JP2009207178A - 漏れ電流を減少させる装置および回路ならびにその方法 - Google Patents

漏れ電流を減少させる装置および回路ならびにその方法 Download PDF

Info

Publication number
JP2009207178A
JP2009207178A JP2009137804A JP2009137804A JP2009207178A JP 2009207178 A JP2009207178 A JP 2009207178A JP 2009137804 A JP2009137804 A JP 2009137804A JP 2009137804 A JP2009137804 A JP 2009137804A JP 2009207178 A JP2009207178 A JP 2009207178A
Authority
JP
Japan
Prior art keywords
voltage
transistor
circuit
channel region
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009137804A
Other languages
English (en)
Inventor
Kimberley Velarde
ヴェラード・キンバレー
Lawrence Clark
クラーク・ローレンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of JP2009207178A publication Critical patent/JP2009207178A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

【課題】 トランジスタのサイズが縮小すると、トランジスタのチャネル長が短くなり、チャネル領域における電流の制御が困難となるとともに、トランジスタのチャネル領域からの漏れ電流が増加する。本願発明は、ソース−ドレイン間の漏れ電流を低減させる。
【解決手段】 トランジスタのソース領域に対して逆バイアスとなる電圧をチャネル領域に印加することにより、チャネル領域からの漏れ電流を低減させる。
【選択図】 図1

Description

本発明は、漏れ電流を減少させる装置および回路ならびにその方法に関する。
製造技術の進歩によって、トランジスタはかつてないほど小さい形状で製造できるようになった。例えば、フォトリソグラフィックおよびエッチング技術は、ゲート長が0.25ミクロン(m)のトランジスタを製造できるところまで向上した。トランジスタのサイズの縮小によって、半導体ダイ上の同一面積内に、より多くのトランジスタを作ることができるので、一般的にトランジスタのサイズの縮小は有益であると考えられる。
しかしながら、トランジスタのゲート長が短縮されるにつれて、電流輸送電極間(すなわち、ソース端子とドレイン端子との間)の距離もまた、これに比例して短縮される。その結果、これらの端子とトランジスタのゲート下方との間、しばしばチャネル領域またはボディ領域と呼ばれる、の半導体材料の量も減少する。トランジスタのチャネル領域の長さが減少すると、ドレイン端子の電界が、チャネル領域内の電流の流れによってより大きな効果を生じる。したがって、チャネル長の減少は、ソース端子とドレイン端子との間のチャネル領域にわたる電流の制御をより困難にするとともに、ソース−ドレイン間の漏れ電流(すなわち、オフ状態の電流)の総量の増加を導く。
この漏れ電流に向けられた技術は、電流輸送電極の周りに環状のインプラントの使用を伴う。しかしながら、かかる技術は、しばしば追加の製造段階を伴うので、製造工程の複雑化や費用の増加を招く。したがって、トランジスタの電流輸送電極間の漏れ電流を減少させる要求が依然として存在する。
特開平11−122047号公報 特開平05−108194号公報 特開平10−261946号公報 特開平10−242839号公報 特開平10−229165号公報 特開平10−079662号公報 特開平07−176624号公報
本発明の主題は、特許請求の範囲において特に指摘され、明確に主張されている。しかしながら、動作の構成や方法、そして、それらの目的、特徴、および利点に関する発明は、後述の詳細な説明および添付図面を参照することにより、さらによく理解されるであろう。
本発明の実施例に従った、2つのトランジスタと1つの回路を図式化した図である。 本発明の多様な実施例に従って使用される回路を図式化した図である。 本発明の多様な実施例に従った電圧発生器を図式化した図である。 本発明の他の実施例に従った電圧発生器を図式化した図である。
図面の単純化および明確化のために、図中に示す要素は必ずしも同一寸法で描かれていないことを理解されたい。例えば、いくつかの要素の寸法は、明確化のために他の要素に比べて拡大されている。さらに、適当であると思料される場合には、参照番号は、対応または類似する要素を示す図の間で繰り返し用いられる。
以下の詳細な説明において、多数の特定された詳細な記述は、本発明を完全に理解するために記されたものである。しかしながら、本発明は、かかる特定の記述がなくても実行できることが、当業者には理解されるであろう。換言すれば、周知の方法、手順、装置、および回路が詳細な説明に記述されていないとしても、それによって本発明が不明瞭にはならない。本説明において”#”の記号は、信号の論理補数を示すために使用されることに注意されたい。例えば、BLが論理”1”の場合、BL#は論理”0”となるが、本発明はいかなる特定の信号体系にも限定されない。
図1は、本発明に従って実施例100を示す。実施例100は、移動通信装置(例えば、携帯電話)、携帯用コンピュータ、あるいはそれらと同等の携帯装置から構成される。しかしながら、本発明の範囲は、これらの応用に限定されない。
実施例100は、例えばマイクロプロセッサ、デジタル信号プロセッサ、マイクロコントローラ、スタティック・ランダム・アクセス・メモリ(SRAM)のようなメモリ・アレイ、またはそれと同等のもので構成される集積回路10を含む。しかしながら、本発明の範囲は、これらの例に限定されるものではないと理解される。集積回路10は、例えばシリコンの基板に形成されたトランジスタ20,30で構成されるが、本発明の範囲はこれに関しても限定されない。
