JP2006047144A - 振動型角速度センサ - Google Patents

振動型角速度センサ Download PDF

Info

Publication number
JP2006047144A
JP2006047144A JP2004229629A JP2004229629A JP2006047144A JP 2006047144 A JP2006047144 A JP 2006047144A JP 2004229629 A JP2004229629 A JP 2004229629A JP 2004229629 A JP2004229629 A JP 2004229629A JP 2006047144 A JP2006047144 A JP 2006047144A
Authority
JP
Japan
Prior art keywords
harmonic
detection
circuit
angular velocity
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004229629A
Other languages
English (en)
Other versions
JP4411529B2 (ja
Inventor
Hajime Ito
一 伊藤
Kenichi Ao
青  建一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004229629A priority Critical patent/JP4411529B2/ja
Priority to US11/188,880 priority patent/US7216538B2/en
Priority to DE102005035717.2A priority patent/DE102005035717B4/de
Publication of JP2006047144A publication Critical patent/JP2006047144A/ja
Application granted granted Critical
Publication of JP4411529B2 publication Critical patent/JP4411529B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

【課題】 基本波に重畳する奇数時の高調波成分を効果的に減衰させることができ、ひいては高調波によるゼロ点変動等の影響を受けにくい振動型角速度センサを提供する。
【解決手段】 振動型角速度センサにおいて、基本波を同期検波する主同期検波回路22とは別に、主同期検波回路22では除去不可能な、前記基本波に重畳する奇数次高調波を選択的に抽出する高調波同期検波回路68を設けた。そして、主同期検波回路22からの主検波波形から、高調波同期検波回路68が抽出した奇数次高調波検波波形を用いて残留奇数次高調波成分を減少させる信号処理を行う。これにより、基準周波数の同期検波では除去しきれない奇数次高調波成分を効果的に減衰させることができ、ひいては角速度信号のゼロ点変動などの弊害を防止することができる。
【選択図】 図4

