JP2009177181A - 抵抗性メモリ素子及びその製造方法 - Google Patents

抵抗性メモリ素子及びその製造方法 Download PDF

Info

Publication number
JP2009177181A
JP2009177181A JP2009012253A JP2009012253A JP2009177181A JP 2009177181 A JP2009177181 A JP 2009177181A JP 2009012253 A JP2009012253 A JP 2009012253A JP 2009012253 A JP2009012253 A JP 2009012253A JP 2009177181 A JP2009177181 A JP 2009177181A
Authority
JP
Japan
Prior art keywords
electrode
diode
insulating layer
layer
variable resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009012253A
Other languages
English (en)
Inventor
Chang-Bum Lee
昌範 李
Young-Soo Park
永洙 朴
Myoung-Jae Lee
明宰 李
Wenxu Xianyu
文旭 鮮于
Bo-Soo Kang
保守 姜
Seung-Eon Ahn
承彦 安
Ki-Hwan Kim
起煥 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2009177181A publication Critical patent/JP2009177181A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/34Material includes an oxide or a nitride
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode

Abstract

【課題】抵抗性メモリ素子及びその製造方法を提供する。
【解決手段】第1電極、第1電極上に備わったものであり、第1電極の一部を露出させる第1ホールを有する第1絶縁層、露出された第1電極と接触され、第1ホール周囲の第1絶縁層上に拡張された第1抵抗変化層、及び第1抵抗変化層と電気的に連結された第1スイッチング素子を備える抵抗性メモリ素子である。第1スイッチング素子は、第1ダイオードである。第1ダイオードは、第1抵抗変化層上に備わり、第1抵抗変化層と第1ダイオードとの間に第1中間電極が介在され、第1ダイオード上に第2電極を備える。
【選択図】図1

Description

本発明は半導体素子及びその製造方法に係り、さらに詳細には、抵抗性メモリ素子及びその製造方法に関する。
抵抗性メモリ素子(RRAM:Resistive Random Access Memory)は、抵抗が特定電圧で大きく変わる物質、例えば、遷移金属酸化物の抵抗変化特性を利用した不揮発性メモリ素子である。抵抗変化物質にセット電圧(set voltage)が印加されれば、前記抵抗変化物質の抵抗が低くなる。このときをオン(ON)状態とする。そして、抵抗変化物質にリセット電圧(reset voltage)が印加されれば、前記抵抗変化物質の抵抗が高まる。このときをオフ(OFF)状態とする。RRAMのうちの多層交差点(multi−layer cross point)RRAMはそのセル構造が簡単であるために、高集積化に有利であるという利点がある。
RRAMのストレージノード(storage node)は、前記抵抗変化物質から形成された抵抗変化層を含むが、従来のRRAMは、前記抵抗変化層として主にニッケル酸化物(NiO)層のような金属酸化物層を使用する。
しかし、抵抗変化層は、エッチング損傷(etching damage)によってその特性が容易に劣化されるという問題がある。従って、エッチング損傷による抵抗変化層の特性劣化を解決できる方案が要求されるのである。
本発明は、抵抗変化物質の抵抗変化特性を利用する抵抗性メモリ素子及びその製造方法を提供する。
本発明の一実施形態は、第1電極と、前記第1電極上に備わったものであり、前記第1電極の一部を露出させる第1ホールを有する第1絶縁層と、前記露出された第1電極と接触され、前記第1ホール周囲の前記第1絶縁層上に拡張された第1抵抗変化層と、前記第1抵抗変化層と電気的に連結された第1スイッチング素子とを備える抵抗性メモリ素子を提供する。
前記第1スイッチング素子は、第1ダイオードでありうる。
前記第1ダイオードは、前記第1抵抗変化層上に備わり、前記第1抵抗変化層と前記第1ダイオードとの間に第1中間電極が介在され、前記第1ダイオード上に第2電極が備わりうる。
前記第1ダイオードは、前記第1ホールの外部に存在しうる。
前記第1ダイオードの少なくとも一部は、前記第1ホール中に存在しうる。
前記第1電極と前記第2電極は、配線形態を有して互いに交差しうる。
本実施形態による抵抗性メモリ素子は、前記第1抵抗変化層、前記第1中間電極及び前記第1ダイオード周囲の前記第1絶縁層上に層間絶縁層をさらに具備しうる。
本実施形態による抵抗性メモリ素子は、前記第2電極上に順に積層された第2ダイオード及び第2中間電極と、前記第2中間電極上に備わったものであり、前記第2中間電極の一部を露出させる第2ホールを有する第2絶縁層と、前記露出された第2中間電極と接触され、前記第2ホール周囲の前記第2絶縁層上に拡張された第2抵抗変化層と、前記第2抵抗変化層と接触された第3電極とをさらに具備しうる。
前記第2絶縁層は、前記第2中間電極、前記第2ダイオード及び前記第2電極の側面を覆いうる。
前記第2電極と前記第3電極は、配線形態で互いに交差しうる。
前記抵抗性メモリ素子は、1D(diode)−1R(resistance)セル構造を有する多層交差点メモリ素子でありうる。
本発明の他の実施形態は、抵抗変化層及びこれに電気的に連結されたスイッチング素子を備える抵抗性メモリ素子の製造方法において、第1電極を形成する段階と、前記第1電極上に第1絶縁層を形成する段階と、前記第1絶縁層をエッチングし、前記第1電極の一部を露出させる第1ホールを形成する段階と、前記露出された第1電極及びその周囲の前記第1絶縁層を覆う第1抵抗変化層を形成する段階とを含む抵抗性メモリ素子の製造方法を提供する。
前記第1抵抗変化層上に第1中間電極及び第1ダイオードを順に形成する段階をさらに含みうる。
前記第1ダイオードは、前記第1ホールの外部に存在しうる。
前記第1ダイオードの少なくとも一部は、前記第1ホール中に存在しうる。
前記第1抵抗変化層、前記第1中間電極及び前記第1ダイオードは、同じエッチングマスクを利用して形成しうる。
前記第1抵抗変化層、前記第1中間電極及び前記第1ダイオード周囲の前記第1絶縁層上に層間絶縁層を形成する段階をさらに含みうる。
前記第1ダイオード上に第2電極を形成する段階をさらに含みうる。
前記第1電極と前記第2電極は、配線形態で互いに交差しうる。
前記第2電極上に第2ダイオード及び第2中間電極を順に形成する段階をさらに含みうる。
前記第2中間電極上に前記第2中間電極の一部を露出させる第2ホールを有する第2絶縁層を形成する段階と、前記露出された第2中間電極及びその周囲の前記第2絶縁層を覆う第2抵抗変化層を形成する段階と、前記第2抵抗変化層と接触された第3電極を形成する段階とをさらに含みうる。
前記第2電極と前記第3電極は、配線形態で互いに交差しうる。
本発明の実施例によれば、抵抗変化層のエッチング損傷による特性劣化の問題を解決できるRRAMを具現することが可能である。
本発明の一実施形態による抵抗性メモリ素子(RRAM)を示す断面図である。 本発明の実施形態によるRRAMの回路図である。 本発明の実施形態によるRRAMの回路図である。 本発明の実施形態によるRRAMの回路図である。 本発明の実施形態によるRRAMを図示する平面図である。 本発明の実施形態によるRRAMを図示する平面図である。 本発明の他の実施形態によるRRAMを図示する断面図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。 本発明の実施形態によるRRAMの製造方法を示す斜視図である。
以下、本発明の実施形態による抵抗性メモリ素子(RRAM)及びその製造方法について、添付された図面を参照しつつ詳細に説明する。この過程で、図面に図示された層や領域の厚さは、明細書の明確性のために多少誇張して図示されている。詳細な説明全体にわたって同じ参照符号は、同じ構成要素を示す。
図1は、本発明の一実施形態によるRRAMを示している。
図1を参照すれば、基板10上に第1電極100が備わっている。基板10は、シリコン基板、ガラス基板、ハードプラスチック(hard plastic)基板及びフレキシブルプラスチック(flexible plastic)基板などから構成された多様な基板のうちいずれか一つでありうる。第1電極100は、金属層を所定の形態、例えば、ライン状にパターニングして形成できる。第1電極100周囲の基板10上に、第1電極100と類似した高さの第1中間絶縁層(図示せず)がさらに備わりうる。第1電極100上に、第1電極100の上面一部を露出させる第1ホールG1を有する第1下部絶縁層110が備わる。第1下部絶縁層110は、前記第1中間絶縁層の上面を覆いうる。第1ホールG1は、傾斜エッチング工程によって形成でき、従って、第1ホールG1の幅は、第1電極100に近づくほど狭くなりうる。第1ホールG1の幅は高さによって変化せず、一定でありうる。第1下部絶縁層110は、Al、TiO、SiOまたはSiのような絶縁物質によって形成された層でありうるが、望ましくは、Al層である。第1下部絶縁層110をAl層、またはそれと類似した特性を有する他の物質層によって形成すれば、第1抵抗変化層120の形成時に、第1下部絶縁層110と第1抵抗変化層120との間のシリサイド反応が防止され、併せて第1抵抗変化層120への水素浸透が抑制されうる。
第1ホールG1によって露出された第1電極100と接触された第1抵抗変化層120が備わるが、第1抵抗変化層120は、第1ホールG1周囲の第1下部絶縁層110上に拡張されている。従って、第1抵抗変化層120の側面、すなわちエッチング面は、第1電極100と接触しない。第1抵抗変化層120で抵抗変化特性に実際に寄与する有効領域は、第1電極100と接触された部分である。第1下部絶縁層110の上面上に存在する第1抵抗変化層120は、第1電極100と接触していないので、有効に作用しない。従って、第1抵抗変化層120の側面部がエッチングによって損傷されても、第1抵抗変化層120の抵抗変化特性は劣化せずに維持されうる。第1抵抗変化層120の物質としては、非化学量論的(non−stoichiometric)組成を有する金属酸化物、例えば、Ni−O、Ti−O、Hf−O、Zr−O、Zn−O、W−O、Co−O、Nb−O、Ti−Ni−O、Li−Ni−O、Al−O、In−Zn−O、V−O、Sr−Zr−O、Sr−Ti−O、Cr−O、Fe−O、Cu−OまたはTa−Oなどが使われうる。
第1抵抗変化層120上に、第1中間電極130及び第1ダイオード140が順に備わっている。ここで、第1中間電極130は、第1抵抗変化層120と第1ダイオード140とを電気的に連結させるものであり、第1中間電極130がなければ、第1ダイオード140が抵抗体と共に作用し、素子動作に問題が発生しうる。第1ダイオード140は垂直ダイオードであり、p型酸化物層とn型酸化物層とが順に積層された構造であるか、p型シリコン層とn型シリコン層とが順に積層された構造でありうる。例えば、第1ダイオード140は、CuO層のようなp型酸化物層と、InZnO層のようなn型酸化物層とが順に積層された構造を有することができる。第1抵抗変化層120、第1中間電極130及び第1ダイオード140は、同じエッチングマスクを使用して一回のエッチング工程によって形成したものでありうる。従って、それらは、平面的に同じ形状を有することができる。第1ダイオード140上に、第1コンタクト電極層(図示せず)をさらに具備することができるが、前記第1コンタクト電極層は、第1抵抗変化層120、第1中間電極130及び第1ダイオード140と共にパターニングされた層でありうる。以下では、第1抵抗変化層120、第1中間電極130及び第1ダイオード140によって構成された積層構造物を第1積層構造物S1とする。第1積層構造物S1の平面的形状については後述する。
第1積層構造物S1周囲の第1下部絶縁層110上に、第1層間絶縁層160が備わりうるが、第1層間絶縁層160と第1積層構造物S1との間、及び第1層間絶縁層160と第1下部絶縁層110との間に、第1層間絶縁層160と異なる物質によって形成された第1保護絶縁層150がさらに備わりうる。第1保護絶縁層150は、第1層間絶縁層160と第1積層構造物S1との間にのみ備わり、第1層間絶縁層160と第1下部絶縁層110との間には備わらないこともある。第1保護絶縁層150は、第1下部絶縁層110と同じ物質によって形成され、水素浸透から第1抵抗変化層120及び第1ダイオード140を保護する役割を行える。特に、第1保護絶縁層150がAl層、またはそれと類似した特性を有する所定の物質層であるとき、第1保護絶縁層150の形成時に、第1保護絶縁層150と第1抵抗変化層120との間、及び第1保護絶縁層150と第1ダイオード140との間のシリサイド反応が防止されうる。第1層間絶縁層160は、第1積層構造物S1より高く形成され、第1層間絶縁層160と第1積層構造物S1との間の第1保護絶縁層150も、第1積層構造物S1より高く形成されうる。
第1ダイオード140上に、第2電極200が備わっている。第2電極200は、金属層をライン状にパターニングして形成できるが、第2電極200と第1電極100は、互いに交差、望ましくは直交しうる。その場合、第1積層構造物S1は、第1電極100と第2電極200との交差点に備わる。
第2電極200の周囲の第1保護絶縁層150及び第1層間絶縁層160上に、第2電極200と同じ高さの第2中間絶縁層205が備わりうる。第2電極200上に、第2ダイオード210及び第2中間電極220が順にさらに備わりうる。第2ダイオード210の整流方向は、第1ダイオード140の整流方向と反対であることが望ましいが、同じであってもよい。第2ダイオード210及び第2中間電極220は、同じエッチングマスクを使用して共にパターニングして形成できる。第2ダイオード210と第2電極200との間に、第2ダイオード210と同じ平面的形態を有する第2コンタクト電極層(図示せず)がさらに備わりうる。
第2中間電極220上に、その上面の一部を露出させる第2ホールG2を有する第2下部絶縁層230が備わる。第2下部絶縁層230は、第2中間電極220及び第2ダイオード210の側面と、第2中間絶縁層205の上面とを覆うように形成されうるが、第1下部絶縁層110と同じ物質によって形成されうる。第2下部絶縁層230の周囲に、それと類似した高さの第2層間絶縁層240が備わりうる。
第2ホールG2によって露出された第2中間電極220上に、それとコンタクトされた第2抵抗変化層250が備わる。第2抵抗変化層250は、第1抵抗変化層120と同じ物質層であって、第1抵抗変化層120と類似した形状を有することができる。すなわち、第2抵抗変化層250は、第2ホールG2周囲の第2下部絶縁層230上に拡張されている。
第2層間絶縁層240上に、第2抵抗変化層250と接触された第3電極300が備わる。第3電極300は、第2抵抗変化層250両側の第2下部絶縁層230及び第2層間絶縁層240に伸びているライン状のパターンであって、第2電極200と交差、望ましくは垂直交差しうる。この場合、第2電極200と第3電極300との交差点に、第2ダイオード210、第2中間電極220及び第2抵抗変化層250が備わる。以下では、第2ダイオード210、第2中間電極220及び第2抵抗変化層250によって構成された積層構造物を第2積層構造物S2とする。第2抵抗変化層250は、第3電極300と同じライン状に形成されもする。すなわち、第2抵抗変化層250は、第3電極300と第2層間絶縁層240との間に拡張されうる。この場合、第2抵抗変化層250と第3電極300とが一回の工程で共にパターニングされうるので、工程数が減少する。第2抵抗変化層250と第2中間電極220との接触面積は、第2ホールG2の大きさによって決定され、第2中間電極220と接触された第2抵抗変化層250領域のみが有効な抵抗変化領域でありうる。従って、第2抵抗変化層250のパターニング形状が変わっても、素子動作には変化がないのである。
図1に図示されていないが、第3電極300上に、第1積層構造物S1と類似した積層構造物(図示せず)と、第2電極200と類似した第4電極(図示せず)とが順にさらに備わり、前記第4電極上に、第2積層構造物S2と類似した積層構造物(図示せず)と、第3電極300と類似した第5電極(図示せず)とが順にさらに備わりうる。前記第5電極上に、抵抗変化層とダイオードとを備える積層構造物(図示せず)と電極(図示せず)とが交互にさらに積層されうる。また図1の構造で、第2電極200上部の構造物が備わらないこともある。その場合、第1電極100及び第2電極200と、それらの間の第1積層構造物S1とによって構成された交差点RRAMになる。図1の構造で、第2電極200下部の構造物が備わらないこともあるが、その場合、第2電極200及び第3電極300と、それらの間の第2積層構造物S2とによって構成された交差点RRAMになる。
図1の第1電極100、第1積層構造物S1、第2電極200、第2積層構造物S2及び第3電極300は、回路的に図2Aまたは図2Bのような構造を有することができる。図2A及び図2Bで、第1ダイオード140及び第2ダイオード210の整流方向は変化しうる。また第1積層構造物S1で、第1抵抗変化層120と第1ダイオード140との位置は互いに変化しうる。これは、第2積層構造物S2でも同じである。
図1で、第1電極100、第2電極200及び第3電極300は、それぞれ複数備わりうる。その場合、第1電極100と第2電極200との交差点ごとに第1積層構造物S1が備わり、第2電極200と第3電極300との交差点ごとに第2積層構造物S2が備わりうる。すなわち、図1の構造を含む多層交差点RRAMの回路構成は、図3の通りでありうる。
図3を参照すれば、複数の第1電極100上に、それと交差する複数の第2電極200が備わり、それらの交差点に、第1積層構造物S1が備わる。また、複数の第2電極200上に、それと交差する複数の第3電極300が備わり、それらの交差点に、第2積層構造物S2が備わる。図3で、第1ダイオード140及び第2ダイオード210の整流方向は変わることがあり、第1抵抗変化層120と第1ダイオード140との位置、及び第2抵抗変化層250と第2ダイオード210との位置もまた変化しうる。
図4及び図5は、図3の第1電極100、第1積層構造物S1及び第2電極200が有しうる平面構造を示す。
図4を参照すれば、互いに交差する第1電極100と第2電極200との間に、四角柱状の第1積層構造物S1が備わっている。第1積層構造物S1の幅は、第1電極100の幅より大きく、第1ホールG1の幅は、第1電極100の幅より小さくありうる。第1積層構造物S1と第1ホールG1との形態及び大きさは、多様に変化しうる。例えば、第1積層構造物S1は、円柱状であったり、それ以外の形態でもあり、その幅は、高さによって変化しうる。ここに図示されていないが、第2積層構造物S2及び第2ホールG2の平面構造は、それぞれ図4の第1積層構造物S1及び第1ホールG1の平面構造と同一であり、第3電極300は、第1電極100と同じ平面構造を有しうる。しかし、第2積層構造物S2で第2抵抗変化層250は、第2ダイオード210と異なる平面構造を有しうる。
図5は、図4で第1積層構造物S1の形態を変形させた例を示す。
図5で第1積層構造物S1は、第1電極100及び第2電極200の交差点に備わった第1部分P1と、第1部分P1と接触して前記交差点外部に拡張された第2部分P2とを含む。すなわち、第1積層構造物S1は、第1電極100及び第2電極200の交差点の外部に拡張された非対称的形状を有する。第1積層構造物S1の広さが大きくなるほど、第1ダイオード140の広さが大きくなる。これにより、第1ダイオード140の順方向電流が大きくなって、スイッチング特性が向上しうる。ここに図示されていないが、第2積層構造物S2及び第2ホールG2の平面構造は、それぞれ図5の第1積層構造物S1及び第1ホールG1の平面構造と同一であり、第3電極300は、第1電極100と同じ平面構造を有しうる。しかし、第2積層構造物S2で第2抵抗変化層250は、第2ダイオード210と異なる平面構造を有しうる。
製造工程を考慮するとき、図4及び図5に図示されているように、第1積層構造物S1の平面的広さが第1ホールG1の平面的広さより広いことが望ましい。しかし、第1積層構造物S1と第1ホールG1との平面的大きさ、形状及び位置が一致するように、第1積層構造物S1と第1ホールG1とを形成することも可能である。すなわち、図1で第1積層構造物S1は、第1ホールG1の上部幅と同じ幅を有するように形成されもする。これと同様に、第2ダイオード210及び第2中間電極220の平面的形態及び大きさも、多様に変形されうる。
また図1で、第1下部絶縁層110から第2電極200までの構造は、図6の構造のように変形されうる。
図6と図1とを比較すれば、図6の第1下部絶縁層110’は、図1の下部絶縁層110より厚く、図6の第1ホールG1’は、図1の第1ホールG1より深くて大きく形成されている。従って、図1の構造では、第1ダイオード140が第1ホールG1外部に存在するが、図6のような構造では、第1ダイオード140の少なくとも一部が第1ホールG1’内に位置しうる。図6の構造では、第1ダイオード140と第1中間電極130との屈曲が大きいために、それらの接触面積が図1のそれより広くなりうる。
図7Aないし図7Kは、本発明の実施形態によるRRAMの製造方法を示す。
図7Aを参照すれば、基板10上に第1電極100を形成する。第1電極100は、複数であって、複数の第1電極100は、等間隔を有して離隔された互いに平行した配線でありうる。かような第1電極100は、所定の金属層をライン状にパターニングすることによって形成できる。第1電極100の両側の基板10上に、第1電極100と類似、あるいは同じ高さの第1中間絶縁層105を形成する。第1中間絶縁層105を形成するのは選択的である。
図7Bを参照すれば、第1電極100と第1中間絶縁層105との上に、第1下部絶縁層110を形成する。第1下部絶縁層110は、Al、TiO、SiOまたはSiのような絶縁物質によって形成できるが、望ましくは、Alから形成する。第1中間絶縁層105が存在しない場合ならば、基板10上に第1電極100を覆うように、第1下部絶縁層110を形成できる。この場合、CMP(Chemical Mechanical Polishing)工程で第1下部絶縁層110の上面を平坦化することが望ましい。
図7Cを参照すれば、第1下部絶縁層110をエッチングし、第1電極100の上面の一部を露出させる第1ホールG1を形成する。各第1電極100に対応する第1ホールG1は複数であって、所定間隔を有して規則的に形成されうる。第1ホールG1は傾斜エッチング工程によって形成され、従って、第1ホールG1の幅は、第1電極100に近づくほど狭くなりうる。第1ホールG1は、高さによって一定の幅を有するように形成することもある。
図7Dを参照すれば、露出された第1電極100及びその周囲の第1下部絶縁層110上に、第1抵抗変化層120、第1中間電極130、第1ダイオード140及び第1コンタクト電極層145を順に備える積層構造物を形成する。第1抵抗変化層120、第1中間電極130及び第1ダイオード140は、図1の第1積層構造物S1を構成できる。第1コンタクト電極層145を形成することは選択的である。第1抵抗変化層120、第1中間電極130、第1ダイオード140及び第1コンタクト電極層145は、同じエッチングマスク層を使用してパターニングされた層でありうる。従ってそれらは、平面的に同じ形状を有しうる。ここで、第1積層構造物S1及び第1コンタクト電極層145は、図5の第1積層構造物S1と同じ平面的構造を有するが、その形態は多様に変形されうる。一方、第1抵抗変化層120は、Ni−O、Ti−O、Hf−O、Zr−O、Zn−O、W−O、Co−O、Nb−O、Ti−Ni−O、Li−Ni−O、Al−O、In−Zn−O、V−O、Sr−Zr−O、Sr−Ti−O、Cr−O、Fe−O、Cu−OまたはTa−Oのような非化学量論的(non−stoichiometric)組成を有する金属酸化物によって形成できる。
図7Eを参照すれば、第1下部絶縁層110上に、第1積層構造物S1と第1コンタクト電極層145との側面を覆う保護絶縁層150を形成し、保護絶縁層150上に、第1層間絶縁層160を形成する。保護絶縁層150は、第1下部絶縁層110と同じ物質によって形成できる。第1コンタクト電極層145、保護絶縁層150及び第1層間絶縁層160の上部露出面は、類似あるいは同じ高さを有しうるが、保護絶縁層150及び第1層間絶縁層160を第1コンタクト電極層145より多少高く形成することもできる。また、図7Eで保護絶縁層150は、第1積層構造物S1と第1コンタクト電極層145との側面、及び第1下部絶縁層110上に備わっているが、第1下部絶縁層110上には保護絶縁層150を具備しないこともある。
図7Fを参照すれば、第1コンタクト電極層145と接触する第2電極200を形成する。第2電極200は、第1電極100と交差する、望ましくは、垂直交差する複数の配線でありうる。従って、第1電極100と第2電極200との交差点に、第1積層構造物S1が備わりうる。第2電極200は、第1電極100との交差点で、第1積層構造物S1と類似した平面構造を有することもできる。すなわち、第1電極100と第2電極200との交差点で、第2電極200の一部が第1積層構造物S1の上部に拡張されうる。このように、第2電極200の一部が第1積層構造物S1の上部に拡張された構造(以下、変形構造)を有するならば、第1コンタクト電極層145が要求されず、第2電極200が第1積層構造物S1の上面全体と直接接触できる。また、第2電極200が前記変形構造を有するならば、以後の工程で、第2コンタクト電極層207(図7G)を形成しないこともある。
第2電極200の形成後、第2電極200両側の第1層間絶縁層160、保護絶縁層150及び第1コンタクト電極層145上に、第2電極200と類似、あるいは同じ高さの第2中間絶縁層205を形成する。
図7Gを参照すれば、第1積層構造物S1上側の第2電極200上に、第2コンタクト電極層207、第2ダイオード210及び第2中間電極220が順に積層された積層構造物を形成する。第2コンタクト電極層207を形成するのは選択的である。第2コンタクト電極層207、第2ダイオード210及び第2中間電極220は、同じエッチングマスク層を利用してパターニングされたものでありうる。それらは、第1積層構造物S1と同じ平面的構造を有することが望ましいが、そうではないこともある。
図7Hを参照すれば、第2中間絶縁層205と第2電極200との上に、第2コンタクト電極層207、第2ダイオード210及び第2中間電極220を覆う第2下部絶縁層230を形成する。その後、第2下部絶縁層230上に絶縁層を形成し、前記絶縁層を第2中間電極220上の第2下部絶縁層230が露出されるまでCMPを行う。前記CMP後、残留した前記絶縁層が第2層間絶縁層240である。
図7Iを参照すれば、第2下部絶縁層230の一部を除去し、第2中間電極220をそれぞれ露出させる第2ホールG2を形成する。第2ホールG2は、第1ホールG1と類似した形状を有しうる。
図7Jを参照すれば、露出された第2中間電極220及びその周囲の第2下部絶縁層230上に、第2抵抗変化層250を形成する。第2抵抗変化層250は、第1抵抗変化層120と同じ物質によって形成でき、第2中間電極220と同じ平面的形状を有するように形成できる。しかしその形態は、他の形状に変形されもする。例えば、第2抵抗変化層250は、平面的に正四角形、長方形または円形であったり、ライン状を有することもできる。第2ダイオード210、第2中間電極220及び第2抵抗変化層250は、第2積層構造物S2を構成できるが、これは、図1の第2積層構造物S2に対応しうる。
図7Kを参照すれば、第2抵抗変化層250とコンタクトする第3電極300を形成する。第3電極300は、第2抵抗変化層250両側の第2下部絶縁層230及び第2層間絶縁層240に伸びているライン状のパターンであって、第2電極200と直交するように交差しうる。この後に図示されていないが、第3電極300上に抵抗変化層及びダイオードを含む積層構造物と電極とを交互にさらに形成できるが、前記抵抗変化層は、それに対応する下部絶縁層のホール内に形成する。
前記の説明で多くの事項が具体的に記載されているが、それらは、発明の範囲を限定するものというより、望ましい実施形態の例示として解釈されるものである。例えば、本発明が属する技術分野における当業者ならば、本発明の実施形態でRRAMの構造及び構成要素を変形及び多様化できるであろう。一例として、図1及びそれの変形構造で、スイッチング素子としてダイオードの代わりにトランジスタやスレショルド素子(threshold device)を使用でき、ダイオードも、一般的なpnダイオードではない他構造の多様なダイオードを使用できるということを理解できるであろう。また図7Aないし図7Kを参照して説明した製造方法は、多様に変形可能であるということが理解できるであろう。従って、本発明の範囲は、説明された実施形態によって定められるものではなく、特許請求の範囲に記載された技術的思想によってのみ定められるものである。
本発明の抵抗性メモリ素子及びその製造方法は、例えば、電子機器関連の技術分野に効果的に適用可能である。
10 基板
100 第1電極
105 第1中間絶縁層
110,110’ 第1下部絶縁層
120 第1抵抗変化層
130 第1中間電極
140 第1ダイオード
145 第1コンタクト電極層
150 第1保護絶縁層
160 第1層間絶縁層
200 第2電極
205 第2中間絶縁層
207 第2コンタクト電極層
210 第2ダイオード
220 第2中間電極
230 第2下部絶縁層
240 第2層間絶縁層
250 第2抵抗変化層
300 第3電極
G1,G1’ 第1ホール
G2 第2ホール
P1 第1部分
P2 第2部分
S1 第1積層構造物
S2 第2積層構造物

Claims (22)

  1. 第1電極と、
    前記第1電極上に備わったものであり、前記第1電極の一部を露出させる第1ホールを有する第1絶縁層と、
    前記露出された第1電極と接触され、前記第1ホール周囲の前記第1絶縁層上に拡張された第1抵抗変化層と、
    前記第1抵抗変化層と電気的に連結された第1スイッチング素子とを備える抵抗性メモリ素子。
  2. 前記第1スイッチング素子は、第1ダイオードであることを特徴とする請求項1に記載の抵抗性メモリ素子。
  3. 前記第1ダイオードは、前記第1抵抗変化層上に備わり、前記第1抵抗変化層と前記第1ダイオードとの間に第1中間電極が介在され、前記第1ダイオード上に第2電極が備わったことを特徴とする請求項2に記載の抵抗性メモリ素子。
  4. 前記第1ダイオードは、前記第1ホール外部に存在することを特徴とする請求項3に記載の抵抗性メモリ素子。
  5. 前記第1ダイオードの少なくとも一部は、前記第1ホール中に存在することを特徴とする請求項3に記載の抵抗性メモリ素子。
  6. 前記第1電極と前記第2電極は、配線形態を有して互いに交差することを特徴とする請求項3に記載の抵抗性メモリ素子。
  7. 前記第1抵抗変化層、前記第1中間電極及び前記第1ダイオード周囲の前記第1絶縁層上に層間絶縁層をさらに具備することを特徴とする請求項3に記載の抵抗性メモリ素子。
  8. 前記第2電極上に順に積層された第2ダイオード及び第2中間電極と、
    前記第2中間電極上に備わったものであり、前記第2中間電極の一部を露出させる第2ホールを有する第2絶縁層と、
    前記露出された第2中間電極と接触され、前記第2ホール周囲の前記第2絶縁層上に拡張された第2抵抗変化層と、
    前記第2抵抗変化層と接触された第3電極とをさらに備えることを特徴とする請求項3に記載の抵抗性メモリ素子。
  9. 前記第2絶縁層は、前記第2中間電極、前記第2ダイオード及び前記第2電極の側面を覆うことを特徴とする請求項8に記載の抵抗性メモリ素子。
  10. 前記第2電極と前記第3電極は、配線形態で互いに交差することを特徴とする請求項8に記載の抵抗性メモリ素子。
  11. 前記抵抗性メモリ素子は、1D(diode)−1R(resistance)セル構造を有する多層交差点メモリ素子であることを特徴とする請求項10に記載の抵抗性メモリ素子。
  12. 抵抗変化層及びこれに電気的に連結されたスイッチング素子を備える抵抗性メモリ素子の製造方法において、
    第1電極を形成する段階と、
    前記第1電極上に第1絶縁層を形成する段階と、
    前記第1絶縁層をエッチングし、前記第1電極の一部を露出させる第1ホールを形成する段階と、
    前記露出された第1電極及びその周囲の前記第1絶縁層を覆う第1抵抗変化層を形成する段階とを含む抵抗性メモリ素子の製造方法。
  13. 前記第1抵抗変化層上に第1中間電極及び第1ダイオードを順に形成する段階をさらに含むことを特徴とする請求項12に記載の抵抗性メモリ素子の製造方法。
  14. 前記第1ダイオードは、前記第1ホールの外部に存在することを特徴とする請求項13に記載の抵抗性メモリ素子の製造方法。
  15. 前記第1ダイオードの少なくとも一部は、前記第1ホール中に存在することを特徴とする請求項13に記載の抵抗性メモリ素子の製造方法。
  16. 前記第1抵抗変化層、前記第1中間電極及び前記第1ダイオードは、同じエッチングマスクを利用して形成することを特徴とする請求項13に記載の抵抗性メモリ素子の製造方法。
  17. 前記第1抵抗変化層、前記第1中間電極及び前記第1ダイオード周囲の前記第1絶縁層上に層間絶縁層を形成する段階をさらに含むことを特徴とする請求項13に記載の抵抗性メモリ素子の製造方法。
  18. 前記第1ダイオード上に第2電極を形成する段階をさらに含むことを特徴とする請求項13に記載の抵抗性メモリ素子の製造方法。
  19. 前記第1電極と前記第2電極は、配線形態で互いに交差することを特徴とする請求項18に記載の抵抗性メモリ素子の製造方法。
  20. 前記第2電極上に第2ダイオード及び第2中間電極を順に形成する段階をさらに含むことを特徴とする請求項18に記載の抵抗性メモリ素子の製造方法。
  21. 前記第2中間電極上に前記第2中間電極の一部を露出させる第2ホールを有する第2絶縁層を形成する段階と、
    前記露出された第2中間電極及びその周囲の前記第2絶縁層を覆う第2抵抗変化層を形成する段階と、
    前記第2抵抗変化層と接触された第3電極を形成する段階とをさらに含むことを特徴とする請求項20に記載の抵抗性メモリ素子の製造方法。
  22. 前記第2電極と前記第3電極は、配線形態で互いに交差することを特徴とする請求項21に記載の抵抗性メモリ素子の製造方法。
JP2009012253A 2008-01-23 2009-01-22 抵抗性メモリ素子及びその製造方法 Pending JP2009177181A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080007082A KR20090081153A (ko) 2008-01-23 2008-01-23 저항성 메모리 소자 및 그 제조방법

Publications (1)

Publication Number Publication Date
JP2009177181A true JP2009177181A (ja) 2009-08-06

Family

ID=40875741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012253A Pending JP2009177181A (ja) 2008-01-23 2009-01-22 抵抗性メモリ素子及びその製造方法

Country Status (4)

Country Link
US (1) US8853759B2 (ja)
JP (1) JP2009177181A (ja)
KR (1) KR20090081153A (ja)
CN (1) CN101494220B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477524B2 (en) 2009-12-25 2013-07-02 Samsung Electronics Co., Ltd. Nonvolatile memory devices and related methods and systems

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796660B2 (en) * 2006-10-16 2014-08-05 Panasonic Corporation Nonvolatile memory element comprising a resistance variable element and a diode
KR101350979B1 (ko) * 2007-05-11 2014-01-14 삼성전자주식회사 저항성 메모리 소자 및 그 제조 방법
JP5343440B2 (ja) * 2008-08-01 2013-11-13 富士通セミコンダクター株式会社 抵抗変化素子、抵抗変化素子の製造方法および半導体メモリ
WO2010079816A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
US20120001143A1 (en) * 2009-03-27 2012-01-05 Dmitri Borisovich Strukov Switchable Junction with Intrinsic Diode
KR101361658B1 (ko) * 2009-12-04 2014-02-21 한국전자통신연구원 저항형 메모리 장치 및 그 제조 방법
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US9293200B2 (en) 2010-08-30 2016-03-22 Hewlett Packard Enterprise Development Lp Multilayer memory array
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8431923B2 (en) 2011-02-07 2013-04-30 Micron Technology, Inc. Semiconductor structure and semiconductor device including a diode structure and methods of forming same
US9219159B2 (en) 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
TWI545652B (zh) 2011-03-25 2016-08-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9012904B2 (en) * 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8440990B2 (en) * 2011-06-09 2013-05-14 Intermolecular, Inc. Nonvolatile memory device having an electrode interface coupling region
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US9166163B2 (en) * 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
KR20130005878A (ko) * 2011-07-07 2013-01-16 삼성전자주식회사 저저항 반도체 소자
US8466005B2 (en) * 2011-07-22 2013-06-18 Intermolecular, Inc. Method for forming metal oxides and silicides in a memory device
JP5548170B2 (ja) * 2011-08-09 2014-07-16 株式会社東芝 抵抗変化メモリおよびその製造方法
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US9741765B1 (en) 2012-08-14 2017-08-22 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US9112148B2 (en) 2013-09-30 2015-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell structure with laterally offset BEVA/TEVA
US20150179934A1 (en) * 2013-12-20 2015-06-25 Intermolecular, Inc. ZrOx/STO/ZrOx Based Selector Element
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
WO2017131642A1 (en) * 2016-01-26 2017-08-03 Hewlett Packard Enterprise Development Lp Resistive memory cell including a selector
KR102495000B1 (ko) 2016-03-18 2023-02-02 삼성전자주식회사 반도체 소자 및 이의 제조방법
US10297751B2 (en) * 2017-01-26 2019-05-21 Hrl Laboratories, Llc Low-voltage threshold switch devices with current-controlled negative differential resistance based on electroformed vanadium oxide layer
CN110199390B (zh) 2017-01-26 2024-02-27 Hrl实验室有限责任公司 可扩展、可堆叠和beol工艺兼容的集成神经元电路
US11861488B1 (en) 2017-06-09 2024-01-02 Hrl Laboratories, Llc Scalable excitatory and inhibitory neuron circuitry based on vanadium dioxide relaxation oscillators
KR20210085930A (ko) * 2019-12-31 2021-07-08 에스케이하이닉스 주식회사 저항 변화층을 구비하는 비휘발성 메모리 장치 및 이의 구동 방법

