JP2005508499A - プローブカードの熱誘発動作を補償する方法およびシステム - Google Patents

プローブカードの熱誘発動作を補償する方法およびシステム Download PDF

Info

Publication number
JP2005508499A
JP2005508499A JP2003542328A JP2003542328A JP2005508499A JP 2005508499 A JP2005508499 A JP 2005508499A JP 2003542328 A JP2003542328 A JP 2003542328A JP 2003542328 A JP2003542328 A JP 2003542328A JP 2005508499 A JP2005508499 A JP 2005508499A
Authority
JP
Japan
Prior art keywords
probe card
wafer
probe
prober
card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003542328A
Other languages
English (en)
Inventor
エルドリッジ,ベンジャミン,エヌ.
グルーベ,ギャリー,ダブリュー.
マツバヤシ,ケン,エス.
ラーダー,リチャード,エー.
シャインド,マカランド,エス.
マチュー,ガエタン,エル.
マーチン,ロッド
Original Assignee
フォームファクター,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/003,012 external-priority patent/US7071714B2/en
Application filed by フォームファクター,インコーポレイテッド filed Critical フォームファクター,インコーポレイテッド
Publication of JP2005508499A publication Critical patent/JP2005508499A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

本発明はウエハ上のダイをテストする際に用いるプローブカードの熱誘発動作を補償する方法およびシステムを開示する。温度制御装置を組み込んでプローブカードの厚さ全体にわたって均一な温度を維持するプローブカードを開示する。プローブカードの熱誘発動作を打ち消すように温度変化に応答する2材料補剛要素を組み込んだ、ローリング要素、スロットおよび潤滑を含むプローブカードを開示する。プローブカードの半径方向の膨張を可能にしてプローブカードの熱誘発動作を防止する様々な手段も開示する。プローブカードの熱誘発動作を検出するとともにウエハを移動させて補償する方法も開示する。

Description

【技術分野】
【0001】
発明の背景
本発明は集積回路をテストするための電気接点を有するプローブカードに関し、特にそのようなプローブカードの熱誘発動作を補償するシステムおよび方法に関する。プロ−ブカードは一般にウエハ基板上のダイ、例えば集積回路装置をテストする際に使用される。このようなプローブカードはテスタ(プローバと呼ばれることもある)として周知の装置とともに用いられそのテスタ装置に電気的に接続されるが、プローブカードはテスト対象の集積回路にも電気的に接触する。
【背景技術】
【0002】
一般にテスト対象のウエハを可動チャックに固定してテスタに装着する。テスト工程中、チャックはウエハを移動させてプローブカードと電気的に接触させる。この接触は概してマイクロスプリング形状のプローブカード上の複数の電気接点とダイ上の複数の個別接続パッド(ボンドパッド)との間に生じる。いくつかの異なるタイプの電気接点が周知であるとともにプローブカード上で用いられており、ニードル接点、コブラスタイル接点、バネ接点等が挙げられるがこれに限定されるものではない。このようにしてダイをウエハから分離する前に半導体ダイをテストおよび動作させることができる。
【0003】
プローブカードの電気接点とダイのボンドパッドとの間を効果的に接触させるために、プローブカードとウエハとの間の距離を厳重に維持しなければならない。本明細書に引用して援用する米国特許第6,184,053B1号明細書、同第5,974,662号明細書、および同第5,917,707号明細書に開示されたような一般的なバネ接点はおよそ0.040インチ、すなわち約1ミリメートルの高さである。ウエハがプローブカード接点から遠すぎる場合には、電気接点とボンドパッドとの間の接触はたとえあったとしても断続的になってしまう。
【0004】
プローブカードとウエハとの間の所望距離はテスト手順の当初はより容易に達成できるが、テスト手順が進行するにつれて特にウエハ温度がテスタ内の周囲温度と異なる場合に実際の距離が変化することがある。多くの例ではテスト対象のウエハはテスト工程中に加熱または冷却される。プラチナ反射板などの絶縁材を用いて加熱または冷却工程の影響をある程度隔離することもできるが完全に排除することはできない。プローブカードより高い温度のウエハがカードの下を移動する際、ウエハに最も近いカード面が温度変化し始める。一般にプローブカードは異なる材料の層で構成されており、通常はカードのこの面に垂直な方向には不良熱伝導体である。この結果プローブカードの厚さにわたる温度勾配が急に発生する可能性がある。プローブカードは不均一な熱膨張により撓む。この不均一な膨張の結果、プローブカードは沈下し始めてプローブカードとウエハとの間の距離を減少させる。テスタの周囲温度よりも冷たいウエハがプローブカードの近くに配置された場合にはこれと反対の現象が発生する。ウエハに最も近いプローブカードの面がウエハから最も遠い面よりも速く冷えて収縮するため、プローブカードはウエハから離れるように湾曲し始めてウエハとプローブカードとの間の電気接触を分断する。
【発明の開示】
【課題を解決するための手段】
【0005】
発明の概要
本発明は特許請求の範囲に記載されており、以下は何ら法的な保護の範囲を限定、規定あるいは設定するものではない。一般論として、本発明は集積回路のテスト中のプローブカードの熱的あるいは別の方法による誘発動作を補償するための方法およびシステムに関する。これはエネルギー伝達装置、2材料撓曲要素、および/または放射状膨張要素などの任意の光学的フィーチャを含む場合もある。
【0006】
本発明の1つの目的はプローブカードの熱誘発動作を補償するための改良方法およびシステムを提供することである。
【0007】
本発明の他の目的、実施形態、形状、利益、態様、特徴および利点は本開示から得ることができる。
【発明を実施するための最良の形態】
【0008】
発明の詳細な説明
本発明の原理の理解を助ける目的のため、ここで図に示した実施形態を参照するとともに、特定の用語を用いてこれを説明する。いずれにしてもこれにより本発明の範囲を限定するものでなく、図示の装置および方法に変更および変形ならびに本明細書に図示した本発明の原理のさらなる適用が、本発明に関係する当業者には当然思い付くものであるものとして考えられることは理解できよう。
【0009】
図1はテスタに挿入されるプローブカード110およびウエハ140の一般的な例を示す。このおよび他の添付の図面において、図示を明確にするためにある構成部品のある要素は誇張して示されている。明確にするために能動および受動電子部品、コネクタ等などののプローブカードに装着される追加部品は省略されている。本発明は、本明細書に引用して援用する米国特許第5,974,662号明細書に示されたようなインターポーザを組み込んだプローブカードなどの図示の基本プローブカード設計例の変形例とともに実行することができる。これらの要素の省略により本発明の範囲を限定しようとするものではない。
【0010】
プローブカード110はウエハ140上のダイと並行にテスタに装着された時ヘッドプレート120に支持されるとともにダイの真上に配置されるのが最も一般的である。プローブカード110は一般的に12インチ程度の直径を有する円形であるが、他の大きさや形状も検討されている。プローブカード110は通常、そのウエハ側114に配置された複数(多数のうち2つを図示)の電気接点130を有する従来の回路基板である。電気接点は産業界において周知であり、以後「プローブ」あるいは「プローブ素子」と称する。好適なタイプのプローブ素子はバネ接点であり、その例が本明細書に引用して援用する米国特許第6,184,053B1号明細書、同第5,974,662号明細書、および同第5,917,707号明細書に開示されている。しかし産業界では他の多くの接点(例えば、ニードル接点およびコブラスタイル接点)が周知であり、本発明のプローブカードのいずれの実施形態にもいずれのこのような接点を含んでもよい。一般的にはプローブカードを他の電気接点(図示せず)によりテスト装置に接続する。
【0011】
周知のように半導体ウエハ140は、その前(上方に見える)面にフォトリソグラフィ、蒸着、拡散等で形成した複数のダイ部位(図示せず)を含む。各ダイ部位は一般的に複数(多数のうち2つを図示)のボンドパッド145を有するが、それらはダイ部位の表面上で任意の位置に任意のパターンで配置することができる。半導体ウエハは一般的に少なくとも6インチの直径を有するが、本発明を他の大きさおよび形状のテストウエハに利用することも検討されている。
【0012】
ウエハ140がテスト装置内に装着されると、テーブル作動装置155を含むウエハチャック150が集積ウエハ140をZ軸方向(図2参照)に垂直に上昇させることにより、プローブ130とウエハ140の対応するパッド(パッド145など)の電気的接触が可能になる。昇降機構はシザー機構、伸縮動作、レバー動作、ネジ動作、カム動作あるいは他の昇降機構を利用してもよい。このような昇降機構を、他の実施形態における他の機械装置と同様に、空気力学、ステッパモータ、サーボモータあるいは他の電気モータなどの様々な機構あるいは他の方法により作動させることができるとともに、一般的にはロボットで制御する。またこのような昇降機構はXおよびY方向の移動、傾斜、および回転を可能にする。ウエハ140を移動させてプローブカード110と電気的接触をさせると(図2に示すように)、テスト手順が進行する。
【0013】
図2はプローブカード110と電気的に接触しているウエハ140を示す。プローブ素子130のボンドパッド145との圧接がこの接触を生じる。この接触を発生させるために、ウエハ140がプローブカードから有効距離Zへ(図示のように垂直方向に)押される。一般的にはプローブカードで用いられるプローブ130の高さはほぼ0.040インチ、すなわち約1ミリメートルであるが、本発明により他の高さのプローブカード接点も検討されている。プローブ130はふつう幾分可撓性があるため、プローブカード110とウエハ140との間の有効距離Zは使用するプローブ130の高さと異なってもよい。もちろん本発明は特定のプローブカードの電気接点の特定の高さあるいはタイプによって変更してもよいことは当然である。
【0014】
図2Aおよび図2Bは本発明の対象となるプローブカードの熱誘発動作を図示している。図2Aに示すように、テスタの周囲温度より高い温度を有するウエハ140がプローブカード110と係合している。ウエハに最も近いカード面114が温度変化し始める。一般的にプローブカード・アセンブリはカードのその面に垂直な方向には不良熱伝導体であるため、プローブカードの厚さにわたって温度勾配が急に発生する。ウエハに最も近いカード面114が温まるためウエハに最も遠いカード面112より速く膨張するので、プローブカードはバイメタル要素として振舞う。この不均一な膨張の結果、プローブカードは沈下し始める。この移動によりプローブカード110とウエハ140との間の実際の距離Z’が減少して最適有効距離より幾分小さくなる。プローブカード110とウエハ140間の距離の減少によりプローブ130が動いて、プローブ130のボンドパッド145とのの係合終了、およびプローブ素子130またはテスト中の半導体装置の変形あるいは破壊にもつながる可能性がある。
【0015】
テスタの周囲温度より著しく冷たいウエハ140がプローブカード130の近くに配置されると反対の現象が起きる。ウエハに最も近いプローブカードの面114が冷えるため、ウエハから最も遠い面112よりも速く収縮し始める。この不均一な冷却の結果、プローブカード110はウエハから離れるように湾曲し始めて、最適有効距離より大きいウエハ140とプローブカード110との間の実際の距離Z’を生じる。この湾曲は十分大きい場合には、プローブ130のいくつかをそれらに対応するボンドパッドから分離することによりウエハ140とプローブカード110との間の電気接触を分断する恐れもある。
【0016】
図3で分かるように、当該技術で周知のプローブカードの熱誘発あるいは他の動作問題の解決策の1つは、プローブカード110に補剛要素360、365を付加することである。通例概して円形で金属製のウエハ側補剛材360とテスタ側補剛材365の両方を使用する。これらの補剛材を、プローブカード110を貫通する対応穴(図示せず)を通って延在するネジ(図示せず)を用いるなどの任意の好適な方法で取り付けることにより、プローブカード110をウエハ側補剛材360とテスタ側補剛材365との間に確保することができる。この補剛材はネジなど(図示せず)で個々にプローブカード110に直接装着してもよい。しかし補剛材を利用することもプローブカードの熱誘発動作につながる恐れがある。金属製補剛材はプローブカード110より熱伝導性がよいため、温度勾配が生じてプローブカード110の一方側の金属製補剛材がプローブカード110の他方側の金属製補剛材より膨張する可能性がある。
【0017】
図4は本発明の一実施例の展開断面図を示す。明確にするためいくつかの要素を誇張してあるが、図内の破線は様々な構成部品の位置合わせを正確に示している。この実施例はプローブカードの熱誘発動作を補償するための少なくとも1つのエネルギー伝達装置470、475を組み込んだプローブカード・アセンブリである。少なくとも1つのこのようなエネルギー伝達装置470、475をプローブカード110と補剛要素360、365との間に配置する。本発明の他の実施例において、2つのこのようなエネルギー伝達装置470、475を利用するが、1つがプローブカードのテスタ側112に隣接するとともに1つがプローブカードのウエハ側114に隣接することが好ましい。これらのエネルギー伝達装置470、475は図示のように補剛材360、365内に埋め込んでもよいが、これは必須ではない。本発明のさらに他の実施例において、プローブカード110と補剛要素360、365との間に複数のエネルギー伝達要素470A、470B、470C(図4B)を配置する。この複数のエネルギー伝達要素を概して円形パターンに構成するとよい。またこの複数のエネルギー伝達装置の個々を操作可能に連結させて一斉制御するようにしてもよい。本発明は個々の要素が概ね三角形であり且つ概ね円を形成するように構成された複数のエネルギー伝達要素の利用も検討している。図4Bに示したようにこの個々の要素は概ね円環状であり、概ね同心円環に構成してもよい。本発明は概ね三角形および円環形状の個々のエネルギー伝達要素の組合せも検討している。
【0018】
任意のエネルギー伝達装置を利用して本発明の特定の実施例を実行することができる。例えば、薄膜抵抗制御装置などの熱素子は特に本発明に適している。2つの異なる金属の電気接合点で吸熱または放熱する装置(すなわちペルチェ素子)などの加熱と冷却の両方を可能にする熱素子を用いてもよい。熱エネルギーに依存しないエネルギー伝達装置も本発明により検討されている。電圧が印加されたときに機械的な力を生じる装置(すなわち圧電素子)を用いてもよい。
【0019】
熱制御素子であるエネルギー伝達装置470、475を利用していくつかの方法でプローブカード110の熱誘発動作を補償することができる。例えば、温度制御装置をテスタの周囲温度あるいは他の事前選択温度で継続的に動作させてもよい。これによりウエハ140の温度に関係なくプローブカード110が均一な温度になるためプローブカード110の変形を防止することになる。代替的には温度制御要素470、475が温度感知要素(図示せず)を組み込んでもよい。プローブカードの両側112、114の温度を感知することにより、温度制御要素470、475に必要に応じて熱を印加または除去させることにより、プローブカード110内で生じるいかなる温度勾配も補償することができる。上述した制御方法を、2つの温度制御要素470、475を組み込んだ本発明の実施例を参照して単一の温度制御装置あるいは複数の制御装置を用いる代替実施例に同様に適用可能であることは理解できよう。
【0020】
本発明によるエネルギー伝達装置470、475は温度以外のプローブカード110の状態を監視することにより動作させることもできる。例えば、カメラ、レーザ、あるいは他の好適な手段などの装置を用いてプローブカード110とウエハ140との間の実際の距離Z’(図2A参照)を監視してもよい。この距離が最適距離Zと事前選択量異なる場合、エネルギー伝達装置470、475を係合させてこの偏差を修正する。図10の説明に記載の論理ループ制御を用いてもよい。本発明は図1に見られるようなヘッドプレート120などのプローブカード110を保持または支持する要素の温度を制御するように示されたものと同様のエネルギー伝達装置470、475の利用も検討している。
【0021】
図5を参照すると、この図は2材料補剛要素580を利用してプローブカード110の熱誘発動作を補償する本発明の代替実施例を示している。明確にするためにある要素を誇張してあるが、図中の破線は様々な構成部品の位置合わせを正確に示している。2材料補剛要素に用いられる材料はエネルギーの入力に対して異なる速度で膨張することが好ましい。例えば、2つの材料が温度変化に異なる速度で反応するように上部材料582は下部材料584とは異なる熱膨張係数を有してもよい。セラミクスやプラスチックなどの他の材料を用いてもよいが、一般的に2材料補剛要素の層は異なる熱膨張係数を有する2つの金属で構成されることになる。2材料補剛要素をプローブカードの周囲にあるいはその付近に配置することが好ましいが、他の構成も検討されている。ある特定用途に対して2材料補剛要素580で生じる湾曲がプローブカード110の予想湾曲を打ち消すように材料および材料の厚さを選択する。例えば、ウエハ140(図2に示したように該してプローブカード110の下方に配置される)をテスタの周囲温度より高く加熱することになる場合、上部材料582が下部材料584より大きい熱膨張係数を有するように2材料補剛要素580を選択することができる。これにより上部材料582を下部材料584より速く膨張させることができ、2材料補剛要素580に上方湾曲を付与してプローブカード110の予測湾曲(図2Aに示したような)を打ち消すことができる。図5には図示しないが、本発明はテスタ側補剛要素365に代えて2材料補剛要素の利用も、単一の2材料補剛要素に代えて多数の2材料補剛要素の利用も検討している。さらに本発明の2材料補剛要素を、補剛要素をプローブカードに取り付けるための上述の手段あるいは他の適切な方法によりプローブカード110に取り付けることができる。本発明は2材料補剛要素の層間にプローブカード110を配置するような2材料補剛要素の利用も検討している。
【0022】
図6および図7は本発明による他の実施例の変形例を示す。明確にするためにある要素を誇張してあるが、図中の破線は様々な構成部品の位置合わせを正確に示している。本発明のこの特定の実施例はウエハ側補剛要素360に対するプローブカード110の半径方向移動を可能にする手段を組み込んでいる。この半径方向移動手段をプローブカード110とウエハ側補剛要素360との間に配置する。具体的に示されているのはローリング部材690(図6)と潤滑層792(図7)であるが、ウエハ側補剛材360に対するプローブカード110の半径方向移動を可能にする他の手段も検討されている。ローラ690は玉軸受、真円軸受、あるいは他の適当な形状でもよい。潤滑層792はグラファイトあるいは他の適当な材料の層でよい。代替的に潤滑層792はダイヤモンドあるいはテフロン(Teflon)(登録商標)などの材料、あるいは任意の他の適当な材料などで構成された低摩擦膜層でもよい。この潤滑層をプローブカード110の表面、補剛要素350、365の表面あるいはその両方に適用してもよい。
【0023】
プローブカード110とウエハ側補剛要素360との間の締結手段を図示から省略しているが、任意の適当な締結方法を用いてもよいことは理解できよう。ウエハ側補剛要素360をテスタ側補剛要素365に締結してもよく、代替的には上述したように直接プローブカード110に締結してもよい。一般的にボルトやネジなどの周知の締結方法によりプローブカード110とウエハ側補剛要素360との間の十分な半径方向移動が可能になるが、本発明は半径方向に向いたスロット、ダブテール、トラックなどのより大きな半径方向移動を可能にする締結手段の利用も検討している。図6Bに示すように、ウエハ側補剛要素360内のスロット694を通過するボルト692でウエハ側補剛要素360をプローブカード110に締結してもよい。これらのボルト692をプローブカード110に直接締結させてもよく、あるいは代替的にプローブカード110内の穴(図示せず)を通過してテスタ側補剛要素(図示せず)に締結してもよい。
【0024】
図6および図7に図示した本発明の実施例は以下のようにしてプローブカードの熱誘発動作を補償する。テスタの周囲温度より高い温度のウエハ140に曝されるプローブカード110の場合、プローブカード110にわたって温度勾配が発生し始める。プローブカードのウエハ側114はプローブカードのテスタ側112より急速に膨張し始める。プローブカードのウエハ側114が膨張し始めると、ローラ690はウエハ側補剛要素360に対するプローブカード110の半径方向の移動を可能にする。一般的にはプローブカードの変形を防止するためには僅かな量の半径方向の移動が必要とされるだけである。ある場合には、10〜20ミクロンの移動で十分であるが、本発明はより大きなおよび小さな度合いの半径方向の移動を可能にする実施形態も検討している。
【0025】
図8を参照して本発明のさらに他の実施例を説明する。本発明のこの特定の実施例において、テスト手順中にウエハ140とプローブカード110との間の距離を修正してプローブカードの熱誘発動作を補償する。前述したようにウエハ140はテスタ内でウエハチャック150に固定されると、プローブカード110から有効距離Zへ移動されてプローブ130をボンドパッド145に係合させることができる。テストが進行するにつれ、テスタとは著しく異なる温度のウエハ140に近接することによりプローブカード110内の温度勾配が誘発されて、図2Aおよび図2Bに示したようなプローブカード110の熱誘発動作になる。この動作を補償するために、本発明はテスト手順中にプローブカード110とウエハ140との間の距離Zを監視するシステムも検討している。熱誘発動作が始まると、プローブカード110とウエハ140との間の実際の距離が変化して、この変化が検出されるとともにウエハ140が最適有効距離Zに戻される。例えば図2Aに示したようにプローブカードが沈下し始めた場合には、プローブカード110とウエハ140との間の実際の距離Z’の減少が検出されてテーブル作動装置155が降下されて、ウエハ140をプローブカードから最適有効距離Zまで戻す。
【0026】
任意の適当な手段によってプローブカード110とウエハ140との間の実際の距離を監視してもよい。採用すればこのような手段はボンドパッド145によりプローブ要素130にかかる圧力の監視を含む。この圧力の変化を監視することが可能であるとともに信号をテーブル作動装置用制御システムに中継して、ウエハ140の対応修正動作を指示することができる。これはウエハ140とプローブカード110との間の距離を監視する手段の具体的実施例の一例である。近接センサ、自家近接センサ、あるいはカメラをはじめとするレーザの利用などのこの距離を監視する他の手段も本発明により検討されている。このようなセンサはテスタの一部であっても、あるいは代替的にプローブカードに組み込まれていてもよい。
【0027】
図26〜30は、テスト手順中のプローブカード110とウエハ140との間の実際の距離を監視する代替的方法の概略図である。図26に図示された実施例において、鏡210がプローブカード110あるいは代替的には間隔変更器230(使用の場合)に取り付けられている。光源200からの光線235が鏡210に向けられている。光線235の位置を検出するとともにこの情報を位置決めコンピュータ225に送信する光検出器215に向けて光線235が反射されるように鏡210を配置する。状況に応じて光検出器215からの信号は位置決めコンピュータ225に送信される前にまず増幅器220を通過する場合もある。プローブカード110が平坦であるテスト手順の開始時に、光線235の位置が検出されてゼロ位置として記される。テスト手順が進行するにつれて、プローブカード110にわたって温度勾配が生じ、前述したようにプローブカード110の熱誘発動作を引き起こす。この熱誘発動作によりプローブカード110の位置が変化すると、光線235が鏡210に当たる角度も変化する。これにより反射光線235が当初のゼロ位置とは異なる位置で光検出器215に当たるようになる。この情報が位置決めコンピュータ225に送信されると、光線235の位置の変化により位置決めコンピュータ225がテスタに送信される制御信号を生成する。そしてテスタはテスト中のウエハ140のZ位置(図示のように垂直方向の)を調整して、プローブカード110の熱による撓曲を補償する。プローブカード110のさらなる熱誘発動作を位置決めコンピュータ225によりテスト手順中に継続して監視する。
【0028】
図26はプローブカード110とウエハ140との間の実際の距離を監視する方法の一実施例を示す。用いた光源200の固有の性質は変更可能である。このような適当な光源200の1つはダイオードレーザであるが、他の光源を用いてもよい。特定の用途に用いる検出器215は使用する光源200によって変更可能である。例えば、使用する光源200がレーザである場合には、適当な検出器215の1つは、インターナショナル・ラジオ・デテクターズ(International Radio Detectors)により製造されたAXUV−20ELなどのダイオードアレイ検出器である。この特定の実施例において、位置決めコンピュータ225、増幅器220、光検出器215および光源200はテスタとは別の個々の構成部品として示されている。代替的にはこれらの要素を相互に結合させても(例えば、位置決めコンピュータ225が増幅器220を組み込む)、あるいはテスタ自体に組み込んでもよい。
【0029】
図27に示したプローブカード110内の熱誘発動作を検出する方法の他の実施例において、光源200をプローブカード110の間隔変更器230に取り付ける。代替的には光源200をプローブカード110に取り付けてもよい。光源200は光検出器215に当たる光線200を生成する。図26で説明した実施例と同様に、テスト手順が開始すると、プローブカード110が当初は平坦であるとともに、光線235が検出器215に当たる位置が位置決めコンピュータ225によってゼロ位置として記される。テスト手順が始まってプローブカード110の熱誘発動作が生じると、光線235が検出器215に当たる場所が変化する。この変化に応じて位置決めコンピュータ225が制御信号を生成することにより、テスタがウエハ140のZ位置(図示のように垂直方向の)を調整してプローブカード110の位置の変化を補償する。
【0030】
図28はプローブカード110とテスト中のウエハ140との間の距離を監視する方法の他の実施例を示す。この実施例は図27で説明したものと類似しているが、光源200と検出器215との間に2つの凹面鏡240を組み込んでいる。さらにこの実施例は検出器215の位置を調整するための較正装置245を含んでいる。較正装置245は検出器215の位置を調整してテスト手順当初の所定の場所で光線235が検出器215に当たるようにすることができる。これによりシステムがテスタ内の特定のプローブカードの初期位置の変動と特定のプローブカードに対する光源の取り付け場所の変動とを補償することができる。この較正装置245を用いてテスト手順中に検出器215の位置を調整して、テスト手順中に発生するプローブカード110の熱誘発動作を補償してもよい。また図28に示した較正装置245を図26に示したような監視方法の他の実施例に用いるようにしてもよい。
【0031】
この較正装置245を用いて他の変動を補償することもできる。例えば光検出器215を、特定の光源に対する出力応答性が必ずしも同等ではない一連のダイオードから構成してもよい。すなわち特定の検出要素216に当たる光線235からの信号が隣接の検出要素217に当たるものと必ずしも厳密に同じである必要はない。光検出器215をZ軸方向(図示のように垂直方向)に移動させることにより、光検出器215の個々の要素を同じ光強度に曝すことができる。同時に、検出器215用のZ移動駆動装置上のエンコーダ、あるいはZ駆動装置に応答して検出器215の位置を測定する他の手段を用いることにより検出器215のZ位置を厳密に測定してもよい。これによりプローブカード110の実際のZ軸移動に対する光検出器215の応答を正確に知ることが可能になる。さらに光源200の出力が時間とともに変動してもよい。このシステムが出力変動とプローブカード110の位置変化を区別できるようにするために、このシステムが定期的にプローブカード110のZ軸移動の補償を停止して、較正モードに再参入して光源200に対する検出器の応答を再入手してもよい。状況に応じて増幅器220と位置決めコンピュータ225との間にローパスフィルタを挿入することにより高周波ノイズのこのシステムへの進入を防止することは有利である。
【0032】
光源200と光検出器215との間に円筒鏡240を使用することにより、このシステムが光源200の位置の変動を補償することができる。図28Aの上部図に見られるように、光線235は光検出器215に当たる前にまず円筒鏡240に当たる。鏡240の凹面性が、光線235を光検出器215に再度向けることにより光源200の初期位置の変動を補償する。図28に示した較正装置245および円筒鏡240は一緒に用いる必要はなく、本発明はこれらのフィーチャを1つだけ組み込んだ監視方法も検討している。
【0033】
プローブカード110とテスト中のウエハ140との間の実際の距離を監視する方法の他の実施例が図29に示されている。この実施例において、レンズ246が光源200と光検出器215との間に配置されている。レンズ246はプローブカード110に取り付けて示されているが、代替的にはレンズ246を間隔変更器230(使用の場合)に取り付けてもよい。この特定の実施例において、光源200はレンズ246を通過する光線235を生成する。レンズ246が光線235を屈折させ、この光線が光検出器215に当たる。光線235の位置が検出されるとともにプローブカード110が平坦であるテスト手順の当初のゼロ位置として記される。テスト工程が進行するにつれて、温度勾配がプローブカード110の熱誘発動作を引き起こす。この熱誘発動作によりプローブカード110の位置が変化すると、光線235がレンズ246に当たる場所が変化する。これにより光線235がレンズ246により曲がる角度が変わり、屈折光線235が当初のゼロ位置とは異なる角度で光検出器215に当たるようになる。この情報を位置決めコンピュータ225に送信すると、光線235の位置の変化により位置決めコンピュータ225が制御信号を生成し、この信号がテスタに送信される。そしてテスタがテスト中のウエハ140のZ位置(図示のように垂直方向)を調整して、プローブカード110の熱による撓曲を補償する。
【0034】
レンズ246を用いた距離監視方法の他の実施例が図30に示されている。この実施例において、光源200がプローブカード110に取り付けられた間隔変更器230上に位置している。代替的には光源200をプローブカード110自体に取り付けてもよい。光源200は光線235を生成し、この光線は光検出器215に当たる前にレンズ246によって屈折される。この特定の実施例も前述した較正装置245を示している。
【0035】
図10に示したものと同様の論理ループを用いたコンピュータによってウエハ140とプローブカード110との間の実際の距離Z’を監視することが好ましい。ユーザが維持したいウエハ140とプローブカード110との間の所望の距離Zを入力して10、この距離からの最大許容偏差を示し20、さらに特定のテスト手順に固有のその他の情報を示した後、テスト手順が始まる。コンピュータは前述したような適当な検出手段を用いて、30と標識の付されたステップでウエハ140とプローブカード110間の実際の距離Z’を検出することから開始する。そしてコンピュータは40と標識の付されたステップで実際の距離Z’を所望の距離Zと比較する。ZとZ’の差の絶対的な大きさが枠20で設定した最大許容偏差より大きい場合には、コンピュータは適当な修正動作を適用(80)した後に、枠30に戻って再度ループを開始する。ZとZ’の差の絶対的な大きさが枠20で設定した最大許容偏差より小さい場合には、コンピュータは論理ループの最初30に戻る。枠80で行われるこの修正動作はもちろん前述したどの特定の修正装置または装置の組合せが特定のプローブカードとともに用いられるかによる。単一のプローブカードに本発明による2個以上の装置を用いている場合、単一のコンピュータがこのような装置すべてを制御することになるが、これは必須ではない。制御コンピュータはテスタの一部であることが好ましいが、代替的にはこのプローブカードに組み込まれていてもよい。
【0036】
また前述したようにプローブカード110とウエハ140との間の実際の距離の制御は熱による変形以外のプローブカード変形も補償する。図1に見られるようにプローブ素子130は概してプローブカード110の中心付近に配置されているため、プローブ素子130とボンドパッド145の係合により上向き(図示のように)の力がプローブカード110の中心に付与される。この力はカードの中心付近の湾曲として特徴付けられるプローブカード110の変形につながる恐れがある。前述の制御システムはプローブカード110とウエハ140との間の実際の距離を監視して修正することによりこのタイプのプローブカードの変形も修正することができる。これらの方法を用いて、テスタが偶発的にウエハをプローブカードに近接させすぎたことによるウエハの損傷を防止するように設計されたトラベルストップ(図示せず)にプローブカードが接触した時に、プローブカードにかかる力により引き起こされる変形を補償することもできる。
【0037】
本発明によるプローブカードの平面性を維持する代替的方法が図13〜25に示されている。この方法において、プローブカード上あるいは内に配置された形状記憶合金(SMA)の少なくとも1つの層を用いて平面性が維持される。形状記憶合金は適当な熱条件に曝された時に前もって既定された形状または大きさに戻る能力を示す合金の仲間である。通常これらの合金はある低温で変形して、ある高温に曝されると変形前の形状に戻る。SMAは冷却時に、より強い高温形状(オーステナイト)からより弱い低温形状(マルテンサイト)へと結晶構造が相転移する。SMAがマルテンサイト相である時は容易に変形する。変形SMAが加熱されて転移温度を抜けると、オーステナイトに逆戻りして以前の形状を回復する。使用するSMAはいくつかの適当なニッケル−チタニウム合金(NiTi)うちの1つであることが好ましい。NiTi合金は良好な強度、熱安定性および耐腐食性を示す。銅系合金などの他のSMAを用いて本発明を実施することもできる。
【0038】
図13A〜13Bに示した実施例に見られるように、SMAの複数のストリップ255がプローブカード250の表面に組み込まれている。この特定の実施例のプローブカード250の平面性を、断面図13Bに見られるようなプローブカード250の表面に配置された複数の歪みゲージ260を用いて監視する。これらの歪みゲージ260はプローブカード250の位置を監視するコンピュータ(図示せず)と電気的に接触している。歪みゲージ260がカードの変形を表わすプローブカード250の表面での所定の歪みを検出すると、監視コンピュータが撓曲が発生している場所に配置されたSMAストリップ255を加熱するように指示を出す。SMAストリップ255は加熱されると、マルテンサイト相からオーステナイト相に転移して記憶形状(すなわち平面形状)に戻る。SMAストリップ255の平面状態への戻りによりプローブカード250に力がかかるため平面状態に戻る。
【0039】
図13A〜13Bに示した実施例はSMA層を用いて平面性を制御する実施例の1つに過ぎない。この実施例はSMAを用いてプローブカードの平面性を維持することを示しているが、本発明は任意のPCBまたは構造の平面性を維持することが重要である組立て構造内でのSMAの使用も検討している。またこの実施例は歪みゲージを用いてプローブカードの平面性を監視することを示しているが、前述したような光学的方法などの平面性を監視する他の方法を用いてもよい。
【0040】
図13A〜13Bに示したSMA層255および歪みゲージ260の特定な構成は可能な構成の1つに過ぎない。他の非限定の好適な構成が図14〜25に示されている。図14A〜14Bはプローブカード250の上下両面に埋め込まれた(図14Bに示したように)SMAストリップ255を有するプローブカード250を示す。また図14A〜14Bはプローブカード250の上下両面上に配置された平面性を監視するための歪みゲージ260の使用を示している。図15A〜15Bは図14A〜14Bと同様の構成を示している。しかしこの実施例において、プローブカード250の上面付近の(図15Bに示すように)SMAストリップ255は、プローブカード250の下面付近のSMAに概して直交するように構成されている。代替的にはSMAストリップ255の両層は図16A〜16Bに示すようにプローブカード250の同一表面付近に構成することができる。SMAストリップ255は直線である必要はない。図17A〜17Bに示した実施例構成において、プローブカード250はこの構造の中心付近に埋め込まれた(図17Bに示すように)複数のSMAストリップ255と構造の上面付近に埋め込まれた複数の同心円形SMAストリップ255とを有する。
【0041】
SMAストリップをプローブカード構造内に埋め込む必要はない。図18A〜18Bに見られるように、プローブカード250は一方側に埋め込まれた複数のSMAストリップ255と反対側表面に固着された複数のSMAストリップ255とを有してもよい。この実施例はSMAストリップ255の異なる層を、前述の構成で示した並行あるいは直交以外のある角度で配置可能であることも示している。図19A〜19BはSMAストリップを埋め込んでないプローブカード250の本発明の実施例を示している。その代わりこの実施例ではSMAストリップ255をプローブカード250の上下面に(図19Bに示すように)固着している。この実施例はSMAストリップ255およびプローブカード250を貫通する複数の締結穴265も示している。これらの締結穴265を用いて間隔変更器などの他の装置をプローブカード250に固定することができる。
【0042】
SMAストリップは必要に応じて厚さを変更できるものである。図20A〜20Bはカード250に埋め込まれた複数のSMAストリップ255を有するプローブカード250を示す。この特定の実施例のストリップはその長さにわたって厚さが変化する。いくつかのストリップ255Aはその長さの端部付近でより厚いが、他のストリップ255Bはその長さの中心付近でより厚い。図21A〜21Bに見られるように、ある特定のストリップの部分が交互にプローブカード250の上下面に近接するようにSMAストリップ255をプローブカード250に埋め込んでもよい。
【0043】
プローブカードの平面性を監視するのに用いる歪みゲージはカードの表面に取り付ける必要はない。図22A〜22Bに見られるように、歪みゲージ260をプローブカード250内に埋め込んでもよい。前述のSMAストリップの構成のいずれかとともに埋め込み歪みゲージを用いてもよい。例えば、図23A〜23Bに示すようにSMAストリップ255の円形構成とともに埋め込み歪みゲージ260を用いてもよい。図24A〜25は本発明を実施するのに用いることができるSMA材料255の円形構成の他の実施例を示す。
【0044】
図11および12は、本発明とともに使用可能なプローバおよびテスタの一実施例の概略図を示す。この特定の実施形態において、プローバ100はテスタ180から物理的に離れている。これらは図示のように通信ケーブル180aおよび180bなどの1本以上のケーブルにより接続されている。ケーブル180aは、電気接点110aによってプローブカード110に接続されたプローバのテストヘッドに接続している。プローブカードは前述のようにプローブ130を有する。この実施形態において、台150上のウエハ140などのウエハをウエハボート170からロボットアーム160によって配置する。テスタ180は、通信ケーブル180aを介してテスタ190に送られるテストデータを生成するとともに、通信ケーブル180aを介してテスタから応答データを受け取る場合もある。テストヘッド190はテストヘッド180からデータを受け取るとともに、そのテストデータをプローブカード110を介してウエハに渡す。ウエハからのデータはプローブカードを介して受け取られテスタに送られる。好適な実施形態においてプローバは図示のようにウエハボート・ステージャロボットアームを収容する。テスタは通信ケーブル180bを始めとする様々な方法でプローバを制御する。ウエハボート170はテスト予定あるいはテスト済みのウエハを収納する。台は一般的に垂直および水平に移動させながらテスト中のウエハを支持する。概して台は傾斜および回転可能であるとともにテスト中のウエハをプローブ130に対して移動させることができる。これは上述したようにウエハチャックとテーブル作動装置とを含んでもよい。ロボットアーム160はウエハを台150とウエハボート170間で移動させる。
【0045】
テスタは該してコンピュータであり、プローバも概してコンピュータあるいは少なくともコンピュータ状制御回路(例えばマイクロプロセッサまたはマイクロコントローラまたはマイクロコード)を含んでいる。テストヘッド190も同様にコンピュータまたはコンピュータ状制御回路を含んでもよい。好適な実施形態において、図10に図示した動作を行うコンピュータをプローバ内に配置するとよい。これはプローバ内に既にあるコンピュータまたはコンピュータ状制御回路、あるいはこの目的のためにプローバに追加した新たなコンピュータでもよい。代替的にはコンピュータをテスタ180内に配置してもよく、この場合一般的にプローブカードに対するウエハの位置に関するフィードバック信号をケーブル180bを介してテスタに通信させることができる。この台を移動させる信号もそのケーブルを介して同様に通信される。
【0046】
さらに他の代替形態として、コンピュータをプローバ100とテストヘッド190との間の好適な通信手段としてテスタヘッド190内に配置してもよい。このような通信手段は有線接続、RF送信光、あるいは他のエネルギービーム送信等によってもよい。
【0047】
この目的のためにさらに他の代替形態、テスタとは別個の独立コンピュータ、テストヘッドおよびプローバを用いてプローバに電気的に接続することができる。
【0048】
さらに他の代替形態として、図10のステップの実行を容易にする適当な入力および出力接続のためにコンピュータ、マイクロプロセッサ、マイクロコントローラ等を実際にプローブカード110の一部としてもよい。例えばこのように各プローブカードが一部としてあるいは内蔵されたものとして、図10に関連して準備された専用のおよび/または特別のアルゴリズム動作および/またはパラメータを有してもよい。
【0049】
本発明による熱誘発動作を補償するためにプローブカードを本明細書に説明した単一の装置に限定する必要はない。実際、本発明は単一のプローブカード内での前述した装置の2つ以上の組合せを検討している。図9に示した実施例はテスタ側エネルギー伝達装置470、ウエハ側エネルギー伝達装置475、プローブカード110の半径方向の移動を可能にする潤滑層792、および2材料補剛要素580を使用している。前述の装置を2つ以上使用してプローブカードの熱誘発動作を補償する他の組合せも検討されている。2つ以上の前述の装置を組み込んだ任意のプローブカードが、組み込んだ装置をすべて制御可能である制御手段を含むことができることが好ましいが、本発明は任意の特定プローブカード内に個別制御手段を利用するまたは制御手段を利用しないことも検討している。
【0050】
本発明を図面および上記の説明において詳細に図示および説明してきたが、これは特徴の例示であるとして限定するものとは考えられるべきではなく、単に好適な実施形態のみを示して説明したものであり、本発明の精神の範囲内にある変更および変形例のすべてが保護されることが望まれることは理解できよう。冠詞(「a」、「an」、「said」および「the」)は単一の要素に限定されずに1つ以上のそのような要素を含む。
【図面の簡単な説明】
【0051】
【図1】プローブカードの断面図である。
【図2】ウエハと係合したプローブカードの断面図である。
【図2A】ウエハと係合した熱歪曲プローブカードの断面図である。
【図2B】ウエハと係合した熱歪曲プローブカードの断面図である。
【図3】プローブカード・アセンブリの断面図である。
【図4】本発明の一実施例によるプローブカードの展開断面図である。
【図4A】図4のプローブカードの断面図である。
【図4B】本発明によるプローブカードの他の実施例の上部平面図である。
【図5】本発明の他の実施例によるプローブカードの展開断面図である。
【図5A】図5のプローブカードの断面図である。
【図6】本発明の他の実施例によるプローブカードの展開断面図である。
【図6A】図6のプローブカードの断面図である。
【図6B】図6のプローブカードの下部平面図である。
【図7】本発明の他の実施例によるプローブカードの展開断面図である。
【図7A】図7のプローブカードの断面図である。
【図8】本発明のさらに他の実施例によるプローブカードの断面図である。
【図9】本発明の他の実施例によるプローブカードの展開断面図である。
【図9A】図9のプローブカードの断面図である。
【図10】本発明による制御プログラムの一実施例を示すフローチャートである。
【図11】本発明の一実施形態による2本の通信ケーブルにより接続されたプローバおよびテスタの前面概略図である。
【図12】図11のプローバの側面概略図である。
【図13A】本発明によるプローブカードの他の実施例の上部平面図である。
【図13B】図13Aのプローブカードの断面図である。
【図14A】本発明によるプローブカードの他の実施例の上部平面図である。
【図14B】図14Aのプローブカードの断面図である。
【図15A】本発明によるプローブカードの他の実施例の上部平面図である。
【図15B】図15Aのプローブカードの断面図である。
【図16A】本発明によるプローブカードの他の実施例の上部平面図である。
【図16B】図16Aのプローブカードの断面図である。
【図17A】本発明によるプローブカードの他の実施例の上部平面図である。
【図17B】図17Aのプローブカードの断面図である。
【図18A】本発明によるプローブカードの他の実施例の上部平面図である。
【図18B】図18Aのプローブカードの断面図である。
【図19A】本発明によるプローブカードの他の実施例の上部平面図である。
【図19B】図19Aのプローブカードの断面図である。
【図20A】本発明によるプローブカードの他の実施例の上部平面図である。
【図20B】図20Aのプローブカードの断面図である。
【図21A】本発明によるプローブカードの他の実施例の上部平面図である。
【図21B】図21Aのプローブカードの断面図である。
【図22A】本発明によるプローブカードの他の実施例の上部平面図である。
【図22B】図22Aのプローブカードの断面図である。
【図23A】本発明によるプローブカードの他の実施例の上部平面図である。
【図23B】図23Aのプローブカードの断面図である。
【図24A】本発明によるプローブカードの他の実施例の上部平面図である。
【図24B】本発明によるプローブカードの他の実施例の他の上部平面図である。
【図24C】本発明によるプローブカードの他の実施例の他の上部平面図である。
【図25】本発明によるプローブカードの他の実施例の上部平面図である。
【図26】本発明の一実施形態による光学動作検出システムを用いたテスタの前面概略図である。
【図27】本発明の他の実施形態による光学動作検出システムを用いたテスタの前面概略図である。
【図28】本発明の他の実施形態による光学動作検出システムを用いたテスタの前面概略図である。
【図28A】図28の光学動作検出システムの上部平面図である。
【図29】本発明の他の実施形態による光学動作検出システムを用いたテスタの前面概略図である。
【図30】本発明の他の実施形態による光学動作検出システムを用いたテスタの前面概略図である。

Claims (68)

  1. ウエハ上のダイをテストするプローブカードと、
    前記プローブカードの一部において該プローブカードに隣接して配置されたエネルギー伝達要素とを含み、
    前記エネルギー伝達要素が伝達されたエネルギーを利用して前記プローブカードの一部分を選択的に撓曲させることにより前記プローブカードの幾何学的平面性を制御する装置。
  2. 前記エネルギー伝達要素が概して前記プローブカードの周囲に沿って配置されている請求項1に記載の装置。
  3. 前記エネルギー伝達要素が熱エネルギーを用いて前記プローブカードの一部分を選択的に撓曲させる熱素子である請求項2に記載の装置。
  4. 前記エネルギー伝達要素付近に配置された前記プローブカードの撓曲に対応する温度を監視する温度センサをさらに含む請求項3に記載の装置。
  5. 前記プローブカードの面に取り付けられるとともに前記プローブカードの平面性撓曲に対する構造的抵抗を提供するように構成された補剛要素をさらに含む請求項4に記載の装置。
  6. 前記補剛要素に対する前記プローブカードの半径方向の膨張/収縮を容易にする手段をさらに含む請求項5に記載の装置。
  7. 単位エネルギー当たりの膨張速度が異なる第1の層と第2の層とを有し、前記プローブカードに取り付けられた多層要素をさらに含み、該多層要素をエネルギーに曝すことにより前記多層要素に前記プローブカードの一部に選択的に撓曲力を付与させる請求項6に記載の装置。
  8. 前記多層要素が他とは異なる熱膨張係数を有する2つの異なる金属/合金の層を含む請求項7に記載の装置。
  9. 前記多層要素が概して前記プローブカードの周囲に沿って配置されている請求項8に記載の装置。
  10. 前記エネルギー伝達要素が熱エネルギーを用いて前記プローブカードの一部分を選択的に撓曲させる熱素子である請求項1に記載の装置。
  11. 前記エネルギー伝達要素付近に配置された前記プローブカードの撓曲に対応する温度を監視する温度センサをさらに含む請求項1に記載の装置。
  12. 前記プローブカードの面に取り付けられるとともに前記プローブカードの平面性撓曲に対する構造的抵抗を提供するように構成された補剛要素をさらに含む請求項1に記載の装置。
  13. 前記補剛要素に対する前記プローブカードの半径方向の膨張/収縮を容易にする手段をさらに含む請求項1に記載の装置。
  14. 単位エネルギー当たりの膨張速度が異なる第1の層と第2の層とを有し、前記プローブカードに取り付けられた多層要素をさらに含み、該多層要素をエネルギーに曝すことにより前記多層要素に前記プローブカードの一部に選択的に撓曲力を付与させる請求項1に記載の装置。
  15. 前記多層要素が他とは異なる熱膨張係数を有する2つの異なる金属/合金の層を含む請求項14に記載の装置。
  16. 前記多層要素が概して前記プローブカードの周囲に沿って配置されている請求項15に記載の装置。
  17. ウエハ上のダイをテストするプローブカードと、
    単位エネルギー当たりの膨張速度が異なる第1の層と第2の層とを有し、前記プローブカードに取り付けられた多層要素であって、該多層要素をエネルギーに曝すことにより前記多層要素に前記プローブカードの一部に選択的に撓曲力を付与させる多層要素とを含む装置。
  18. 前記多層要素が他とは異なる熱膨張係数を有する2つの異なる金属/合金の層を含む請求項17に記載の装置。
  19. 前記多層要素が概して前記プローブカードの周囲に沿って配置されている請求項17に記載の装置。
  20. 前記多層要素が他とは異なる熱膨張係数を有する2つの異なる金属/合金の層を含む請求項19に記載の装置。
  21. 補剛要素と該補剛要素に対する前記プローブカードの半径方向の膨張/収縮を容易にする手段とをさらに含む請求項19に記載の装置。
  22. 補剛要素と該補剛要素に対する前記プローブカードの半径方向の膨張/収縮を容易にする手段とをさらに含む請求項17に記載の装置。
  23. ウエハ上のダイをテストするプローブカードと、
    前記プローブカードの面に取り付けられるとともに前記プローブカードの平面性撓曲に対する構造的抵抗を提供するように構成された補剛要素と、
    前記補剛要素に対する前記プローブカードの半径方向の膨張/収縮を容易にする手段とを含む装置。
  24. 前記半径方向の膨張/収縮を容易にする手段が前記プローブカードと前記補剛要素との間にローリング部材を含む請求項23に記載の装置。
  25. 前記半径方向の膨張/収縮を容易にする手段が前記プローブカードと前記補剛要素との間に半径方向に向けられたスロット連結部を含む請求項23に記載の装置。
  26. 前記半径方向の膨張/収縮を容易にする手段が前記プローブカードと前記補剛要素との間に潤滑層を含む請求項23に記載の装置。
  27. プローブカードの幾何学的平面性を調整する方法であって、
    プローブカードをプローバ内に配置するステップと、
    既知の位置から前記プローブカードの位置までの第1の距離を測定するステップと、
    マイクロプロセッサ手段によって前記第1の距離を第2の距離と比較してそれらの間の変動を判定するステップと、
    前記マイクロプロセッサが前記変動が既定値を超えたと判定した時、前記プローブカードにエネルギーを伝達する手段に、前記プローブカードを選択的に撓曲させて前記プローブカードの幾何学的平面性を制御するように電気的に合図するステップとを含む方法。
  28. 前記比較および合図するステップが、前記変動が前記既定値を超えなくなるまで繰返し行われる請求項27に記載の方法。
  29. 前記測定動作が光学センサにより行われる請求項28に記載の方法。
  30. 前記マイクロプロセッサが前記プローバ上のテストヘッド内にある請求項29に記載の方法。
  31. 前記マイクロプロセッサが前記プローバから物理的に離れたテスタ内にあるとともに、データ通信手段によりそれに接続されている請求項29に記載の方法。
  32. 前記エネルギーを伝達する手段が熱エネルギーを前記プローブカードに伝達し、該プローブカードがそれに接続されて撓曲を付与するバイメタル要素を含む請求項29に記載の方法。
  33. 前記測定動作が光学センサにより行われる請求項27に記載の方法。
  34. 前記マイクロプロセッサが前記プローバ上のテストヘッド内にある請求項27に記載の方法。
  35. 前記マイクロプロセッサが前記プローバから物理的に離れたテスタ内にあるとともに、データ通信手段によりそれに接続されている請求項27に記載の方法。
  36. 前記エネルギーを伝達する手段が熱エネルギーを前記プローブカードに伝達し、該プローブカードがそれに接続されて撓曲を付与するバイメタル要素を含む請求項27に記載の方法。
  37. プローブカードの幾何学的平面性を調整するシステムであって、
    プローブカードを受容するプローバと、
    前記プローブカードの位置を示す距離を測定する手段と、
    前記第1の距離を第2の距離と比較してそれらの間の変動を判定するコンピュータ手段と、
    ある値を超える前記変動に応答して電気的に合図する手段であって、前記プローブカードにエネルギーを伝達する手段を作動させる信号を信号によって送信して前記プローブカードを選択的に撓曲させることにより前記プローブカードの幾何学的平面性を制御する手段とを含むシステム。
  38. 熱エネルギーを用いて前記プローブカードの一部分を選択的に撓曲させる熱素子であるエネルギー伝達要素を含む請求項37に記載のシステム。
  39. 前記プローブカードの撓曲に対応する温度を監視する温度センサをさらに含む請求項37に記載のシステム。
  40. 前記プローブカードの面に取り付けられるとともに前記プローブカードの平面性撓曲に対する構造的抵抗を提供するように構成された補剛要素をさらに含む請求項37に記載のシステム。
  41. 補剛要素に対する前記プローブカードの半径方向の膨張/収縮を容易にする手段をさらに含む請求項37に記載のシステム。
  42. 単位エネルギー当たりの膨張速度が異なる第1の層と第2の層とを有し、前記プローブカードに取り付けられた多層要素をさらに含み、該多層要素をエネルギーに曝すことにより前記多層要素に前記プローブカードの一部に選択的に撓曲力を付与させる請求項37に記載のシステム。
  43. ウエハ上のダイをテストするプローブカードと、
    前記プローブカードに接続された形状記憶合金要素とを含み、
    前記形状記憶合金が熱エネルギーを利用して前記プローブカードの一部分を撓曲させることにより前記プローブカードの幾何学的形状を制御する装置。
  44. 前記形状記憶合金要素が少なくとも部分的に概して前記プローブカードの表面に沿って配置されている請求項43に記載の装置。
  45. 前記形状記憶合金要素がニッケルとチタニウムの合金を含む請求項43に記載の装置。
  46. 前記形状記憶合金要素付近に配置された前記プローブカードの撓曲に対応する歪みを監視する少なくとも1つの歪みセンサをさらに含む請求項43に記載の装置。
  47. ウエハ上のダイをテストするプローブカードと、
    前記プローブカードの撓曲に対応する歪みを監視する前記プローブカード上の少なくとも1つの歪みセンサとを含む装置。
  48. 前記プローブカード上の第1の形状記憶合金要素をさらに含む請求項47に記載の装置。
  49. 前記第1の形状記憶合金要素付近に配置されるとともに該して並行に向けられた前記プローブカードの撓曲に対応する歪みを監視する少なくとも1つの歪みセンサをさらに含む請求項48に記載の装置。
  50. 前記歪みセンサが概して前記プローブカードの中心部から外側に半径方向に向けられている請求項47に記載の装置。
  51. 前記歪みセンサが概して前記プローブカードの周辺縁部と並行に向けられている請求項47に記載の装置。
  52. ウエハ上のダイをテストするプローブカードと、
    前記テスト用前記プローブカードを受容するプローバと、
    当たる光線を方向付ける前記プローブカード上の光学要素と、
    前記プローブカード上の前記光学要素に当たる光線発光部と、
    前記光学要素からの前記光線を受光して前記プローブカードの撓曲を測定する光線受光部とを含む装置。
  53. 前記光学要素がレンズを含む請求項52に記載の装置。
  54. 前記光学要素が鏡を含む請求項52に記載の装置。
  55. 前記プローバ内に対向する円筒表面を有するとともに通過すると前記光線が偏向される一対の鏡をさらに含む請求項54に記載の装置。
  56. 前記光線受光部への入力から前記プローブカードの第1の位置および第2の撓曲位置を計算するコンピュータプロセッサ手段をさらに含む請求項54に記載の装置。
  57. ウエハ上のダイをテストするプローブカードと、
    テスト用前記プローブカードを受容するプローバと、
    光線を生成する前記プローブカード上の光線発光部と、
    前記光線発光部からの前記光線を受光して前記プローブカードの撓曲を測定する光線受光部とを含む装置。
  58. 前記プローバ内に対向する円筒表面を有するとともに通過すると前記光線が偏向される一対の鏡をさらに含む請求項57に記載の装置。
  59. 前記光線受光部への入力から前記プローブカードの第1の位置および第2の撓曲位置を計算するコンピュータプロセッサ手段をさらに含む請求項57に記載の装置。
  60. プローブカードとプローバ内のウエハとの間の距離を制御する方法であって、
    ウエハ上の複数のダイをテストするプローブカードを提供するステップと、
    テスト用前記プローブカードを受容するプローバを提供するステップと、
    前記プローバ内のチャック上にウエハを提供するステップであって、前記ウエハが前記プローブカードに接触するように配置されるステップと、
    前記プローブカードと前記ウエハとの間の距離を測定する感知システムを提供するステップと、
    前記感知システムにより報告された距離の変化に応じて前記距離を調整するステップとを含む方法。
  61. 前記測定および調整するステップが繰返し行われる請求項60に記載の方法。
  62. プローブカードとプローバ内のウエハとの間の距離を制御する方法であって、
    ウエハ上の複数のダイをテストするプローブカードを提供するステップと、
    テスト用前記プローブカードを受容するプローバを提供するステップと、
    前記プローバ内のチャック上にウエハを提供するステップと、
    前記プローブカードと前記ウエハとの間の第1の距離を測定するステップと、
    マイクロプロセッサ手段によって前記第1の距離を第2の距離と比較してそれらの間の変動を判定するステップと、
    前記マイクロプロセッサが前記変動が既定値を超えたと判定した時、前記プローブカードと前記ウエハとの間の距離を調整するステップとを含む方法。
  63. 前記比較および調整するステップが、前記変動が既定値を超えなくなるまで繰返し行われる請求項62に記載の方法。
  64. ウエハ上の複数のダイをテストするプローブカードと、
    テスト用前記プローブカードを受容するプローバと、
    前記プローブカードの位置に比例した情報を報告する信号を送信する照射源と、
    前記情報を受け取る照射受容部とを含む装置。
  65. 前記照射源が前記プローブカードに取り付けられている請求項64に記載の装置。
  66. 前記照射源がレーザである請求項64に記載の装置。
  67. プローブカードの変形を外部感知システムに報告する照射源を有するウエハ上の複数のダイをテストするプローブカード。
  68. 前記照射源がレーザである請求項67に記載のプローブカード。
JP2003542328A 2001-11-02 2002-11-01 プローブカードの熱誘発動作を補償する方法およびシステム Pending JP2005508499A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/003,012 US7071714B2 (en) 2001-11-02 2001-11-02 Method and system for compensating for thermally induced motion of probe cards
US10/034,412 US7002363B2 (en) 2001-11-02 2001-12-27 Method and system for compensating thermally induced motion of probe cards
US10/159,560 US6972578B2 (en) 2001-11-02 2002-05-31 Method and system for compensating thermally induced motion of probe cards
PCT/US2002/035022 WO2003040734A2 (en) 2001-11-02 2002-11-01 Method and system for compensating thermally induced motion of probe cards

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008150928A Division JP2008224688A (ja) 2001-11-02 2008-06-09 プローブカードの熱誘発動作を補償する方法およびシステム

Publications (1)

Publication Number Publication Date
JP2005508499A true JP2005508499A (ja) 2005-03-31

Family

ID=27357289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003542328A Pending JP2005508499A (ja) 2001-11-02 2002-11-01 プローブカードの熱誘発動作を補償する方法およびシステム

Country Status (5)

Country Link
US (3) US6972578B2 (ja)
EP (2) EP1442307B1 (ja)
JP (1) JP2005508499A (ja)
CN (1) CN1301409C (ja)
WO (1) WO2003040734A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158345A (ja) * 2005-12-05 2007-06-21 Feinmetall Gmbh 被験電気部品の検査のための電気検査装置ならびに検査方法
JP2009164299A (ja) * 2007-12-28 2009-07-23 Tokyo Electron Ltd プローブ装置及び検査方法
WO2009104272A1 (ja) * 2008-02-22 2009-08-27 リン グループ エルエルシー 識別カードを使用した総合取引システム
JP2010540908A (ja) * 2007-09-24 2010-12-24 フォームファクター, インコーポレイテッド 検査装置と共に使用するスティフナアセンブリ

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172458B2 (en) * 2001-03-23 2012-05-08 Petrakis Dennis N Temperature responsive systems
US6972578B2 (en) * 2001-11-02 2005-12-06 Formfactor, Inc. Method and system for compensating thermally induced motion of probe cards
US7071714B2 (en) 2001-11-02 2006-07-04 Formfactor, Inc. Method and system for compensating for thermally induced motion of probe cards
JP2004265895A (ja) * 2003-01-20 2004-09-24 Tokyo Electron Ltd 光学的測長器を備えたプローブ装置及びプローブ検査方法
US8466703B2 (en) * 2003-03-14 2013-06-18 Rudolph Technologies, Inc. Probe card analysis system and method
US7024763B2 (en) * 2003-11-26 2006-04-11 Formfactor, Inc. Methods for making plated through holes usable as interconnection wire or probe attachments
DE102004023987B4 (de) * 2004-05-14 2008-06-19 Feinmetall Gmbh Elektrische Prüfeinrichtung
US20060145016A1 (en) * 2004-12-30 2006-07-06 The Boeing Company Mating of spacecraft components using shape memory materials
US7285968B2 (en) * 2005-04-19 2007-10-23 Formfactor, Inc. Apparatus and method for managing thermally induced motion of a probe card assembly
JP2007035856A (ja) * 2005-07-26 2007-02-08 Freescale Semiconductor Inc 集積回路の製造方法、集積回路の測定装置及びウェハ
JP4979214B2 (ja) * 2005-08-31 2012-07-18 日本発條株式会社 プローブカード
US7504822B2 (en) * 2005-10-28 2009-03-17 Teradyne, Inc. Automatic testing equipment instrument card and probe cabling system and apparatus
US7541819B2 (en) * 2005-10-28 2009-06-02 Teradyne, Inc. Modularized device interface with grounding insert between two strips
US7671614B2 (en) * 2005-12-02 2010-03-02 Formfactor, Inc. Apparatus and method for adjusting an orientation of probes
US7622935B2 (en) * 2005-12-02 2009-11-24 Formfactor, Inc. Probe card assembly with a mechanically decoupled wiring substrate
US7843202B2 (en) * 2005-12-21 2010-11-30 Formfactor, Inc. Apparatus for testing devices
JP2009178843A (ja) 2006-08-22 2009-08-13 Rynne Group Llc 識別カードおよびその識別カードを使用した識別カード取引システム
KR100790817B1 (ko) * 2006-12-06 2008-01-03 삼성전자주식회사 반도체 제조관리 시스템
WO2008114997A1 (en) * 2007-03-20 2008-09-25 Semics Inc. Apparatus of measuring pressure of chuck plate, correcting position of chuck plate and method thereof
US20080231258A1 (en) * 2007-03-23 2008-09-25 Formfactor, Inc. Stiffening connector and probe card assembly incorporating same
JP5306192B2 (ja) * 2007-05-31 2013-10-02 株式会社アドバンテスト プローブカードの固定装置
US8425060B2 (en) 2007-11-09 2013-04-23 Nikon Corporation Self-correcting optical elements for high-thermal-load optical systems
US7688063B2 (en) * 2008-02-19 2010-03-30 Formfactor, Inc. Apparatus and method for adjusting thermally induced movement of electro-mechanical assemblies
US8324915B2 (en) * 2008-03-13 2012-12-04 Formfactor, Inc. Increasing thermal isolation of a probe card assembly
EP2291666A1 (de) * 2008-06-26 2011-03-09 Siemens Aktiengesellschaft Verfahren zur erfassung der kontaktierung zwischen messnadeln und einem prüfobjekt
EP2159580B1 (en) * 2008-08-26 2015-10-07 Lake Shore Cryotronics, Inc. Probe tip
US8760187B2 (en) * 2008-12-03 2014-06-24 L-3 Communications Corp. Thermocentric alignment of elements on parts of an apparatus
US7772863B2 (en) * 2008-12-03 2010-08-10 Formfactor, Inc. Mechanical decoupling of a probe card assembly to improve thermal response
US7960989B2 (en) * 2008-12-03 2011-06-14 Formfactor, Inc. Mechanical decoupling of a probe card assembly to improve thermal response
US20100264949A1 (en) * 2009-04-15 2010-10-21 Formfactor, Inc. Flexure band and use thereof in a probe card assembly
US8269514B2 (en) * 2009-08-25 2012-09-18 Formfactor, Inc. Method and apparatus for multilayer support substrate
US8441275B1 (en) * 2010-01-14 2013-05-14 Tapt Interconnect, LLC Electronic device test fixture
US8736294B2 (en) * 2010-12-14 2014-05-27 Formfactor, Inc. Probe card stiffener with decoupling
CN104810303B (zh) * 2014-01-27 2017-12-08 京元电子股份有限公司 探针卡印刷电路板及其测试系统与测试方法
WO2016014896A1 (en) 2014-07-24 2016-01-28 Nucleus Scientific, Inc. Instrumented packets for testing charge storage devices
WO2016014906A1 (en) * 2014-07-24 2016-01-28 Nucleus Scientific, Inc. A measurement instrument for testing charge storage devices
CN106338625B (zh) * 2015-07-06 2019-07-26 创意电子股份有限公司 探针卡
US11280827B2 (en) 2016-02-29 2022-03-22 Teradyne, Inc. Thermal control of a probe card assembly
US10261108B2 (en) * 2016-07-12 2019-04-16 International Business Machines Corporation Low force wafer test probe with variable geometry
US10444260B2 (en) 2016-07-12 2019-10-15 International Business Machines Corporation Low force wafer test probe
CN109782031A (zh) * 2018-12-27 2019-05-21 上海华岭集成电路技术股份有限公司 一种高低温测试环境自动更换探针卡的方法
CN110529575B (zh) * 2019-06-12 2021-04-09 北京工业大学 一种基于镍钛形状记忆合金的高速滚珠丝杠副热变形抑制方法
US11662365B2 (en) * 2020-09-17 2023-05-30 Microchip Technology Incorporated Systems and methods for detecting forcer misalignment in a wafer prober
CN112151401B (zh) * 2020-10-12 2023-08-18 电子科技大学 一种基于半导体温控的晶粒取向控制方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264868A (ja) * 1989-04-04 1990-10-29 Tokyo Electron Ltd プローブ装置
JPH0371007A (ja) * 1989-08-11 1991-03-26 Hitachi Ltd エアマイクロ検出制御方法および制御機構
JPH04359445A (ja) * 1991-06-05 1992-12-11 Fujitsu Ltd 温度試験用プロービング装置
JPH05264590A (ja) * 1992-03-16 1993-10-12 Hitachi Electron Eng Co Ltd プローブカードの反り補正機構
JPH0653294A (ja) * 1991-09-10 1994-02-25 Tokyo Electron Yamanashi Kk プロービング装置
JPH06151530A (ja) * 1992-11-10 1994-05-31 Hitachi Electron Eng Co Ltd ヒータ内蔵プローブカード
JPH07221144A (ja) * 1995-02-20 1995-08-18 Tokyo Electron Ltd プローブ装置
JPH07321168A (ja) * 1994-05-27 1995-12-08 Tokyo Electron Ltd プローブカード
JPH08293525A (ja) * 1995-02-23 1996-11-05 Matsushita Electric Works Ltd リード付き基板の接合方法
JPH095358A (ja) * 1995-06-16 1997-01-10 Hitachi Ltd プローブカードおよびウエハハンドリング方法
JPH1151972A (ja) * 1997-07-30 1999-02-26 Micronics Japan Co Ltd プローブカード
JP2000138268A (ja) * 1998-11-04 2000-05-16 Hitachi Chem Co Ltd 半導体回路の検査方法及び検査装置
JP2001228171A (ja) * 2000-02-18 2001-08-24 Japan Electronic Materials Corp プローブカード

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963985A (en) 1974-12-12 1976-06-15 International Business Machines Corporation Probe device having probe heads and method of adjusting distances between probe heads
US4755747A (en) 1984-06-15 1988-07-05 Canon Kabushiki Kaisha Wafer prober and a probe card to be used therewith
JPS61150346A (ja) 1984-12-25 1986-07-09 Toshiba Corp プロ−ブカ−ド
US4780836A (en) 1985-08-14 1988-10-25 Kabushiki Kaisha Toshiba Method of testing semiconductor devices using a probe card
US4864227A (en) * 1987-02-27 1989-09-05 Canon Kabushiki Kaisha Wafer prober
US5198752A (en) * 1987-09-02 1993-03-30 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5124639A (en) 1990-11-20 1992-06-23 Motorola, Inc. Probe card apparatus having a heating element and process for using the same
JPH04273458A (ja) 1991-02-28 1992-09-29 Ando Electric Co Ltd 測定ヘッドとプローブカードの水平出し機構
JP2913609B2 (ja) * 1991-03-08 1999-06-28 東京エレクトロン株式会社 プロービング装置、プロービング方法およびプローブカード
JPH05121498A (ja) * 1991-04-23 1993-05-18 Mitsubishi Electric Corp ウエハテスト装置
JPH04333250A (ja) 1991-05-08 1992-11-20 Nec Corp プローブカード
JP2895989B2 (ja) 1991-06-10 1999-05-31 三菱電機株式会社 プローバ装置およびウエハの検査方法
US5416592A (en) * 1992-03-23 1995-05-16 Tokyo Electron Kabushiki Kaisha Probe apparatus for measuring electrical characteristics of objects
JP3219844B2 (ja) 1992-06-01 2001-10-15 東京エレクトロン株式会社 プローブ装置
JP2739031B2 (ja) * 1992-12-08 1998-04-08 三菱電機株式会社 半導体装置用ソケット
JP3066784B2 (ja) 1992-12-14 2000-07-17 東京エレクトロン株式会社 プローブカード及びその製造方法
US5550482A (en) 1993-07-20 1996-08-27 Tokyo Electron Kabushiki Kaisha Probe device
US6184053B1 (en) 1993-11-16 2001-02-06 Formfactor, Inc. Method of making microelectronic spring contact elements
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US5644245A (en) * 1993-11-24 1997-07-01 Tokyo Electron Limited Probe apparatus for inspecting electrical characteristics of a microelectronic element
KR100296646B1 (ko) 1994-03-31 2001-10-24 히가시 데쓰로 프로우브시스템및프로우브방법
US5550480A (en) 1994-07-05 1996-08-27 Motorola, Inc. Method and means for controlling movement of a chuck in a test apparatus
JPH0883825A (ja) * 1994-09-09 1996-03-26 Tokyo Electron Ltd プローブ装置
JP2632136B2 (ja) 1994-10-17 1997-07-23 日本電子材料株式会社 高温測定用プローブカード
KR100212169B1 (ko) 1996-02-13 1999-08-02 오쿠보 마사오 프로브, 프로브의 제조, 그리고 프로브를 사용한 수직동작형 프로브 카드 어셈블리
US5888906A (en) 1996-09-16 1999-03-30 Micron Technology, Inc. Plasmaless dry contact cleaning method using interhalogen compounds
US5861759A (en) 1997-01-29 1999-01-19 Tokyo Electron Limited Automatic probe card planarization system
US6140828A (en) 1997-05-08 2000-10-31 Tokyo Electron Limited Prober and probe method
US6137299A (en) * 1997-06-27 2000-10-24 International Business Machines Corporation Method and apparatus for testing integrated circuit chips
JPH11145215A (ja) * 1997-11-11 1999-05-28 Mitsubishi Electric Corp 半導体検査装置およびその制御方法
US6043668A (en) 1997-12-12 2000-03-28 Sony Corporation Planarity verification system for integrated circuit test probes
US6064215A (en) 1998-04-08 2000-05-16 Probe Technology, Inc. High temperature probe card for testing integrated circuits
FR2780792B1 (fr) 1998-07-03 2000-09-22 St Microelectronics Sa Appareillage de test de puces electroniques
JP4388620B2 (ja) 1999-04-16 2009-12-24 株式会社アドバンテスト プローブカード及びプローブカード製造方法
DE19952943C2 (de) * 1999-11-03 2003-07-03 Infineon Technologies Ag Nadelkarten-Justageeinrichtung zur Planarisierung von Nadelsätzen einer Nadelkarte
AU2000237498A1 (en) 2000-03-15 2001-09-24 Tsk America, Inc. Prober interface plate
US6441629B1 (en) 2000-05-31 2002-08-27 Advantest Corp Probe contact system having planarity adjustment mechanism
JP4689070B2 (ja) 2001-04-12 2011-05-25 ルネサスエレクトロニクス株式会社 半導体素子試験装置およびこれを用いた半導体素子試験方法
JP4782953B2 (ja) * 2001-08-06 2011-09-28 東京エレクトロン株式会社 プローブカード特性測定装置、プローブ装置及びプローブ方法
US7071714B2 (en) * 2001-11-02 2006-07-04 Formfactor, Inc. Method and system for compensating for thermally induced motion of probe cards
US6972578B2 (en) 2001-11-02 2005-12-06 Formfactor, Inc. Method and system for compensating thermally induced motion of probe cards
US6605954B1 (en) 2002-01-23 2003-08-12 Lsi Logic Corporation Reducing probe card substrate warpage
JP4357813B2 (ja) * 2002-08-23 2009-11-04 東京エレクトロン株式会社 プローブ装置及びプローブ方法
JP2004265895A (ja) * 2003-01-20 2004-09-24 Tokyo Electron Ltd 光学的測長器を備えたプローブ装置及びプローブ検査方法
US7285968B2 (en) 2005-04-19 2007-10-23 Formfactor, Inc. Apparatus and method for managing thermally induced motion of a probe card assembly
US7356744B2 (en) * 2005-05-12 2008-04-08 Pc-Doctor, Inc. Method and system for optimizing testing of memory stores

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264868A (ja) * 1989-04-04 1990-10-29 Tokyo Electron Ltd プローブ装置
JPH0371007A (ja) * 1989-08-11 1991-03-26 Hitachi Ltd エアマイクロ検出制御方法および制御機構
JPH04359445A (ja) * 1991-06-05 1992-12-11 Fujitsu Ltd 温度試験用プロービング装置
JPH0653294A (ja) * 1991-09-10 1994-02-25 Tokyo Electron Yamanashi Kk プロービング装置
JPH05264590A (ja) * 1992-03-16 1993-10-12 Hitachi Electron Eng Co Ltd プローブカードの反り補正機構
JPH06151530A (ja) * 1992-11-10 1994-05-31 Hitachi Electron Eng Co Ltd ヒータ内蔵プローブカード
JPH07321168A (ja) * 1994-05-27 1995-12-08 Tokyo Electron Ltd プローブカード
JPH07221144A (ja) * 1995-02-20 1995-08-18 Tokyo Electron Ltd プローブ装置
JPH08293525A (ja) * 1995-02-23 1996-11-05 Matsushita Electric Works Ltd リード付き基板の接合方法
JPH095358A (ja) * 1995-06-16 1997-01-10 Hitachi Ltd プローブカードおよびウエハハンドリング方法
JPH1151972A (ja) * 1997-07-30 1999-02-26 Micronics Japan Co Ltd プローブカード
JP2000138268A (ja) * 1998-11-04 2000-05-16 Hitachi Chem Co Ltd 半導体回路の検査方法及び検査装置
JP2001228171A (ja) * 2000-02-18 2001-08-24 Japan Electronic Materials Corp プローブカード

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158345A (ja) * 2005-12-05 2007-06-21 Feinmetall Gmbh 被験電気部品の検査のための電気検査装置ならびに検査方法
JP2010540908A (ja) * 2007-09-24 2010-12-24 フォームファクター, インコーポレイテッド 検査装置と共に使用するスティフナアセンブリ
JP2009164299A (ja) * 2007-12-28 2009-07-23 Tokyo Electron Ltd プローブ装置及び検査方法
WO2009104272A1 (ja) * 2008-02-22 2009-08-27 リン グループ エルエルシー 識別カードを使用した総合取引システム

Also Published As

Publication number Publication date
US6972578B2 (en) 2005-12-06
CN1301409C (zh) 2007-02-21
US20060001440A1 (en) 2006-01-05
US7119564B2 (en) 2006-10-10
US20070139060A1 (en) 2007-06-21
WO2003040734A2 (en) 2003-05-15
US20030085723A1 (en) 2003-05-08
CN1582395A (zh) 2005-02-16
EP1847835A2 (en) 2007-10-24
US7560941B2 (en) 2009-07-14
EP1442307B1 (en) 2009-04-22
WO2003040734A3 (en) 2004-03-11
EP1442307A2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP2005508499A (ja) プローブカードの熱誘発動作を補償する方法およびシステム
JP2008224688A (ja) プローブカードの熱誘発動作を補償する方法およびシステム
US7688063B2 (en) Apparatus and method for adjusting thermally induced movement of electro-mechanical assemblies
TWI398641B (zh) 用於控制探針卡組件之熱誘發的移動之設備與方法
US7368929B2 (en) Methods and apparatuses for improved positioning in a probing system
KR100858153B1 (ko) 프로버 및 탐침 접촉 방법
TW200829925A (en) Method and apparatus for indirect planarization
US7791362B2 (en) Inspection apparatus
KR100955636B1 (ko) 열에 의해 유발된 프로브 카드의 운동을 보상하기 위한장치 및 방법
JP2006108456A (ja) プローブ装置
JP2007165675A (ja) 半導体検査装置
US10923378B2 (en) Micro-component batch transfer systems, methods, and devices
JP2008166648A (ja) 半導体集積回路の検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080407

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080507

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081216

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100401

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100430

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100603

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124