Description

この発明は、振動型角速度センサに関する。
特開2002−139322号公報 特開平9−170927号公報
角速度センサ(ジャイロセンサ)の方式には、回転体の歳差運動を利用する機械式、筐体内で周回するレーザー光の筐体回転に伴う受光タイミング変化を利用する光学式、筐体内でセンシング用のガスを熱線に噴射し、その噴射量が筐体の回転により変化するのを熱線温度で検知する流体式などが知られている。他方、車両制御用やカーナビゲーションシステム等における角速度センサの需要が近年急速に高まっており、上記各方式と比較してより安価で軽量な振動式角速度センサが主流となりつつある。振動式角速度センサは、予め定められた基準方向に、基準周波数で振動する振動子に角速度が作用したとき、基準方向と直交する検出方向へのコリオリ力に基づく新たな振動成分(以下、角速度振動成分という)を検出し、該振動成分に基づいて角速度情報を出力するものである(例えば、特許文献1,2)。
上記原理の振動型角速度センサでは、検出する角速度の変化波形は、基準周波数の基本波を振幅変調した波形として検出される。しかし、車両運転中等においては、様々な要因により基準周波数以外の振動成分が重畳するので、通常の振動型角速度センサでは、上記振動出力波形を基準振動数にて同期検波し、角速度信号にて変調された基本波だけを取り出すようにしている。他方、角速度センサの機械的な構造構造の振動系は種々の非線形要素を有し、また、可動部の振動を直接担う梁などの弾性結合体の共振振動モード以外にも、結合先のフレームを始めとする周波数の異なる共振モードが種々存在するため、基準周波数に対する高調波振動も不可避的に発生・重畳する。この高調波は、基本波の同期検波時にある程度除去することができ、特に偶数次の高調波は同期検波時の減衰効果が高い。しかし、本発明者が詳細に検討したところ、奇数次の高調波については、基本波の同期検波時に完全除去することが数学的に不可能であることがわかった。こうした残留高調波成分は、基本波を復調して得られる角速度信号のゼロ点変動要因となり、角速度検出精度を低下させる問題がある。この対策として、高調波を予め同期検波前にフィルタリングにより減衰させることが考えられるが、この場合、高調波周波数が基本周波数に近接しているので、基本波成分のゼロ点等に影響を及ぼすことなく十分に減衰させることが難しい上、角速度信号として利用する基本波の位相が変動し、角速度検出精度が悪化する、というより本質的な問題も生じ得る。
本発明の課題は、基本波に重畳する奇数時の高調波成分を効果的に減衰させることができ、ひいては高調波によるゼロ点変動等の影響を受けにくい振動型角速度センサを提供することにある。
課題を解決するための手段及び発明の効果
上記の課題を解決するために、本発明の振動型角速度センサは、
予め定められた基準方向に振動する振動子と、
該振動子を一定の基準周波数にて駆動する振動駆動部と、
振動子に角速度が加わるに伴い、基準方向と交差するように定められた角速度検出方向への振動成分を、原検出振動波形として生成する原検出振動波形生成部と、
基準周波数と同一周波数を有する主検波クロック信号を用いて、原検出振動波形から基準周波数を有する基本波成分を、奇数次高調波成分が残留した主検波波形として同期検波する主同期検波回路と、
基準周波数の3倍以上の奇数倍周波数を有する高調波検波クロック信号を用いて、原検出振動波形から該高調波検波クロック信号に対応する周波数の奇数次高調波成分を選択的に同期検波する高調波同期検波回路と、
高調波同期検波回路による奇数次高調波検波波形を用いて、主検波波形の残留奇数次高調波成分を減少させる信号処理を行う信号処理部と、を備えたことを特徴とする。
上記本発明の振動型角速度センサの構成では、基本波を同期検波する主同期検波回路とは別に、主同期検波回路では除去不可能な、前記基本波に重畳する奇数次高調波を選択的に抽出する高調波同期検波回路を設けた。そして、主同期検波回路からの主検波波形から、高調波同期検波回路が抽出した奇数次高調波検波波形を用いて残留奇数次高調波成分を減少させる信号処理を行うので、基準周波数の同期検波では除去しきれない奇数次高調波成分を効果的に減衰させることができ、ひいては角速度信号のゼロ点変動などの弊害を防止することができる。また、基本波同期検波前にフィルタリングによって高調波を除去するのと異なり、高調波を基本波とは別の同期検波回路で個別に抽出し、波形演算によって高調波成分を減少させる原理を採用しているので、高調波除去処理により基本波の位相が変動しにくいことも、大きな利点の一つである。
基本波の同期検波時における高調波成分の残留比率は、該同期検波前に重畳している高調波成分の振幅を基準に考えたとき、該高調波の次数に応じて一定であることが、本発明者の検討によりわかっている。従って、奇数次高調波検波波形の振幅を上記残留比率に対応した一定比率にて縮小し、主検波波形に対し、残留奇数次高調波成分を相殺する方向に合成演算することで、高調波除去の信号処理を簡単に行うことができる。具体的には、基本波の振幅変調波形として得られる角速度信号は、最終的には基本波成分を除去する復調処理を行う必要があるが、この復調処理の一部が主同期検波回路において行われる。すなわち、図5に示すように、基本波は同期検波によりゼロ点レベルの片側に負波成分を折り返した一種の整流化処理を受ける形となり、これを平滑化すれば、原波形の変調振幅に対応した角速度信号を得ることができる。他方、偶数次の高調波が重畳している場合、基準周波数にて検波すると検波後の波形には正波成分と負波成分とが混在して現れるが、本発明者の計算によると、これらは平滑化処理時に過不足なく相殺され理論上は残留しない(図5では2次高調波の場合を例示)。しかし、奇数次の高調波については、同様の計算によると、検波後の波形では正波成分と負波成分とが完全に相殺せず、半波を1単位として、高調波次数に等しい単位数毎に余る形で残留する(図5では3次高調波の場合を例示)。従って、信号処理部は、奇数次高調波検波波形の振幅を高調波の次数の逆数倍に縮小して主検波波形に対し、残留奇数次高調波成分を相殺する方向に合成演算するものとして構成すれば、残留奇数次高調波成分の除去効果が高められる。
基本波の周波数である基準周波数は、振動駆動部の駆動波形の周波数と原理的に一致するので、主同期検波回路にて用いる基準周波数の主検波クロック信号は、主検波クロック信号発生回路により振動駆動部の駆動波形に基づいて発生させることができる。この場合、除去すべき高調波は、基準周波数の整数倍の振動数を有するので、該主検波クロック信号発生回路からの主検波クロック信号に基づいて高調波検波クロック信号を発生させる周波数逓倍回路を設けておけば、該高調波検波クロック信号を振動駆動部の駆動波形に基づいて簡単に発生させることができる。
信号処理部は、主検波波形から奇数次高調波検波波形を減算する形で、残留奇数次高調波高調波成分を除去するものとして構成することももちろん可能であるが、減算演算のための差動増幅回路を設ける必要がある。しかし、高調波同期検波回路において高調波検波クロック信号として主検波クロック信号とは逆位相のものを使用すれば、奇数次高調波検波波形が主検波波形の残留奇数次高調波高調波成分に対しはじめから逆相になって現れるので、信号処理部は回路構成がより簡便な加算回路として構成できる。この場合、加算回路は、奇数次高調波検波波形の振幅を高調波次数の逆数倍に縮小して、主検波波形に加算合成するものとして構成できる。なお、奇数次高調波検波波形の振幅縮小のための演算増幅器を加算回路と別に設けてもよいし、演算増幅器を用いた加算回路のゲイン調整により振幅縮小を行うようにしてもよい。
なお、同期検波後の基本波成分は、基準周波数よりも低域側にカットオフ周波数を有するローパスフィルタ回路により平滑化することができる。この場合、該ローパスフィルタ回路を、上記の加算回路を兼用するアクティブフィルタ回路として構成しておけば、回路構成の更なる簡略化を図ることができる。
上記のごとく、基準周波数で同期検波後の基本波に重畳する高調波の残留比率は、高調波の次数が高くなるほど小さくなるので、一定以上に次数の高い高調波は、敢えて高調波同期検波回路により抽出しなくとも、主同期検波回路において十分に減衰させることができる。この観点で、高調波同期検波回路は9次以下の高調波を同期検波するものとして構成しておくとよい。この場合、特に残留の影響の大きいのは、奇数最低字の3次高調波であり、高調波同期検波回路は該3次高調波の同期検波回路のみを含む形であっても、除去効果は実質的に十分な場合が多く、回路構成もその分簡略化できる。
一方、高調波同期検波回路を、異なる次数の高調波毎に個別に設ければ、回路はやや肥大化するが、より高次の高調波の除去効果はより高められる。前述の周波数逓倍回路を用いる場合、除去対象となる高調波の次数の公倍数に等しい倍率にて主検波クロック信号の周波数を逓倍化した、基本逓倍クロック信号を発生するものとして該周波数逓倍回路を構成し、各次数の高調波同期検波回路に対し、対応する周波数の高調波検波クロック信号を送出するために、基本逓倍クロック信号を対応する周波数に分周して出力する分周回路を設けておくと、逓倍回路の共通化を図ることができるので、回路の小形化に寄与する。
以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の振動型角速度センサの一実施形態を示す回路図である。該振動型角速度センサ1の要部は、振動子100、振動駆動部6及び角速度検出部7からなる。図2は振動子100の構成例を示す概略平面図である。該振動子100は、例えば上記半導体基板として、ベースウェーハにシリコン薄層が酸化膜を介して貼り合わされたSOI(シリコンオンインシュレータ)基板を用い、周知の半導体製造技術を用いて作ることができる。
図2には、SOI基板におけるシリコン薄層12の平面形状が示されており、この一方のシリコン基板12には、溝を形成することにより、各部が形成されている。可動部30は、一方のシリコン基板12を支持する酸化膜及び他方のシリコン基板を部分的に除去することにより形成された開口部14上に、配置されている。可動部30は、図中のx方向へバネ変形可能な駆動梁33及びy方向へバネ変形可能な検出梁34を介して、可動部30の外周の基部20に支持されている。可動部30の外周部と基部20とが対向する部位には、次に述べるような櫛歯状の各電極部が形成されている。具体的には、可動部30を振動させるために必要な周期的な信号(駆動信号、例えば正弦波)を印加するための駆動電極40と、可動部30のx方向への振動をモニタしモニタ信号を出力するためのモニタ電極60と、z軸回りに角速度Ωが印加されたときに発生する可動部30のy方向への振動に基づく容量変化を角速度Ωの検出信号として検出するための検出電極50とが形成されている。
また、上記SOI基板は、図示しない回路基板に搭載され、各電極40〜60は、それぞれ各電極40〜60対応して形成された端子41、51、61に接続されたワイヤ42、52、62を介して当該回路基板に電気的に接続されている。この図2に示す振動子100においては、回路基板から駆動電極40に駆動信号(正弦波等)を入力すると、駆動梁33によって可動部30は、x方向へ基準周波数fdにて振動駆動される。このとき、モニタ電極60における櫛歯間の容量変化を調べることにより、可動部30の駆動振動の周波数や振幅等をモニタし、駆動信号を調整できるようになっている。可動部30を駆動振動した状態で角速度Ωが印加されると、可動部30にはy方向にコリオリ力が印加され、可動部30は検出梁34によってy方向へ振動(検出振動)する。すると、この検出振動によって、検出電極50における櫛歯間の容量が変化するため、この変化を検出信号として出力することにより、角速度Ωの大きさを求めることができる。該検出電極50は、振動子100に角速度が加わるに伴い、基準方向と交差(ここでは直交)するように定められた角速度検出方向(y方向)への振動成分を、原検出振動波形として生成する原検出振動波形生成部の役割を果たしている。
図1に戻り、検出電極50が検出する容量変化は、チャージアンプ等で構成された電荷電圧変換回路120にて電圧変換され、電圧波形として出力される。これら電荷電圧変換回路120と、それらの出力同士を差動増幅する差動増幅器21(差分波形演算手段)と、予め定められた周波数帯域に含まれる角速度成分を抽出する主同期検波回路22が角速度検出部7を構成する。主同期検波回路22は、具体的には、基準周波数fdと同一周波数を有する主検波クロック信号を用いて、原検出振動波形から基準周波数を有する基本波成分を、奇数次高調波成分が残留した主検波波形として同期検波するものである。そして、その主同期検波回路22の下段側には、その奇数次残留高調波成分を除去する高調波除去部62が設けられている。
振動駆動部6は、モニタ電極60が検出する容量変化を電圧変換する電荷電圧変換回路2と、それらの出力同士を差動増幅する差動増幅器3(差分波形演算手段)と、差動増幅器3の振動交流電圧出力を直流変換するAC/DC変換器11を有する。AC/DC変換器11の出力電圧値は振動モニタ信号の振幅検出信号であり、該AC/DC変換器11が振幅検出部を構成している。該振幅検出信号は、制御すべき一定振幅に対応した基準電圧Vref1との差分が差動増幅器13にて演算される。
さらに、振動駆動部6は、差動増幅器3からの振動電圧出力を90°移相する移相器14、差動増幅器13と移相器14との各出力を乗算する乗算器15とを有する。図2の可動部30のX方向の振動が、モニタ電極60の容量変化により、振動モニタ信号としてモニタ端子61から取り出され、電荷電圧変換回路2にて電圧信号に変換後、差動増幅器3を経て駆動端子41に帰還させることにより自励式振動駆動機構を構成する。移相器14は、梁34を介した可動部30の共振点付近での機械的振動を持続させる役割を果たす。また、差動増幅器3からの振動モニタ信号は、別途AC/DC変換器11で平滑化されて振幅レベル信号とされ、制御振幅レベルに対応した基準電圧Vref1との差分が差動増幅器13にて演算される。この差動増幅器13の出力を振幅補正信号として、乗算器15にて振動モニタ信号と乗ずることにより、駆動振幅が一定に制御されることとなる。
つまり、乗算器15の出力が駆動信号として、振動子100の各駆動端子41に入力される。該乗算器15は、差動増幅器13による振幅検出信号と参照振幅信号との差分値(比較結果)に基づいて、前述の振動モニタ信号を、一定振幅に制御しつつ昇圧して駆動信号を生成し、振動子100の各駆動端子41に帰還入力する駆動波形生成部の役割を果たしている。
次に、角速度検出部7において、差動増幅器21からの角速度信号の出力は、主同期検波回路22にて主検波波形とされた後、高調波除去部62にて高調波が除去され、また、基準周波数よりも低域側にカットオフ周波数を有するローパスフィルタ(高調波除去部62内に組み込まれている:以下、LPFとも記載する)にて平滑化されることにより、入力角速度に比例した直流の信号Vyとして出力される。主同期検波回路22にて使用する主検波クロック信号は、本実施形態では移相器14からの振動モニタ信号(基準周波数fdを有する)を、主検波クロック信号発生回路を構成するコンパレータ8にて方形波クロック信号に変換することにより生成している。コリオリ力は、振動子の速度と加わる角速度とのベクトル積に比例して発生するので、駆動振動波形に対し、コリオリ力の検出波形は必ず90°位相変化した形で検知される。従って、移相器14にて90°移相した駆動振動波形はコリオリ力の検出波形(つまり、角速度波形)と位相が一致し、同期検波用の主検波クロック信号として好適に採用できる。
次に、図3を用いて、主同期検波回路22(後述の高調波同期検波回路の構成も同じ)の基本動作について説明する。時間をt、基準信号REF1(図1の移相器14を通過後の振動モニタ信号である)の周期をT、nは整数と記号を決める。コンパレータ8を通過後の基準信号REF1はデューティ比50%の方形波となり、そのハイレベル(H)及びローレベル(L)に対応して、アナログスイッチ22c,22dは半周期毎に切り替わる。nT<t<(n+1/2)Tのとき、基準信号REF1がHなので、非反転増幅器(ここでは、ボルテージフォロワ)22eの出力が選択される。他方、(n+1/2)T<t<nTのとき、基準信号REF1がLなので、反転増幅器22fの出力がLPFに入力される。センサの駆動信号の周波数をfd(つまり、基本波)、同じく角周波数をωd(≡2πfd)としたとき、基準信号REF1はセンサの駆動信号に同期しているので、これと等しい周波数を有する。また、周期Tはfd−1である。主同期検波回路22の入力信号が基本波fdの成分だけならば、
VIN(t)=Va1・sin(ωd・t+θ1) (1)
Va1:振幅、θ1:基準信号REF1に対する位相進角量
である。
該主同期検波回路22の出力波形は、デューティ比50%の方形波を検波クロックとして用いているために、図3に示すごとくとなる。すなわち、原検出波形のうち基準信号と同相の基本波は、正の半波の位相が非反転増幅器22eの出力期間の位相と、また、負の半波の位相が反転増幅器22fの出力期間の位相と、それぞれ一致する結果、全波整流的な同期検波波形に変換され、下流側のLPFで平滑化することで角速度信号として検出できる。数学的には、下記数1で表すことができる。
Figure 2006047144
一方、基準信号と同相でない、すなわち位相が90°ずれたノイズ波形成分については、各半波の位相が非反転増幅器22e及び反転増幅器22fの切り替え周期の位相と一致しないために、検波後の波形においても正波と負波とが等価に混在する結果、LPFでの平滑化により互いにキャンセルし、除去することができる(数学的な裏づけについては、図3中の「原理式」の項を参照)。また、直流(DC)成分((1)式では省略)は、非反転増幅器22eと反転増幅器22fの切り替え周期に同期して正の出力と負の出力との方形波的な交代波形に変換される結果、これもLPFでの平滑化により除去される。
ところで、振動子100は基準周波数fdで機械振動している。機械振動特性の非線形性等により、主同期検波回路22への入力信号は基本波fdだけでなく、その高調波成分も含んでいる。高調波成分が主同期検波回路22に入力された場合、すなわち、
VIN(t)=Vam・sin(m・ωd・t+θm) (5)
ただし、m=2,3,4…
の場合、上記(2)式を使って同様に計算すると、
mが偶数の場合:VLPF = 0 (6)
mが奇数の場合:VLPF =(2/(mπ))・Vam・cosθm (7)
となる。この結果は、既に図5を用いて説明した通りであり、奇数次高調波成分は、基本波成分と較べると1/mに減衰するが除去されない点が重要である。
主同期検波回路22を通過後の原検出振動波形に残留する上記奇数次高調波成分を除去するのが図1の高調波除去部62である。図4にその構成例を示している。該高調波除去部62は、基準周波数fd(つまり、主検波クロック信号REF1)の3倍の周波数(3fd)を有する高調波検波クロック信号REF3を用いて、該高調波検波クロック信号REF3に対応する周波数の奇数次高調波成分、つまり、ここでは3次高調波を選択的に同期検波する高調波同期検波回路68を備えている。その構成は、用いる検波クロック信号の周波数が異なる点を除き、図3の主同期検波回路22と全く同じである。
高調波検波クロック信号REF3は、主検波クロック信号REF1を周波数逓倍回路67により3倍周波数にクロックアップして用いている。周波数逓倍回路67は例えばPLL回路等を用いた周知の構成であるので、詳細な説明は省略する。残留奇数次高調波成分は、平均振幅が次数分の1、つまり1/3になるので、高調波同期検波回路68からの出力は反転増幅器72により振幅を1/3に縮小しつつ位相反転し、主同期検波回路22を通過後の波形における残留奇数次高調波成分と、加算器66で加算合成することでこれをキャンセルする。なお、主同期検波回路22と高調同期検波回路68との各出力は、各々個別のLPF65,75により平滑化した後、加算器66へ入力する。
上記回路構成の妥当性について、以下、数学的に説明する。まず、主同期検波回路22の入力信号には、基本波成分、2次高調成分、3次高調成分があるとする。すなわち、
VIN(t)= Va1・sin(ωd・t+θ1)
+Va2・sin(2ωd・t+θ2)
+Va3・sin(3ωd・t+θ3) (8)
とする。主同期検波回路22の出力をLPF65で平均化した電圧をVLPF1とすると、既に用いた(4)、(6)、(7)の各式により、
Figure 2006047144
となる。次に、高調波同期検波回路68の出力をLPF75で平均化した電圧VLPF3を計算する。周波数逓倍回路67により発生される、基本波fdの3倍周波数の基準信号REF3はデューティ50%の方形波であり、H、Lによりアナログスイッチは半周期毎に切り換わる。すわなち、nT<t<(n+1/6)T、(n+1/3)T<t<(n+1/2)T、(n+2/3)T<t<(n+5/6)Tのとき、基準信号REF3がHなので、非反転増幅器の出力がLPF75に入力され、(n+1/6)T<t<(n+1/3)nT、(n+1/2)T<t<(n+2/3)T、(n+5/6)T<t<(n+1)Tのとき、基準信号REF3がLなので、反転増幅器の出力がLPF7に入力される。従って、VLPF3の計算式は下記のようになる。
Figure 2006047144
(8)式を(10)式に代入すると、
VLPF3=(2/π)・Va3・cosθ3 (11)
となる。基本波fd及び2倍の高調波2fdの成分は0で、3倍の高調波3fdの成分のみが検出できることがわかる。
従って、加算器66の出力VLPFは、
VLPF=VLPF1−(1/3)VLPF3 (12)
となる。(12)式に、(9)、(11)式を代入すると、
VLPF=(2/π)・Va1・cosθ1 (13)
となり、基本波成分のみが検出され、3次の高調波成分は除去できることがわかる。
なお、加算器66とLPF65,75は順番を替えても同じ電圧を得ることができる。この場合、図6のように上記2つのLPFを共用化したLPF65を加算器66の出力段側に設けてもよい。
また、図7のような構成にすれば、高調波同期検波回路68の出力を1/3減衰させる反転増幅器が不要になる。この場合、基準信号REF3として、図4とは逆相の信号を用いる。従って、高調波同期検波回路68の出力は、nT<t<(n+1/6)T、(n+1/3)T<t<(n+1/2)T、(n+2/3)T<t<(n+5/6)Tのとき、反転増幅器の出力、(n+1/6)T<t<(n+1/3)nT、(n+1/2)T<t<(n+2/3)T、(n+5/6T)<t<(n+1)Tのとき、非反転増幅器の出力
となり、図4とは逆相になる。そして、図7において加算器69のゲイン決定抵抗は、
RIN3 = 3・RIN1 (14)
となっており、主同期検波回路22の出力と、高調波同期検波回路68の出力が3:1の比で加算される。
また、図8に示すように、図7の加算器69をアクティブフィルタ79として構成すれば、図7のLPF65は省略できる。図8においては、負帰還コンデンサの追加により、アクティブフィルタ79は、加算器の機能を兼ねた1次ローパスフィルタとして構成されている。図7と同様に、ゲイン決定抵抗は
RIN3 = 3・RIN1 (15)
となっている。また、ローパスフィルタのカットオフ周波数fcは、
fc=1/(2π・RF・CF)
である。なお、ローパスフィルタによる平滑化の機能をより高めたい場合は、例えば図7の構成にてLPF65を2次以上のローパスフィルタとして構成することも考えられるし、図8のアクティブフィルタ79の出力側にローパスフィルタを追加することもありえる。
図9は、次数の異なる複数の奇数次高調波を除去するために、各次数に対応した高調波同期検波回路68A,68Bを設けた例である(つまり、高調波同期検波回路が複数設けられている)。ここでは、3fdの基準信号を用いた3次高調波用の同期検波回路68Aに、5fdの基準信号を用いた5次高調波用の同期検波回路68Bを追加した場合を例にとる。これにより、入力信号の5次までの高調波信号を除去することができる。
図8と同様、加算器(アクティブローパスフィルタ)69においてゲイン決定抵抗は
RIN3 = 3・RIN1 (16)
RIN5 = 5・RIN1 (17)
となっており、主同期検波回路22、高調波同期検波回路68A,68Bの各出力が5:3:1の比で加算され、3次及び5次の各残留高調波成分をキャンセルする。アクティブローパスフィルタ69の遮断周波数fcは図8と同じである。
なお、周波数逓倍回路67の周波数逓倍化倍率は、ここでは除去すべき高調波の次数の公倍数、すなわち3×5=15に設定されており、周波数が15fdの基本逓倍クロック信号を出力する。これを、分周器35Aにて5分周することにより3fdの基準信号REF3が得られる一方、分周器35Bにて3分周することにより5fdの基準信号REF5が得られるようになっており、周波数逓倍回路67が複数の高調波同期検波回路68A,68B間で共用化されている。
なお、図4、6、7、8、9の各実施例で、例えば入力に9次の高調波成分があったとする。すなわち、
VIN(t)=Va9・sin(9ωd・t+θ9) (18)
の場合、VLPF1及びVLPF3はそれぞれ、
VLPF1=(2/(9π))・Va9・cosθ9 (19)
VLPF3=(2/(3π))・Va9・cosθ9 (20)
となる。(12)式にVLPF1、VLPF3を代入して計算すると、加算器の出力VLPFは0になり、9次の高調波も除去できることがわかる。すなわち、9次高調波を除去する方法として、
A.9fdの基準信号で同期検波する。
B.3fdの基準信号で同期検波する。
の2つ方法があるが、周波数逓倍回路67において、3fdの基準信号を発生する方が、9fdの基準信号を発生する方が容易なので、Bの方が回路規模は小さくできる。この場合、9fdだけでなく、15fd、21fdなど、3fdの奇数倍の高調波成分を除去することができる。一般的に、k次(kは奇数)の高調波の基準信号で同期検波すれば、kの奇数倍の高調波成分を検出することができる。基本波を基準とする同期検波信号と、k次高調波を基準とする同期検波信号をk:1の比で加算することにより、kの奇数倍の高調波成分を除去することができる。従って、奇数次の高調波除去に際しては、3以上の素数次の高調波同期検波回路があれば十分であり、残留振幅が次数に逆比例して縮小されることを考慮すれば、実際上は9次程度までの高調波が除去できればほぼ十分であり、この場合、用意を考慮する高調波同期検波回路の次数は、9以下の素数次、つまり、3、5、7の実質的に3つでよいということになるが、多くの場合は、図4、6、7、8のように、3次用の高調波同期検波回路1つでも概ねこと足りる。
本発明の振動型角速度センサの一実施形態を示す全体回路図。 図1の回路の振動子部分の一例を示す構造図。 同期検波回路の動作説明図。 高調波除去部の第一例を示す回路図。 基本波の同期検波が、偶奇の高調波除去にそれぞれどのように作用するかを説明する図。 高調波除去部の第二例を示す回路図。 高調波除去部の第三例を示す回路図。 高調波除去部の第四例を示す回路図。 高調波除去部の第五例を示す回路図。
符号の説明
1 振動型角速度センサ
6 振動駆動部
22 主同期検波回路
68,68A,68B 高調波同期検波回路
35A,35B 分周回路
60 検出電極(原検出振動波形生成部)
65,75 ローパスフィルタ
66 加算器(信号処理部)
67 周波数逓倍回路
79 アクティブローパスフィルタ
100 振動子