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203123A (en) * 1977-12-12 1980-05-13 Burroughs Corporation Thin film memory device employing amorphous semiconductor materials
US4442507A (en) * 1981-02-23 1984-04-10 Burroughs Corporation Electrically programmable read-only memory stacked above a semiconductor substrate
US5751012A (en) * 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
JP2002530850A (ja) * 1998-11-16 2002-09-17 マトリックス セミコンダクター インコーポレーテッド 垂直スタック型フィールド・プログラマブル不揮発性メモリおよびその製造方法
JP2004342843A (ja) * 2003-05-15 2004-12-02 Sony Corp 半導体記憶素子及びこれを用いた半導体記憶装置
JP2006514392A (ja) * 2003-03-18 2006-04-27 株式会社東芝 相変化メモリ装置
JP2006514393A (ja) * 2003-03-18 2006-04-27 株式会社東芝 プログラマブル抵抗メモリ装置
JP2006514440A (ja) * 2003-04-03 2006-04-27 株式会社東芝 相変化メモリ装置
JP2006196516A (ja) * 2005-01-11 2006-07-27 Sharp Corp 半導体記憶装置の製造方法
JP2006203098A (ja) * 2005-01-24 2006-08-03 Sharp Corp 不揮発性半導体記憶装置
WO2006121837A2 (en) * 2005-05-09 2006-11-16 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
JP2006319028A (ja) * 2005-05-11 2006-11-24 Nec Corp スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
JP2007165873A (ja) * 2005-12-12 2007-06-28 Hitachi Global Storage Technologies Netherlands Bv 単極抵抗ランダムアクセスメモリ(rram)デバイス、および垂直スタックアーキテクチャ
WO2007102483A1 (ja) * 2006-03-08 2007-09-13 Matsushita Electric Industrial Co., Ltd. 不揮発性記憶素子、不揮発記憶装置、及びそれらの製造方法
WO2008149605A1 (ja) * 2007-06-04 2008-12-11 Nec Corporation 抵抗変化素子およびこれを備えた半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US7623370B2 (en) * 2002-04-04 2009-11-24 Kabushiki Kaisha Toshiba Resistance change memory device
JP4423552B2 (ja) 2004-08-11 2010-03-03 株式会社フジコー 光触媒機能皮膜の形成方法
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
JP2007027537A (ja) * 2005-07-20 2007-02-01 Sharp Corp 可変抵抗素子を備えた半導体記憶装置
JP4437479B2 (ja) * 2006-08-02 2010-03-24 株式会社半導体理工学研究センター 相変化メモリ素子
US7859036B2 (en) * 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203123A (en) * 1977-12-12 1980-05-13 Burroughs Corporation Thin film memory device employing amorphous semiconductor materials
US4442507A (en) * 1981-02-23 1984-04-10 Burroughs Corporation Electrically programmable read-only memory stacked above a semiconductor substrate
US5751012A (en) * 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
JP2002530850A (ja) * 1998-11-16 2002-09-17 マトリックス セミコンダクター インコーポレーテッド 垂直スタック型フィールド・プログラマブル不揮発性メモリおよびその製造方法
JP2006514393A (ja) * 2003-03-18 2006-04-27 株式会社東芝 プログラマブル抵抗メモリ装置
JP2006514392A (ja) * 2003-03-18 2006-04-27 株式会社東芝 相変化メモリ装置
JP2006514440A (ja) * 2003-04-03 2006-04-27 株式会社東芝 相変化メモリ装置
JP2004342843A (ja) * 2003-05-15 2004-12-02 Sony Corp 半導体記憶素子及びこれを用いた半導体記憶装置
JP2006196516A (ja) * 2005-01-11 2006-07-27 Sharp Corp 半導体記憶装置の製造方法
JP2006203098A (ja) * 2005-01-24 2006-08-03 Sharp Corp 不揮発性半導体記憶装置
WO2006121837A2 (en) * 2005-05-09 2006-11-16 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
JP2006319028A (ja) * 2005-05-11 2006-11-24 Nec Corp スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
JP2007165873A (ja) * 2005-12-12 2007-06-28 Hitachi Global Storage Technologies Netherlands Bv 単極抵抗ランダムアクセスメモリ(rram)デバイス、および垂直スタックアーキテクチャ
WO2007102483A1 (ja) * 2006-03-08 2007-09-13 Matsushita Electric Industrial Co., Ltd. 不揮発性記憶素子、不揮発記憶装置、及びそれらの製造方法
WO2008149605A1 (ja) * 2007-06-04 2008-12-11 Nec Corporation 抵抗変化素子およびこれを備えた半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477524B2 (en) 2009-12-25 2013-07-02 Samsung Electronics Co., Ltd. Nonvolatile memory devices and related methods and systems

Also Published As

Publication number Publication date
US20090184305A1 (en) 2009-07-23
CN101494220B (zh) 2012-10-24
CN101494220A (zh) 2009-07-29
US8853759B2 (en) 2014-10-07
KR20090081153A (ko) 2009-07-28

Similar Documents

Publication Publication Date Title
JP2009177181A (ja) 抵抗性メモリ素子及びその製造方法
KR20090080751A (ko) 저항성 메모리 소자 및 그 제조방법
KR100796537B1 (ko) 반도체 메모리 장치의 구조 및 제조 방법
CN104659050B (zh) Rram器件的顶电极阻挡层
KR100996172B1 (ko) 저항성 메모리 소자 및 그 제조 방법
JP4929332B2 (ja) 電子部品の製造方法
US20090072246A1 (en) Diode and memory device comprising the same
US8729667B2 (en) Non-volatile memory device and method of manufacturing the same
US8649217B2 (en) Non-volatile memory device and manufacturing method of the same
KR20100041155A (ko) 저항성 메모리 소자
KR20120020989A (ko) 비휘발성 메모리요소 및 이를 포함하는 메모리소자
KR20110074354A (ko) 메모리소자 및 그 동작방법
US7799702B1 (en) Method of manufacturing nonvolatile memory device
KR20160013654A (ko) 가변 저항 메모리 장치 및 그 제조 방법
KR20090103113A (ko) 반도체 소자 및 그 제조방법
US20140209849A1 (en) Non-volatile memory device and method of manufacturing the same
US20110233502A1 (en) Nonvolatile memory device
US8945949B2 (en) Method for fabricating variable resistance memory device
KR102275502B1 (ko) 가변 저항 메모리 소자 및 이의 제조 방법
US9252192B2 (en) Methods of manufacturing semiconductor devices including a cross point cell array
KR102464198B1 (ko) 반도체 장치의 제조 방법
US20140021432A1 (en) Variable resistance memory device and method for fabricating the same
JP2013239520A (ja) 半導体装置及びその製造方法
JP2011151049A (ja) 不揮発性半導体記憶装置およびその製造方法
US20130026437A1 (en) Resistance variable memory device and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218