をR1から、804に指示したR2に増加する(すなわち、R2=R1+ΔR_D)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は804で一般的に指示した抵抗値(R2)を有し、これは安定な抵抗状態である。
印加電圧(Vapplied)がメモリ層(B)854と関連する臨界電圧(Vc_B)より低く、メモリ層(C)856と関連する臨界電圧(Vc_C)より大きい場合、メモリ層(C)856の分極方向は左向きに変化するが、残りの層はその方向を維持する。メモリ層(C)856の分極の変化は、メモリセル850のトンネル抵抗値をR2から、806に指示したR3に増加する(すなわち、R3=R1+ΔR_D+ΔR_C)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は806で一般的に指示した抵抗値(R3)を有し、これは安定な抵抗状態である。
印加電圧(Vapplied)がメモリ層(A)852と関連する臨界電圧(Vc_A)より低く、メモリ層(B)854と関連する臨界電圧(Vc_B)より大きい場合、メモリ層(B)854の分極方向は左向きに変化するが、残りの層はその方向を維持する。メモリ層(B)854の分極の変化は、メモリセル850のトンネル抵抗値をR3から、808に指示したR5に増加する(すなわち、R5=R1+ΔR_D+ΔR_C+ΔR_B)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は808で一般的に指示した抵抗値(R5)を有し、これは安定な抵抗状態である。
印加電圧(Vapplied)がメモリ層(A)852と関連する臨界電圧(Vc_A)より大きい場合、メモリ層(A)852の分極方向は左向きに変化するが、残りの層はその方向を維持する。メモリ層(A)852の分極の変化は、メモリセル850のトンネル抵抗値をR5から、810に指示したR8に増加する(すなわち、R8=R1+ΔR_D+ΔR_C+ΔE_B+ΔR_A)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は810で一般的に指示した抵抗値(R8)を有し、これは安定な抵抗状態である。全てのメモリ層852、854、856、858の左への分極はメモリセル850の最高の抵抗値状態を表し、グラフ800に図示した伝達曲線の右側部分を完了する。
負の印加電圧(−Vapplied)の大きさがメモリ層(C)856の臨界電圧(Vc_C)より低く、メモリ層(D)858の臨界電圧(Vc_D)より大きい場合、メモリ層(D)858の分極方向は右向きに変化するが、残りの層はその方向を維持する。メモリ層(D)858の分極の変化は、メモリセル850のトンネル抵抗値をR8から、822に指示したR7に減少する(すなわち、R7=R8―ΔR_D)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は822で一般的に指示した抵抗値(R7)を有し、これは安定な抵抗状態である。
負の印加電圧(−Vapplied)の大きさがメモリ層(B)854の臨界電圧(Vc_B)より低く、メモリ層(C)856の臨界電圧(Vc_C)より大きい場合、メモリ層(C)856の分極方向は右向きに変化するが、残りの層はその方向を維持する。メモリ層(C)856の分極の変化は、メモリセル850のトンネル抵抗値をR7から、824に指示したR6に減少する(すなわち、R6=R8―ΔR_D―ΔR_C)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は824で一般的に指示した抵抗値(R6)を有し、これは安定な抵抗状態である。
負の印加電圧(−Vapplied)の大きさがメモリ層(A)852の臨界電圧(Vc_A)より低く、メモリ層(B)854の臨界電圧(Vc_B)より大きい場合、メモリ層(B)854の分極方向は右向きに変化するが、残りの層はその方向を維持する。メモリ層(B)854の分極の変化は、メモリセル850のトンネル抵抗値をR6から、826に指示したR4に減少する(すなわち、R4=R8―ΔR_D―ΔR_C−ΔR_B)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は826で一般的に指示した抵抗値(R4)を有し、これは安定な抵抗状態である。
負の印加電圧(−Vapplied)の大きさがメモリ層(A)852の臨界電圧(Vc_A)より大きい場合、メモリ層(A)852の分極方向は右向きに変化するが、残りの層はその方向を維持する。メモリ層(A)852の分極の変化は、メモリセル850のトンネル抵抗値をR4から、802に指示したR1に減少する(すなわち、R1=R8―ΔR_D―ΔR_C−ΔR_B―ΔR_A)。印加電圧(Vapplied)がゼロボルトに復帰した場合、メモリセル850は802で一般的に指示した抵抗値(R1)を有し、これは安定な抵抗状態である。この状態では、全てのメモリ層852、854、856、858の分極方向は右向きとなり、これはメモリセル850の最低の抵抗値状態であり、伝達曲線の左側が完結する。
一般に、上記説明は2N状態を識別し、ここでNはメモリセル層(すなわち852、854、856、858)の数を表す。2N状態(すなわち、2Nトンネル抵抗値レベル)を達成するためには、メモリ層抵抗値を適切に選択して縮退状態を与えないようにする。特定の例では、書込みの前に予備読取り動作を実行してもよい。他の特定の例では、データのブロックが同時に書き込み可能である。この例では、メモリ層に記憶された値(すなわち分極方向)は、書込み電圧が印加される前にリセットされてもよい。このようなリセット操作は、大きな正のまたは負の電圧を印加して各メモリ層852、854、856、858を特定方向に分極化する段階を含んでもよい。この例では、メモリ層856のような単一のメモリ層の分極方向を変更するため書込み電圧は単一の電圧値が可能であるが、他のメモリ層852、854、858の状態は保持される。他の特定の例では、予備読取り操作を実行してメモリセル850の状態を決定し、例えば、メモリセル850の選択したメモリ層の分極方向を変更することにより、所要の状態に到達するため連続して1つ以上の選択した電圧を印加してもよい。
小ループが可能な場合、またはFEの非分極が可能な場合(すなわち、常誘電または非分極状態が可能な場合)、追加の状態が達成可能であることを理解すべきである。特定の説明的な例では、以下の電圧シーケンスをメモリセル850に印加した場合、図8に図示し上記例で記述した8状態に追加されるメモリセル850のメモリ状態を発生する。例えば、メモリ層(A)852の臨界電圧(Vc_A)より大きい第1印加電圧(Vapplied)をメモリセル850に印加し、メモリ層(A)852の方向を変化させる。メモリ層(A)852の臨界電圧より小さく、メモリ層(B)854の臨界電圧より大きい大きさを有する、負電圧(―Vapplied)である第2印加電圧をメモリセル850に印加して(すなわち、Vc_A>―Vapplied>Vc_B)、メモリ層(B)854の分極方向を変化させる。メモリ層(D)858の臨界電圧(Vc_D)より大きい第3印加電圧を印加し、メモリ層(D)858の分極方向を変化させる。この例では、メモリセル850の生成状態は抵抗値R4とR5の間に該当するトンネル抵抗値を有する。
一般に、与えられたメモリ層数に対して達成可能な状態の数は抵抗値の変化(ΔR)の制御性に依存し得る。十分な数の非縮退抵抗値状態が達成可能であり、印加電圧を制御して複数の異なる電圧パルスを与える場合、X抵抗レベルのような大きな数のトンネル抵抗値レベルが達成可能であり、ここでNはメモリセルのメモリ層の数を表す。この例では、メモリ層当たり2つのみの異なる抵抗値状態が達成可能である場合、変数(X)は2であり、3つの異なる抵抗値状態が達成可能である場合変数(X)は3に等しい。例えば、各分極方向と常誘電または非分極状態の異なる抵抗状態に到達する時、変数(X)は3に等しい。
特定の例では、全体で8ビット(2=256状態)が8層を有する単一のメモリセルに記憶可能であり、ここで高抵抗状態は「1」値に対応し、低抵抗状態は「0」値に対応する。特に複雑な状態は「01010101」で表わされるかもしれないが、ここで最左のゼロはメモリ層(A)852のような第1メモリ層に記憶され、最右「1」はメモリ層「H」(図示せず)に記憶される。この例では、特定のメモリセルのメモリ層A−Hの臨界電圧は以下のようになる。
Vc_A>Vc_B>Vc_C>Vc_D>Vc_E>Vc_F>Vc_G>Vc_H以下の順序で選択した電圧レベルの8つの印加電圧を印加することにより、8メモリ層を有するメモリセルにこの特定の状態を書込み可能である。
1.−Vapplied>Vc_A
2.Vc_B<Vapplied<Vc_A
3.Vc_C<―Vapplied<Vc_B
4.Vc_D<Vapplied<Vc_C
5.Vc_E<―Vapplied<Vc_D
6.Vc_F<Vapplied<Vc_E
7.Vc_G<―Vapplied<Vc_F
8.Vapplied>Vc_H
8メモリ層を有するこれと同じ説明的なメモリセルを使用し、常誘電または非分極状態を使用することにより、利用可能な抵抗状態は3=6561メモリ状態まで増加可能である。
さらに、各分極方向の複数分極状態が達成可能である場合、追加の状態に到達可能である。例えば、分極のレベルや部分分極が達成可能であり、かつ安定状態として保持可能である場合、5つの分極状態(上向き分極、部分上向き分極、常誘電、部分下向き分極、下向き分極)が各分極方向に可能となり、5の可能なメモリ状態を生成する。ここでNはメモリ層の数を表す。
一般に、メモリセルの各メモリ層の臨界電圧は、メモリ層の材料、メモリ層の組成、メモリ層の厚さ、隣接する材料と関係する材料特性のようなパラメータにより制御可能である。さらに、臨界電圧は、内部電極の材料、絶縁層の材料、またはその任意の組合せのような、内部層材料の厚さとタイプにより制御可能である。
一般に、図8に図示したメモリセル850と図1−7に関連して記載したメモリセルは主に強誘電(FE)メモリ層材料を考慮して説明してきた。しかしながら、相変化材料、抵抗性酸化物材料、電荷捕獲材料、その他の材料、またはその任意の組合せを含むその他のタイプの材料を使用してメモリ層を形成してもよい。さらに、検出可能で固有なトンネル抵抗値を提供するように、中間電荷捕獲状態を生成する電荷捕獲材料のような材料に「非分極化」方式を用いてもよい。
さらに、上記説明は主に固体素子型式のメモリ装置に向けられた。しかしながら、回転またはプローブ型式の記憶装置でも複数状態メモリセルは使用可能であり、この場合記録は読取り/書込みヘッドの接触または擬似接触を使用して実行されるが、あるいは読取り/書込みヘッドと記憶媒体との間に電導媒体を含む記憶装置で使用してもよい。回転またはプローブの両方の場合での記憶媒体は連続とすることもパターン化することも可能である。
図9は複数の積層メモリ層を含むメモリセル内のメモリ配置に記憶したデータをアクセスする方法の特定の説明的実施例の流れ図である。902で、複数個の積層メモリ層を含むメモリセルが提供され、ここで複数個の積層メモリ層の各メモリ層は第1電導度を有する第1電極と第2電導度を有する第2電極とに関係する。メモリ層はデータ値を表す分極方向を保持するようにされる。特定の実施例では、メモリ層は強誘電、相変化、電荷捕獲、またはその他の非磁気材料である。特定の実施例では、複数個の積層メモリ層の各メモリ層は独立した分極方向状態を有し、これは、選択した電圧範囲内にある固有の印加電圧の印加を介して変更される。他の特定の実施例では、複数個の積層メモリ層の各々は第2電極と非磁気メモリ層との間に配置された絶縁層と関係する。さらに他の特定の実施例では、複数個の積層メモリ層は第1の厚さの第1メモリ層を含み、また第2の厚さの第2メモリ層を含む。第1及び第2メモリ層は異なるトンネル抵抗値を有する。
904に進むと、読取り信号がメモリセルに印加される。続いて、906では、複数個の積層メモリ層の選択したメモリ配置に記憶したディジタル値が、読取り信号に応答して複数個の積層メモリ層のトンネル抵抗値を基に決定される。この方法は908で終了する。
特定の例では、複数個の積層メモリ層のメモリ層は、第1分極状態、第2分極状態、または常誘電または非分極状態を表す分極方向を有し、第1分極状態、第2分極状態、及び常誘電状態は異なるデータ値を表す異なるトンネル抵抗値を有する。
他の特定の例では、本方法はさらに、特定のメモリ配置を含む複数個の積層メモリ層の内の少なくとも1つに書込み信号を印加する段階を含む。書込み信号は少なくとも1つのメモリ層と関係するトンネル抵抗値を変更する。さらに他の特定の実施例では、複数個の積層メモリ層は各複数個の内部電極、絶縁層、またはその任意の組合せを含む。
図10は異なるヒステリシス特性の複数の積層メモリ層を含むメモリセルを製造する方法の特定の説明的実施例の流れ図である。1002で、第1外部電極が基板上に堆積される。特定の例では、第1外部電極は基板上に形成したトレンチ内に堆積してもよい。1004になると、第1外部電極層上にメモリ層が堆積され、ここでメモリ層は選択されたヒステリシス特性を有する。特定の例では、ヒステリシス特性は、メモリ層が2つ以上の状態で電場を担持することを可能とする強誘電特性を含む。続いて1006では、本方法は所要数のメモリ層を堆積したかどうかを決定する段階を含む。そうでない場合、本方法は1008に進んで、内部電極層、絶縁層、またはその任意の組合せが堆積されたメモリ層上にオプションとして堆積される。1010に進むと、選択したヒステリシス特性を有する他のメモリ層がその前のメモリ層、電極層、または絶縁層の内の1つの上に堆積される。本方法は1006に戻って所要数のメモリ層を堆積したかどうか決定する。
1006に戻って、所要数のメモリ層を堆積した場合、本方法は1012に続いて第2外部電極が最後のメモリ層上に堆積される。第1及び第2外部電極は、制御回路のような外部回路に結合するための接合パッドを含む、またはこれに結合される。本方法は1014で終了する。
特定の例では、本方法は、異なる組成、異なるドーピング濃度、異なる厚さ、またはその任意の組合せを有してもよい複数のメモリ層を堆積する段階を含む。特定の例では、メモリ層は対称的に堆積されてもよく、堆積された内部電極層または内部絶縁層が非対称的に堆積されて各メモリ層に固有のトンネル抵抗値を与える。特定の例では、各電極層が他の電極層に対して固有の電導度を有するように、内部電極層は異なるドーピング濃度を有する半導体材料から形成されてもよい。
図10に関して概観した本方法は、マスク層を適用し、所要のプロファイルまで光リソグラフィー・プロセスを実行し、またはメモリ層のスタックをエッチングする段階を含む光リソグラフィー段階のような、別の段階を含んでもよい。その他の段階もまた含んでもよい。しかしながら、そのような段階は公知であり、説明を簡略化するためにここでは省略する。
一般に、上記説明はメモリのスタック内のメモリ層にデータ値を読み書きすることに焦点を当ててきたが、全体の概念はデータのブロックに拡張可能であることを理解すべきである。特に、メモリセルのバンクを実質的に同時にアクセスしてメモリ装置にデータのブロックを読み書きしてもよい。
望ましい実施例を参照して本発明を記載してきたが、当業者は本発明の要旨と範囲から逸脱することなく形式と詳細に変更を加えてもよいことを認識するであろう。
100 記憶装置
102 制御器
104 信号発生器
106 メモリセル
108 第1スイッチ
110 第2スイッチ
112 センス回路
122、124 外部電極
130、132、134、136 メモリ層

Claims (25)

  1. 記憶装置において、
    制御器と、
    該制御器を介してアクセス可能な複数個の抵抗性基本メモリセルであって、前記複数個の抵抗性基本メモリセルの各抵抗性基本メモリセルは、複数のデータ値を記憶するためヒステリシス特性を有するよう選択された複数個のメモリ層を含む、前記複数個の抵抗性基本メモリセルと、
    を含む記憶装置。
  2. 請求項1記載の記憶装置において、前記複数個の抵抗性基本メモリセルの第1抵抗性基本メモリセルは、
    第1ヒステリシス特性を有する第1メモリ層と、
    第2ヒステリシス特性を有する第2メモリ層と、
    を含む、記憶装置。
  3. 請求項1記載の記憶装置において、前記複数個のメモリ層と関係する複数個の電極層をさらに含み、前記複数個のメモリ層の各メモリ層は前記複数個の電極層の内の電極層により、隣接するメモリ層から分離されている、記憶装置。
  4. 請求項3記載の記憶装置において、前記複数個の電極層は対称電極層を含む、記憶装置。
  5. 請求項3記載の記憶装置において、前記複数個の電極層は非対称電極層を含む、記憶装置。
  6. 請求項1記載の記憶装置において、前記複数個の抵抗性基本メモリセルの選択された抵抗性基本メモリセルは、固有のトンネル抵抗値により表現される複数のデータ値を記憶する、記憶装置。
  7. 請求項6記載の記憶装置において、前記制御器は選択した抵抗性基本メモリセルに固有の書込み信号を印加して前記固有のトンネル抵抗値を変化させ、異なるデータ値を表現するようにされている、記憶装置。
  8. 請求項1記載の記憶装置において、前記複数個のメモリ層は非磁気メモリ層を含む、記憶装置。
  9. 請求項1記載の記憶装置において、前記複数個のメモリ層は自発分極特性を含むヒステリシス特性を有するよう選択された、記憶装置。
  10. メモリ装置において、
    第1電極と、
    第2電極と、
    複数のデータ値を記憶する前記第1電極と第2電極との間の複数個のメモリ層であって、該複数個のメモリ層の各メモリ層は複数のデータ値のデータ値を記憶するためヒステリシス特性を有する、前記複数個のメモリ層と、
    前記第1及び第2電極の少なくとも一方を介して前記複数個のメモリ層に結合された制御器であって、複数のデータ値を変更することなく前記複数のメモリ層から複数のデータ値を読取る前記制御器と、
    を含む、メモリ装置。
  11. 請求項10記載のメモリ装置において、前記複数個のメモリ層は固有のデータ値を表現する電子電荷分布を誘起する独立した分極電場を担持するようにされた強誘電層を含む、メモリ装置。
  12. 請求項10記載のメモリ装置において、前記複数個のメモリ層は固有のデータ値を表現するよう独立して構成可能なヒステリシス特性を有する相変化媒体層を含む、メモリ装置。
  13. 請求項10記載のメモリ装置において、前記複数個のメモリ層は電気電荷を捕獲する電荷捕獲層を含み、該電荷捕獲層は固有のデータ値を表現する電子電荷分布を誘起するよう構成可能である、メモリ装置。
  14. 請求項10記載のメモリ装置において、前記複数のデータ値は前記複数個のメモリ層の固有のトンネル抵抗値により表現される、メモリ装置。
  15. 請求項10記載のメモリ装置において、前記複数のメモリ層に対応する複数の内部電極をさらに含み、前記複数のメモリ層の隣接するメモリ層は前記複数の内部電極の1つの内部電極により分離される、メモリ装置。
  16. 請求項15記載のメモリ装置において、前記複数の内部電極に対応する複数の絶縁層をさらに含み、前記複数の絶縁層の1つの絶縁層は前記隣接するメモリ層の1つのメモリ層から前記内部電極を分離する、メモリ装置。
  17. メモリ装置において、
    複数個の抵抗性メモリセルであって、各抵抗性メモリセルは複数のデータ値を記憶する複数の積層メモリ層を含み、該複数の積層メモリ層の各メモリ層は固有のデータ値を表現するため構成可能な固有のヒステリシス特性を有する前記抵抗性メモリセルと、
    前記複数個の抵抗性メモリセルへのアクセスを有する制御器であって、前記複数個の抵抗性メモリセルの内の1つの抵抗性メモリセルを選択するようにされ、該選択した抵抗性メモリセルの選択した1つのメモリ層からデータを読み書きする前記制御器と、
    を含む、メモリ装置。
  18. 請求項17記載のメモリ装置において、前記制御器は、前記選択したメモリ層と関係する選択した電圧レベルの電圧を印加することにより、前記選択したメモリ層のヒステリシス特性を構成するようにされている、メモリ装置。
  19. 請求項17記載のメモリ装置において、前記複数の積層メモリ層に隣接するメモリ層を分離する複数個の内部電極をさらに含む、メモリ装置。
  20. 請求項17記載のメモリ装置において、前記複数個の内部電極は半導体材料から形成される、メモリ装置。
  21. 請求項20記載のメモリ装置において、前記複数個の内部電極の第1内部電極の第1ドーピング濃度は前記複数個の内部電極の第2内部電極の第2ドーピング濃度とは異なる、メモリ装置。
  22. 請求項20記載のメモリ装置において、前記複数個の内部電極の各々の内部電極は前記選択した抵抗性メモリセル内で固有のコンダクタンスを有する、メモリ装置。
  23. 請求項20記載のメモリ装置において、前記複数個の内部電極は導電性金属を含む、メモリ装置。
  24. 請求項20記載のメモリ装置において、複数個の絶縁層をさらに含み、該複数個の絶縁層の各絶縁層は前記複数個の内部電極の各内部電極と関係している、メモリ装置。
  25. 請求項24記載のメモリ装置において、前記複数個の絶縁層の絶縁層は異なる絶縁特性を有し、前記複数個の内部電極の内部電極は異なる電気特性を有する、メモリ装置。
JP2009106010A 2008-04-25 2009-04-24 複数メモリ層を有するメモリセルを含む記憶装置 Active JP5429738B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/110,099 US8098520B2 (en) 2008-04-25 2008-04-25 Storage device including a memory cell having multiple memory layers
US12/110,099 2008-04-25

Publications (2)

Publication Number Publication Date
JP2009267411A true JP2009267411A (ja) 2009-11-12
JP5429738B2 JP5429738B2 (ja) 2014-02-26

Family

ID=41214868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106010A Active JP5429738B2 (ja) 2008-04-25 2009-04-24 複数メモリ層を有するメモリセルを含む記憶装置

Country Status (3)

Country Link
US (1) US8098520B2 (ja)
JP (1) JP5429738B2 (ja)
SG (1) SG156590A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236079A (ja) * 2012-05-07 2013-11-21 Feng-Chia Univ 超薄型多層構造相変化メモリ素子
JP2014502050A (ja) * 2010-12-02 2014-01-23 マイクロン テクノロジー, インク. 不揮発性メモリセルアレイ
US8883604B2 (en) 2010-10-21 2014-11-11 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells and methods of forming a nonvolatile memory cell
US8976566B2 (en) 2010-09-29 2015-03-10 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US9036402B2 (en) 2010-04-22 2015-05-19 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells
US9093368B2 (en) 2011-01-20 2015-07-28 Micron Technology, Inc. Nonvolatile memory cells and arrays of nonvolatile memory cells
US9111788B2 (en) 2008-06-18 2015-08-18 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9117998B2 (en) 2010-11-01 2015-08-25 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cells
US9184385B2 (en) 2011-04-15 2015-11-10 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9257648B2 (en) 2011-02-24 2016-02-09 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9343145B2 (en) 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9406878B2 (en) 2010-11-01 2016-08-02 Micron Technology, Inc. Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
US9412421B2 (en) 2010-06-07 2016-08-09 Micron Technology, Inc. Memory arrays
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9520553B2 (en) 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9530959B2 (en) 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US9577186B2 (en) 2008-05-02 2017-02-21 Micron Technology, Inc. Non-volatile resistive oxide memory cells and methods of forming non-volatile resistive oxide memory cells
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
US10062835B2 (en) 2016-05-13 2018-08-28 Micron Technology, Inc. Magnetic tunnel junctions

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936597B2 (en) * 2008-03-25 2011-05-03 Seagate Technology Llc Multilevel magnetic storage device
US8446761B2 (en) * 2010-12-31 2013-05-21 Grandis, Inc. Method and system for providing multiple logic cells in a single stack
FR2973553B1 (fr) * 2011-03-31 2013-03-29 Thales Sa Procédé de mise en oeuvre d'une jonction tunnel ferroelectrique, dispositif comprenant une jonction tunnel ferroelectrique et utilisation d'un tel dispositif
US8860117B2 (en) 2011-04-28 2014-10-14 Micron Technology, Inc. Semiconductor apparatus with multiple tiers of memory cells with peripheral transistors, and methods
US9236561B2 (en) 2011-09-12 2016-01-12 Samsung Electronics Co., Ltd. Method and system for providing multiple self-aligned logic cells in a single stack
US8964474B2 (en) 2012-06-15 2015-02-24 Micron Technology, Inc. Architecture for 3-D NAND memory
US8890267B2 (en) * 2012-12-03 2014-11-18 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having a graded magnetic free layer
US8995166B2 (en) * 2012-12-20 2015-03-31 Intermolecular, Inc. Multi-level memory array having resistive elements for multi-bit data storage
US9705151B2 (en) * 2014-03-28 2017-07-11 Infineon Technologies Ag Battery, a battery element and a method for forming a battery
US9362300B2 (en) 2014-10-08 2016-06-07 Micron Technology, Inc. Apparatuses and methods for forming multiple decks of memory cells
WO2017023245A1 (en) * 2015-07-31 2017-02-09 Hewlett Packard Enterprise Development Lp Data sensing in crosspoint memory structures
US9679650B1 (en) 2016-05-06 2017-06-13 Micron Technology, Inc. 3D NAND memory Z-decoder
US10074430B2 (en) * 2016-08-08 2018-09-11 Micron Technology, Inc. Multi-deck memory device with access line and data line segregation between decks and method of operation thereof
KR20210001262A (ko) * 2019-06-27 2021-01-06 에스케이하이닉스 주식회사 전자 장치
US11450381B2 (en) 2019-08-21 2022-09-20 Micron Technology, Inc. Multi-deck memory device including buffer circuitry under array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537627A (ja) * 1999-02-17 2002-11-05 インターナショナル・ビジネス・マシーンズ・コーポレーション 情報を保存するマイクロ電子デバイスとその方法
JP2004311512A (ja) * 2003-04-02 2004-11-04 Mitsubishi Electric Corp 多値情報記憶素子、その使用方法およびその製造方法
JP2007184591A (ja) * 2006-01-02 2007-07-19 Samsung Electronics Co Ltd マルチビットセル及び直径が調節できるコンタクトを具備する相変化記憶素子、その製造方法及びそのプログラム方法
WO2009041041A1 (ja) * 2007-09-28 2009-04-02 Panasonic Corporation 不揮発性記憶素子及び不揮発性半導体記憶装置、並びにそれらの読み出し方法及び書き込み方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122661A (ja) 1993-10-27 1995-05-12 Olympus Optical Co Ltd 強誘電体メモリ装置
JPH08180673A (ja) 1994-12-27 1996-07-12 Nec Corp 強誘電体メモリセル及びそのアクセス装置
JPH10312691A (ja) 1997-05-12 1998-11-24 Sony Corp 強誘電体記憶装置
US6541375B1 (en) 1998-06-30 2003-04-01 Matsushita Electric Industrial Co., Ltd. DC sputtering process for making smooth electrodes and thin film ferroelectric capacitors having improved memory retention
DE19830569C1 (de) 1998-07-08 1999-11-18 Siemens Ag FeRAM-Anordnung
US6589367B2 (en) 1999-06-14 2003-07-08 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth-based permanent magnet material
JP2002269973A (ja) 2000-12-28 2002-09-20 Seiko Epson Corp 強誘電体メモリ装置およびその駆動方法
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
KR100487417B1 (ko) 2001-12-13 2005-05-03 주식회사 하이닉스반도체 불휘발성 강유전체 메모리 장치 및 그를 이용한멀티플-비트 데이타의 라이트 및 리드 방법
US6704218B2 (en) 2002-04-02 2004-03-09 Agilent Technologies, Inc. FeRAM with a single access/multiple-comparison operation
US6859382B2 (en) 2002-08-02 2005-02-22 Unity Semiconductor Corporation Memory array of a non-volatile ram
US6753561B1 (en) 2002-08-02 2004-06-22 Unity Semiconductor Corporation Cross point memory array using multiple thin films
US6920060B2 (en) 2002-08-14 2005-07-19 Intel Corporation Memory device, circuits and methods for operating a memory device
US6856534B2 (en) 2002-09-30 2005-02-15 Texas Instruments Incorporated Ferroelectric memory with wide operating voltage and multi-bit storage per cell
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US7108797B2 (en) 2003-06-10 2006-09-19 International Business Machines Corporation Method of fabricating a shiftable magnetic shift register
US6834005B1 (en) 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
US6898132B2 (en) 2003-06-10 2005-05-24 International Business Machines Corporation System and method for writing to a magnetic shift register
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6920062B2 (en) 2003-10-14 2005-07-19 International Business Machines Corporation System and method for reading data stored on a magnetic shift register
US20060171200A1 (en) * 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
US7196924B2 (en) 2004-04-06 2007-03-27 Macronix International Co., Ltd. Method of multi-level cell FeRAM
KR100558012B1 (ko) * 2004-07-16 2006-03-06 삼성전자주식회사 반도체 메모리 소자
EP1803128B1 (en) 2004-10-12 2014-07-16 NVE Corporation Thermomagnetically assisted spin-momentum-transfer switching memory
US7170775B2 (en) 2005-01-06 2007-01-30 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM cell with reduced write current
KR100657956B1 (ko) 2005-04-06 2006-12-14 삼성전자주식회사 다치 저항체 메모리 소자와 그 제조 및 동작 방법
JP5253784B2 (ja) * 2007-10-17 2013-07-31 株式会社東芝 不揮発性半導体記憶装置
US7936597B2 (en) 2008-03-25 2011-05-03 Seagate Technology Llc Multilevel magnetic storage device
JP4724196B2 (ja) * 2008-03-25 2011-07-13 株式会社東芝 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
US7804710B2 (en) * 2008-03-31 2010-09-28 International Business Machines Corporation Multi-layer magnetic random access memory using spin-torque magnetic tunnel junctions and method for write state of the multi-layer magnetic random access memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537627A (ja) * 1999-02-17 2002-11-05 インターナショナル・ビジネス・マシーンズ・コーポレーション 情報を保存するマイクロ電子デバイスとその方法
JP2004311512A (ja) * 2003-04-02 2004-11-04 Mitsubishi Electric Corp 多値情報記憶素子、その使用方法およびその製造方法
JP2007184591A (ja) * 2006-01-02 2007-07-19 Samsung Electronics Co Ltd マルチビットセル及び直径が調節できるコンタクトを具備する相変化記憶素子、その製造方法及びそのプログラム方法
WO2009041041A1 (ja) * 2007-09-28 2009-04-02 Panasonic Corporation 不揮発性記憶素子及び不揮発性半導体記憶装置、並びにそれらの読み出し方法及び書き込み方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343145B2 (en) 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US11393530B2 (en) 2008-01-15 2022-07-19 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US10790020B2 (en) 2008-01-15 2020-09-29 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9805792B2 (en) 2008-01-15 2017-10-31 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9577186B2 (en) 2008-05-02 2017-02-21 Micron Technology, Inc. Non-volatile resistive oxide memory cells and methods of forming non-volatile resistive oxide memory cells
US9111788B2 (en) 2008-06-18 2015-08-18 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9559301B2 (en) 2008-06-18 2017-01-31 Micron Technology, Inc. Methods of forming memory device constructions, methods of forming memory cells, and methods of forming semiconductor constructions
US9257430B2 (en) 2008-06-18 2016-02-09 Micron Technology, Inc. Semiconductor construction forming methods
US9666801B2 (en) 2008-07-02 2017-05-30 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US9036402B2 (en) 2010-04-22 2015-05-19 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells
US9887239B2 (en) 2010-06-07 2018-02-06 Micron Technology, Inc. Memory arrays
US9697873B2 (en) 2010-06-07 2017-07-04 Micron Technology, Inc. Memory arrays
US10241185B2 (en) 2010-06-07 2019-03-26 Micron Technology, Inc. Memory arrays
US9412421B2 (en) 2010-06-07 2016-08-09 Micron Technology, Inc. Memory arrays
US10656231B1 (en) 2010-06-07 2020-05-19 Micron Technology, Inc. Memory Arrays
US10613184B2 (en) 2010-06-07 2020-04-07 Micron Technology, Inc. Memory arrays
US9989616B2 (en) 2010-06-07 2018-06-05 Micron Technology, Inc. Memory arrays
US10859661B2 (en) 2010-06-07 2020-12-08 Micron Technology, Inc. Memory arrays
US10746835B1 (en) 2010-06-07 2020-08-18 Micron Technology, Inc. Memory arrays
US8976566B2 (en) 2010-09-29 2015-03-10 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US8883604B2 (en) 2010-10-21 2014-11-11 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells and methods of forming a nonvolatile memory cell
US9406878B2 (en) 2010-11-01 2016-08-02 Micron Technology, Inc. Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
US9117998B2 (en) 2010-11-01 2015-08-25 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cells
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US9620174B2 (en) 2010-12-02 2017-04-11 Micron Technology, Inc. Arrays of nonvolatile memory cells comprising a repetition of a unit cell, arrays of nonvolatile memory cells comprising a combination of vertically oriented and horizontally oriented memory cells, and arrays of vertically stacked tiers of nonvolatile memory cells
JP2014502050A (ja) * 2010-12-02 2014-01-23 マイクロン テクノロジー, インク. 不揮発性メモリセルアレイ
US9093368B2 (en) 2011-01-20 2015-07-28 Micron Technology, Inc. Nonvolatile memory cells and arrays of nonvolatile memory cells
US9257648B2 (en) 2011-02-24 2016-02-09 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9424920B2 (en) 2011-02-24 2016-08-23 Micron Technology, Inc. Memory cells, methods of forming memory cells, and methods of programming memory cells
US9184385B2 (en) 2011-04-15 2015-11-10 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
JP2013236079A (ja) * 2012-05-07 2013-11-21 Feng-Chia Univ 超薄型多層構造相変化メモリ素子
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9530959B2 (en) 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US9520553B2 (en) 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
US10062835B2 (en) 2016-05-13 2018-08-28 Micron Technology, Inc. Magnetic tunnel junctions

Also Published As

Publication number Publication date
JP5429738B2 (ja) 2014-02-26
US8098520B2 (en) 2012-01-17
US20090268506A1 (en) 2009-10-29
SG156590A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5429738B2 (ja) 複数メモリ層を有するメモリセルを含む記憶装置
KR102407740B1 (ko) 저항성 메모리 아키텍처 및 디바이스들
Chung et al. Nanoscale memory devices
JP5572165B2 (ja) グラフェンメモリセルおよびその製造方法
JP5722874B2 (ja) 垂直ビット線および片側ワード線アーキテクチャを有する再プログラミング可能な不揮発性メモリ素子の3次元アレイ
KR100682925B1 (ko) 멀티비트 비휘발성 메모리 소자 및 그 동작 방법
KR101726460B1 (ko) 수직의 비트 라인들을 가지는 재프로그래밍 가능한 비휘발성 메모리 요소의 3차원 어레이
JP4981302B2 (ja) 不揮発性メモリ素子、不揮発性メモリ素子アレイ、及び不揮発性メモリ素子アレイの動作方法
US20170148987A1 (en) Memory cell structures
WO2006009090A1 (ja) 記憶素子
KR101188263B1 (ko) 반도체 메모리 장치
US8203875B2 (en) Anti-parallel diode structure and method of fabrication
JP2005167064A (ja) 不揮発性半導体記憶装置
JP2013535101A (ja) 垂直ビット線および横方向に整列したアクティブな素子を有する読み出し/書き込み素子の3次元アレイを有する不揮発性メモリおよびその方法
JP2006191033A (ja) ハイブリッドマルチビット不揮発性メモリ素子及びその動作方法
CN102263122B (zh) 非易失性存储装置
KR20080031539A (ko) 비휘발성 메모리 소자 및 그 제조방법
KR102629844B1 (ko) 저항성 크로스-포인트 스토리지 어레이
JP2005150739A (ja) 薄膜デバイスおよび該薄膜デバイスにおいて熱による補助を実施する方法
KR20200021254A (ko) 칼코게나이드 재료 및 이를 포함하는 전자 장치
JP2006253679A (ja) Nor構造のハイブリッドマルチビットの不揮発性メモリ素子及びその動作方法
WO2005106955A1 (ja) 記憶素子
US7397077B2 (en) Magnetic memory devices having patterned heater layers therein that utilize thermally conductive sidewall materials to increase heat transfer when writing memory data
Wang et al. Memory Technology: Development, Fundamentals, and Future Trends
JP2010182787A (ja) 不揮発性半導体メモリ

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130813

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130816

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130913

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250