Claims (9)

  1. 予め定められた基準方向に振動する振動子と、
    該振動子を一定の基準周波数にて駆動する振動駆動部と、
    前記振動子に角速度が加わるに伴い、前記基準方向と交差するように定められた角速度検出方向への振動成分を、原検出振動波形として生成する原検出振動波形生成部と、
    前記基準周波数と同一周波数を有する主検波クロック信号を用いて、前記原検出振動波形から前記基準周波数を有する基本波成分を、奇数次高調波成分が残留した主検波波形として同期検波する主同期検波回路と、
    前記基準周波数の3倍以上の奇数倍周波数を有する高調波検波クロック信号を用いて、前記原検出振動波形から該高調波検波クロック信号に対応する周波数の奇数次高調波成分を選択的に同期検波する高調波同期検波回路と、
    前記高調波同期検波回路による奇数次高調波検波波形を用いて、前記主検波波形の残留奇数次高調波成分を減少させる信号処理を行う信号処理部と、
    を備えたことを特徴とする振動型角速度センサ。
  2. 前記信号処理部は、前記奇数次高調波検波波形の振幅を高調波の次数の逆数倍に縮小して前記主検波波形に対し、前記残留奇数次高調波成分を相殺する方向に合成演算するものである請求項1記載の振動型角速度センサ。
  3. 前記振動駆動部の駆動波形に基づいて、前記基準周波数の前記主検波クロック信号を発生させる主検波クロック信号発生回路と、該主検波クロック信号発生回路からの主検波クロック信号に基づいて前記高調波検波クロック信号を発生させる周波数逓倍回路とを備える請求項1又は請求項2に記載の振動型角速度センサ。
  4. 前記高調波同期検波回路は前記高調波検波クロック信号として前記主検波クロック信号とは逆位相のものを使用し、前記信号処理部は、前記奇数次高調波検波波形の振幅を高調波次数の逆数倍に縮小して、前記主検波波形に加算合成する加算回路を有する請求項3に記載の振動型角速度センサ。
  5. 同期検波後の前記基本波成分を平滑化するために、前記基準周波数よりも低域側にカットオフ周波数を有するローパスフィルタ回路が設けられ、該ローパスフィルタ回路が、前記加算回路を兼用するアクティブフィルタ回路として構成されている請求項4記載の振動型角速度センサ。
  6. 前記高調波同期検波回路は9次以下の高調波を同期検波するものである請求項1ないし請求項5のいずれか1項に記載の振動型角速度センサ。
  7. 前記高調波同期検波回路は3次高調波の同期検波回路のみが設けられている請求項6記載の振動型角速度センサ。
  8. 前記高調波同期検波回路は、異なる次数の高調波毎に個別に設けられている請求項1ないし請求項6のいずれか1項に記載の振動型角速度センサ。
  9. 前記周波数逓倍回路は、除去対象となる高調波の次数の公倍数に等しい倍率にて前記主検波クロック信号の周波数を逓倍化した基本逓倍クロック信号を発生するものであり、
    各次数の前記高調波同期検波回路に対し、対応する周波数の高調波検波クロック信号を送出するために、前記基本逓倍クロック信号を前記対応する周波数に分周して出力する分周回路が設けられている請求項8記載の振動型角速度センサ。
JP2004229629A 2004-08-05 2004-08-05 振動型角速度センサ Expired - Fee Related JP4411529B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004229629A JP4411529B2 (ja) 2004-08-05 2004-08-05 振動型角速度センサ
US11/188,880 US7216538B2 (en) 2004-08-05 2005-07-26 Vibratory angular rate sensor
DE102005035717.2A DE102005035717B4 (de) 2004-08-05 2005-07-29 Winkelbeschleunigungssensorsystem auf Schwingungsbasis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229629A JP4411529B2 (ja) 2004-08-05 2004-08-05 振動型角速度センサ

Publications (2)

Publication Number Publication Date
JP2006047144A true JP2006047144A (ja) 2006-02-16
JP4411529B2 JP4411529B2 (ja) 2010-02-10

Family

ID=35756081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229629A Expired - Fee Related JP4411529B2 (ja) 2004-08-05 2004-08-05 振動型角速度センサ

Country Status (3)

Country Link
US (1) US7216538B2 (ja)
JP (1) JP4411529B2 (ja)
DE (1) DE102005035717B4 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327944A (ja) * 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
JP2007327943A (ja) * 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
JP2008064528A (ja) * 2006-09-06 2008-03-21 Toyota Motor Corp 容量変化検出装置およびその方法
JP2008224230A (ja) * 2007-03-08 2008-09-25 Seiko Epson Corp 検出装置、センサ及び電子機器
JP2009293941A (ja) * 2008-06-02 2009-12-17 Denso Corp 振動型角速度センサ
JP2010133804A (ja) * 2008-12-03 2010-06-17 Hitachi Automotive Systems Ltd 角速度検出装置
JP2017076948A (ja) * 2015-10-16 2017-04-20 アルプス電気株式会社 アナログ−デジタル変換器
JP2017076353A (ja) * 2015-10-16 2017-04-20 アルプス電気株式会社 正弦波乗算装置とこれを有する入力装置
JP2017191007A (ja) * 2016-04-13 2017-10-19 株式会社デンソー 復調装置
JP2017211353A (ja) * 2016-05-27 2017-11-30 株式会社デンソー 復調装置
US10302672B2 (en) 2016-03-04 2019-05-28 Seiko Epson Corporation Angular velocity detection circuit, angular velocity detection device, electronic apparatus, and moving object
GB2546642B (en) * 2014-11-25 2020-10-07 Halliburton Energy Services Inc Evaluating solid particle separation in wellbore fluids

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10350037A1 (de) * 2003-10-27 2005-05-25 Robert Bosch Gmbh Drehratensensor
EP1974324A2 (en) * 2006-01-03 2008-10-01 ATI Technologies Inc. Harmonic edge synthesizer, enhancer and methods
DE102006055589B4 (de) * 2006-11-24 2012-07-19 Infineon Technologies Ag Messvorrichtung und Messgrößensensor mit gekoppelter Verarbeitungs- und Anregungsfrequenz
US7779688B2 (en) * 2006-12-20 2010-08-24 Epson Toyocom Corporation Vibration gyro sensor
EP2191232B8 (en) * 2007-09-18 2012-02-08 Atlantic Inertial Systems Limited Improvements in or relating to angular velocity sensors
JP2009162645A (ja) * 2008-01-08 2009-07-23 Panasonic Corp 慣性速度センサ信号処理回路およびそれを備える慣性速度センサ装置
JP5365173B2 (ja) * 2008-02-29 2013-12-11 セイコーエプソン株式会社 物理量測定装置および電子機器
JP4576441B2 (ja) * 2008-03-21 2010-11-10 日立オートモティブシステムズ株式会社 角速度センサ
JP2009244019A (ja) * 2008-03-31 2009-10-22 Seiko Npc Corp 角速度検出装置
DE102008044664B4 (de) * 2008-08-28 2023-12-21 Continental Automotive Technologies GmbH Verfahren zur Frequenzregelung einer Oszillatoranordnung
JP5362097B2 (ja) * 2010-02-17 2013-12-11 株式会社村田製作所 振動型慣性力センサ
GB201008195D0 (en) * 2010-05-17 2010-06-30 Silicon Sensing Systems Ltd Sensor
JP5552976B2 (ja) * 2010-09-07 2014-07-16 セイコーエプソン株式会社 角速度検出装置及び電子機器
FR2997241B1 (fr) * 2012-10-18 2014-11-14 IFP Energies Nouvelles Systeme electrique a puissance continue stabilise par un filtrage actif integre
JP6435631B2 (ja) * 2014-04-23 2018-12-12 株式会社デンソー 角速度センサ
JP6438121B2 (ja) * 2015-04-14 2018-12-12 アルプス電気株式会社 正弦波乗算装置とこれを有する入力装置
US9903718B2 (en) * 2015-05-28 2018-02-27 Invensense, Inc. MEMS device mechanical amplitude control
DE102015213450A1 (de) * 2015-07-17 2017-01-19 Robert Bosch Gmbh MEMS Drehratensensor mit kombiniertem Antrieb und Detektion
JP6571064B2 (ja) * 2016-11-21 2019-09-04 株式会社東芝 検出装置およびセンサ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151710A (ja) * 1988-12-05 1990-06-11 Toshiba Corp ジャイロセンサ制御装置
JPH11311519A (ja) * 1998-04-28 1999-11-09 Citizen Watch Co Ltd 回転ジャイロ
WO2002044741A1 (de) * 2000-12-01 2002-06-06 Hahn-Schickard Gesellschaft Für Angewandte Forschung E. V. Verfahren und vorrichtung zur verarbeitung von analogen ausgangssignalen von kapazitiven sensoren
WO2003014669A2 (en) * 2001-08-09 2003-02-20 The Boeing Company Method for electrostatically aligning and tuning a microgyroscope
JP2003065768A (ja) * 2001-08-27 2003-03-05 Denso Corp 同期検波方法及び装置並びにセンサ信号検出装置
WO2003025500A2 (en) * 2001-08-17 2003-03-27 The Boeing Company Microgyroscope with electronic alignment and tuning

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312579A (ja) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd ジャイロコンパス
JPH06300567A (ja) * 1993-02-22 1994-10-28 Murata Mfg Co Ltd ジャイロ出力検出方法
JP3536497B2 (ja) * 1995-12-21 2004-06-07 株式会社デンソー 振動型角速度検出装置
JP3769833B2 (ja) 1996-09-13 2006-04-26 株式会社デンソー 同期検波回路
JP2002139322A (ja) 2000-10-31 2002-05-17 Murata Mfg Co Ltd 振動ジャイロの自己診断方法、及び、振動ジャイロ及びそれを用いた電子装置
JP4843855B2 (ja) * 2001-03-09 2011-12-21 パナソニック株式会社 角速度センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151710A (ja) * 1988-12-05 1990-06-11 Toshiba Corp ジャイロセンサ制御装置
JPH11311519A (ja) * 1998-04-28 1999-11-09 Citizen Watch Co Ltd 回転ジャイロ
WO2002044741A1 (de) * 2000-12-01 2002-06-06 Hahn-Schickard Gesellschaft Für Angewandte Forschung E. V. Verfahren und vorrichtung zur verarbeitung von analogen ausgangssignalen von kapazitiven sensoren
WO2003014669A2 (en) * 2001-08-09 2003-02-20 The Boeing Company Method for electrostatically aligning and tuning a microgyroscope
WO2003025500A2 (en) * 2001-08-17 2003-03-27 The Boeing Company Microgyroscope with electronic alignment and tuning
JP2003065768A (ja) * 2001-08-27 2003-03-05 Denso Corp 同期検波方法及び装置並びにセンサ信号検出装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327944A (ja) * 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
JP2007327943A (ja) * 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
JP2008064528A (ja) * 2006-09-06 2008-03-21 Toyota Motor Corp 容量変化検出装置およびその方法
JP2008224230A (ja) * 2007-03-08 2008-09-25 Seiko Epson Corp 検出装置、センサ及び電子機器
JP2009293941A (ja) * 2008-06-02 2009-12-17 Denso Corp 振動型角速度センサ
JP2010133804A (ja) * 2008-12-03 2010-06-17 Hitachi Automotive Systems Ltd 角速度検出装置
GB2546642B (en) * 2014-11-25 2020-10-07 Halliburton Energy Services Inc Evaluating solid particle separation in wellbore fluids
JP2017076948A (ja) * 2015-10-16 2017-04-20 アルプス電気株式会社 アナログ−デジタル変換器
JP2017076353A (ja) * 2015-10-16 2017-04-20 アルプス電気株式会社 正弦波乗算装置とこれを有する入力装置
US10302672B2 (en) 2016-03-04 2019-05-28 Seiko Epson Corporation Angular velocity detection circuit, angular velocity detection device, electronic apparatus, and moving object
JP2017191007A (ja) * 2016-04-13 2017-10-19 株式会社デンソー 復調装置
JP2017211353A (ja) * 2016-05-27 2017-11-30 株式会社デンソー 復調装置

Also Published As

Publication number Publication date
JP4411529B2 (ja) 2010-02-10
DE102005035717A1 (de) 2006-03-16
US20060027019A1 (en) 2006-02-09
DE102005035717B4 (de) 2014-02-06
US7216538B2 (en) 2007-05-15

Similar Documents

Publication Publication Date Title
JP4411529B2 (ja) 振動型角速度センサ
US7779687B2 (en) Detection device, gyrosensor, and electronic instrument
JP4620055B2 (ja) コリオリの角速度計を用いて回転速度/加速度を測定する方法およびこの目的に適ったコリオリの角速度計
US7054778B2 (en) Method and device for processing analogue output signals from capacitive sensors
TWI427272B (zh) 以振動感測器測量轉速的設備
JP7115509B2 (ja) ジャイロスコープの連続セルフテスト
JP2003065768A (ja) 同期検波方法及び装置並びにセンサ信号検出装置
US7779688B2 (en) Vibration gyro sensor
WO2005103618A1 (ja) ジャイロ装置
TW201740084A (zh) 用於處理信號的方法與裝置
JP4816346B2 (ja) 容量変化検出装置およびその方法
US20190310106A1 (en) Vibration type gyroscope
JP2018021850A (ja) バイアス補正機能を有する振動型ジャイロ、及び振動型ジャイロの使用方法
JP2009229152A (ja) 角速度センサ
JP2006329637A (ja) 角速度検出装置
JP6305223B2 (ja) バイアス安定化が図られた振動型ジャイロ、及び振動型ジャイロの使用方法
CN108759809B (zh) 一种陀螺仪检测电路及终端
US20130047727A1 (en) Driving circuit, system, and driving method for gyro sensor
CN106525015B (zh) 物理量检测系统、电子设备以及移动体
JPH08210860A (ja) 角速度センサ
JP2005265724A (ja) 振動型角速度センサ
JP2007322145A (ja) 交流信号測定器、およびそのオフセット調整方法
JP5687223B2 (ja) 信号処理装置、回転角度検出装置及び調整値設定装置
RU2274833C1 (ru) Устройство преобразования сигналов микромеханического гироскопа вибрационного типа
JP2006170917A (ja) 角速度検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4411529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees