JP2005255152A - サスペンション制御装置 - Google Patents

サスペンション制御装置 Download PDF

Info

Publication number
JP2005255152A
JP2005255152A JP2005034517A JP2005034517A JP2005255152A JP 2005255152 A JP2005255152 A JP 2005255152A JP 2005034517 A JP2005034517 A JP 2005034517A JP 2005034517 A JP2005034517 A JP 2005034517A JP 2005255152 A JP2005255152 A JP 2005255152A
Authority
JP
Japan
Prior art keywords
unsprung
signal
control device
suspension control
sprung
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034517A
Other languages
English (en)
Inventor
Toru Uchino
徹 内野
Osayuki Ichimaru
修之 一丸
Masaaki Uchiyama
正明 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005034517A priority Critical patent/JP2005255152A/ja
Publication of JP2005255152A publication Critical patent/JP2005255152A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 ばね下振動制御の制御効果を向上させることができるサスペンション制御装置
を提供する。
【解決手段】 ばね上加速度センサ9uからのばね上加速度αuを積分して得た速度デー
タに基づいて得たスカイフック指令信号Bと、ばね下加速度センサ9dが検出したばね下
加速度αdに基づいて得たばね下制振指令信号Cとを、加え合せて減衰特性が反転型であ
るショックアブソーバ6に対する制御信号Aとする。制御信号Aは、ピストン速度に対し
て位相が90°進むばね下加速度αdが反映されたものとなり、アクチュエータ11など
による応答遅れを補償することができ、その分、制御効果を向上させ、ひいては車両の操
縦安定性を向上させることができる。
【選択図】 図2

Description

本発明は、自動車、鉄道車両等の車両に用いられる減衰特性反転型ショックアブソーバを備えたサスペンション制御装置 に関する。
従来、減衰特性反転型ショックアブソーバを備えたサスペンション制御装置の一例として、特許文献1に示されるサスペンション制御装置がある。
このサスペンション制御装置は、ばね上(車体)制振については、例えば、上側に突出したうねり乗り越しの場合、縮み側をソフト特性にして車体を上方に押し上げるのを抑制し、このとき、伸び側がハード特性になっているので、その後のうねり降下時に、車軸側の重量によって上方に向う車体を下方に引き寄せ、これにより、車体をフラットにするようにしている。また、ばね上上下加速度からピストン速度(相対速度)を推定し、ばね下振動(ばね下暴れ)の抑制を図り、ばね下振動(ばね下暴れ)に起因して生じる、搭乗者に対する高周波の騒音やタイヤの接地性の低下(ひいてはコーナーリング時の操縦安定性の低下)を抑制するようにしている。
特開2002-321513号公報
ところで、上述したばね下振動(ばね下暴れ)は約10〜15Hz近傍の周波数(ばね下共振周波数)を有し、一般にばね上に生じる振動(ばね上共振周波数約1Hz)に比して高周波である。そして、上記従来技術では、ばね下振動の抑制を図るものの、当該ばね下振動の抑制はばね上上下加速度に基づいて行われる。このため、上記従来技術は、ショックアブソーバの減衰特性の変化が遅れ、実際には、ばね下振動制御を高精度に行うことができず、ばね下振動の抑制を図る上で改善の余地が残されているというのが実情であった。
本発明は、上記事情に鑑みてなされたもので、ばね下振動制御の制御効果を向上させることができるサスペンション制御装置を提供することを目的とする。
請求項1記載のサスペンション制御装置の発明は、車両のばね上とばね下との間に設けられ、伸び側及び縮み側の減衰特性のうち、一方側の減衰特性がソフトのとき、他方側の減衰特性がソフトとハードの間で調整され、他方側の減衰特性がソフトのとき一方側の減衰特性がソフトとハードの間で調整される減衰特性反転型ショックアブソーバと、ばね上の上下加速度を検出し、ばね上上下加速度信号を出力するばね上上下加速度検出手段と、ばね下の上下加速度を検出し、ばね下上下加速度信号を出力するばね下上下加速度検出手段と、前記ばね上上下加速度信号と前記ばね下上下加速度信号とから前記減衰特性反転型ショックアブソーバを制御する制御信号を出力するコントローラからなるサスペンション制御装置において、
前記コントローラは、前記ばね上上下加速度信号に基づき、ばね上制振信号を演算するばね上制振信号演算手段と、前記ばね下上下加速度信号に基づき、ばね下制振信号を演算するばね下制振信号演算手段と、前記ばね上制振信号とばね下制振信号とに基づき、前記制御信号を演算する目標減衰特性制御信号演算手段とからなり、さらに、前記ばね下制振信号演算手段は、前記ばね下制振信号がばね下上下速度の位相より進むように演算することを特徴とする。
請求項2記載のサスペンション制御装置の発明は、請求項1に記載のサスペンション制御装置において、ばね下制振信号演算手段は、前記ばね下上下加速度信号と前記ばね上上下加速度信号とから相対加速度を求め、該相対加速度からばね下制振信号演算することを特徴とする。
請求項3記載のサスペンション制御装置の発明は、請求項1に記載のサスペンション制御装置において、前記ばね下制振信号演算手段は、前記ばね下上下加速度信号からばね下共振周波数近傍の信号を通過させるフィルタ手段を有することを特徴とする。
請求項4記載のサスペンション制御装置の発明は、請求項1に記載のサスペンション制御装置において、前記ばね下制振信号演算手段は、信号の位相を調整する位相調整手段を有することを特徴とする。
請求項5記載のサスペンション制御装置の発明は、請求項1に記載のサスペンション制御装置において、前記ばね上制振信号演算手段は、前記ばね上上下加速度信号を積分し、ばね上絶対速度に比例した信号を演算することを特徴とすることを特徴とする。
請求項6記載のサスペンション制御装置の発明は、請求項1から5のいずれかに記載のサスペンション制御装置において、前記目標減衰特性演算手段は、ばね上制振信号とばね下制振信号との加算することにより前記制御信号を演算することを特徴とする。
請求項7記載のサスペンション制御装置の発明は、請求項1から5のいずれかに記載のサスペンション制御装置において、前記目標減衰特性演算手段は、ばね上制振信号とばね下制振信号にいずれかを選択し出力することにより前記制御信号を演算することを特徴とする。
請求項8記載のサスペンション制御装置の発明は、請求項1から7のいずれかに記載のサスペンション制御装置において、前記コントローラに、路面状態判定手段を設け、該路面状態判定手段の判定結果に応じて、ばね下制振信号を補正することを特徴とする。
請求項9記載のサスペンション制御装置の発明は、請求項8に記載のサスペンション制御装置において、路面状態判定手段の判定は、車両の前輪側のばね上上下加速度検出手段の検出信号に基づいて実施することを特徴とする。
請求項10記載のサスペンション制御装置の発明は、請求項9に記載のサスペンション制御装置において、前記前輪側のばね下上下加速度検出手段の検出信号に応じて、後輪側の減衰特性反転型ショックアブソーバの減衰特性を可変とすることを特徴とする。
請求項11記載のサスペンション制御装置の発明は、請求項3に記載のサスペンション制御装置において、フィルタのカットオフ周波数を調整可能としたことを特徴とする。
請求項12記載のサスペンション制御装置の発明は、請求項11に記載のサスペンション制御装置において、前記ばね下上下加速度検出手段の検出結果から前記カットオフ周波数を調整する調整部を設けたことを特徴とする。
請求項13記載のサスペンション制御装置の発明は、請求項1に記載のサスペンション制御装置において、前記ばね下上下加速度信号に制御ゲインをかけることによりばね下制振信号を得るように構成し、さらに前記制御ゲインを調整可能としたことを特徴とする。
請求項14記載のサスペンション制御装置の発明は、請求項13に記載のサスペンション制御装置において、前記ばね下上下加速度検出手段の検出結果から前記制御ゲインを調整する調整部を設けたことを特徴とする。
本発明によれば、減衰特性反転型ショックアブソーバの減衰特性の制御を、ばね下の上下速度に対して位相が90°進むばね下上下加速度検出手段の検出信号の内容を含む信号により行なうので、信号の遅れを補償してサスペンション制御を前倒して行うことが可能となり、ひいては、ばね下振動制御の制御効率の向上を図ることできる。
以下、本発明の第1実施の形態に係るサスペンション制御装置1を図1ないし図4に基づいて説明する。図1において、自動車2(車両)を構成する車体3(ばね上)と4個(図には一つのみを示す。)の車輪4側〔ばね下部材(車軸のショックアブソーバ取付けブラケット等)〕(ばね下)との間には、ばね5と、減衰特性を調整可能なショックアブソーバ6(減衰特性反転型ショックアブソーバ)と、が並列に介装されており、これらが車体3を支持している。ショックアブソーバ6内には移動可能にピストン7が収納され、ピストン7に連結したピストンロッド8が車体3に保持され、ショックアブソーバ6が車輪4側〔ショックアブソーバ取付けブラケット等〕に保持されている。
車体3には、車体3の絶対座標系に対する上下方向の加速度(ばね上上下加速度)〔以下、便宜上、ばね上加速度という。〕αuを検出するばね上加速度センサ9u(ばね上上下加速度検出手段)が取り付けられている。また、車輪4側には、車輪4側の絶対座標系に対する上下方向の加速度(ばね下上下加速度)〔以下、便宜上、ばね下加速度という。〕αdを検出するばね下加速度センサ9d(ばね下上下加速度検出手段)が取り付けられている。
ばね上加速度センサ9uが検出したばね上加速度αu(検出信号)及びばね下加速度センサ9dが検出したばね下加速度αd(検出信号)は、コントローラ10(制御手段)に供給される。
なお、ショックアブソーバ6及びばね5は、4個の車輪4に対応してそれぞれ4個設けられているが、便宜上そのうち一つのみを図示している。また、前輪側にばね上、ばね下加速度センサ9u,9dを1又は2組設け、後輪側にばね上、ばね下加速度センサ9u,9dを少なくとも1組設けるようにしているが、図1では、便宜上、そのうち1組のみを示している。11はアクチュエータであり、後述する制御信号Aを入力することにより作動してショックアブソーバ6に制御信号Aに応じた減衰力(目標減衰力)を発生させるようにしている。
ショックアブソーバ6は、図3に示すように、縮み側の減衰特性がソフトの場合、伸び側の減衰特性がハードからソフトの間で調整され、また、伸び側の減衰特性がソフトの場合、縮み側の減衰特性がソフトからハードの間で調整されるように構成され、縮み側の減衰特性と伸び側の減衰特性とが反転した特性を有するものとなっている〔伸びハード(H)/縮みソフト(S)又は伸びソフト(S)/縮みハード(H)をとる〕。ばね上加速度センサ9u、ばね下加速度センサ9d及びアクチュエータ11には、コントローラ10が接続されている。
コントローラ10は、ばね上加速度センサ9uが検出した車体3のばね上加速度αuを入力して、スカイフック指令信号Bを生成してこのスカイフック指令信号Bを出力するスカイフック制御演算部12(ばね上制振信号演算手段)と、ばね下加速度センサ9dが検出した車体3のばね下加速度αdを入力して、ばね下制振指令信号Cを生成してこのばね下制振指令信号Cを出力するばね下制振制御演算部13(ばね下制振信号演算手段)と、スカイフック指令信号B及びばね下制振指令信号Cに基づいて制御信号A〔ひいては目標減衰力〕を生成して、この制御信号Aをアクチュエータ11に出力し、ショックアブソーバ6の減衰力を調整する制御信号出力部14と、を備えている。
この場合、制御信号出力部14(目標減衰特性制御信号演算手段)は、スカイフック指令信号B及びばね下制振指令信号Cを加え合せて制御信号Aを生成し、この制御信号Aはアクチュエータ11に出力され、ショックアブソーバ6に制御信号Aに応じた減衰力を発生させる。
スカイフック制御演算部12は、図2に示すように、ばね上加速度センサ9uからばね上加速度αuを積分して上下方向の速度(絶対速度)Vを求める積分回路15と、速度Vに所定の大きさの制御ゲインKuを掛けて信号Dを求める増幅回路16と、増幅回路16が求めた信号Dに対応する大きさのスカイフック指令信号Bを求めこのスカイフック指令信号Bを制御信号出力部14に出力するスカイフック指令信号出力部17と、を備えている。
ばね下制振制御演算部13は、図2及び図6に示すように、ばね下加速度センサ9dが検出した車体3のばね下加速度αdを入力して、11Hz以下〔ばね上共振付近(1Hz付近)の周波数及びばね下共振付近(10〜11Hz)の周波数(ばね下暴れ)を含む〕の周波数成分を通過させるローパスフィルタ20(例えば、1次系のアナログローパスフィルタでカットオフ周波数11Hz)と、ローパスフィルタ20を通過する低周波成分の信号に制御ゲインKdを乗算することにより増幅してばね下制振指令信号Cを得て、このばね下制振指令信号Cを制御信号出力部14に出力する増幅回路21と、からなっている。
なお、上記では、カットオフ周波数を11Hzとしたが、この値は、車両により異なった設定となる。
この第1実施の形態では、ばね下加速度センサ9dが検出した車体3のばね下加速度αdから、ローパスフィルタ20によりノイズに関連する高周波成分(ばね下共振周波数以上の周波数で、例えば11Hzを超える大きさの周波数)が除去されて、ばね下制振指令信号Cが生成され、このばね下制振指令信号Cが制御信号出力部14に入力される。制御信号出力部14は、ばね下制振指令信号Cとスカイフック指令信号Bとについて、加算演算できるように信号変換した上で、加算処理して制御信号Aを得、この制御信号Aをアクチュエータ11に出力する。アクチュエータ11はショックアブソーバ6に制御信号Aに応じた減衰力を発生させる。
そして、制御信号Aは、ばね下加速度αdが反映されたものとなっており、速度信号に比して位相進みとなり、ばね下制振について応答性よく対処、すなわち、ばね下制振の制御効果を向上させることができる。
すなわち、本実施の形態では、ショックアブソーバ6の作動により、ばね下制振を図るようにしているが、ショックアブソーバ6は減衰特性が反転型であるため、行程毎に減衰特性を切換える〔H/S及びS/Hの切換〕必要がある。また、アクチュエータ11には応答性の遅れ(以下、作動遅れθdという。)が伴う。このため、仮にショックアブソーバ6の制御のために、図4に示すように、ばね下加速度αdを積分して得たばね下上下速度を用いた場合、実際に発生する減衰力(以下、上下速度による発生減衰力という。)G1は、前記作動遅れθd分遅れて発生し、ばね下制振の制御効果の低下を招く(正確な制御が抑制される)。ここで、本願発明者等は、本実施の形態に即して模擬装置を設け、この模擬装置を対象にしてアクチュエータの作動遅れθdを実測し、実際に発生する減衰力の発生遅れθdとして、約73°の値を得た。
これに対して、ばね下加速度αdはピストン7のスピード(速度)よりも90°位相が進む(前倒しになる)。そして、本実施の形態では、これを利用してばね下加速度αdをショックアブソーバ6の制御のために用いる。
ばね下加速度αdは、ピストン7のスピード(速度)、ひいてはばね下加速度αdを積分して得られるばね下上下速度よりも90°位相が進む。このため、ばね下加速度αdをショックアブソーバ6の制御のために用いた場合、減衰力(以下、上下加速度による発生減衰力という。)G2は、ばね下加速度αdに対しては作動遅れθd分遅れて発生するが、ピストン7のスピード(速度)〔ばね下上下速度〕に対する位相差(以下、対ピストン位相差という。)θpは、作動遅れθd分が進み90°から減算されてその値が(90°-θd)となる。このため、対ピストン位相差θpが極めて小さくなり、その分、制御効果の向上を図ることができる。例えば、上述した減衰力の発生遅れθdが73°である場合には、対ピストン位相差θpは17°であり、その値が極めて小さくなる。なお、位相差θpは、アクチュエータの応答性等の特性により異なるが、この場合、位相調整フィルタを設けてその時定数を調整することにより、より位相差を小さくするように調整することができる。
そして、本実施の形態では、ばね下加速度αdに基づいて得られるばね下制振指令信号Cを含む(内容が反映される。)ようにして制御信号Aを構成し、制御信号Aは、ばね下加速度αdが反映されたものとなっている。このため、本実施の形態に係るサスペンション制御装置1によれば、図4を用いて説明したことと同様にして、対ピストン位相差θpが極めて小さくなり、その分、ばね下制振に対する制御効果の向上を図ることができる。これにより、ばね下共振振動を適格に減衰させることができ、乗り心地の向上が図れ、車両の操縦安定性が向上する。
また、本実施の形態では、ローパスフィルタ20が11Hzを超える周波数成分を除いており、ノイズ等によりアクチュエータ11ひいてはショックアブソーバ6が制御されないので、制御の適正化が図れると共に、アクチュエータ11の耐久性を向上させることができる。
前記第1実施の形態では、制御信号出力部14は、スカイフック指令信号B及びばね下制振指令信号Cを加え合せて制御信号Aを生成する場合を例にしたが、これに代えて、図5に示す制御信号出力部14Aを用いてもよい。制御信号出力部14Aは、スカイフック指令信号B及びばね下制振指令信号Cを車両の状態に応じて切換えて何れかを選択し、選択した信号を制御信号Aとして用いるようにする。
また、図6に示すように、ばね下加速度αdとばね下制振制御演算部13との間に、相対加速度算出部25を設け、ばね上加速度αuからばね下加速度αdを減算して、相対加速度αsを算出し、ばね下制振制御演算部13が前記第1実施の形態のばね下加速度αdに代えて相対加速度αsを用いて、ばね下制振指令信号Cを出力するようにしている。
また、相対加速度算出部25については、図7に示すように、図5の制御信号出力部14Aと組合せるようにしてもよい。
前記ばね下制振制御演算部13に代えて、図8に示すばね下制振制御演算部13A、図9に示すばね下制振制御演算部13B、図10に示すばね下制振制御演算部13Cを用いるようにしてもよい。
ばね下制振制御演算部13Aは、図8に示すように、図2のローパスフィルタ20に代えて、10〜15Hzの高周波成分を通過させるハイパスフィルタ26を設けたことが図2のばね下制振制御演算部13と異なっている。
この例によれば、ばね上共振付近(1Hz付近)の信号成分が除去されるので、ばね上共振付近の信号成分によって制御しないように調整することが可能となり、スカイフックの制御効果の低下を抑制することができる。
ばね下制振制御演算部13Bは、図9に示すように、図2のローパスフィルタ20に代えて、位相進み・遅れ調整を行う位相進み・遅れ調整要素27を設け、ばね下加速度αd、相対加速度αsについて位相が相対速度に近くなるように調整を行うようにしてもよい。この例によれば、位相進み・遅れ調整要素27により、上記位相遅れの問題を解消し、制御の適正化を図ることができる。
ばね下制振制御演算部13Cは、図10に示すように、ローパスフィルタ20の後段に、図9のハイパスフィルタ26、及び位相進み・遅れ調整要素27を設けている。この例によれば、ローパスフィルタ20、ハイパスフィルタ26、位相進み・遅れ調整要素27の組合せにより、制御したい周波数成分(例えば10〜15Hz)のゲインKdと位相を同時に調整し、最適な制御信号Aを得ることができる。これにより、ばね下制振制御演算部13Cでは、ばね下共振振動を重点的に低減でき、ばね上制振制御演算部12との合わせた制御により、ばね上共振振動、ばね下共振振動の低減を同時に成立させることができる。
そして、従来から実施されていた制御においては、ばね下振動が激しい場合、伸び側の減衰力がある程度大きく、縮み側の減衰力が小さい図3の減衰力特性中のI1に固定するのみであったので、図12に示すように縮み行程の減衰力が小さくなった。これに対して、本実施の形態では、ばね下加速度センサ9dからの信号に応じて電流値を変化させるので、図11に示すように伸縮行程ともに発生する減衰力を大きくすることができ、これにより、ばね下振動を効果的に抑えることが可能となる。
次に、本発明の第2実施の形態に係るサスペンション制御装置1Aを図13ないし図19に基づいて説明する。なお、図1〜図12に示す部材と同等の部材に付いては同一の符号を用い、その説明は適宜省略する。
この第2実施の形態のコントローラ10Aは、図13に示すように、相対加速度算出部25と、ばね上加速度αuに基づいて路面状態(うねり路、普通路、悪路)を検出する路面判定部30と、路面判定部30が路面状態の判定に用いる路面判定マップ31を予め格納する路面判定マップ記憶部32と、を備え、路面判定部30は増幅回路21の制御ゲインKdの大きさを調整し、ばね下の制振信号を補正するようにしている。
また、ばね下制振制御演算部13Dは、前記ローパスフィルタ20、前記ハイパスフィルタ26及び増幅回路21を備え、さらに増幅回路21からの出力信号に対して変換処理を行ってばね下制振指令信号Cを得るばね下制振指令信号出力部33を備えている。
このコントローラ10Aは、図2のコントローラ10と同様に、スカイフック制御演算部12及び制御信号出力部14を有している。そして、制御信号出力部14は、スカイフック指令信号B及びばね下制振指令信号出力部33からのばね下制振指令信号Cを加え合せて、制御信号Aを生成し、アクチュエータ11に出力する。なお、スカイフック制御演算部12及び制御信号出力部14を備えない(すなわち、ばね下制振制御演算部13D側のみの信号を利用してサスペンション制御を行うようにする。)で、コントローラ10Aを構成してもよい(図17のばね下サスペンション装置iiを参照)。
路面判定マップ記憶部32の路面判定マップ31は、図14に示すように、加速度周波数が中〜高の範囲である場合に、その道路を悪路とし、加速度周波数が低〜中下の範囲で、かつ加速度振幅が中上〜大の範囲である場合に、その道路をうねり路とし、加速度周波数が低〜中の範囲で、前記うねり路を除いた範囲である場合に、その道路を普通路とする内容になっている。本実施の形態では、ばね上加速度センサ9uからのばね上加速度αu及び図14の路面判定マップ31に基づいて、走行路の状態を普通路、うねり路及び悪路の何れであるかを推定し、その走行路の状態に応じて増幅回路21の制御ゲインKdの大きさを調整するようにしている。
上記構成のコントローラ10Aは、図15に示すように車両のエンジン10の始動等により電力供給を受ける(ステップS1)と、まず初期設定を行なって(ステップS2)制御周期に達したか否かを判定する(ステップS3)。ステップS3では、制御周期に達したと判定するまで繰り返して制御周期に達したか否かを判定する。
ステップS3で制御周期に達したと判定すると、前回の制御周期で演算された内容をアクチュエータ11に出力してこれを駆動する(ステップS4)。続いて、LEDなどのその他のポートに対応する信号を出力する(ステップS5)。続いてステップS6でばね上、ばね下加速度センサ9u,9dなどから検出信号を読込む。次に、ばね上加速度センサ9uの検出信号を路面判定部30に入力して、路面判定を行う(ステップS7)。また、ステップS6の読込み情報に基づいて制御演算を実行する(ステップS8)。
ステップS7の路面判定演算では、図16のマップ選択制御を行う。
図16のマップ選択制御では、まず、悪路、うねり路フラグをクリアする(ステップS11)。次に、ステップS6で入力したばね上加速度センサ9uからの検出信号から悪路成分(周波数及び振幅)、うねり路成分(周波数及び振幅)を順次、抽出する(ステップS12,S13)。
続いて、次のステップS14で、悪路成分(周波数及び振幅)が図14で示される悪路を示す領域に入っているか否かを判定する。
ステップS14でYes(悪路を示す領域に入っている)と判定すると、悪路フラグをセットする(ステップS15)。
ステップS15の処理が終了するか、または、ステップS14でNoと判定すると、うねり路成分(周波数及び振幅)が図14で示されるうねり路を示す領域に入っているか否かを判定する(ステップS16)。
ステップS16でYes(うねり路を示す領域に入っている)と判定すると、うねり路フラグをセットする(ステップS17)。
ステップS17の処理が終了するか、または、ステップS16でNoと判定すると、うねり路フラグがセットされているか否かを判定する(ステップS18)。ステップS18でYesと判定すると、ステップS19でうねり路用設定をセットし、制御ゲインKd(ばね下制振パラメータ)を小さくする。
ステップS18でNoと判定すると、悪路フラグがセットされているか否かを判定する(ステップS20)。ステップS20でYesと判定すると、悪路路用設定をセットし、制御ゲインKd(ばね下制振パラメータ)を大きくする(ステップS21)。ステップS20でNoと判定すると、普通路用設定をセットし、制御ゲインKd(ばね下制振パラメータ)を中間の値にする(ステップS22)。
上述したように、ばね上加速度センサ9uの検出データに基づいて、路面状態ひいては車体状態を推定し、予め路面状態(普通路、うねり路、悪路)に対応して制御ゲインKdを定めるので、路面状態に応じて良好なばね上、ばね下制振効果を得ることができる。
なお、上述の実施の形態においては、ばね上加速度センサ9uの値を用いて路面状態を推定したが、これに限らず、ばね下加速度センサ9dの周波数特性から路面状態を推定しても良い。
本願発明者等は、第2実施の形態のサスペンション装置1A(図13に示すコントローラ10を有している。)、スカイフック制御演算部12(図2参照)のみを用いて構成されるサスペンション装置〔便宜上、スカイフックサスペンション装置という〕iii、第2実施の形態のサスペンション装置1Aからスカイフック制御を除いて構成されるサスペンション装置〔便宜上、ばね下サスペンション装置という〕ii、及びいわゆるパッシブ制御を行うサスペンション装置〔便宜上、パッシブサスペンション装置という〕iを対象にして、突起路走行時におけるばね上加速度αu、ばね下加速度αdの波形を計測し、図17に示す結果を得た。
そして、その結果により、第2実施の形態のサスペンション装置1Aによれば、路面状態が悪路であると判定した場合、制御ゲインKdを大きくすることから、ばね上加速度αu、ばね下加速度αdの収束時間が、パッシブサスペンション装置i又はスカイフックサスペンション装置iiiの場合に比べて短くなり、乗り心地が向上することを確認することができた。また、ばね下サスペンション装置iiも、第2実施の形態のサスペンション装置と同様に、良好な制御特性を有することを確認することができた。
第2実施の形態のサスペンション装置1Aでは、図16のステップS19でうねり路用設定をセットし、制御ゲインKd(ばね下制振パラメータ)を小さくするようにしているが、これは次の理由に基づくものである。この理由を図18及び図19に基づいて説明する。図18にうねり路を走行したときのばね上加速度αuについて、ばね下制振パラメータ大の場合(点線)と小の場合(実線)をそれぞれ示し、図19にばね上加速度変化率αu´について、ばね下制振パラメータ大の場合(点線)と小の場合(実線)をそれぞれ示す。
車両がうねりを下がりきり(図18のA部)、その後、うねりを上り始めた頃、車体(ばね上絶対速度)は、路面より少し遅れて(図18のB)、上向きに切り替わり、最小値付近の値となる(図18のB)。このとき、ばね下加速度αd(車輪4側)は、最大値付近であり、さらに、ショックアブソーバ6は縮み側で、ピストン速度も最大値付近となっている。
この図18のB付近で、ばね下制振パラメータ大の場合は、ばね下制振演算部13Bの値が大きく影響するので、ばね下加速度αd(車輪4側)が大きく、ショックアブソーバ6は縮み側ピストン速度も大きいので、大きな減衰力が発生する。
この結果、図18及び図19中Bの領域では、ばね上加速度αuが強く抑えられ、ばね上加速度変化率αu´は大きく変化し、大きな値をとる。このような、ばね上加速度変化率αu´の状態は、乗員に不安感等の不快感を与えることとなる。
次に、図18のB付近で、ばね下制振パラメータ小の場合は、スカイフック制御演算部12の値が大きく影響する。このとき、ばね上絶対速度は、上向きに切り替わり、最小値付近の値となるので、小さな減衰力となる。
この結果、図18及び図19中Bの領域では、ばね上加速度αuが抑えられず、大きくなるものの、ばね上加速度変化率αu´は小さく、変化も小さい。このような、ばね上加速度変化率αu´の状態は、乗員与える不安感等の不快感はばね下制振パラメータ大の場合と比べ、小さくなる。
よって、うねり路走行時には、制御ゲインKdを小さくし、また、ばね上による制御ゲインKuについては、大きくするようにしている。
上述したように、この第2実施の形態によれば、路面判定結果に応じてばね下制振パラメータ(制御ゲインKd)を調整することにより、乗員への不快感を低減させることができる。
次に、本発明の第3実施の形態に係るサスペンション制御装置1Bを図20ないし図26に基づいて説明する。
このサスペンション制御装置1Bは、図20及び図21に示すように、このサスペンション制御装置1Bを備える自動車2の車速を検出する車速センサ40を有し、検出した車速データをコントローラ10Bに入力するようにしている。コントローラ10Bは、前記車速データ及びこの自動車2のホイールベースに基づいて、前輪が路面の一地点を通過した時点から、後輪が前記一地点を通過するまでに要する時間(通過予想時間=ホイールベース/車速)を算出し、前輪が前記一地点を通過した時点から前記通過予想時間が経過した時点で、前記一地点の路面状況に対応した制御を、後輪側のショックアブソーバ6に対して行なうようにし、後輪側ひいては当該自動車2全体として良好なサスペンション制御を行ない、乗り心地の向上を図るようにしている。
コントローラ10Bは、図22に示すように、図15に比して、図15の路面判定処理ステップS7に代わる凸路判定処理ステップS7Aを設け、図15の制御演算実行処理ステップS8に代わる制御演算実行処理ステップS8Aを設けている。
ステップS7Aの凸路判定処理では、図23及び図24に示すように、まず、ばね下加速度αdが予め定めたしきい値以上であるか否かを判定する(ステップS31)。ステップS31でYesと判定すると、凸部フラッグがセットされているか否かを判定する(ステップS32)。ステップS32でNoと判定すると、車速及びホイールベースから通過予想時間を算出し(リヤ通過タイミング演算を行ない)、凸部フラグをセットし(ステップS33)、通過予想時間に対応した大きさのリヤタイマをセットする(ステップS34)。前記ステップS31で、Noと判定すると、凸部フラグをクリアする(ステップS35)。
ステップS32でYesの判定を行なうか、ステップS34の処理又はステップS35の処理が終了すると、リヤタイマの値が0であるか否かの判定を行なう(ステップS36)。ステップS36でNo(凸部を通過した時点からの経過時間が通過予想時間に達していない)と判定すると、リヤタイマの値から「1」を減算して(ステップS37)、メインルーチン(図22)に戻り、通過予想時間の経過まで上述した処理(ステップS1〜S37)を実行する。
ステップS36でYes(凸部を通過した時点からの経過時間が通過予想時間に達した)と判定すると、リヤ制御タイマから「1」を減算し(ステップS38)、リヤ制御タイマの値が0でないか否かの判定を行なう(ステップS39)。ステップS39でYes(リヤ制御タイマの値が0でない。)と判定すると、後輪側のショックアブソーバ6に、伸びミドル(M)/縮みS(ミドル:ハード(H)とソフト(S)の間の大きさの減衰力)の減衰力(リヤ減衰力)を発生させるように制御信号Aをアクチュエータ11に出力し(ステップS40)、メインルーチンに戻る。ステップS39でNo(リヤ制御タイマの値が0になっている。)と判定すると、ステップS40に進まずにメインルーチンに戻る。
コントローラ10Bが、上述した処理を行なうことにより、前輪が凸部を通過すると、前輪が凸部を通過した時点から通過予想時間(リヤタイマの値)経過後に、凸部に対応した制御を、後輪側のショックアブソーバ6に対して、リヤ制御タイマの設定値分の時間、実行する。
このため、自動車2の走行に対応して、適格に後輪側ひいては当該自動車2全体として良好なサスペンション制御を行ない、乗り心地の向上が図れるものになっている。
この第3実施の形態では自動車2が凸部を走行した際、上述したように後輪側のショックアブソーバ6にM/Sの減衰力を発生するようにしているが、この場合と、凸部走行時に後輪側のショックアブソーバ6にS/Sの減衰力を発生するようにした場合とについて、ばね上加速度αu、ばね下加速度αdを求め、それぞれ図25及び図26に示す結果を得た。そして、図25及び図26に示すように、この第3実施の形態(M/Sの減衰力を発生させる)では、S/Sの減衰力を発生させる場合に比して、振動の収束時間を大きく低減でき、この第3実施の形態により、良好なサスペンション制御を行えることを確認することができた。
また、前記第1、第2実施の形態では、前輪側にばね上、ばね下加速度センサ9u,9dを1又は2組設け、後輪側にばね上、ばね下加速度センサ9u,9dを少なくとも1組設けるようにしている。これに対して、この第3実施の形態は、後輪側のショックアブソーバ6の制御を、前輪側のばね上、ばね下加速度センサ9u,9dの検出信号に基づいて行なっており、ばね上、ばね下加速度センサ9u,9dは、前輪側にのみ設け、後輪側について設けていない。このため、後輪側にばね上、ばね下加速度センサ9u,9dを設けていない分、装置の簡易化を図ることができる。
次に、本発明の第4実施の形態に係るサスペンション制御装置1Cを図27ないし図33に基づいて説明する。
一般に、サスペンション制御装置では、タイヤやホイール交換等によりばね下重量が変化すると、制御効果が変化する。この第4実施の形態のサスペンション制御装置1Cでは、ばね下加速度αdからばね下共振周波数を推定し、ばね下共振周波数及びばね5のばね定数からばね下重量(ばね下共振周波数は、ばね下重量の増加により低下し、ばね定数の増加により増加する一定の関係がある。)を算出し、ばね下重量の変化時にも良好な制御効果を得るようにしている。
この第4実施の形態のサスペンション制御装置1Cのコントローラ10Bは、図27に示すように、ばね下加速度αdからばね下共振周波数を推定し、ばね下共振周波数及びばね5のばね定数からばね下重量(ばね下共振周波数は、ばね下重量の増加により低下し、ばね定数の増加により増加する一定の関係がある。)を算出するばね下重量算出部45と、ばね下重量に応じて、ローパスフィルタ20及びハイパスフィルタ26のカットオフ周波数及び制御ゲインKdを調整するパラメータ調整部46と、を備えている。
ここで、ばね下共振周波数の推定方法としては、例えば、ばね下加速度をマイコンによって周波数解析することで推定したり、ばね下加速度の波形のピーク・ピーク間の時間を計測することで推定したりしても良い。また、ばね下共振周波数を推定せずとも、その車両特有のばね下共振周波数とばね下重量を、ユーザやサービス工場の整備士がコントローラを介して入力するようにしても良い。
コントローラ10Bは、図28に示すように、図15の路面判定部30に代わるばね下制振判定処理ステップ(ステップS7B)を設けている。
ステップS7Bのばね下制振判定処理ステップでは、図29に示すように、まず、ばね下重量の推定を行ない(ステップS51)、続いて、ばね下重量が予め定めた設定値以上であるか否かを判定する(ステップS52)。ステップS52でNo(ばね下重量が設定値未満である。)と判定すると、ばね下重量通常設定値にセットし(ステップS53)、サブルーチンを終了する。
ステップS53では、ばね下重量通常設定値に対応させて、ローパスフィルタ20及びハイパスフィルタ26並びに増幅回路21に対してそれぞれ、図30に示すように、カットオフ周波数fcが15Hzにおける位相特性及びゲインKd(制御パラメータ)を用いる。
ステップS52でYes(ばね下重量が設定値以上である。)と判定すると、ばね下重量大設定値にセットし(ステップS54)、サブルーチンを終了する。
ステップS54では、ばね下重量大設定値に対応させて、ローパスフィルタ20及びハイパスフィルタ26並びに増幅回路21に対してそれぞれ、図30に示すように、カットオフ周波数fcが10Hz及びゲインKd(制御パラメータ)を用いる。
この第4実施の形態のサスペンション制御装置1Cを備えた自動車2が凸部を走行した際の、ばね下加速度αdを求めたところ、図31に示す結果を得ることができた。
すなわち、ばね下重量が大きいときには、上述したようにばね下重量大設定値にセットして、これに対応するカットオフ周波数fcが10Hz及びゲインKdを用い、減衰力の発生を行なわせることにより、図31の波形70で示す結果が得られた。
又、これと比較するために、ばね下重量が大きいときにも、ばね下重量通常設定値にセットした場合、ばね下重量が小さい場合について、ばね下加速度αdを求めると、それぞれ波形71、72が得られた。
図31の波形図から、第4実施の形態のサスペンション制御装置1Cによれば、ばね下重量が大きくなった場合にばね下重量大設定値にセットすることにより、ばね下重量大設定値にセットしない(ばね下重量通常設定値にセットする)場合に比べて、ばね下加速度αdの収束が良くなり、これに伴い接地性が向上することが明らかになった。
なお、本実施の形態によれば、ばね下共振周波数の変化に応じて2段階にパラメータを変えるようにしているが、本発明はこれに限られない。例えば、図32、図33に示すようにフィルタ(ローパスフィルタ20、ハイパスフィルタ26)のカットオフ周波数、ばね下制御ゲインKdを連続的に変えるようにしても良い。
本発明の第1実施の形態に係るサスペンション制御装置を模式的に示す図である。 図1のコントローラを模式的に示すブロック図である。 図1のショックアブソーバの電流-減衰力特性を示す図である。 図1の装置の原理を模式的に示す波形図である。 図2の制御信号出力部の他の例(切換方式)を示すブロック図である。 図2の制御信号出力部の他の例(相対加速度利用方式)を示すブロック図である。 図2の制御信号出力部の他の例(相対加速度利用及び切換方式)を示すブロック図である。 図2のばね下制振制御演算部の他の例(ハイパスフィルタ使用方式)を示すブロック図である。 図2のばね下制振制御演算部の他の例(位相進み・遅れ調整要素使用方式)を示すブロック図である。 図2のばね下制振制御演算部の他の例(ローパスフィルタ、ハイパスフィルタ及び位相進み・遅れ調整要素使用方式)を示すブロック図である。 図1のサスペンション制御装置により得られる減衰力を示す特性図である。 図11と対比して示される、従来装置により得られる減衰力を示す特性図である。 本発明の第2実施の形態に係るサスペンション制御装置のコントローラを示すブロック図である。 図13の記憶部に記憶される路面判定マップ31を示す図である。 図13のコントローラの制御内容を示すフローチャート(メインルーチン)である。 図15の路面判定部の処理内容を示すフローチャートである。 第2実施の形態のサスペンション制御装置(図13)及びこれと対比されるサスペンション制御装置の突起路走行時におけるばね上、ばね下加速度αdを示す波形図である。 うねり路を走行した場合に図13のサスペンション制御装置で得られるばね上加速度を示す波形図である。 うねり路を走行した場合に図13のサスペンション制御装置で得られるばね上加速度変化率を示す波形図である。 本発明の第3実施の形態に係るサスペンション制御装置を模式的に示す図である。 図20のサスペンション制御装置を用いた自動車を模式的に示す側面図である。 図20のコントローラの制御内容を示すフローチャート(メインルーチン)である。 図22の凸部判定部の処理内容を示すフローチャートである。 図20の装置による凸部判定タイミングを示す波形図である。 図20のサスペンション制御装置における凸部走行の際にM/S及びS/Sの減衰力とした場合に、それぞれ得られるばね上加速度の収束を示す波形図である。 図20のサスペンション制御装置における凸部走行の際にM/S及びS/Sの減衰力とした場合に、それぞれ得られるばね下加速度αdの収束を示す波形図である。 本発明の第4実施の形態に係るサスペンション制御装置のコントローラを示すブロック図である。 図27のコントローラの制御内容を示すフローチャート(メインルーチン)である。 図28のばね下制振判定部の処理内容を示すフローチャートである。 図27のローパスフィルタ及びハイパスフィルタの並びに増幅回路に対する、カットオフ周波数に対応した位相特性及びゲインKdを示す波形図である。 図27のサスペンション制御装置及びこれと対比される例におけるばね下加速度を示す図である。 図27のコントローラと異なるカットオフ周波数の調整例を示す図である。 図27のコントローラと異なるゲインの調整例を示す図である。
符号の説明
6…ショックアブソーバ(減衰特性反転型ショックアブソーバ)、9u,9d…ばね上、ばね下加速度センサ(ばね上、ばね下上下加速度検出手段)、10,10A,10B…コントローラ

Claims (14)

  1. 車両のばね上とばね下との間に設けられ、伸び側及び縮み側の減衰特性のうち、一方側の減衰特性がソフトのとき、他方側の減衰特性がソフトとハードの間で調整され、他方側の減衰特性がソフトのとき一方側の減衰特性がソフトとハードの間で調整される減衰特性反転型ショックアブソーバと、
    ばね上の上下加速度を検出し、ばね上上下加速度信号を出力するばね上上下加速度検出手段と、
    ばね下の上下加速度を検出し、ばね下上下加速度信号を出力するばね下上下加速度検出手段と、
    前記ばね上上下加速度信号と前記ばね下上下加速度信号とから前記減衰特性反転型ショックアブソーバを制御する制御信号を出力するコントローラからなるサスペンション制御装置において、
    前記コントローラは、
    前記ばね上上下加速度信号に基づき、ばね上制振信号を演算するばね上制振信号演算手段と、
    前記ばね下上下加速度信号に基づき、ばね下制振信号を演算するばね下制振信号演算手段と、
    前記ばね上制振信号とばね下制振信号とに基づき、前記制御信号を演算する目標減衰特性制御信号演算手段とからなり、
    さらに、前記ばね下制振信号演算手段は、前記ばね下制振信号がばね下上下速度の位相より進むように演算することを特徴とするサスペンション制御装置。
  2. 請求項1に記載のサスペンション制御装置において、ばね下制振信号演算手段は、前記ばね下上下加速度信号と前記ばね上上下加速度信号とから相対加速度を求め、該相対加速度からばね下制振信号演算することを特徴とするサスペンション制御装置。
  3. 請求項1に記載のサスペンション制御装置において、前記ばね下制振信号演算手段は、前記ばね下上下加速度信号からばね下共振周波数近傍の信号を通過させるフィルタ手段を有することを特徴とするサスペンション制御装置。
  4. 請求項1に記載のサスペンション制御装置において、前記ばね下制振信号演算手段は、信号の位相を調整する位相調整手段を有することを特徴とするサスペンション制御装置。
  5. 請求項1に記載のサスペンション制御装置において、前記ばね上制振信号演算手段は、前記ばね上上下加速度信号を積分し、ばね上絶対速度に比例した信号を演算することを特徴とすることを特徴とするサスペンション制御装置。
  6. 請求項1から5のいずれかに記載のサスペンション制御装置において、前記目標減衰特性演算手段は、ばね上制振信号とばね下制振信号との加算することにより前記制御信号を演算することを特徴とするサスペンション制御装置。
  7. 請求項1から5のいずれかに記載のサスペンション制御装置において、前記目標減衰特性演算手段は、ばね上制振信号とばね下制振信号にいずれかを選択し出力することにより前記制御信号を演算することを特徴とするサスペンション制御装置。
  8. 請求項1から7のいずれかに記載のサスペンション制御装置において、前記コントローラに、路面状態判定手段を設け、該路面状態判定手段の判定結果に応じて、ばね下制振信号を補正することを特徴とするサスペンション制御装置。
  9. 請求項8に記載のサスペンション制御装置において、路面状態判定手段の判定は、車両の前輪側のばね上上下加速度検出手段の検出信号に基づいて実施することを特徴とするサスペンション制御装置。
  10. 請求項9に記載のサスペンション制御装置において、前記前輪側のばね下上下加速度検出手段の検出信号に応じて、後輪側の減衰特性反転型ショックアブソーバの減衰特性を可変とすることを特徴とするサスペンション制御装置。
  11. 請求項3に記載のサスペンション制御装置において、フィルタのカットオフ周波数を調整可能としたことを特徴とするサスペンション制御装置。
  12. 請求項11に記載のサスペンション制御装置において、前記ばね下上下加速度検出手段の検出結果から前記カットオフ周波数を調整する調整部を設けたことを特徴とするサスペンション制御装置。
  13. 請求項1に記載のサスペンション制御装置において、前記ばね下上下加速度信号に制御ゲインをかけることによりばね下制振信号を得るように構成し、さらに前記制御ゲインを調整可能としたことを特徴とするサスペンション制御装置。
  14. 請求項13に記載のサスペンション制御装置において、前記ばね下上下加速度検出手段の検出結果から前記制御ゲインを調整する調整部を設けたことを特徴とするサスペンション制御装置。

JP2005034517A 2004-02-12 2005-02-10 サスペンション制御装置 Pending JP2005255152A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034517A JP2005255152A (ja) 2004-02-12 2005-02-10 サスペンション制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004034494 2004-02-12
JP2005034517A JP2005255152A (ja) 2004-02-12 2005-02-10 サスペンション制御装置

Publications (1)

Publication Number Publication Date
JP2005255152A true JP2005255152A (ja) 2005-09-22

Family

ID=35081291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034517A Pending JP2005255152A (ja) 2004-02-12 2005-02-10 サスペンション制御装置

Country Status (1)

Country Link
JP (1) JP2005255152A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023475A (ja) * 2007-07-19 2009-02-05 Kayaba Ind Co Ltd 鉄道車両のサスペンション制御装置
JP2009522169A (ja) * 2006-01-10 2009-06-11 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト 車体の少なくとも1つの運動状態を求める方法
JP2009132237A (ja) * 2007-11-29 2009-06-18 Toyota Motor Corp サスペンションシステム
JP2009214715A (ja) * 2008-03-11 2009-09-24 Honda Motor Co Ltd 減衰力可変ダンパの制御装置および制御方法
WO2013115169A1 (ja) * 2012-01-31 2013-08-08 日産自動車株式会社 車両の制御装置及び車両の制御方法
KR101416468B1 (ko) 2008-10-24 2014-07-08 현대모비스 주식회사 자동차 가변제어 댐퍼의 제어방법
CN104755345A (zh) * 2014-03-19 2015-07-01 株式会社小松制作所 路面状态判定方法、路面状态输出方法、路面状态判定装置以及路面状态输出装置
WO2016158904A1 (ja) * 2015-03-31 2016-10-06 Kyb株式会社 サスペンション振動情報推定装置
JP2020085665A (ja) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 情報取得装置、情報取得方法、プログラム
KR20200069450A (ko) 2018-12-06 2020-06-17 현대자동차주식회사 액티브 서스펜션 제어유닛 및 액티브 서스펜션 제어방법
JP2020152293A (ja) * 2019-03-22 2020-09-24 Kyb株式会社 サスペンション装置
CN112848832A (zh) * 2019-11-28 2021-05-28 现代自动车株式会社 车辆集成控制方法和车辆集成控制系统
WO2021192779A1 (ja) * 2020-03-27 2021-09-30 日立Astemo株式会社 緩衝器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166715A (ja) * 1985-01-18 1986-07-28 Toyota Motor Corp 後輪のサスペンシヨン制御装置
JPH01199031A (ja) * 1988-02-02 1989-08-10 Bridgestone Corp 防振装置の作動制御装置
JPH08216648A (ja) * 1995-02-20 1996-08-27 Unisia Jecs Corp 車両懸架装置
JPH08310214A (ja) * 1995-05-16 1996-11-26 Nissan Motor Co Ltd 車両のサスペンション制御装置
JPH09226338A (ja) * 1996-02-29 1997-09-02 Unisia Jecs Corp 車両懸架装置
JPH10329522A (ja) * 1997-05-29 1998-12-15 Unisia Jecs Corp 車両懸架装置
JPH1178467A (ja) * 1997-08-29 1999-03-23 Tokico Ltd サスペンション制御装置
JPH11321269A (ja) * 1998-05-20 1999-11-24 Isuzu Motors Ltd 懸架機構の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166715A (ja) * 1985-01-18 1986-07-28 Toyota Motor Corp 後輪のサスペンシヨン制御装置
JPH01199031A (ja) * 1988-02-02 1989-08-10 Bridgestone Corp 防振装置の作動制御装置
JPH08216648A (ja) * 1995-02-20 1996-08-27 Unisia Jecs Corp 車両懸架装置
JPH08310214A (ja) * 1995-05-16 1996-11-26 Nissan Motor Co Ltd 車両のサスペンション制御装置
JPH09226338A (ja) * 1996-02-29 1997-09-02 Unisia Jecs Corp 車両懸架装置
JPH10329522A (ja) * 1997-05-29 1998-12-15 Unisia Jecs Corp 車両懸架装置
JPH1178467A (ja) * 1997-08-29 1999-03-23 Tokico Ltd サスペンション制御装置
JPH11321269A (ja) * 1998-05-20 1999-11-24 Isuzu Motors Ltd 懸架機構の制御装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522169A (ja) * 2006-01-10 2009-06-11 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト 車体の少なくとも1つの運動状態を求める方法
US8428807B2 (en) 2006-01-10 2013-04-23 Zf Friedrichshafen Ag Method for determining at least one displacement state of a vehicle body
JP2009023475A (ja) * 2007-07-19 2009-02-05 Kayaba Ind Co Ltd 鉄道車両のサスペンション制御装置
JP2009132237A (ja) * 2007-11-29 2009-06-18 Toyota Motor Corp サスペンションシステム
US8265825B2 (en) 2007-11-29 2012-09-11 Toyota Jidosha Kabushiki Kaisha Suspension system
JP2009214715A (ja) * 2008-03-11 2009-09-24 Honda Motor Co Ltd 減衰力可変ダンパの制御装置および制御方法
KR101416468B1 (ko) 2008-10-24 2014-07-08 현대모비스 주식회사 자동차 가변제어 댐퍼의 제어방법
WO2013115169A1 (ja) * 2012-01-31 2013-08-08 日産自動車株式会社 車両の制御装置及び車両の制御方法
JPWO2015140966A1 (ja) * 2014-03-19 2017-04-06 株式会社小松製作所 路面状態判定方法、路面状態出力方法、路面状態判定装置および路面状態出力装置
CN104755345A (zh) * 2014-03-19 2015-07-01 株式会社小松制作所 路面状态判定方法、路面状态输出方法、路面状态判定装置以及路面状态输出装置
US9752289B2 (en) 2014-03-19 2017-09-05 Komatsu Ltd. Road surface condition determining method, road surface condition outputting method, road surface condition determining device and road surface condition output equipment
CN104755345B (zh) * 2014-03-19 2019-04-19 株式会社小松制作所 路面状态判定方法及装置、路面状态输出方法及装置
WO2015140966A1 (ja) * 2014-03-19 2015-09-24 株式会社小松製作所 路面状態判定方法、路面状態出力方法、路面状態判定装置および路面状態出力装置
WO2016158904A1 (ja) * 2015-03-31 2016-10-06 Kyb株式会社 サスペンション振動情報推定装置
JP2016190621A (ja) * 2015-03-31 2016-11-10 Kyb株式会社 サスペンション振動情報推定装置
JP2020085665A (ja) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 情報取得装置、情報取得方法、プログラム
JP7188013B2 (ja) 2018-11-26 2022-12-13 トヨタ自動車株式会社 情報取得装置、情報取得方法、プログラム
US11052718B2 (en) 2018-12-06 2021-07-06 Hyundai Motors Company Active suspension control unit and method
KR20200069450A (ko) 2018-12-06 2020-06-17 현대자동차주식회사 액티브 서스펜션 제어유닛 및 액티브 서스펜션 제어방법
JP2020152293A (ja) * 2019-03-22 2020-09-24 Kyb株式会社 サスペンション装置
JP7194056B2 (ja) 2019-03-22 2022-12-21 Kyb株式会社 サスペンション装置
CN112848832A (zh) * 2019-11-28 2021-05-28 现代自动车株式会社 车辆集成控制方法和车辆集成控制系统
CN112848832B (zh) * 2019-11-28 2024-03-22 现代自动车株式会社 车辆集成控制方法和车辆集成控制系统
WO2021192779A1 (ja) * 2020-03-27 2021-09-30 日立Astemo株式会社 緩衝器
KR20220131558A (ko) 2020-03-27 2022-09-28 히다치 아스테모 가부시키가이샤 완충기
JP7324934B2 (ja) 2020-03-27 2023-08-10 日立Astemo株式会社 緩衝器

Similar Documents

Publication Publication Date Title
JP2005255152A (ja) サスペンション制御装置
US7333882B2 (en) Suspension control apparatus
JP4972440B2 (ja) 減衰力可変ダンパの制御装置
US6701235B2 (en) Suspension control system
JP4200404B2 (ja) サスペンション制御装置
JP5158333B2 (ja) サスペンション制御装置
JP4732061B2 (ja) サスペンションの制御装置
KR20190099487A (ko) 차량 거동 제어 장치
US9963006B2 (en) Damper control device
JP2005153875A (ja) 電子制御懸架装置及び減衰力制御方法
JPS63251318A (ja) 自動車の走行状況適応サスペンシヨン制御方式
JPH1067215A (ja) 減衰力発生装置のための制御装置
JPS6274703A (ja) 車両のサスペンシヨン制御装置
JP4648125B2 (ja) 可変減衰力ダンパの制御装置
JPH10119528A (ja) 減衰力発生装置のための制御装置
JPH04201710A (ja) サスペンション装置
JP2007203831A (ja) サスペンション制御装置
JP2008247261A (ja) サスペンション制御装置
JP2002321513A (ja) サスペンション制御装置
JP2845029B2 (ja) サスペンション制御装置
JP2003104024A (ja) サスペンション制御装置
JP2013049394A (ja) サスペンション制御装置
JP2008247357A (ja) サスペンション制御装置
JP2006327434A (ja) サスペンション制御装置
JP4435303B2 (ja) 減衰力可変ダンパの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080128

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080201

A711 Notification of change in applicant

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A977 Report on retrieval

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110511

Free format text: JAPANESE INTERMEDIATE CODE: A02