トランジスタ20,30は、それぞれゲート電極23,33を含み、それらは、トランジスタ20,30が動作している間に、チャネル領域24,34を横切る電流の流れを調整するために使用される。本発明の範囲を限定することを意図するものではないが、チャネル領域24は基板15の部分を含み、そこでトランジスタ20の電流輸送電極21−22間に電流が流れる。さらに、チャネル領域34は、N型ウェル35から構成され、そこでトランジスタ30の電流輸送電極31−32間に電流が流れる。一般的に述べると、チャネル領域24,34は、それぞれ電流輸送電極21−22および31−32間のゲート23,33の下方にあるトランジスタ20,30の部分である。チャネル領域24,34はまた、当業者からボディ領域と呼ばれる。
ある実施例では、トランジスタ30は、Nウェル領域35内に形成されたpチャネル・トランジスタから構成され、一方、トランジスタ20は、p型基板15内に形成されたnチャネル・トランジスタから構成される。この配置は、集積回路10が、相補型金属酸化物半導体(CMOS)回路で構成される場合に望ましい。しかしながら、本発明の範囲は、トランジスタ20,30の電気的性質により、あるいはトランジスタ20,30が形成される材料のタイプによって限定されないことが理解されるべきである。例えば、他の実施例によれば、ウェル領域35の使用は随意であり、基板15は、エピタキシャル層、フィールド酸化領域等の多様な材料から構成される。例えば、トランジスタ20,30は、ツイン・ウェル、またはN型基板内のPウェルで形成される。さらに、基板15は、シリコンにより構成される必要はなく、例えば、半導体オン絶縁体(SOI: semiconductor-on-insulator)等の他の半導体材料が使用できる。
トランジスタ20,30は、集積回路10の全てのまたはいくつかのトランジスタが非導通モード(すなわち、少なくともいくつかのトランジスタが不活性モードであり、それらのゲート端子上に駆動された実効電圧を有しない)の場合に、集積回路10の漏れ電流を減少するために使用される。図1に示す2個のトランジスタは、本発明の範囲を限定するものではない。集積回路10は、如何なる数のトランジスタまたはサブ回路でも構成できることが理解されるべきである。以下の説明は、一般的にトランジスタが複数、例えば2個またはそれ以上である回路またはサブ回路に関する。しかしながら、1個のトランジスタからなる回路またはサブ回路もあることが理解されるべきである。さらに、いくつかの実施例において、回路は、他の回路またはボンディング・パッドのノードによって提供される電圧レベルまたは論理信号に関する。
この特定の実施例において、例えば、Vsssup電圧40、Vccp電圧41、Vcc電圧42の3つの電圧は、選択的にトランジスタ20,30の部分に印加され、チャネル領域24,34における漏れを減少させる。図1に示すように、電圧40−42は、集積回路10の外部にある電源に結合されたパッドによって提供される。しかしながら、これは、本発明の範囲の限定を意図するものではなく、電圧40−42は、集積回路10の内部に位置する電源から(すなわち、チャージ・ポンプまたは電圧分離器から)提供することができる。さらに、他の実施例において、電圧40−42は、他の回路のノード(図示せず)によって、または、集積回路(10)の他の部分から提供される電圧を表す。
図1に示すように、電圧(すなわち、Vsssup40)は、チャネル領域24に印加されるが、それは、トランジスタ20のソース領域21上の電圧(すなわち、Vss電位)よりも低い値である。ソース領域21に対してチャネル領域24を逆方向にバイアスすることによって、トランジスタ20のチャネル領域における漏れ電流が減少される。以下でより詳細に説明するが、Vss発生器60は、Vssup電圧40を上昇させることによって、Vss電圧をソース領域21に提供するために使用される。
さらに、Vccsup発生器50は、チャネル領域34に電圧(すなわち、Vccsup)を提供するために使用されるが、その電圧はトランジスタ30のソース領域31に印加される電圧よりも大きい。これが、チャネル領域34における漏れの総量を減少させる。本発明の範囲は、Vccsup発生器50およびVss発生器60の両方を有する集積回路に限定されるものではないと理解されるべきである。他の実施例では、2つの回路のうちの1つのみが使用される。
図2に関し、Vccsup発生器50を動作させるための2つの技術が提供される。図2は、2つの回路を示すが、これらは、Vccsup発生器50を提供するために、単独でも組み合わせても使用できる。しかしながら、本発明の範囲は、これらの特定の技術に限定するものではないと理解されるべきであり、他の実施例では、例えばチャージ・ポンプ、dc−dcコンバータ等の他の技術を使用することができる。ある実施例では、トランジスタ82がVccsup発生器50として使用され、VccsupとしてVccp電圧41を提供する。図2においてE2と表示されたイネーブル信号は、トランジスタ82の動作を可能にし制御するために使用され、それによって、Vccsup発生器50がVccsupと表示された電圧を選択的に提供する。この特定の実施例において、Vccsup発生器50によって提供された電圧は、実質的にはVccp電圧41と等しいが、これは本発明の範囲を限定することを意図するものではない。
イネーブル信号E2は、集積回路10が不活性またはスタンバイ・モードであるときに活性化される。集積回路10の部分がスタンバイ・モード(すなわち、論理トランジスタ20,30)であるときに、電圧をチャネル領域34(図1参照)へ印加することが望ましく、これが漏れ電流の総量を減少させる。他の実施例では、トランジスタ82を作成することが望ましく、その結果、そのトランジスタは、集積回路10のトランジスタよりも高い電圧耐性を有する。これは、例えば、集積回路10のトランジスタのゲート酸化物と比べて、トランジスタ82のゲート酸化物の厚みを増すことによって達成することができる。他の実施例では、nチャネル・トランジスタ(図示せず)が、トランジスタ82の位置に使用される。
一方、Vccsup発生器50は、トランジスタ81(図2参照)のゲートに結合された基準電圧回路65から構成される。図3は、基準電圧回路65を実施するための一例を説明するために提供されるが、この特定の実施によって、本発明の範囲が限定されるものではない。図示のように、トランジスタ91,94,99は、基準ブートストラップ回路に結合された基準抵抗要素を操作することができる。例えば、トランジスタ92,93,95,96を構成するブートストラップ回路は、トランジスタ81のゲートへ印加される出力電圧を提供することができる。トランジスタ81のゲート端子に印加された電圧は、少なくともある程度は、Vccsup発生器50によって提供される電圧を決定する。他の実施例において、トランジスタ92,93,95,96は、厚いゲート酸化物トランジスタとして作られることが望ましく、これによって、スパイク電圧の場合、あるいは、例えば電源投入シーケンス中のように、Vccp電圧41がVccよりも非常に高い場合においてダメージを受けるリスクを軽減する。
図2に示すように、Vccsup発生器50は、さらにイネーブル・トランジスタ80を含み、Vccsup発生器50の出力電圧、すなわちVccsup電圧としてトランジスタ81により提供される電圧に選択的に結合する。E1と表示されたイネーブル信号は、いつトランジスタ81がVccsup電圧を提供するのかを決定するために使用される。
実施例100(図1参照)の操作の間、図2でACTIVE#と表示された信号は、全てまたは一部の集積回路10がいつスタンバイまたは不活性モードに入ればよいのかを示すために使用されるが、本発明の範囲は、この例に限定されない。その結果、イネーブル信号E1は、ACTIVE#信号を反転することによって発生し、その結果、トランジスタ89がオフのときに、トランジスタ80がオンになる。これとは反対に、集積回路10がスタンバイあるいは低漏れモードでないときは、イネーブル信号E1,E2が無効化され、かつ、ACTIVE#信号が有効化され、その結果、Vccsup電圧がトランジスタ89によってVccへ運ばれ、こうして、トランジスタ20,30を正常に操作することができる。
ACTIVE#信号が無効化され、かつ、イネーブル信号E1が有効化されたとき(すなわち、集積回路が不活性モードであることを示す)、基準電圧回路65はVccsup電圧を上昇させ、その結果、チャネル領域34(図1参照)に印加される電圧は、ソース領域31上の電圧よりも高くなる。この特定の実施例において、Vccsup電圧は、Vccp電圧42よりも少なくとも0.4ボルト高い。しかしながら、本発明の範囲はこの実施例に限定されないと理解されるべきであり、電圧差は要望に応じて増減可能である。
オプションとして、基準電圧回路65は、RESET#・ACTIVE信号に結合されたトランジスタ97,98を含む。RESET#・ACTIVE信号が活性化されるとき(すなわち、コア・トランジスタ20,30が活性であることを示す)、トランジスタ91,98は、トランジスタ96のドレイン上の電圧を上昇せしめ、トランジスタ92,93,95,96から構成されるブートストラップ回路が、ゼロ電流状態の解決を図れないリスクを軽減する。
Vccsup発生器50に関するこの特定の実施例の1つの利点は、Vccp電圧41がたとえ変化しても、トランジスタ81が、Vccsupに実質的に一定の電位を提供できることである。一方、Vccsup発生器50を実施するためにトランジスタ82を使用することは、図3に示す特定の実施例よりも複雑でなく、より小さな表面領域に形成することができるので有利である。さらに、同一の集積回路内で両方の実施例を使用することもまた望ましい。
図1に示すように、実施例100はまた、必要によりVss発生器60を含んでもよい。Vss発生器60を実施するための2つの特定の技術を図2に示す。しかしながら、これらの特定の実施例により本発明の範囲が限定されることがないと理解されるべきである。例えば、1つの技術において、Vss発生器60は、Vsssup電圧40を「フロート・アップ(float-up)」するトランジスタ83,84で構成される。図示のように、Vss発生器60はまた、E4と表示されたイネーブル信号によって制御されるイネーブル・トランジスタ85を含む。例えば、集積回路10が低漏れまたは不活性モードである場合は、トランジスタ85が有効化され、その結果、トランジスタ83−84が、Vsssup電圧40よりも高いVss電圧を提供する。
この特定の実施例において、Vss電圧は、Vsssup電圧40より少なくとも0.4ボルト高い。しかしながら、本発明の範囲は本実施例に限定されないと理解されるべきである。チャネル領域24に印加される電圧と、これに対応するソース領域21との電圧差は、例えば、トランジスタ83,84を異なった大きさにすることにより、要望に応じて変更可能である。この特定の実施例におけるトランジスタ83,84の使用は、Vsssup電圧40より高いほぼ2つのVt(閾値電圧)であるVss電圧を提供する。しかしながら、低い閾値電圧の装置を使用する他の実施例よって、本発明の範囲が限定されることを意図するものではないと理解されるべきである。一方、本発明の範囲は、2つのトランジスタを使用する実施例に限定されず、他の実施例において、1または複数のトランジスタの使用が可能である。
一方、Vss発生器60は、帰還回路61を伴って提供される(図2参照)。本発明の範囲はこの特定の配置に限定されないが、図4はトランジスタ86に結合された差動増幅器45および抵抗要素R1,R2を使用する帰還回路61の実施例として提供される。図4に示すように、差動増幅器45はトランジスタ102−106を伴って実施され、抵抗要素R1,R2は直列のトランジスタ100によって提供される。トランジスタ20,30(図2参照)による電流の消費によって、Vss電圧がVsssup電圧40よりも上昇する。帰還回路61は、Vssが、R1,R2によって提供される基準電圧に比例してどれだけ上昇し得るかの限界を定める。
差動増幅器45の外部信号は、トランジスタ86のゲートを駆動するために使用される。一方、これは、Vss電圧が、トランジスタ83,84によってVsssup電圧40以上に上昇される場合に、それを一定に保つために十分な電流の総量の供給源である。図2および図4に示すように、この実施例はまた、E3と表示されたイネーブル信号によって制御されるイネーブル・トランジスタ87,107を含む。ACTIVE信号(図2参照)に結合したイネーブル信号E3は、Vss電圧が、トランジスタ88、またはトランジスタ83,84に結合したトランジスタ86によって、いつ提供されるべきかを決定するために使用される。この特定の実施例の利点の1つは、Vss電位が高すぎる状態になった場合であっても、集積回路10に追加の電流を提供できることである。例えば、これは、集積回路10が活性状態から不活性状態に変化した(すなわち、集積回路10のコアが、高周波操作の直後で「熱」く、かつ、漏れ、従って全体の電流要求、が高い)ときに発生する。
図4に示した特定の実施例において、トランジスタ102−107は、サブ・スレッショルド・モードで操作することが望ましい。しなしながら、これは、本発明の範囲の限定を意図するものではない。他の実施例では、キャパシタを帰還回路86のゲートとドレインとの間に配置し、帰還増幅器45に安定性を提供する。
本発明は、集積回路の漏れ電流を減少させるための回路および方法を提供するものであると理解されるべきである。特定の実施例において、トランジスタのチャネル領域は、その電流輸送電極に関して逆バイアスされ、漏れ電流の流れを減少させる。電流輸送電極に関するチャネルまたはボディ領域の逆バイアスは、チャネル領域によって生成される電位バリアを増大させる。この結果、トランジスタの電流輸送電極間を電子が通過し難くなる。本発明のいくつかの特徴が、ここに図示され説明されているが、多様な変形、置換、変更、および等化が当業者によって行われるであろう。例えば、上述の実施例において、電圧は、漏れ電流の総量を減少するために、pチャネル・デバイスのチャネル領域、またはnチャネル・デバイスのソース領域に選択的に印加することができる。また、電圧は、トランジスタの他の端子に選択的に印加することができると理解すべきである。さらに、上述のいくつかの実施例は、集積回路に提供される電圧の上昇を含み、トランジスタのチャネル領域がソース領域に関して逆バイアスされる。他の実施例において、電圧を低くし、かつ、電圧が印加される場所を転換することが望ましく、その結果、チャネル領域は、なおソース領域に関して逆バイアスされ、漏れ電流が減少する。したがって、本特許請求の範囲は、本発明の真の精神の範囲内において、かかる全ての変形および変更を網羅することを意図するものであると理解されたい。
10 集積回路
15 基板
20,30,80−89,91−99,102−107 トランジスタ
21,22,31,32 電流輸送電極
23,33 ゲート電極
24,34 チャネル領域
35 N型ウェル
50 Vccsup発生器
60 Vss発生器
65 基準電圧回路

Claims (21)

  1. 各々が電流輸送電極およびチャネル領域を含む第1トランジスタおよび第2トランジスタと、
    第1電圧を受けて、前記第1電圧を前記第1トランジスタの前記電流輸送電極へ提供するために適合される第1回路と、
    第2電圧を、前記第1トランジスタの前記チャネル領域へ提供するために適合される第2回路であって、前記第2電圧が前記第1電圧よりも高い、第2回路と、
    第3電圧を受けて、前記第3電圧を前記第2トランジスタの前記電流輸送電極へ提供するために適合される第3回路と、
    第4電圧を、前記第2トランジスタの前記チャネル領域へ提供するために適合される第4回路と、
    から構成されることを特徴とする集積回路。
  2. 前記第2回路が、さらに、前記第2電圧を前記第1トランジスタの前記チャネル領域へ選択的に提供するために適合されることを特徴とする請求項1記載の集積回路。
  3. 前記第3回路が、さらに、前記第3電圧を前記第2トランジスタの前記ソース領域へ選択的に提供するために適合されることを特徴とする請求項2記載の集積回路。
  4. 前記第2回路がチャージ・ポンプを含むことを特徴とする請求項1記載の集積回路。
  5. 第1電圧を第1トランジスタの電流輸送電極へ提供する段階と、
    第2電圧を発生する段階と、
    前記第2電圧を前記第1トランジスタのチャネル領域へ提供する段階と、
    第3電圧を発生する段階と、
    前記第3電圧を第2トランジスタの電流輸送電極へ提供する段階と、
    第4電圧を第2トランジスタの前記チャネル領域へ提供する段階と、
    からなることを特徴とする方法。
  6. 前記第2電圧を発生する段階が、前記第1電圧よりも高い電圧を発生する段階を含むことを特徴とする請求項5記載の方法。
  7. 前記第3電圧を発生する段階が、前記第4電圧よりも高い電圧を発生する段階を含むことを特徴とする請求項6記載の方法。
  8. 前記第2電圧を発生する段階が、前記第1電圧より高い前記第2電圧を上昇するために第5電圧を受ける段階を含むことを特徴とする請求項5記載の方法。
  9. 前記第3電圧を発生する段階が、前記第4電圧が上昇する段階を含むことを特徴とする請求項5記載の方法。
  10. 前記第2電圧を、前記第1トランジスタの前記チャネル領域から選択的に除去する段階からさらに構成されることを特徴とする請求項5記載の方法。
  11. 前記第4電圧を、前記第2トランジスタの前記チャネル領域から選択的に除去する段階からさらに構成されることを特徴とする請求項10記載の方法。
  12. 前記第4電圧を選択的に除去する段階が、前記第2電圧を選択的に除去する段階と実質的に同時に生じることを特徴とする請求項11記載の方法。
  13. 集積回路を有する携帯用通信デバイスであって、前記集積回路が、
    ソース領域およびボディ領域を有する第1論理トランジスタと、
    前記第1論理トランジスタの前記ソース領域へ第1電圧を提供するために適合される第1回路と、および
    前記第1論理トランジスタの前記ボディ領域へ第2電圧を提供するために適合される第2回路であって、前記第2電圧が前記第1電圧よりも低い、第2回路と、
    から構成されることを特徴とする携帯用通信デバイス。
  14. 前記第1回路が、さらに、前記第2電圧よりも少なくとも0.4ボルト高い第1電圧を提供するために適合されることを特徴とする請求項13記載の携帯用通信デバイス。
  15. 前記第1回路が、さらに、前記第1トランジスタが不活性状態であるときに、前記第1電圧を提供するために適合されることを特徴とする請求項13記載の携帯用通信デバイス。
  16. 集積回路を有する携帯用通信デバイスであって、前記集積回路が、
    ソース領域およびボディ領域を有する第1論理トランジスタと、
    前記第1論理トランジスタの前記ソース領域へ第1電圧を提供するために適合される第1回路と、
    前記第1論理トランジスタの前記ボディ領域へ第2電圧を選択的に提供するために適合される第2回路であって、前記第1電圧が前記第2電圧よりも高い、第2回路と、
    から構成されることを特徴とする携帯用通信デバイス。
  17. 前記第1回路が、さらに、前記第2電圧よりも少なくとも0.4ボルト高い電圧を提供するために適合されることを特徴とする請求項16記載の携帯用通信デバイス。
  18. 前記第2回路は、さらに、前記トランジスタが不活性状態であるときに、前記第2電圧を提供するために適合されることを特徴とする請求項16記載の携帯用通信デバイス。
  19. トランジスタのチャネル領域における漏れ電流を減少する方法であって、
    前記チャネル領域へ電圧を選択的に印加する段階であって、前記電圧が、前記トランジスタの電流輸送電極上の電圧よりも高い、段階を含むことを特徴とする方法。
  20. 前記電圧を前記トランジスタの電流輸送電極へ提供する段階をさらに含むことを特徴とする請求項19記載の方法。
  21. 前記電流輸送電極へ印加される前記電圧を使用して、前記チャネル領域へ印加される前記電圧を発生する段階をさらに含むことを特徴とする請求項20記載の方法。
JP2009137804A 2000-06-12 2009-06-09 漏れ電流を減少させる装置および回路ならびにその方法 Pending JP2009207178A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59186500A 2000-06-12 2000-06-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002511471A Division JP2004503948A (ja) 2000-06-12 2001-06-01 漏れ電流を減少させる装置および回路ならびにその方法

Publications (1)

Publication Number Publication Date
JP2009207178A true JP2009207178A (ja) 2009-09-10

Family

ID=24368271

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002511471A Pending JP2004503948A (ja) 2000-06-12 2001-06-01 漏れ電流を減少させる装置および回路ならびにその方法
JP2009137804A Pending JP2009207178A (ja) 2000-06-12 2009-06-09 漏れ電流を減少させる装置および回路ならびにその方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002511471A Pending JP2004503948A (ja) 2000-06-12 2001-06-01 漏れ電流を減少させる装置および回路ならびにその方法

Country Status (6)

Country Link
JP (2) JP2004503948A (ja)
KR (1) KR100551143B1 (ja)
CN (1) CN1236560C (ja)
AU (1) AU2001265321A1 (ja)
TW (1) TW501278B (ja)
WO (1) WO2001097380A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031681A (ja) * 2001-07-16 2003-01-31 Matsushita Electric Ind Co Ltd 半導体集積回路
US6731157B2 (en) * 2002-01-15 2004-05-04 Honeywell International Inc. Adaptive threshold voltage control with positive body bias for N and P-channel transistors
CN108986748B (zh) 2018-08-02 2021-08-27 京东方科技集团股份有限公司 一种消除驱动晶体管漏电流的方法及系统、显示装置
JP2021101512A (ja) 2019-12-24 2021-07-08 キオクシア株式会社 半導体集積回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108194A (ja) * 1991-10-17 1993-04-30 Hitachi Ltd 低消費電力型半導体集積回路
JPH10229332A (ja) * 1996-12-03 1998-08-25 Sgs Thomson Microelectron Inc トランジスタのスレッシュホールド電圧を積極的にバイアスする集積回路及び関連方法
JPH10242839A (ja) * 1997-02-28 1998-09-11 Hitachi Ltd 半導体装置
JPH10261946A (ja) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp 半導体集積回路
JP2000155617A (ja) * 1998-11-19 2000-06-06 Mitsubishi Electric Corp 内部電圧発生回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0169157B1 (ko) * 1993-11-29 1999-02-01 기다오까 다까시 반도체 회로 및 mos-dram
JPH07176624A (ja) * 1993-12-20 1995-07-14 Nippon Telegr & Teleph Corp <Ntt> 相補性mos型電界効果トランジスタ集積回路
KR100223770B1 (ko) * 1996-06-29 1999-10-15 김영환 반도체 장치의 문턱전압 제어회로
JPH10229165A (ja) * 1997-02-17 1998-08-25 Ricoh Co Ltd 半導体集積回路装置
JP4046383B2 (ja) * 1997-04-01 2008-02-13 株式会社ルネサステクノロジ 半導体集積回路装置
JP3737240B2 (ja) * 1997-04-24 2006-01-18 富士通株式会社 半導体集積回路装置
US5929695A (en) * 1997-06-02 1999-07-27 Stmicroelectronics, Inc. Integrated circuit having selective bias of transistors for low voltage and low standby current and related methods
WO1998059419A1 (en) * 1997-06-20 1998-12-30 Intel Corporation Forward body bias transistor circuits
JP3814385B2 (ja) * 1997-10-14 2006-08-30 株式会社ルネサステクノロジ 半導体集積回路装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108194A (ja) * 1991-10-17 1993-04-30 Hitachi Ltd 低消費電力型半導体集積回路
JPH10229332A (ja) * 1996-12-03 1998-08-25 Sgs Thomson Microelectron Inc トランジスタのスレッシュホールド電圧を積極的にバイアスする集積回路及び関連方法
JPH10242839A (ja) * 1997-02-28 1998-09-11 Hitachi Ltd 半導体装置
JPH10261946A (ja) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp 半導体集積回路
JP2000155617A (ja) * 1998-11-19 2000-06-06 Mitsubishi Electric Corp 内部電圧発生回路

Also Published As

Publication number Publication date
JP2004503948A (ja) 2004-02-05
CN1446403A (zh) 2003-10-01
TW501278B (en) 2002-09-01
WO2001097380A1 (en) 2001-12-20
KR100551143B1 (ko) 2006-02-10
CN1236560C (zh) 2006-01-11
AU2001265321A1 (en) 2001-12-24
KR20030022816A (ko) 2003-03-17

Similar Documents

Publication Publication Date Title
US6573566B2 (en) Low-voltage-triggered SOI-SCR device and associated ESD protection circuit
US6239649B1 (en) Switched body SOI (silicon on insulator) circuits and fabrication method therefor
JP4353393B2 (ja) 半導体集積回路装置
US20040080340A1 (en) Low power consumption MIS semiconductor device
JP4195439B2 (ja) 集積回路及び携帯電子機器
WO1997038444A1 (en) Semiconductor integrated circuit device
WO2000044049A1 (fr) Circuit de protection contre l&#39;electricite statique, et circuit integre
US11189613B2 (en) Semiconductor device
KR100243496B1 (ko) 반도체 장치
JP2710113B2 (ja) 相補性回路技術による集積回路
JP2006270027A (ja) 半導体装置および相補形mis論理回路
JP2003007833A (ja) 半導体装置
TW200416730A (en) Low standby power semiconductor circuit
JP2009207178A (ja) 漏れ電流を減少させる装置および回路ならびにその方法
CN109600131B (zh) 低功率芯片
CN110890886A (zh) 超低电压数字电路的本体偏置
US20020080536A1 (en) Electrostatic discharge protection device and method therefor
JP2004228317A (ja) 半導体記憶装置
JP2000294656A (ja) 集積回路
JP2003060068A (ja) 半導体装置
KR20140071013A (ko) Esd 보호회로
JPH1168548A (ja) 半導体集積回路
JP2008244071A (ja) Esd保護回路を備えた半導体集積回路
JP2671808B2 (ja) インタフェース回路
TW202406262A (zh) 靜電放電保護電路及其操作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918