JP2009164314A - 貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法 - Google Patents

貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法 Download PDF

Info

Publication number
JP2009164314A
JP2009164314A JP2007341566A JP2007341566A JP2009164314A JP 2009164314 A JP2009164314 A JP 2009164314A JP 2007341566 A JP2007341566 A JP 2007341566A JP 2007341566 A JP2007341566 A JP 2007341566A JP 2009164314 A JP2009164314 A JP 2009164314A
Authority
JP
Japan
Prior art keywords
substrate
bonded
bonding layer
thickness
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007341566A
Other languages
English (en)
Other versions
JP5334411B2 (ja
Inventor
Yuuki Sudo
勇気 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007341566A priority Critical patent/JP5334411B2/ja
Publication of JP2009164314A publication Critical patent/JP2009164314A/ja
Application granted granted Critical
Publication of JP5334411B2 publication Critical patent/JP5334411B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】第1の基板であるシリコン基板と第2の基板であるガラス基板との熱膨張差によって生じる、貼り合わせ基板の反りを低減すること。
【解決手段】サポート基板を第2の基板上にさらに貼り合わせる。第2の基板として線膨張係数3〜8ppm/℃のガラス基板を用いる。サポート基板に第2の基板と同程度の線膨張係数を持つガラス基板またはシリコン基板を用いる。サポート基板と第2の基板の合計厚みを1〜3mmとする。第1の接合層の硬化温度を第2の接合層の硬化温度より低い接着剤を用いることにより、個片化するときに容易にサポート基板を剥離でき、極薄の半導体パッケージを作製できる。
【選択図】図6

Description

本発明は、CCDやCMOSイメージセンサー等の光学系半導体デバイスをウエハレベルパッケージで作製するときに使用される貼り合わせ基板に関する。
半導体素子の微細化、高集積化に伴い、半導体素子が形成されている基板、たとえばシリコン基板を薄くして、他の基板と貼り合わせてプロセスを行う方法が採用されている。たとえば、図7に示す光学系半導体デバイスのウエハレベルパッケージにおいて、シリコン等の半導体基板103は接合層102を介してガラス基板100に貼り合わせられている。半導体基板103の表面には光学系半導体デバイス(たとえば、CCDやCMOS等の撮像素子)101が形成されており、この半導体デバイス101は、貫通電極107を通して半導体基板103の裏面に形成された配線層105およびバンプ108に接続されている。また、半導体デバイス101の上部はキャビティ(空洞)104になっている。このような貼り合わせ構造のウエハレベルパッケージは個片化された後、個片化されたバンプ108はプリント配線板などに実装される。
図8は、図7に示すような貼合わせ構造のウエハレベルパッケージにおいて従来用いられている製造方法を示す図である。図8(a)に示すように、シリコン基板103の表面に半導体デバイス101が形成されている。次に、図8(b)に示すように、接合層102を形成しガラス基板100を接着し、シリコン基板103とガラス基板100を貼り合わせる。半導体デバイス101の上部はキャビティ(空洞)104になっている。次に、図8(c)に示すように、ガラス基板100を貼り合せた状態で、シリコン基板103の裏面を研削しシリコン基板103を薄くする。研削前のシリコン基板の厚みは、たとえば、400ミクロンm〜800ミクロンmであるが、研削後のシリコン基板の厚みは、たとえば、100ミクロンm〜300ミクロンmである。次に、図8(d)に示すように、貫通電極107および(裏面)配線層105を形成する。次に、図8(e)に示すように、(裏面)配線保護層106を形成する。次に、図8(f)に示すように、バンプ108を形成する。バンプ108は半田や金等の材料で形成される。これによって、半導体デバイス101は貫通電極107を通して半導体基板103の裏面に形成された配線層105およびバンプ108に接続され、ウエハレベルパッケージが完成する。次に、図8(g)に示すようにウエハベルパッケージをダイシングライン109に沿ってダイシングし、個片化する。この個片化されたものがICパッケージでありプリント配線基板などに実装される。
WO2005/022631
上記の図8(b)の工程において、接着層102を用いてガラス基板100とシリコン基板103の貼り合わせを行うが、その際またはその後の熱処理(たとえば、接着層の接着樹脂(剤)の熱処理工程)によって、ガラス基板とシリコン基板との線膨張係数の差のために、貼り合わせ基板が大きく反ってしまう。すなわち、シリコンの線膨張係数は約3ppm/℃であるが、ガラス基板に約6ppm/℃のガラスを用いた場合には、150℃で貼り合わせのための熱処理を行うと、熱処理後貼り合わせ基板において大きな反りが発生する。その結果、後工程における加工処理が非常に困難となる。たとえば、貼り合わせ基板をプロセス装置の処理ステージへ固定するときに、貼り合わせ基板を吸着できなくなってしまう。その結果、基板にフォトレジストを均一に塗布できない、基板上のパターンアライメントが困難になる、基板上のパターンずれが発生する、基板を搬送できない、基板を均一性良くエッチングできない、基板上にSiO2膜や金属膜を均一性良く積層できないなど、種々の問題点を発生させる。
本発明は、上記に示すような線膨張係数の異なる基板を貼り合わせた基板の反りを低減させ、後工程の加工を良好に行うことを目的とする。具体的には、以下の通りである。
サポート(支持)基板(第3の基板)を用いない2層タイプ(第1の基板と第2の基板の2つの基板を使用するもので、図7および図8に示すようなタイプ)においては、受動素子および/または能動素子が形成された第1の基板である半導体基板の一方の面(表面)に接合層を介して第2の基板を貼り合わせた構造を有する貼り合わせ基板であって、第2の基板の厚さを1〜3mmとする。
さらに、(第3の基板である)サポート基板を用いる3層タイプ(第1の基板、第2の基板および第3の基板の3つの基板を使用するもの)においては、受動素子および/または能動素子が形成された第1の基板である半導体基板の一方の面(表面)に第1の接合層を介して第2の基板を貼り合わせ、第2の基板の外側の面に第2の接合層を介して第3の基板をさらに貼り合わせた構造を有する貼り合わせ基板であって、第2の基板と第3の基板の合計厚さを1〜3mmとする。
サポート基板を用いない2層タイプの貼り合わせ基板においては、1mm〜3mmの厚みのガラス基板を用いることにより、貼り合わせ基板の厚みを余り厚くせずに、しかも反りを低減できる。特に第1の基板である半導体基板が薄くなったとき(たとえば、50ミクロンm〜300ミクロンmの厚みの半導体基板)は、プロセス中の貼り合せ基板の反りをかなり低減でき、ウエハレベルパッケージ形成プロセス中のウエハの反り量をプロセス上問題ないレベルである2mm以下に抑えることも可能である。
サポート基板を用いる3層タイプの張り合わせ基板においては、第2の基板と第3の基板の合計厚さを1mm〜3mmとすることにより、貼り合わせ基板の厚みを余り厚くせずに、しかも反りを低減できる。特に第1の基板である半導体基板が薄くなったとき(たとえば、50ミクロンm〜300ミクロンmの厚みの半導体基板)は、プロセス中の貼り合せ基板の反りをかなり低減でき、ウエハレベルパッケージ形成プロセス中のウエハの反り量をプロセス上問題ないレベルである2mm以下に抑えることも可能である。さらに、3層タイプの場合、第2の基板の厚みを薄くすることができるので、最終厚さが約1mm以下の半導体パッケージを作製することも可能である。
以上のように、本発明を用いることにより、貼り合わせ基板の厚みを従来に比較して薄くすることができるとともに反りをさらに低減できるので、貼り合せ基板を用いた後工程のプロセスを安全に安定して行うことができる。
図1に本発明の貼り合わせ基板の構造の一実施形態を示す。図1は第1の基板13と第2の基板10の2つの基板を貼り合わせた2層タイプの貼り合わせ基板である。尚、図1においては、貫通電極、裏面配線、(裏面)配線保護層やバンプなどは示されていない。図1において、光学系半導体デバイス11が第1の基板である半導体基板13の一方の面(表面と呼ぶ)に形成されている。半導体基板13は、シリコンやゲルマニウムなどの単元素であても良いし、ガリウム砒素やインジウムリンなどの化合物半導体であってもよい。本明細書ではこの第1の半導体基板はシリコンであるとして説明する。第1の基板であるシリコン基板13は、(第1の)接合層12を介して第2の基板であるガラス基板10と貼り合わせられている。光学系半導体デバイス11の一部または全部の上部は空洞(いわゆるキャビティ)14になっていて、ガラス基板を通して光がCCDやCMOSイメージセンサー等の撮像素子などの光学系半導体デバイス11に入射できるようになっている。(尚、実際に光の入射が必要な部分は光学系半導体デバイス11の撮像素子の部分である。)或いは、光学系半導体デバイスの上部は空洞(いわゆるキャビティ)14でなくとも透明な材料で形成されていても良い。さらに、接合層12が透明材料である場合には、光学系半導体デバイスの上部全体が接合層12であっても良い。
図2は、図1で示すような2層タイプの貼り合わせ基板の反り量と第2の基板であるガラス基板厚との関係を示すグラフである。室温(約25℃)で接着層を介して第1の基板であるシリコン基板と第2の基板であるガラス基板を貼り合わせた後、第1の基板と第2の基板の接着を確実にするために約150℃で熱処理を行った。反り量は、平坦なステージの上に貼り合わせ基板を載せて、光学式そり測定装置を用いて測定した。シリコン基板は直径8インチで厚みが100ミクロンmと200ミクロンmの2種類を用いた。第2の基板として線膨張係数が約6ppm/℃のガラス基板を用いた。図2に示すように、第2の基板であるガラス基板を厚くした方が反り量が小さくなる。特にガラス基板の厚みが1mm以上になると、反り量が約1.5mm以下となり、プロセス上殆ど問題ないレベルになった。シリコン基板の厚みが200ミクロンmから100ミクロンmへ薄くなると反り量は少し小さくなるが、この程度の厚みの差では反り量の差は小さいことも分かる。これらの実測値は、シリコン基板の物性値(ヤング率170GPa、線膨張係数3.2ppm/℃)およびガラス基板の物性値(ヤング率70GPa、線膨張係数6.0ppm/℃)からシミュレーションして求めた反り量とも良い一致を示した。(図2における実施例では、第2の基板のガラス基板として線膨張係数が約6ppm/℃のものを使用したが、シミュレーションでは線膨張係数が8ppm/℃のガラス基板でも、反り量がプロセス上問題ないレベルとなることを確認した。)
以上から、厚みが約50mm〜約300mmのシリコン基板を用いた貼り合わせ基板においては、線膨張係数が約3 ppm/℃〜約8ppm/℃のガラス基板の厚みを1mm以上にすることが良いことが分かった。ウエハレベルパッケージの厚みは、プロセス流動上や実装上から、薄い方が望ましく、3mm〜4mmが上限である。すなわち、ガラス基板を厚くするとパッケージ全体が厚くなり、パッケージを薄型化できなくなる。従って、ガラス基板の厚みの上限は好適には約3mmである。
以上の貼り合わせ基板を用いたウエハレベルパッケージを個片化した最終の半導体パッケージの厚みは、第1の基板厚みと第2の基板厚みとの合計厚みにより主に決定される。(他に、リードまたはバンプ厚みなども加算される。)本発明の上記の実施形態による最終の半導体パッケージの厚みは約1〜4mmとなる。この最終の半導体パッケージを実装した製品が薄い場合(たとえば、製品の厚みが約1〜4mmの場合)には、最終の半導体パッケージの厚みをさらに薄くする必要がある。
そこで、本発明はさらにサポート基板(支持基板)を使用する。たとえば、本発明の別の実施形態である図3に示すように、貼り合わせ基板にサポート基板24を貼り合わせた構造とする。(図3においては、貫通電極、裏面配線、(裏面)配線保護層やバンプなどは示されていない。)すなわち、図3において、図1で示した構造と同じ貼り合わせ基板の第2の基板であるガラス基板20上に接合層(第2の接合層)25を介してサポート基板24が接着している。サポート基板24は、第2の基板であるガラス基板20と同程度の線膨張係数を有する基板であることと、第2の接合層25は剥離可能であることを特徴とする。たとえば、サポート基板24がガラス基板20と同じガラス基板であっても良い。貼り合わせ基板の反り量を抑えるにはガラス基板の線膨張係数は約3 ppm/℃〜約8ppm/℃が望ましい。このサポート基板24を使用することにより、図1で示す2層タイプの貼り合わせ基板の第2の基板であるガラス基板10(図3においては20)をさらに薄くできる。(後述するように、一般的に最終製品としてのパッケージからサポート基板は剥離される。)本発明においては、図2から分かるように、ガラス基板20とサポート基板24の厚さの合計を1mm〜3mmにすることによって、プロセス中の貼り合わせ基板(この場合は、サポート基板24も含む)の反り量を約1.5mm以下に抑えることができる。(8インチ基板を用いたプロセスにおいては反り量が2.0mm以下になればプロセスの流動において問題を発生しない。)後に詳細に説明するように、サポート基板24は、ウエハレベルパッケージが個片化された後に(または、その時に)、個片化されたパッケージから取り除かれる。尚、第3の基板であるサポート基板は、第2の基板と全く同じ材料でなくとも、その線膨張係数が第2の基板の線膨張係数の30%(より好適には20%)以内であれば、反り量を約2.0mm以下に充分抑えることができる。
さらに、本発明は第3の基板であるサポート基板にシリコン基板を用いることもできる。この場合は、シリコン基板23と(シリコン基板である)サポート基板とで、線膨張係数の大きいガラス基板20を挟んだ構造となる。この構造を図4に示す。図4において、第2の基板であるガラス基板30上に接合層(第2の接合層)35を介して第3の基板であるサポートシリコン基板36が接着している。尚、図4においては、貫通電極、裏面配線、(裏面)配線保護層やバンプなどは示されていない。
図4の構造におけるサポートシリコン基板厚みと反り量の関係を図5に示す。すなわち、図5は、3層タイプの貼り合わせ基板において、サポート基板厚と貼り合わせ基板の反り量との関係を示したグラフである。室温(約25℃)で第1の接着層32を介して第1の基板であるシリコン基板33と第2の基板であるガラス基板30を貼り合わせ、さらに第2の接合層35を介して第3の基板であるサポート基板としてシリコン基板36を貼り合わせた後に、約150℃で熱処理を行い第1の基板33と第2の基板30、および第2の基板30と第3の基板36を接着した。反り量は、平坦なステージの上に貼り合わせ基板を載せて、光学式そり測定装置を用いて測定した。第1の基板であるシリコン基板33は直径8インチで厚みが100ミクロンmであり、第2の基板であるガラス基板30の厚みは300ミクロンmである。第2の基板のガラス基板30の線膨張係数は約6ppm/℃である。第3の基板のサポートシリコン基板36がない張り合わせ基板の反り量は約4.5mmであったが、シリコン基板33と同程度の厚さ(0.3mm)のサポートシリコン基板36を用いた場合は、反り量はほぼ0になる。これは上下方向で貼り合わせ基板(サポート基板も含む)がほぼ対象構造になっているためと考えられる。図5から分かるように、300ミクロンmのサポートシリコン基板36を用いた場合でも反り量が約1.5mm以下になり、プロセス上問題ないレベルになっている。さらに厚いサポートシリコン基板36を用いると、反り量はさらに小さくなる。図2に説明した場合と同様のシリコン基板、ガラス基板の物性値(線膨張係数、ヤング率)を用いてシミュレーションを行った結果は、実測値と良く一致した。(図4における実施例では、第2の基板のガラス基板として線膨張係数が約6ppm/℃のものを使用したが、シミュレーションでは線膨張係数が8ppm/℃のガラス基板でも、反り量がプロセス上問題ないレベルとなることを確認した。)図5から分かるように、サポート基板36にシリコン基板を用いた場合、サポート基板36がかなり薄くても貼り合わせ基板の反り量を小さくできる。しかし、サポートシリコン基板36をシリコン基板33と同程度の厚さ(約50ミクロンm〜約300ミクロンm)にすると、サポート基板36はかなり薄くなってしまい、強度的に弱くなり、サポート(支持)基板としての役割を果たさなくなる。そこで、サポートシリコン基板36の厚みは少なくとも300ミクロンmは必要である。上述したように300ミクロンmでも反り量はプロセス上問題ないレベルとなるし、さらにサポートシリコン基板36を厚くすることにより、反り量をさらに低減でき、かつサポートシリコン基板の強度も高めることもできる。但し、上述したようにパッケージとしての厚みの上限は約3mm〜4mmであることから来る貼り合わせ基板の厚みの上限も約3mm〜4mmであるから、サポートシリコン基板36の厚みの上限も存在する。尚、プロセス流動上(基板キャリア、搬送用装置、エッチングやCVDやスパッタ等の装置上)からも、貼り合わせ基板の厚みの上限も約3mm〜4mmが好適である。
以上から、本発明は、第1の基板であるシリコン基板33の厚さが50〜300ミクロンmで、かつ線膨張係数が3〜8ppm/℃である第2の基板のガラス基板の厚さ30が300〜500ミクロンmである貼り合わせ基板に対して、第3の基板であるサポートシリコン基板36の厚さは、0.3〜3mm(好適には0.5〜3mm)であることを特徴とする。すなわち、図5から分かるように、ガラス基板30とサポートシリコン基板36の厚さの合計を0.6mm〜3mmにすることによって、プロセス中の貼り合わせ基板(この場合は、サポート基板24も含む)の反り量を約1.5mm以下に抑えることができる。実用上、ガラス基板30とサポートシリコン基板36の厚さの合計を1.0mm〜3mmにする方が、強度上およびプロセス上、貼り合わせ基板を処理するうえでは好適である。(尚、8インチ基板プロセスの場合、反り量は約2.0mm以下であれば特に問題はない。)また、第3の基板は、第1の基板と全く同じ材料でなくとも、その線膨張係数が第2の基板の線膨張係数の30%(より好適には20%)以内であれば、反り量を約2.0mm以下に充分抑えることができる。
次に、図6に、本発明の貼り合わせ基板構造を用いた光学系半導体デバイスのウエハレベルパッケージの製造工程を示す。図6(a)に示すように、第2の基板40の表面に第2の接合層45を付着し、その上に第3の基板であるサポート基板44を接合する。第2の基板は好適には線膨張係数が3〜8ppm/℃のガラス基板である。第2の接合層45として、液状接着剤を第2の基板40の表面上に塗布しても良いし、シート上のテープ接着剤を基板40の表面上に接着しても良い。液状接着剤やテープ接着剤としてエポキシ系接着剤、アクリル系接着剤やポリイミド系接着剤などが市販されているが、これらに限定されるわけでなく、本発明を達成するための接着剤であればどんなものでも使用できる。第3の基板のサポート基板44は、第2の基板の線膨張係数と同程度の材料であっても良く、第3の基板の線膨張係数と第2の基板の線膨張係数との差は、第2の基板の線膨張係数を基準として、30%以下、好適には、20%以下である。最適には、第3の基板は第2の基板と同じ材料である。或いは、第3の基板のサポート基板44は、第1の基板の線膨張係数と同程度の材料であっても良く、第3の基板の線膨張係数と第1の基板の線膨張係数との差は、第1の基板の線膨張係数を基準として、30%以下、好適には、20%以下である。最適には、第3の基板は第1の基板と同じ材料である。第1の基板がシリコン基板、第2の基板がガラス基板の場合には、第3の基板のサポート基板44は好適にはガラス基板またはシリコン基板である。
次に図6(b)に示すように、第1の接合層42を介して半導体デバイス41を搭載した第1の基板であるシリコン基板43の表面(半導体デバイス41が形成されている側)を、サポート基板44を貼り合わせたガラス基板40に接合させる。第1の接合層も液状接着剤をガラス基板40の表面上に塗布しても良いし、シート上のテープ接着剤を接着しても良い。液状接着剤やテープ接着剤としてエポキシ系接着剤、アクリル系接着剤やポリイミド系接着剤などが市販されているが、これらに限定されるわけでなく、本発明を達成するための接着剤であればどんなものでも使用できる。第1の基板上に搭載されたデバイスがCCDやCMOS等のイメージセンサーなどの光学系デバイスである場合であって、そのデバイス上にも第1の接合層を介在させる場合には、第2のガラス基板を通して可視光を透過させる必要があるので、第1の接着層の材料も可視光を透過させるいわゆる透明材料を使用する必要がある。しかし、このデバイス上に第1の接合層を介在させない場合は、(本発明の図においては、デバイス上に第1の接合層を介在させない場合について記載している)第1の接着層42の材料は透明材料である必要はない。
上記デバイス上に第1の接合層を介在させないようにする方法、すなわち半導体デバイス41の上部にキャビティ46を形成する方法を以下に説明する。第1の方法として、第1の基板のデバイスが存在する面に第1の接合層を形成する。この第1の接合層の初期材料が液体である場合は、第1の基板のデバイスが存在する面にスピンコート等で塗布した後プリベークする。この塗布材料が感光性の場合にはフォトマスクおよび現像法を用いてデバイス上の塗布材料を除去し、それ以外の必要な部分に塗布材料を選択的に形成する。この後で第2の基板を接着させる。この塗布材料が感光性でない場合には、この材料の上にさらにフォトレジスト等をコートしフォトリソ法を用いてデバイス上のフォトレジストを除去し、さらにこのフォトレジストをマスクとして、ドライエッチングやウエットエッチングを用いて選択的にデバイス上の上記塗布材料を除去する。その後でフォトレジストを除去すると、デバイス上には塗布材料がなく必要な部分に塗布材料を残すことができる。その後で、第2の基板を接着させる。
第2の方法として、第1の基板のデバイスが存在する面に第1の接合層を形成する。第1の接合層の初期材料が、シート状(またはテープ状)である場合においても、そのシートが感光性であるかないかにより、第1の接合層を形成する方法が異なる。シートが感光性である場合には、第1の基板のデバイスが存在する面にシートを接着した後、フォトマスクおよび現像法を用いてデバイス上のシート材料を除去し、それ以外の必要な部分にシート材料を選択的に形成する。この後で第2の基板を接着させる。このシートが感光性でない場合には、この材料の上にさらにフォトレジスト等をコートしフォトリソ法を用いてデバイス上のフォトレジストを除去し、さらにこのフォトレジストをマスクとして、ドライエッチングやウエットエッチングを用いて選択的に上記シート材料を除去する。その後でフォトレジストを除去すると、デバイス上にはシート材料がなく必要な部分にシート材料を残すことができる。その後で、第2の基板を接着させる。さらに、シートを用いる場合には、あらかじめデバイス上にシート部分が存在しないパターンを有するシートを用いて、第1の基板のデバイスが存在する表面にシートを貼付し、デバイス上にはシート材料がなく必要な部分にシート材料を残すことができ、その後で、第2の基板を接着させる。
この後で、3つの基板を貼り合せた貼り合せ基板に熱処理を行ない、第1の接着層および第2の接着層を硬化させ、第1の基板であるシリコン基板43と第2の基板であるガラス基板40との接着および第2の基板であるガラス基板40と第3の基板であるサポート基板44との接着を行なう。通常この熱処理は、130℃〜170℃で行なわれる。もちろん、接着剤のキュア(硬化)温度が低い場合はもっと低温で熱処理できるし、接着剤のキュア温度が高い場合はもっと高温で熱処理を行なう必要がある。
本発明においては、第2の接着層のキュア温度は第1のキュア温度よりも高いことが望ましい。このような場合における上記の熱処理は、低いキュア温度を有する第1の接着層のキュア温度より高いキュア温度を有する第2の接着層のキュア温度との間の温度で熱処理を行なう。この熱処理によって第1の基板と第2の基板の接着が確実に行なわれる。これに対して、第2の基板と第3の基板(サポート基板)との接着は充分には行なわれない。しかしながら、本発明における貼り合わせプロセスに耐える程度の接着性を有するように(第1および第2の接着層の材料を選定し)熱処理温度を設定する。すなわち、第2の基板と第3の基板との接着性は、長時間の信頼性には耐えられないが、短時間のプロセス条件(すなわち、貼り合わせプロセス)には耐えられるように設定することができる。たとえば、キュア温度が130℃〜170℃である接着材料を第1の接着層に使用し、第2の接着層の接着剤のキュア温度が180℃〜220℃のものを選定する。そして、熱処理温度を第1の接着層のキュア温度と第2の接着層のキュア温度の間に設定する。この熱処理によって第1の基板と第2の基板の接着が確実に行なわれる。これに対して、第2の基板と第3の基板(サポート基板)との接着は充分行なわれないが、本発明の貼り合せプロセスには充分対応することができる。すなわち、貼り合せ基板の反り量を2mm以下に抑えかつプロセス途中で基板が剥離しないようにすることが可能である。上記のようにすることの利点は、最後に第3の基板は剥離させるので、その剥離を容易にするためである。(図6(g)、(h)を参照)第2の基板と第3の基板の接着は完全ではないので、たとえばアルコールやキシレン等の剥離液を用いて第3の基板を第2の基板から容易に剥離することができる。尚、第1の接合層のキュア温度は第2の接合層のキュア温度より少なくとも10度以上高いと、熱処理温度をその間に設定して熱処理を行うことができ、第3の基板を第2の基板から容易に剥離をすることが可能である。
次に図6(c)に示すように、シリコン基板43の裏面から研削してシリコン基板43を薄くする。このシリコン基板43を薄くする目的の一つは、このシリコン基板にはその厚み方向に貫通配線(貫通電極)が形成されるので、貫通配線の形成を容易に行うことである。すなわち、シリコン基板の厚みを約50ミクロンm〜約300ミクロンmと薄くする。次に図6(d)に示すように、貫通配線47を形成し、研削して薄くなったシリコン基板の裏面に(再)配線層48を形成する。貫通配線47は、第1の基板43の一方の面(表面)に形成されている素子41と第1の基板43の他方の面(裏面)に形成される(再)配線48と電気的に接続する第1の基板43内に存在する配線を意味する。この貫通配線47は、第1の基板43内に貫通孔を形成した後に金属等の導電層を形成することにより作製される。さらに図6(e)に示すように配線保護層49を再配線層48の周辺に形成した後に、図6(f)に示すようにシリコン基板43の裏面にバンプ(たとえば、半田や金)50を形成する。配線保護層49は、再配線層48の保護のための層であり、シリコン酸化膜やシリコン窒化膜などの無機系絶縁膜、或いはエポキシ系樹脂やポリイミド系樹脂などの有機系絶縁膜である。これによって、シリコン基板43の表面に搭載された半導体デバイス41は貫通配線47および(再)配線層48を通じてバンプ50と接続する。次に図6(g)に示すように、ダイシングライン51に沿ってダイシングを行い、半導体デバイスを基板内で分割する。ダイシングライン51は一般には、第1の接合層42に沿って(または接合層42の近傍に沿って)設けられる。このときに、ダイシングは第2の接合層45の内部で止まるようにし、サポート基板44までダイシングされないようにする。これは、サポート基板44を再利用できるようにするためであり、或いは第1の基板43と第2の基板40からなる貼り合わせ基板をサポート基板44から剥離することを容易にするためである。次に図6(h)に示すように、サポート基板44を剥離する。サポート基板44を剥離するときに同時に第2の接合層45も剥離することが望ましい。サポート基板44を剥離したときにガラス基板40側に第2の接合層45が残る場合には、その後で第2の接合層45を取り除くことが望ましい。特に、光学系デバイスの場合には、ガラス基板40側から光を透過する必要があるので、第2の接合層45を取り除く必要がある。サポート基板を剥離したIC(半導体)パッケージの厚みは1mm以下にもできるので、非常に薄く軽くなり、この極薄のICパッケージを実装して軽薄短小の機器を実現できる。
以上のようにして、半導体デバイスがICパッケージとして個片化される。この個片化されたICパッケージは、プリント配線基板等にバンプ50を介して実装される。尚、以上のようにして作成されたICパッケージはチップサイズパッケージ(すなわち、CSP)と呼ばれる。
サポート基板44にシリコン基板を用いたときのメリットは上述したが、さらに以下のメリットもある。例えば、プラズマ処理時に基板(ウエハと呼ぶ)の加工面の反対側(すなわち、サポート基板側)で冷却機構を持つ装置において、サポート基板44がガラスの場合には、ガラスの熱伝導率が小さい(1W/mK)ため冷却効率が悪いが、サポート基板44にシリコンを用いた場合には、シリコンの熱伝導率が大きい(170W/mK)ため冷却効率が良くなる。この結果エッチング、CVD絶縁膜・金属膜を積層するプロセスの安定性が向上する。たとえば、プラズマエッチング工程においてを均一性良くエッチングでき、あるいはCVD絶縁膜や金属膜を均一性良く積層することができる。この効果はサポート基板が厚い方が顕著であるので、かつ反り量もサポート基板が厚い方が小さくなる。さらに、ウエハアライメント装置、エッチング装置、CVD装置や金属膜積層装置などにおいては、基板を載置する装置側ステージへのウエハチャッキング方法として、静電チャックが主に用いられている。この静電チャックに対しても、ガラス基板ではチャッキングが困難であるが、シリコン基板の場合にはチャッキングが容易である。
上記の説明において、第1の基板である半導体基板の表面には主に光学系半導体デバイスが形成されているとして説明してきたが、光学系以外の通常の半導体デバイスが形成されている場合においても本発明を適用できることは言うまでもない。尚、半導体デバイスとは一般には受動素子および/または能動素子も意味する。
本明細書における実施形態として説明した内容は、背景技術や従来技術のところで説明したことも含めて、他の実施形態において同様の説明をしていない場合でも、互いに矛盾を生じない限りにおいてお互いに適用できることは言うまでもない。また、本発明は、貼り合わせ構造を有する基板であればどんなものに適用可能である。
本発明は、半導体産業で用いられるウエハレベルパッケージを作製する貼り合わせ基板に利用できる。
図1は、本発明の一実施形態である2層タイプの貼り合わせ基板の構造を示す図である。 図2は、2層タイプの貼り合わせ基板の構造におけるガラス基板厚と貼り合わせ基板の反り量の関係を示すグラフである。 図3は、本発明の一実施形態である3層タイプの貼り合わせ基板の構造を示す図である。 図4は、本発明の一実施形態である3層タイプの貼り合わせ基板の別の構造を示す図である。 図5は、3層タイプの貼り合わせ基板の構造におけるサポート基板厚と貼り合わせ基板の反り量の関係を示すグラフである。 図6は、本発明の3層タイプの貼り合わせ基板の作製工程を示す図である。 図7は、従来の貼り合わせ基板を示す図である。 図8は、従来の貼り合わせ基板の作製工程を示す図である。
符号の説明
10、20、30、40、100・・・第2の基板(ガラス基板)、
11、21、31、41、101・・・半導体デバイス、
12、22、32、42、102・・・(第1の)接合層(接着層)、
13、23、33、43、103・・・第1の基板(半導体基板)、
14、26、37、46、104・・・キャビティ、
24、36、44・・・第3の基板(サポート基板)、
25、35、45・・・第2の接合層、47、107・・・貫通配線(貫通電極)、
48、105・・・(再)配線(層)、49、106・・・(裏面)配線保護層、
50、108・・・バンプ、51、109・・・ダイシングライン

Claims (10)

  1. 受動素子および/または能動素子が形成された第1の基板である半導体基板の一方の面(表面)に接合層を介して第2の基板を貼り合わせた構造を有する貼り合わせ基板であって、第2の基板の厚さが1〜3mmであることを特徴とする、貼り合わせ基板。
  2. 第1の基板は50〜300ミクロンmの厚みを有するシリコン基板であり、第2の基板は線膨張係数が3〜8ppm/℃のガラス基板であることを特徴とする、特許請求の範囲第1項に記載の貼り合わせ基板。
  3. 受動素子および/または能動素子が形成された第1の基板である半導体基板の一方の面(表面)に接合層を形成する工程、および
    前記接合層を介して第1の基板と第2の基板を接合する工程、
    を含むことを特徴とする、貼り合わせ基板を用いた半導体装置の製造方法であって、
    第2の基板の厚さが1〜3mmであることを特徴とする、半導体装置の製造方法。
  4. 受動素子および/または能動素子が形成された第1の基板である半導体基板の一方の面(表面)に第1の接合層を介して第2の基板を貼り合わせ、第2の基板の外側の面に第2の接合層を介して第3の基板をさらに貼り合わせた構造を有する貼り合わせ基板であって、第2の基板と第3の基板の合計厚さが1〜3mmであることを特徴とする、貼り合わせ基板。
  5. 第1の基板は50〜300ミクロンmの厚みを有するシリコン基板であり、第2の基板は線膨張係数が3〜8ppm/℃のガラス基板であることを特徴とする、特許請求の範囲第4項に記載の貼り合わせ基板。
  6. 第3の基板の線膨張係数と第2の基板の線膨張係数との差は、第2の基板の線膨張係数を基準として20%以下であることを特徴とする、特許請求の範囲第5項に記載の貼り合わせ基板。
  7. 第3の基板は線膨張係数が3〜8ppm/℃のガラス基板であることを特徴とする、特許請求の範囲第5項または第6項に記載の貼り合わせ基板。
  8. 受動素子および/または能動素子が形成された第1の基板である半導体基板の一方の面(表面)に第1の接合層を形成する工程、
    第1の接合層を介して第1の基板と第2の基板を接合する工程、
    第2の基板上に第2の接合層を形成する工程、および
    第2の接合層を介して第2の基板と第3の基板を接合する工程、
    を含むことを特徴とする、貼り合わせ基板を用いた半導体装置の製造方法であって、
    第2の基板と第3の基板の合計厚さが1〜3mmであることを特徴とする、半導体装置の製造方法。
  9. 第1の基板と第2の基板の接合および第2の基板と第3の基板の接合のための熱処理を行う工程をさらに含み、前記第1の接合層の材料の硬化温度は前記第2の接合層の材料の硬化温度より高いことを特徴とする、特許請求の範囲第8項に記載の半導体装置の製造方法。
  10. 第1の基板、第1の接合層、第2の基板、および第2の接合層の少なくとも1部を切断する工程、並びに切断した第1の基板と第2の基板を接合した貼り合わせ基板を第3の基板から剥離する工程をさらに含むことを特徴とする、特許請求の範囲第8項に記載の半導体装置の製造方法。
JP2007341566A 2007-12-30 2007-12-30 貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法 Expired - Fee Related JP5334411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341566A JP5334411B2 (ja) 2007-12-30 2007-12-30 貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341566A JP5334411B2 (ja) 2007-12-30 2007-12-30 貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009164314A true JP2009164314A (ja) 2009-07-23
JP5334411B2 JP5334411B2 (ja) 2013-11-06

Family

ID=40966596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341566A Expired - Fee Related JP5334411B2 (ja) 2007-12-30 2007-12-30 貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5334411B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009635A (ja) * 2010-06-25 2012-01-12 Panasonic Corp プラズマ処理装置および方法
JP2014011761A (ja) * 2012-07-03 2014-01-20 Nikon Corp 固体撮像装置及びこれを用いた電子カメラ
WO2014129433A1 (ja) * 2013-02-19 2014-08-28 日本碍子株式会社 複合基板、半導体デバイス及び半導体デバイスの製法
JP2015510256A (ja) * 2011-12-29 2015-04-02 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ 多層構造体を基板に製造する方法
JP2015078113A (ja) * 2013-09-12 2015-04-23 日本電気硝子株式会社 支持ガラス基板及びこれを用いた搬送体
WO2015190070A1 (en) 2014-06-12 2015-12-17 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging element, and imaging apparatus
JP2016113341A (ja) * 2014-12-17 2016-06-23 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JP2016117641A (ja) * 2014-12-17 2016-06-30 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JP2018505564A (ja) * 2015-02-13 2018-02-22 蘇州晶方半導体科技股▲分▼有限公司China Wafer Level Csp Co., Ltd. パッケージ化方法およびパッケージ構造
WO2018061481A1 (ja) * 2016-09-30 2018-04-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び撮像装置
JPWO2017057446A1 (ja) * 2015-10-02 2018-07-19 旭硝子株式会社 ガラス基板、積層基板、および積層体
JP2021034702A (ja) * 2019-08-29 2021-03-01 キヤノン株式会社 半導体装置の製造方法および半導体装置
US11031422B2 (en) 2016-09-30 2021-06-08 Sony Semiconductor Solutions Corporation Solid-state imaging element and imaging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652350B1 (ko) * 2014-09-12 2016-09-01 주식회사 글로벌식스 기판 본딩 및 디본딩 장치 및 이를 이용한 반도체 소자 기판의 제조 방법
KR101652349B1 (ko) * 2014-09-12 2016-09-12 주식회사 글로벌식스 기판 본딩 및 디본딩 장치 및 이를 이용한 반도체 소자 기판의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207461A (ja) * 2002-12-25 2004-07-22 Olympus Corp 固体撮像装置及びその製造方法
JP2007273629A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 固体撮像装置の製造方法及び固体撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207461A (ja) * 2002-12-25 2004-07-22 Olympus Corp 固体撮像装置及びその製造方法
JP2007273629A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 固体撮像装置の製造方法及び固体撮像装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009635A (ja) * 2010-06-25 2012-01-12 Panasonic Corp プラズマ処理装置および方法
JP2015510256A (ja) * 2011-12-29 2015-04-02 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ 多層構造体を基板に製造する方法
JP2014011761A (ja) * 2012-07-03 2014-01-20 Nikon Corp 固体撮像装置及びこれを用いた電子カメラ
US10629470B2 (en) 2013-02-19 2020-04-21 Ngk Insulators, Ltd. Composite substrate, elastic wave device, and method for producing elastic wave device
US9812345B2 (en) 2013-02-19 2017-11-07 Ngk Insulators, Ltd. Composite substrate, semiconductor device, and method for manufacturing semiconductor device
US9911639B2 (en) 2013-02-19 2018-03-06 Ngk Insulators, Ltd. Composite substrate, elastic wave device, and method for producing elastic wave device
CN105027436A (zh) * 2013-02-19 2015-11-04 日本碍子株式会社 复合基板、弹性波装置及弹性波装置的制造方法
CN105074868A (zh) * 2013-02-19 2015-11-18 日本碍子株式会社 复合基板、半导体装置及半导体装置的制法
TWI635632B (zh) * 2013-02-19 2018-09-11 日本碍子股份有限公司 複合基板、彈性波裝置及彈性波裝置的製法
KR20150120354A (ko) * 2013-02-19 2015-10-27 엔지케이 인슐레이터 엘티디 복합 기판, 반도체 디바이스 및 반도체 디바이스의 제법
TWI609435B (zh) * 2013-02-19 2017-12-21 Ngk Insulators Ltd Composite substrate, semiconductor device and method for manufacturing semiconductor device
KR102222089B1 (ko) * 2013-02-19 2021-03-04 엔지케이 인슐레이터 엘티디 복합 기판, 반도체 디바이스 및 반도체 디바이스의 제법
WO2014129433A1 (ja) * 2013-02-19 2014-08-28 日本碍子株式会社 複合基板、半導体デバイス及び半導体デバイスの製法
JPWO2014129433A1 (ja) * 2013-02-19 2017-02-02 日本碍子株式会社 複合基板及び半導体デバイスの製法
KR102200850B1 (ko) * 2013-09-12 2021-01-11 니폰 덴키 가라스 가부시키가이샤 지지 유리 기판 및 이것을 사용한 반송체
KR20160055104A (ko) * 2013-09-12 2016-05-17 니폰 덴키 가라스 가부시키가이샤 지지 유리 기판 및 이것을 사용한 반송체
CN112159100A (zh) * 2013-09-12 2021-01-01 日本电气硝子株式会社 支承玻璃基板及使用其的搬送体
JP2015078113A (ja) * 2013-09-12 2015-04-23 日本電気硝子株式会社 支持ガラス基板及びこれを用いた搬送体
US9842879B2 (en) 2014-06-12 2017-12-12 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging element, and imaging apparatus
JP2016001681A (ja) * 2014-06-12 2016-01-07 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、及び、撮像装置
US10854667B2 (en) 2014-06-12 2020-12-01 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging element, and imaging apparatus
WO2015190070A1 (en) 2014-06-12 2015-12-17 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging element, and imaging apparatus
US10355042B2 (en) 2014-06-12 2019-07-16 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging element, and imaging apparatus
JP2016113341A (ja) * 2014-12-17 2016-06-23 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
JP2016117641A (ja) * 2014-12-17 2016-06-30 日本電気硝子株式会社 支持ガラス基板及びこれを用いた積層体
US10529758B2 (en) 2015-02-13 2020-01-07 China Wafer Level Csp Co., Ltd. Packaging method and packaging structure
JP2018505564A (ja) * 2015-02-13 2018-02-22 蘇州晶方半導体科技股▲分▼有限公司China Wafer Level Csp Co., Ltd. パッケージ化方法およびパッケージ構造
JPWO2017057446A1 (ja) * 2015-10-02 2018-07-19 旭硝子株式会社 ガラス基板、積層基板、および積層体
WO2018061481A1 (ja) * 2016-09-30 2018-04-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び撮像装置
US11031422B2 (en) 2016-09-30 2021-06-08 Sony Semiconductor Solutions Corporation Solid-state imaging element and imaging device
US11616090B2 (en) 2016-09-30 2023-03-28 Sony Semiconductor Solutions Corporation Solid-state imaging element and imaging device
US11804502B2 (en) 2016-09-30 2023-10-31 Sony Semiconductor Solutions Corporation Solid-state imaging element and imaging device
JP7391574B2 (ja) 2019-08-29 2023-12-05 キヤノン株式会社 半導体装置の製造方法および半導体装置
JP2021034702A (ja) * 2019-08-29 2021-03-01 キヤノン株式会社 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
JP5334411B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5334411B2 (ja) 貼り合わせ基板および貼り合せ基板を用いた半導体装置の製造方法
US8846499B2 (en) Composite carrier structure
TWI578469B (zh) 無凸塊增層式封裝體翹曲降低技術
TWI446419B (zh) 堆疊裝置的製造方法及裝置晶圓處理方法
US8952519B2 (en) Chip package and fabrication method thereof
US8432032B2 (en) Chip package and fabrication method thereof
US9240398B2 (en) Method for producing image pickup apparatus and method for producing semiconductor apparatus
TW201227937A (en) Image sensor chip package and method for forming the same
WO2013179767A1 (ja) 撮像装置の製造方法および半導体装置の製造方法
JP6031060B2 (ja) 半導体装置、積層型半導体装置、封止後積層型半導体装置、及びこれらの製造方法
US9048197B2 (en) Integrated circuit package system employing wafer level chip scale packaging
JP5101157B2 (ja) 半導体装置の製造方法
JP2005340655A (ja) 半導体装置の製造方法および半導体基板の支持構造体
TWI649856B (zh) 晶片封裝體與其製造方法
US20100144096A1 (en) Method of manufacturing semiconductor device in which bottom surface and side surface of semiconductor substrate are covered with resin protective film
US10049909B2 (en) Wafer handler and methods of manufacture
US9064950B2 (en) Fabrication method for a chip package
US20120009394A1 (en) Bonding method and bonding substrate
CN107644843B (zh) 晶圆堆叠制作方法
JP5428135B2 (ja) 積層物及びその製造方法
JP2003037030A (ja) 半導体装置
JP2010147358A (ja) 半導体装置の製造方法
US20200090953A1 (en) Method of manufacturing semiconductor device
JP2004186255A (ja) 薄膜構造体形成基板のダイシング方法
JP2013069946A (ja) 支持基板、支持基板の製造方法、及び半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees