JP2006308809A - 能動騒音抑制装置 - Google Patents

能動騒音抑制装置 Download PDF

Info

Publication number
JP2006308809A
JP2006308809A JP2005130412A JP2005130412A JP2006308809A JP 2006308809 A JP2006308809 A JP 2006308809A JP 2005130412 A JP2005130412 A JP 2005130412A JP 2005130412 A JP2005130412 A JP 2005130412A JP 2006308809 A JP2006308809 A JP 2006308809A
Authority
JP
Japan
Prior art keywords
frequency
noise
noise suppression
control sound
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005130412A
Other languages
English (en)
Other versions
JP4664116B2 (ja
Inventor
Shinsuke Mitsuhata
伸輔 光畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP2005130412A priority Critical patent/JP4664116B2/ja
Priority to KR1020077027531A priority patent/KR100938691B1/ko
Priority to EP06713793.5A priority patent/EP1884920A4/en
Priority to PCT/JP2006/302652 priority patent/WO2006117915A1/ja
Priority to CN2006800141963A priority patent/CN101176145B/zh
Publication of JP2006308809A publication Critical patent/JP2006308809A/ja
Priority to US11/978,200 priority patent/US8254589B2/en
Application granted granted Critical
Publication of JP4664116B2 publication Critical patent/JP4664116B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17883General system configurations using both a reference signal and an error signal the reference signal being derived from a machine operating condition, e.g. engine RPM or vehicle speed
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/121Rotating machines, e.g. engines, turbines, motors; Periodic or quasi-periodic signals in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/511Narrow band, e.g. implementations for single frequency cancellation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】 周期性騒音のピーク周波数変動に対する追従性に優れた能動騒音抑制装置を提供することにある。
【解決手段】 所定周波数を有する基本波形を生成する基本音源121、122と、基本波形に対して適応フィルタ係数W0、W1を乗じた信号から制御音を生成し、騒音中の所定周波数に対応する周波数成分を抑制する騒音抑制装置であって、適応フィルタ係数を用いて検出した制御音の位相変化量が所定の閾値よりも大きい場合、基本音源の出力する基本波形の周波数を、所定量増加又は減少させる周波数調整回路210を有する。
【選択図】 図2

Description

本発明は、周期性騒音を発生する機器の近傍に制御音源を設置することにより、騒音を抑制する能動騒音抑制装置に関し、特に騒音の周波数変動への追従性制御に関する。
従来、モータやエンジンの動作音を代表とする周期性騒音を抑制する技術として、能動騒音制御(Active Noise Control:ANC)従来が知られている。ANC技術は、騒音と同振幅、逆位相の信号(制御音)を生成し、音波干渉により騒音を低減させるもので、自動車の車内騒音低減や屋外で使用するヘッドホンの環境雑音低減などに用いられている。
制御音を生成する方法として、基本音源が出力する正弦波及び余弦波に対して適用ノッチフィルタを適用し、適応後の信号を合成する方法が知られている。図1は、適応ノッチフィルタを用いた能動騒音抑制装置の構成例を示す図である。
能動騒音抑制装置は、適応ノッチフィルタ100と、基本音源を構成する余弦波発生器121及び正弦波発生器122と、基本音源の出力周波数に対して予め測定した系の伝達関数C0、C1を適用する伝達要素101、102と、伝達要素101及び102の出力を加算し、参照信号rとして出力する加算器103と、適応制御アルゴリズム演算器(フィルタ係数演算器)110とから構成される。
余弦波発生器121及び正弦波発生器122は、予め測定した騒音のピーク周波数fに等しい周波数を有し、所定振幅を有する余弦波及び正弦波信号を出力する。これらの基本信号は、周波数fの信号について予め測定した伝達関数C0、C1を適用する伝達要素101及び102に与えられるとともに、適応ノッチフィルタ100へも与えられる。
適応ノッチフィルタ100は、適応制御アルゴリズム演算器100から与えられるフィルタ係数W0、W1を余弦波及び正弦波信号にそれぞれ乗じて出力する。適応ノッチフィルタ100の出力信号は加算器130により加算され、制御音として例えば図示しないスピーカーから出力される。
適応アルゴリズム演算器110は、マイク140で取得した誤差信号e(制御音と対象騒音との差分)と、加算器103から出力される参照信号rとを入力とし、例えばLMS(Least Mean Square)アルゴリズムである適応アルゴリズムにより、誤差信号eが少なくなるようにノッチフィルタ100の係数W0、W1を算出、更新する。
特開平11−325168号公報
良好な騒音抑制効果を得るためには、騒音のピーク周波数成分を効果的に抑制することが必要となる。そのため、例えば自動車のエンジンのように、回転数に応じてピーク周波数成分が変化する騒音源に対応するには、エンジンの回転数毎に適切なフィルタ係数W0、W1を算出する必要がある。しかしながら、回転数は常に変化するため、実時間で適切なフィルタ係数を得るためには、高速で演算可能なプロセッサが必要となり、能動騒音抑制装置の高価格化を招いていた。
そのため、例えば特許文献1では、適応アルゴリズム演算器110の代わりに、予めエンジンの回転数毎に求めたフィルタ係数を記憶するROMを用意し、エンジンの回転数に対応するアドレスから係数を読み出して用いる構成を提案している。
この構成により、高速且つ低価格な能動騒音抑制装置が実現可能である反面、予めフィルタ係数W0、W1を算出する必要がある。しかも、騒音の周波数成分は環境により異なるため、同じフィルタ係数をそのまま他の環境に適応しても、十分な効果が得られない。そのため、自動車の例であればエンジンの種類と車種の組み合わせ毎に、回転数に対応したフィルタ係数W0、W1を算出しておく必要があり、その手間は膨大なものとなる。また、新しい環境に対して即座に対応することが出来ないため、柔軟性に欠けるという問題もある。
本発明は、このような従来技術の問題点に鑑みなされたものであり、その目的の1つは、周期性騒音のピーク周波数変動に対する追従性に優れた能動騒音抑制装置を提供することにある。
また、本発明の別の目的は、汎用性に優れた能動騒音抑制装置を提供することにある。
上述の目的は、所定周波数を有する基本波形を生成する基本音源と、基本波形に対して適応フィルタ係数を乗じた信号から制御音を生成し、騒音中の所定周波数に対応する周波数成分を抑制する騒音抑制装置であって、適応フィルタ係数を用いて、制御音の位相を検出する位相検出手段と、制御音の位相の変化量を検出する変化量検出手段と、制御音の位相の変化量が所定の閾値よりも大きい場合、基本音源の出力する基本波形の周波数を、所定量増加又は減少させる周波数調整手段とを有することを特徴とする能動騒音抑制装置によって達成される。
このような構成により、本発明によれば、周期性騒音のピーク周波数変動に対する追従性に優れた能動騒音抑制装置を、簡便な構成により実現できる。
以下、図面を参照して本発明をその好適な実施形態に基づいて詳細に説明する。
図2は、本発明の実施形態に係る能動騒音抑制装置の構成例を示すブロック図である。図2において、図1で説明した構成と同様の構成には同様の参照数字を付し、重複する説明は省略する。図2と図1との比較から明らかなように、本実施形態の能動騒音抑制装置の主な特徴は、従来の能動騒音抑制装置に対し、周波数微調整回路210及び周波数制御回路220を付加した点にある。従って、これら回路の構成及び動作を中心に本実施形態を説明する。また、係数算出回路270は、初期設定時に登録すべき系の伝達関数を表す係数を算出するための回路であり、必ずしも本実施形態の能動騒音抑制装置の構成として設ける必要はない。
本実施形態の能動騒音抑制装置においても、制御音の発生原理は図1で説明したとおりである。すなわち、出力周波数を外部から制御可能な余弦波発生器121及び正弦波発生器122からなる基本音源から、抑制対象となる周波数を有する基本波形としての余弦波及び正弦波を出力させる。この余弦波及び正弦波に、適応ノッチフィルタ100でフィルタ係数W0,W1を乗じ、加算器130で加算した結果を制御音yとして騒音源の近傍に配置したスピーカ150から出力する。
適応ノッチフィルタ100の係数W0,W1は、適応アルゴリズム演算器110が参照信号rと誤差信号eとから適応制御アルゴリズム演算に基づいて算出する。参照信号rは、基本音源から発生させた、周波数f[Hz]の余弦波及び正弦波信号に対し、予め測定した系の伝達関数C0及びC1を伝達要素101,102で適用し、加算器103で加算した結果として取得する。
一方、マイク140から集音し、対象周波数成分を誤差信号eとして取得する。そして、参照信号rと誤差信号eとから適応制御アルゴリズムに基づいてフィルタ係数W0,W1を求める。適応制御アルゴリズムとして、LMSアルゴリズムを用いた場合、
ある時点nに対し、所定単位時間経過した時点(n+1)における適応ノッチフィルタ係数W0(n+1)及びW1(n+1)は、
W0(n+1)=W0(n)+2μe(n)r(n)
W1(n+1)=W1(n)+2μe(n)r(n)
(r(n)はnにおける参照信号、e(n)はnにおける誤差信号、μはステップサイズである)
として算出される。
周波数微調整回路210は、抑制対象の周波数成分の比較的小さな変動を検出し、余弦波発生器121及び正弦波発生器122から構成される基本音源の出力周波数を、周期性騒音の周波数変動に追従させるための周波数微調整信号を出力する。
周波数制御回路220は、装置の設置時や騒音源が変わった場合などにおいて、基本音源の出力する周波数を新規に設定する周波数制御信号を出力する。
なお、図2には、説明及び理解を簡単にするため、騒音を構成する複数の周波数成分のうち、ある1つの周波数成分を抑制するための構成を示している。従って、複数の周波数成分を抑制する場合には、スピーカ150、マイク140を除く構成を抑制する周波数成分に等しい数並列に設け、加算器130の出力をさらに加算してスピーカ150から出力する。なお、スピーカ150、マイク140以外の構成のうち、後述する仮想騒音生成に係る構成(前処理ブロック220A)や、周波数解析を行ってピーク周波数を検出する構成(制御ブロック220B)などは必ずしも抑制する周波数成分の数だけ設ける必要はない。
(周波数微調整回路210)
図3は、周波数微調整回路210の構成例を示すブロック図である。周波数微調整回路210は、位相算出回路212と、周波数微調整信号生成手段としての位相ずれ判定回路214とを有している。位相算出回路212は、適応アルゴリズム演算器110が出力するフィルタ係数W0、W1を取得し、これらフィルタ係数W0、W1から制御音の位相θを算出する。
ある周波数の制御音yをy=Acos(X+θ)と表現すると、直交変換の原理により、
y=Acos(X+θ)=W0cos(x)+W1sin(x) …(1)
と表現することができる。
ここで、A=√(W02+W12)、θ=tan-1(W1/W0)である。
この原理に基づき、位相算出回路212は、ある時刻nにおける制御音の位相θを、
θ(n)=tan-1(W1(n)/W0(n))
として求め、位相ずれ判定回路214に出力する。
位相ずれ判定回路214は、一つ前のフィルタ係数W0(n−1)、W1(n−1)から求められた位相θ(n−1)と、今回求められた位相θ(n)とから、制御音の位相の変化量を検出し、変化量が予め定めた閾値ηを超えるかどうか、すなわち、
|θ(n)−θ(n−1)|>η …(2)
であるかどうかを判定する。
そして、式(2)が満たされなければ、位相ずれは誤差の範囲であると判定し、周波数微調整信号は出力しない。従って、基本音源に対する周波数微調整は行わない。一方、式(2)が満たされた場合には、θ(n)とθ(n−1)との大小関係、具体的には位相の変化方向に応じて基本音源の出力周波数を予め定めた調整幅σ[Hz]だけ増減させる。
すなわち、
・θ(n)−θ(n−1)>0の場合(位相が進んでいる場合)
f(n+1)=f(n)+σ
・θ(n)−θ(n−1)<0の場合(位相が戻っている場合)
f(n+1)=f(n)−σ
となるよう、余弦波発生器121及び正弦波発生器122に対して周波数微調整信号を出力する。
このような、周波数微調整回路210による周波数微調整処理により、抑制対象周波数の変動、特に時間当たりの変動量が比較的少ない定常的な周波数変動に対して高精度に追従することが可能となる。なお、上述のように本実施形態における周波数微調整処理はその演算が簡便であるため高速な処理が可能であり、例えば数1000回/秒という頻度で行うことができる。
(周波数制御回路220)
一方、周波数制御回路220は、より大きな周波数変動や、装置の設置時などにおける周波数設定を行うために設けられている。周波数制御回路220は、周波数微調整回路210がある時点での周波数を基準にして調整幅σを増減させるのに対し、出力周波数そのものを設定する。
図4は、本実施形態における周波数制御回路220の構成例を示すブロック図である。周波数制御回路220は、仮想騒音を生成する前処理ブロック220Aと、仮想騒音から抑制対象とするピーク周波数成分を検出し、基本音源に周波数を設定する制御ブロック220Bとに大別することができる。
前処理ブロック220Aは、能動騒音抑制装置が動作していない場合の騒音を生成するためのブロックである。能動騒音抑制装置の動作中にマイク140から得られる信号は誤差信号eであり、もともとの騒音とは周波数スペクトルが異なる。従って、能動騒音抑制装置を動作させながら騒音のピーク周波数成分を検出するために、能動騒音抑制装置が動作していない場合の騒音に相当する信号(仮想騒音)を生成する必要がある。
前処理ブロック220Aは、信号の位相をπ/2遅延させるπ/2遅延回路222と、伝達要素101、102と同等の伝達要素224、226と、伝達要素224、226の出力を加算する加算器228と、加算器228の出力信号をマイク140から得られる誤差信号から差し引く減算器230とを有する。
加算器228の出力信号は、制御音y(=Acos(x+θ))の成分であるW0cos(x)とW1sin(x)とが、系を通じてマイク140に到達した制御音yを表す。すなわち、制御音yのW0cos(x)成分を系の伝達関数C0を適用する伝達要素224に、W1sin(x)成分を系の伝達関数C1を適用する伝達要素226にそれぞれ入力する。そして、伝達要素224、226の出力を加算器228で加算することで、制御音yが系を伝達してマイク140に達した状態の信号を生成する。
なお、伝達要素101、102、224、226は具体的には離散的な複数の周波数に対する係数と、基本音源の周波数に応じた係数を入力信号に乗じる乗算器から構成することができる。なお、基本音源の周波数に合致する周波数の係数が存在しない場合、他の周波数に対応する係数から補間により求めた係数を用いることが可能である。この係数は予め白色雑音や個別周波数の信号をスピーカ150から出力し、マイク140で取得した信号のインパルス応答をフーリエ変換することによって求めることができる。なお、装置設置場所での実測が困難な場合には、シミュレーションにより求めても良い。
加算器228の出力信号は減算器230で、マイク140からの誤差信号から減算される。その結果、減算器230からは仮想騒音が得られる。これは、
誤差信号=騒音+制御音、すなわち、騒音=誤差信号−制御音
との関係が成り立つことを利用したものである。
このようにして得られた仮想騒音は、制御ブロック220Bの周波数解析回路240に入力される。周波数解析回路240は、仮想騒音に対してFFTなどを適用して周波数解析を行う。そして、ピーク検出回路250が、騒音に含まれる周波数成分からいくつか(例えば1〜3個)のピーク周波数を検出する。ここで検出するピーク周波数は、大きなものから順に検出しても良いし、所定の大きさ以上のピークを有する周波数のうち、低周波のものから順に選択するなど、任意の条件を適用して検出することができる。
判定回路260は、検出されたピーク周波数と、前回検出されたピーク周波数とを比較し、その差が予め定めた閾値frよりも大きいかどうか判定する。この判定は、抑制対象のピーク周波数が複数ある場合、ピーク周波数毎に行う。そして、差が閾値frより大きい場合には、新たに検出されたピーク周波数を抑制対象の周波数と決定し、この周波数の信号を出力するよう、基本音源を構成する余弦波生成器121及び正弦波生成器122の出力周波数を周波数制御信号により設定、変更する。
このようにして、たとえ騒音のピーク周波数が大きく変動した場合であっても、自動的に追従することが可能である。なお、ここで説明した周波数制御回路220による周波数再設定処理は、周波数微調整回路210による微調整ほど頻繁に行う必要はない。むしろ、周波数解析処理が必要となるため、処理負荷を低減するためには、適度な間隔を持って実行することが望ましい。例えば、微調整処理が3000回/秒である場合に、再設定処理は1回/秒程度の頻度で行うことができる。
(初期設定処理)
図5は、本実施形態の能動騒音抑制装置の初期設定時の動作を説明するフローチャートである。
この処理は、例えば装置の設置時など、稼働開始前に行う。まず、騒音源が動作していない状態で、基本音源又は別途用意した音源から白色雑音を生成、スピーカ150から出力し、マイク140から白色雑音のインパルス応答を取得する(ステップS101)。この雑音は、誤差信号eとして周波数制御部220に入力され、減算器230を介して周波数解析回路240に入力される。この際、仮想雑音の生成及び減算は行わない。
次に、周波数解析回路240においてFFTを適用し、周波数毎の情報に分解する(ステップS103)。そして、周波数成分毎の伝達特性から、係数算出回路270により余弦波成分及び正弦波成分に対する係数を算出する(ステップS105)。算出した係数は伝達要素101、102、224、226に登録する(ステップS107)。以上が、伝達関数の登録処理である。なお、騒音源を停止することが困難な場合など実測が困難な場合には、シミュレーションにより予め求めたインパルス応答から係数を登録しても良い。また、この伝達関数登録処理は、能動騒音抑制装置とは別の解析装置を用いて行っても良い。あるいは、係数算出回路270を外部装置により実現しても良い。
次に、周波数設定処理を行う。騒音源が稼働した状態で、かつ制御音を生成しない状態で行う。まず、マイク140から騒音を取得する(ステップS109)。この騒音は、伝達関数の登録処理時と同様、仮想雑音を減算されることなく周波数解析回路240に入力される。そして、周波数解析回路240においてFFTを適用し、周波数毎の情報に分解する(ステップS111)。
この解析結果から、ピーク検出回路250でピーク周波数を検出する(ステップS113)。そして、判定回路260を用いて、予め定めた数のピーク周波数(基本音源と等しい数のピーク周波数)を、個々の基本音源に設定する(ステップS115)。
以上の処理により、初期設定処理が終了する。
(騒音抑制動作)
初期設定処理が終了すると、騒音抑制処理の実行が可能になる。以下、図6のフローチャートを用いて、本実施形態の能動騒音抑制装置における騒音抑制処理について説明する。
基本動作は、上述した、制御音及び参照信号の生成(ステップS201)と、誤差信号と参照信号に基づく適応ノッチフィルタ100の係数更新(ステップS203)の繰り返しである。そして、この基本動作と並行して、周波数微調整回路210による周波数微調整処理と、周波数制御回路220による周波数再設定処理を実行する。
周波数微調整処理は、基本動作におけるステップS203で更新されたフィルタ係数W0(n)、W1(n)と、その前のフィルタ係数W0(n−1)、W1(n−1)とを用いて行う。
すなわち、位相算出回路212により、W0(n),W1(n)に基づいて制御音の位相θ(n)を算出する(ステップS301)。そして、位相ずれ判定回路214で、フィルタ係数W0(n−1)、W1(n−1)から求め、記憶された位相θ(n−1)と比較することで、位相ずれ量の判定を行う(ステップS303)。θ(n)とθ(n−1)差の絶対値が予め定めた閾値以下である場合(ステップS305,N)には、誤差と見なして周波数の微調整は行わずにステップS301へ戻る。一方、閾値よりも位相ずれ量が大きい場合(ステップS305、Y)には、上述したようにθ(n)とθ(n−1)との大小関係に応じた方向に、周波数を調整量だけ増加又は減少させる(ステップS307)。
周波数再設定処理は、基本動作のステップS201で生成する制御音を用いて行う。上述したように、周波数再設定処理の実行頻度は周波数微調整処理の実行頻度よりもずっと低い。まず、周波数制御回路220の前処理ブロック220Aで、仮想騒音を生成する(ステップS401)。そして、この仮想騒音を制御ブロック220Bの周波数解析回路240に入力し、周波数解析処理を行う(ステップS403)。ピーク検出回路250が、解析結果からピーク周波数を検出する(ステップS405)。判定回路260が、現在のピーク周波数毎に、検出されたピーク周波数とのずれ量を算出し、ずれ量の大きさが予め定めた閾値より大きいかどうか判定する(ステップS407)。
周波数のずれ量が予め定めた閾値以下である場合(ステップS407,N)には、誤差と見なして周波数の再設定は行わずにステップS401へ戻る。一方、閾値よりも周波数ずれ量が大きい場合(ステップS407、Y)には、ステップS405で検出したピーク周波数を対応する基本音源の出力周波数として再設定する(ステップS409)。
以上説明したように、本実施形態によれば、騒音源の近傍に制御音源を配置して騒音を抑制する能動騒音抑制装置において、制御音の位相変動の大きさに基づいて出力周波数を微調整する。これにより、簡便な演算により、騒音のピーク周波数変動に精度良く追従することが可能となり、結果として良好な騒音抑圧効果を実現することが可能となる。
また、制御音と誤差信号とから生成た仮想騒音の周波数解析に基づいて騒音中のピーク周波数を検出し、出力周波数を設定することにより、初期動作時の設定が容易であり、新しい環境や新しい騒音源に対しても容易に対応可能である。また、騒音抑制処理中であっても新しい出力周波数を設定することが可能である。
以下、本発明の具体的な実施例について説明するが、本発明はここに記載する実施例に限定されるものではない。
図2の構成を有する能動騒音抑制装置を構成した。ただし、伝達関数の登録は能動騒音抑制装置とは別の装置を用いて算出した係数を用いて行い、係数算出回路270は設けない構成とした。
室内にスピーカーを2つ、床から高さ1.5mの位置に、水平距離0.6m離間して設置した。また、マイク140を、2つのスピーカの中心から垂直方向に0.45m離間し、床から高さ1.5mの位置に配置した。
一方のスピーカから、予め録音した、モータを用いたポンプの動作音を騒音として再生した。上述した初期設定処理(周波数設定処理のみ)を実行した結果、最大ピークが検出された周波数(145Hz近辺の周波数)が基本音源の初期出力周波数として自動設定された。
引き続き騒音抑制処理を行い、マイク140から得られる誤差信号を記録した。また、同様にして、周波数微調整処理を行わない場合の誤差信号も記録した。録音済みの騒音と、これら誤差信号とを用い、騒音抑制効果を評価した。
図7(a)及び(b)は、周波数微調整処理を行った場合と行わない場合の誤差信号の音圧波形を示す図である。処理開始時刻(Start)から周波数設定処理が実施され、周波数が設定されるまでは制御音が生成されないので、いずれも騒音抑制効果が得られていない。周波数設定処理が終了し、制御音の生成が開始されると、いずれも抑圧効果が現れ始める。しかし、周波数微調整を行わない図7(b)に比べ、周波数微調整を行った図7(a)では、明らかに騒音抑制効果が優れていることが分かる。これは、周波数微調整処理により騒音の変動に追従しているためであり、ランダムな高周波成分以外を効果的に抑制できていることが分かる。
また、図8(a)〜(c)は、制御音を生成し、騒音抑制処理を実施している最中の同時刻における騒音、周波数微調整を伴う騒音抑制時の誤差信号、周波数微調整を伴わない騒音抑制時の誤差信号をそれぞれ周波数解析した結果を示す図である。
図8(b)と図8(c)との比較からも明らかなように、周波数微調整処理により騒音の周波数変動に追従する本実施形態の能動騒音抑制装置では、周波数微調整を行わない場合と比較してピーク周波数成分を効果的に抑制できていることが分かる。
(他の実施形態)
上述の実施形態においては、基本音源として余弦波発生器と正弦波発生器とを用いたが、π/2遅延回路とを用いることにより、いずれか一方の波形発生器のみを用いた構成とすることも可能である。この場合、π/2遅延回路は、適応ノッチフィルタの前段に配置しても、後段に配置しても良い。
従来の能動騒音抑制装置の構成例を示すブロック図である。 本発明の実施形態に係る能動騒音抑制装置の構成例を示すブロック図である。 周波数微調整回路210の構成例を示すブロック図である。 周波数制御回路220の構成例を示すブロック図である。 実施形態に係る能動騒音抑制装置の初期設定処理を説明するフローチャートである。 実施形態に係る能動騒音抑制装置の騒音抑制処理を説明するフローチャートである。 実施形態に係る能動騒音抑制装置において、周波数微調整処理を行った場合と行わない場合の誤差信号の音圧波形を示す図である。 制御音を生成し、騒音抑制処理を実施している最中の同時刻における騒音、周波数微調整を伴う騒音抑制時の誤差信号、周波数微調整を伴わない騒音抑制時の誤差信号をそれぞれ周波数解析した結果を示す図である。

Claims (7)

  1. 所定周波数を有する基本波形を生成する基本音源と、
    前記基本波形に対して適応フィルタ係数を乗じた信号から制御音を生成し、騒音中の前記所定周波数に対応する周波数成分を抑制する騒音抑制装置であって、
    前記適応フィルタ係数を用いて、前記制御音の位相を検出する位相検出手段と、
    前記制御音の位相の変化量を検出する変化量検出手段と、
    前記制御音の位相の変化量が所定の閾値よりも大きい場合、前記基本音源の出力する前記基本波形の周波数を、所定量増加又は減少させる周波数調整手段とを有することを特徴とする能動騒音抑制装置。
  2. 前記フィルタ係数が第1及び第2のフィルタ係数から構成され、前記制御音が前記第1のフィルタ係数を乗じた余弦波と、前記第2のフィルタ係数を乗じた正弦波の合成波形として表されることを特徴とする請求項1記載の能動騒音抑制装置。
  3. 前記変化量検出手段が、さらに前記制御音の位相の変化方向を検出し、
    前記周波数調整手段が、前記変化方向により前記基本波形の周波数を増加させるか減少させるかを決定することを特徴とする請求項1又は請求項2記載の能動騒音抑制装置。
  4. 前記制御音を適用した後の前記騒音の前記周波数成分を誤差信号として取得する誤差信号取得手段と、
    前記基本波形と予め測定した系の伝達関数とから参照信号を生成する参照新合成性手段と、
    前記誤差信号及び前記参照信号とを用い、適応アルゴリズムに基づいて前記適応フィルタ係数を算出、更新するフィルタ係数算出手段とをさらに有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の能動騒音抑制装置。
  5. 前記騒音中のピーク周波数を検出するピーク周波数検出手段と、
    前記検出されたピーク周波数のうち、大きいものから所定数を前記基本音源の出力周波数として設定する周波数設定手段とをさらに有することを特徴とする請求項4記載の能動騒音抑制装置。
  6. 前記制御音と前記伝達関数と前記誤差信号とから生成される仮想騒音を生成する仮想騒音生成手段と、
    現在設定されているピーク周波数と、前記ピーク周波数検出手段が検出したピーク周波数とのずれ量を検出する周波数ずれ検出手段と、
    前記ずれ量が所定値を超える場合、前記現在設定されているピーク周波数に対応する基本波形を生成する基本音源の出力周波数を、前記ピーク周波数検出手段が検出したピーク周波数に変更する周波数再設定手段を更に有することを特徴とする請求項5記載の能動騒音抑制装置。
  7. 前記仮想騒音生成手段が、前記前記制御音と前記系の伝達関数から前記制御音が前記誤差信号取得手段に到達した際の信号を生成し、当該信号を前記誤差信号から減じた信号を前記仮想騒音として生成することを特徴とする請求項6記載の能動騒音抑制装置。
JP2005130412A 2005-04-27 2005-04-27 能動騒音抑制装置 Expired - Fee Related JP4664116B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005130412A JP4664116B2 (ja) 2005-04-27 2005-04-27 能動騒音抑制装置
KR1020077027531A KR100938691B1 (ko) 2005-04-27 2006-02-15 능동 소음 억제 장치
EP06713793.5A EP1884920A4 (en) 2005-04-27 2006-02-15 ACTIVE NOISE IN HOUR
PCT/JP2006/302652 WO2006117915A1 (ja) 2005-04-27 2006-02-15 能動騒音抑制装置
CN2006800141963A CN101176145B (zh) 2005-04-27 2006-02-15 有源噪声抑制装置
US11/978,200 US8254589B2 (en) 2005-04-27 2007-10-26 Active noise suppressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130412A JP4664116B2 (ja) 2005-04-27 2005-04-27 能動騒音抑制装置

Publications (2)

Publication Number Publication Date
JP2006308809A true JP2006308809A (ja) 2006-11-09
JP4664116B2 JP4664116B2 (ja) 2011-04-06

Family

ID=37307721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130412A Expired - Fee Related JP4664116B2 (ja) 2005-04-27 2005-04-27 能動騒音抑制装置

Country Status (6)

Country Link
US (1) US8254589B2 (ja)
EP (1) EP1884920A4 (ja)
JP (1) JP4664116B2 (ja)
KR (1) KR100938691B1 (ja)
CN (1) CN101176145B (ja)
WO (1) WO2006117915A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210700A (ja) * 2008-03-03 2009-09-17 Japan Steel Works Ltd:The 狭帯域能動騒音制御方法および狭帯域能動騒音制御装置
JP2013114009A (ja) * 2011-11-29 2013-06-10 Honda Motor Co Ltd 能動型振動騒音制御装置
WO2014068624A1 (ja) * 2012-11-05 2014-05-08 三菱電機株式会社 能動振動騒音制御装置
JP2016035588A (ja) * 2015-10-28 2016-03-17 パイオニア株式会社 能動型騒音制御装置及び能動型騒音制御方法
JP2017219096A (ja) * 2016-06-06 2017-12-14 国立大学法人埼玉大学 除振ユニット
CN108885866A (zh) * 2016-03-31 2018-11-23 马自达汽车株式会社 车用效果声发生装置
US10482867B2 (en) 2015-03-24 2019-11-19 Mitsubishi Electric Corporation Active vibration noise control apparatus
US11094310B2 (en) 2017-08-29 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Signal processor, noise canceling system, signal processing method, and program

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098796B2 (ja) * 2008-05-14 2012-12-12 シンフォニアテクノロジー株式会社 制振装置及び車両
JP4881913B2 (ja) * 2008-05-29 2012-02-22 本田技研工業株式会社 能動型騒音制御装置
KR100986610B1 (ko) * 2008-09-12 2010-10-11 주식회사 다산컨설턴트 능동방음시스템 및 이를 이용한 능동방음벽
US8306240B2 (en) * 2008-10-20 2012-11-06 Bose Corporation Active noise reduction adaptive filter adaptation rate adjusting
US8077873B2 (en) * 2009-05-14 2011-12-13 Harman International Industries, Incorporated System for active noise control with adaptive speaker selection
JP2011121534A (ja) * 2009-12-14 2011-06-23 Honda Motor Co Ltd 能動型騒音制御装置
JP5493850B2 (ja) * 2009-12-28 2014-05-14 富士通株式会社 信号処理装置、マイクロホン・アレイ装置、信号処理方法、および信号処理プログラム
WO2011121782A1 (ja) * 2010-03-31 2011-10-06 富士通株式会社 帯域拡張装置および帯域拡張方法
WO2012075343A2 (en) 2010-12-03 2012-06-07 Cirrus Logic, Inc. Oversight control of an adaptive noise canceler in a personal audio device
US8908877B2 (en) 2010-12-03 2014-12-09 Cirrus Logic, Inc. Ear-coupling detection and adjustment of adaptive response in noise-canceling in personal audio devices
WO2011137762A2 (zh) * 2011-05-09 2011-11-10 华为技术有限公司 转动装置噪声控制方法及控制器
US9318094B2 (en) 2011-06-03 2016-04-19 Cirrus Logic, Inc. Adaptive noise canceling architecture for a personal audio device
US8958571B2 (en) 2011-06-03 2015-02-17 Cirrus Logic, Inc. MIC covering detection in personal audio devices
US9824677B2 (en) 2011-06-03 2017-11-21 Cirrus Logic, Inc. Bandlimiting anti-noise in personal audio devices having adaptive noise cancellation (ANC)
CN102355233B (zh) * 2011-06-10 2015-04-29 南京大学 一种合成参考信号的变压器噪声有源控制方法
US8564339B2 (en) * 2011-08-19 2013-10-22 Soft Db Inc. Method and system for measuring amplitude and phase difference between two sinusoidal signals
JP5616313B2 (ja) * 2011-11-29 2014-10-29 本田技研工業株式会社 能動型振動騒音制御装置
US9318090B2 (en) 2012-05-10 2016-04-19 Cirrus Logic, Inc. Downlink tone detection and adaptation of a secondary path response model in an adaptive noise canceling system
US9123321B2 (en) 2012-05-10 2015-09-01 Cirrus Logic, Inc. Sequenced adaptation of anti-noise generator response and secondary path response in an adaptive noise canceling system
US9532139B1 (en) 2012-09-14 2016-12-27 Cirrus Logic, Inc. Dual-microphone frequency amplitude response self-calibration
US9414150B2 (en) 2013-03-14 2016-08-09 Cirrus Logic, Inc. Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device
US9578432B1 (en) 2013-04-24 2017-02-21 Cirrus Logic, Inc. Metric and tool to evaluate secondary path design in adaptive noise cancellation systems
US9666176B2 (en) 2013-09-13 2017-05-30 Cirrus Logic, Inc. Systems and methods for adaptive noise cancellation by adaptively shaping internal white noise to train a secondary path
US9620101B1 (en) 2013-10-08 2017-04-11 Cirrus Logic, Inc. Systems and methods for maintaining playback fidelity in an audio system with adaptive noise cancellation
US10219071B2 (en) 2013-12-10 2019-02-26 Cirrus Logic, Inc. Systems and methods for bandlimiting anti-noise in personal audio devices having adaptive noise cancellation
US9478212B1 (en) 2014-09-03 2016-10-25 Cirrus Logic, Inc. Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device
US9704509B2 (en) * 2015-07-29 2017-07-11 Harman International Industries, Inc. Active noise cancellation apparatus and method for improving voice recognition performance
JP6964581B2 (ja) 2015-08-20 2021-11-10 シーラス ロジック インターナショナル セミコンダクター リミテッド 固定応答フィルタによって部分的に提供されるフィードバック応答を有するフィードバック適応雑音消去(anc)コントローラおよび方法
US9578415B1 (en) 2015-08-21 2017-02-21 Cirrus Logic, Inc. Hybrid adaptive noise cancellation system with filtered error microphone signal
DE102015225925A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Verfahren zur aktiven Schalldämpfung und Schalldämpfungsanordnung
US10199033B1 (en) * 2016-02-09 2019-02-05 Mitsubishi Electric Corporation Active noise control apparatus
US10013966B2 (en) 2016-03-15 2018-07-03 Cirrus Logic, Inc. Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device
WO2018019647A1 (en) * 2016-07-26 2018-02-01 Alert Systems Aps Method, apparatus and system for detecting metal objects in a detection zone
DE102017212980B4 (de) * 2017-07-27 2023-01-19 Volkswagen Aktiengesellschaft Verfahren zur Kompensation von Störgeräuschen bei einer Freisprecheinrichtung in einem Kraftfahrzeug und Freisprecheinrichtung
JP7319812B2 (ja) * 2019-04-11 2023-08-02 ナブテスコ株式会社 減速装置
CN113643716B (zh) * 2021-07-07 2023-09-26 珠海格力电器股份有限公司 电机噪声控制方法、装置和电机及电器设备
CN114898732B (zh) * 2022-07-05 2022-12-06 深圳瑞科曼环保科技有限公司 一种可调整频率范围的噪音处理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339191A (ja) * 1995-06-09 1996-12-24 Honda Motor Co Ltd 振動騒音制御装置
JPH09297585A (ja) * 1996-05-09 1997-11-18 Yanmar Diesel Engine Co Ltd アクティブ消音装置
JPH11325168A (ja) * 1998-05-08 1999-11-26 Honda Motor Co Ltd アクティブ振動騒音抑制装置
JP2004046150A (ja) * 1994-10-12 2004-02-12 Hitachi Ltd 能動形騒音制御装置
JP2004361721A (ja) * 2003-06-05 2004-12-24 Honda Motor Co Ltd 能動型振動騒音制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA828700B (en) * 1981-11-26 1983-09-28 Sound Attenuators Ltd Method of and apparatus for cancelling vibrations from a source of repetitive vibrations
US4878188A (en) * 1988-08-30 1989-10-31 Noise Cancellation Tech Selective active cancellation system for repetitive phenomena
US5293578A (en) * 1989-07-19 1994-03-08 Fujitso Ten Limited Noise reducing device
US5319715A (en) * 1991-05-30 1994-06-07 Fujitsu Ten Limited Noise sound controller
US5524057A (en) * 1992-06-19 1996-06-04 Alpine Electronics Inc. Noise-canceling apparatus
JP2899205B2 (ja) * 1994-03-16 1999-06-02 本田技研工業株式会社 車両用能動振動騒音制御装置
US6351664B1 (en) * 1999-11-12 2002-02-26 Ge Medical Systems Information Technologies, Inc. Method of removing signal interference from sampled data and apparatus for effecting the same
JP2003241767A (ja) * 2002-02-14 2003-08-29 Alpine Electronics Inc ノイズキャンセル装置
JP4077383B2 (ja) * 2003-09-10 2008-04-16 松下電器産業株式会社 能動型振動騒音制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004046150A (ja) * 1994-10-12 2004-02-12 Hitachi Ltd 能動形騒音制御装置
JPH08339191A (ja) * 1995-06-09 1996-12-24 Honda Motor Co Ltd 振動騒音制御装置
JPH09297585A (ja) * 1996-05-09 1997-11-18 Yanmar Diesel Engine Co Ltd アクティブ消音装置
JPH11325168A (ja) * 1998-05-08 1999-11-26 Honda Motor Co Ltd アクティブ振動騒音抑制装置
JP2004361721A (ja) * 2003-06-05 2004-12-24 Honda Motor Co Ltd 能動型振動騒音制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210700A (ja) * 2008-03-03 2009-09-17 Japan Steel Works Ltd:The 狭帯域能動騒音制御方法および狭帯域能動騒音制御装置
JP4700075B2 (ja) * 2008-03-03 2011-06-15 株式会社日本製鋼所 狭帯域能動騒音制御方法および狭帯域能動騒音制御装置
JP2013114009A (ja) * 2011-11-29 2013-06-10 Honda Motor Co Ltd 能動型振動騒音制御装置
WO2014068624A1 (ja) * 2012-11-05 2014-05-08 三菱電機株式会社 能動振動騒音制御装置
JP5967213B2 (ja) * 2012-11-05 2016-08-10 三菱電機株式会社 能動振動騒音制御装置
US9773489B2 (en) 2012-11-05 2017-09-26 Mitsubishi Electric Corporation Active vibration noise control apparatus
US10482867B2 (en) 2015-03-24 2019-11-19 Mitsubishi Electric Corporation Active vibration noise control apparatus
JP2016035588A (ja) * 2015-10-28 2016-03-17 パイオニア株式会社 能動型騒音制御装置及び能動型騒音制御方法
CN108885866A (zh) * 2016-03-31 2018-11-23 马自达汽车株式会社 车用效果声发生装置
CN108885866B (zh) * 2016-03-31 2023-07-07 马自达汽车株式会社 车用效果声发生装置
JP2017219096A (ja) * 2016-06-06 2017-12-14 国立大学法人埼玉大学 除振ユニット
US11094310B2 (en) 2017-08-29 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Signal processor, noise canceling system, signal processing method, and program

Also Published As

Publication number Publication date
KR100938691B1 (ko) 2010-01-25
US8254589B2 (en) 2012-08-28
JP4664116B2 (ja) 2011-04-06
WO2006117915A1 (ja) 2006-11-09
EP1884920A4 (en) 2016-10-19
CN101176145B (zh) 2010-12-15
KR20080005982A (ko) 2008-01-15
CN101176145A (zh) 2008-05-07
EP1884920A1 (en) 2008-02-06
US20080118083A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4664116B2 (ja) 能動騒音抑制装置
US8014538B2 (en) Active noise reducing device
JP5712348B2 (ja) 能動型騒音低減装置と、これを用いた能動型騒音低減システム、ならびに移動体装置、および能動型騒音低減方法
JP2007328219A (ja) 能動型騒音制御装置
JP5919516B2 (ja) 多入力雑音抑圧装置、多入力雑音抑圧方法、プログラムおよび集積回路
JP6650570B2 (ja) 能動型騒音低減装置
JP2011145372A (ja) 雑音抑圧装置
JP5857403B2 (ja) 音声処理装置および音声処理プログラム
JP2017197021A (ja) 能動型騒音低減装置及び能動型騒音低減方法
KR20190047976A (ko) 노이즈 모델링 및 룩업을 통한 잡음 저감 방법
JP6270136B2 (ja) アクティブノイズ制御装置およびアクティブノイズ制御方法
KR101696597B1 (ko) 소음제어방법
JP2009182759A (ja) ハウリング抑制装置およびプログラム
US20140066134A1 (en) Audio processing device, audio processing method, and recording medium recording audio processing program
JP2010012813A (ja) 能動型振動騒音制御装置
JP6903947B2 (ja) 非目的音抑圧装置、方法及びプログラム
JP4906787B2 (ja) 能動型振動騒音制御装置
JP7252779B2 (ja) 雑音除去装置、雑音除去方法およびプログラム
JP6737142B2 (ja) 騒音制御装置、騒音制御方法及び動力機械
JP6248564B2 (ja) 能動振動制御装置および能動振動制御システム
JP4962095B2 (ja) 能動型騒音制御装置
JP2008260420A (ja) 能動型騒音制御装置
JP2004320204A (ja) 反響消去方法、反響消去装置、反響消去プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4664116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees