JP2004266009A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2004266009A
JP2004266009A JP2003053184A JP2003053184A JP2004266009A JP 2004266009 A JP2004266009 A JP 2004266009A JP 2003053184 A JP2003053184 A JP 2003053184A JP 2003053184 A JP2003053184 A JP 2003053184A JP 2004266009 A JP2004266009 A JP 2004266009A
Authority
JP
Japan
Prior art keywords
film
dielectric film
dielectric
capacitor
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053184A
Other languages
English (en)
Other versions
JP3822569B2 (ja
Inventor
Masahiro Kiyotoshi
正弘 清利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003053184A priority Critical patent/JP3822569B2/ja
Priority to US10/653,209 priority patent/US6891218B2/en
Priority to TW093105148A priority patent/TWI240298B/zh
Priority to CNB2004100060973A priority patent/CN100379000C/zh
Publication of JP2004266009A publication Critical patent/JP2004266009A/ja
Priority to US11/074,656 priority patent/US7202126B2/en
Application granted granted Critical
Publication of JP3822569B2 publication Critical patent/JP3822569B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】容量密度の増加を容易に図れるMIMキャパシタを実現すること。
【解決手段】MIMキャパシタは、下部電極1と、下部電極1の上方に設けられ、タンタルオキサイドまたはニオブオキサイドを主成分とし、中央部に凸部を含む第1の誘電体膜2と、第1の誘電体膜2の凸部の上方に設けられた上部電極3と、下部電極1と第1の誘電体膜2との間に設けられ、第1の誘電体膜2よりも誘電率が小さい第2の誘電体膜4と、上部電極3と第1の誘電体膜2の凸部との間に設けられ、第1の誘電体膜2よりも誘電率が小さい第3の誘電体膜5とを備えている。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、キャパシタ、特にMIM(Metal Insulator Metal)キャパシタを含む半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
通信技術の発達に伴い、近年、多くのパーソナルコンピューター(PC)や携帯情報機器(PDA)がネットワークに接続されて使用されている。今後は、多くの家庭電化製品(ビデオデッキ、冷蔵庫、エアコンなど)も、ネットワークに接続されて使用されることが予測される。
【0003】
このような多数の機器でネットワークを形成する場合、特に一般家庭内においては、オフィス等で行われている個々の機器間にLANケーブルを配線してネットワークを構成する方法は適しておらず、無線を利用したワイアレス接続が今後の主流となると考えられる。したがって、今後は殆どのLSIチップにRF通信機能が付加されることが考えられる。
【0004】
この種のLSIは従来より複数のチップで構成されている。例えば、RFアナログデバイス(SiGe−BiCMOSなど)のチップとCMOSロジックデバイスのチップとで構成されている。携帯情報機器等では小型化が重視されているため、上記LSIはRF混載LSIによる小型化が求められている。RF混載LSIでは、RFアナログデバイスとCMOSロジックデバイスとがワンチップ化されている。
【0005】
RFアナログデバイスとCMOSロジックデバイスとをワンチップ化するためには、両デバイスの製造プロセスの統合を図る必要がある。RFアナログデバイスは、抵抗、インダクタンス、キャパシタなどで構成される。CMOSロジックデバイスは、複数のMOSトランジスタから構成される。したがって、RF混載LSIを実現するには、例えば、CMOSロジックプロセスをベースにして、これにRFアナログデバイスのプロセスを統合して、新規なRF−CMOSプロセスを開発する必要が生じる。
【0006】
両プロセスの統合を図るに当たって、最初に問題となるのがMIMキャパシタの構造とそのプロセスである。その理由は、以下の通りである。
【0007】
RF混載LSI中のRFアナログデバイス用のMIMキャパシタの特徴の一つとして、キャパシタ面積が数百平方ミクロンと大きいことがあげられる。そのため、キャパシタ面積の削減、すなわち、単位面積あたりのキャパシタ容量の増加は、チップ面積の削減化および回路のQ値の増加にとって非常に重要である。
【0008】
また、RFアナログデバイス用のMIMキャパシタには良好なペア性が要求される。何故なら、RFアナログ回路は、対称的な回路を用いて出力の差分をとる演算回路を含み、該演算回路に対で使用されるキャパシタは容量、応答特性が非常に高い精度で一致していることが必要となるからである。
【0009】
面積が大きいMIMキャパシタの容量密度を高めるために、従来よりDRAMのキャパシタで用いられている、電極を3次元化して側面積を大きくするという手法は有効ではない。その理由は、以下の通りである。
【0010】
DRAMのキャパシタは上から見た面積(S1)が非常に小さいので、電極を3次元化して側面積(S2)を大きくした場合、S2/S1の比が非常に高くなる。そのため、DRAMのキャパシタの場合、電極を3次元化することで、容量密度を容易に増加することができる。
【0011】
一方、RF混載LSIに使用されるキャパシタは、DRAMのキャパシタに比べて、S1が非常に大きいので、多少S2を大きくしても、S2/S1の比はさほど大きくならない。単に、電極を柱状に加工して側面積を大きくすることで、S2/S1の比を十分に大きくするためには、数十ミクロンの高さの電極が必要になる。しかし、このような高い電極は、非現実的である。
【0012】
このような高い電極を用いずにS2を大きくする方法として、電極の側面に多数の微細な凹凸を形成することが知られている。しかし、このような複雑な形状を有する電極を用いた場合、良好なペア性を有するMIMキャパシタを実現することは困難である。
【0013】
電極を三次元化せずに容量密度を増加させる他の手法として、MIMキャパシタの誘電体膜の材料として、従来より使用されているシリコンナイトライドに換えて、タンタルオキサイド(Ta)、ニオブオキサイド(Nb)あるいはチタン酸バリウム等の高誘電率材料を使用することが考えられる(例えば、特許文献1,2)。しかしながら、この種の誘電体材料を用いた場合、本発明者は後述するような問題があることを見出している。
【0014】
【特許文献1】
特開2000−183289号公報
【0015】
【特許文献2】
特開2000−208720号公報
【0016】
【発明が解決しようとする課題】
上述の如く、RF混載LSI中のRFアナログデバイス用のMIMキャパシタの容量密度を増加するための手法として、電極を3次元化する、あるいは電極の側面に多数の微細な凹凸を形成することが知られている。しかし、前者の手法は数十ミクロンの高さの電極が必要になるので非現実的であり、後者の手法は良好なペア性を実現することは困難である。
【0017】
本発明は、上記事情を考慮してなされたもので、その目的とするところは、MIMキャパシタの容量密度の増加を容易に図れる半導体装置およびその製造方法を提供することにある。
【0018】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば下記の通りである。
【0019】
すなわち、上記の目的を達成するために、本発明に係る半導体装置は、半導体基板と、前記半導体基板の上方に設けられたキャパシタとを備え、前記キャパシタは、金属を含む下部電極と、前記下部電極の上方に設けられ、タンタルオキサイドまたはニオブオキサイドを含み、上面に凸部を含む第1の誘電体膜と、前記第1の誘電体膜の前記凸部の上方に設けられ、金属を含む上部電極と、前記下部電極と前記第1の誘電体膜との間に設けられ、前記第1の誘電体膜よりも誘電率が小さい第2の誘電体膜と、前記第1の誘電体膜の前記凸部と前記上部電極との間に設けられ、前記第1の誘電体膜よりも誘電率が小さい第3の誘電体膜とを備えていることを特徴とする。
【0020】
また、本発明に係る半導体装置の製造方法は、半導体基板を用意する工程と、前記半導体基板の上方に、金属を含む下部電極、積層誘電体膜および前記下部電極よりも小さく、金属を含む上部電極を含むキャパシタを形成する工程とを有し、前記キャパシタを形成する工程は、前記下部電極となる第1の導電膜を形成する工程と、前記第1の導電膜上に、タンタルオキサイドまたはニオブオキサイドを含む第1の誘電体膜と、前記第1の誘電体膜よりも誘電率が小さい第2および第3の誘電体膜とを形成する工程であって、かつ、これらの誘電体膜を前記第2の誘電体膜、前記第1の誘電体膜、前記第3の誘電体膜の順で前記第1の導電膜上に形成する工程と、前記第3の誘電体膜上に前記上部電極となる第2の導電膜を形成する工程と、前記第2の導電膜をエッチングして、前記上部電極を形成する工程と、前記第3の誘電体膜をエッチングし、前記上部電極の側面よりも外側の部分の前記第3の誘電体膜を除去する工程と、前記第1の誘電体膜をエッチングし、前記第1の誘電体膜の上面から前記第1の誘電体膜の途中の深さまでの部分であって、かつ、前記上部電極の側面よりも外側の部分の前記第1の誘電体膜を除去する工程とを有することを特徴とする。
【0021】
本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記載および添付図面によって明らかになるであろう。
【0022】
【発明の実施の形態】
先ず、本発明の基礎となった発明者の研究結果および検討結果等について説明する。
【0023】
前述したとおり、電極を三次元化せずに容量密度を増加させる手法として、MIMキャパシタの誘電体膜の材料として、タンタルオキサイド、ニオブオキサイド等の高誘電率材料を使用することが考えられる。
【0024】
特に、タンタルオキサイドは、低リーク電流かつ高容量密度のキャパシタを実現するためには最適の材料と考えられる。その理由の一つとして、タンタルオキサイドは非晶質の状態でも30程度の高誘電率を発現することがあげられる。他の理由としては、タンタルオキサイドの結晶化温度が700℃前後と高いこと(高誘電率材料は一般に結晶化するとリーク電流が増大する。)があげられる。
【0025】
ところが、本発明者が鋭意検討したところによると、タンタルオキサイド膜あるいはニオブオキサイド膜を用いたキャパシタは、PECVD(Plasma Enhanced Chemical Vapor Deposition:プラズマCVD)法により形成したシリコン窒化膜(PECVD−SiN膜)を用いた従来のキャパシタに比べ、ペア性が悪いことがわかった。
【0026】
そこで、原因を究明した結果、以下の原因がわかった。
【0027】
キャパシタに電圧が印加され、キャパシタに電荷が蓄積されると、図1(a)に示すように、上部電極93から誘電体膜92を介して下部電極91に至る電気力線94の殆どは、上部電極93と下部電極91を最短でつなぐ直線となるが、キャパシタの外縁部では電気力線94がキャパシタの外部にはみ出す。このような電気力線94のはみ出しの度合いは、一般に、下部電極91が上部電極93よりも大きいRFアナログ回路のMIMキャパシタの方が、上部電極と下部電極のサイズがほぼ等しいキャパシタよりも大きい。
【0028】
このようなキャパシタの外部にはみ出した電気力線94は、キャパシタ周辺の電荷や電界、磁界の影響を受ける。したがって、キャパシタの外部にはみ出した電気力線94は、キャパシタの応答に影響を与えることになる。
【0029】
MIMキャパシタは数百ミクロンの外周をもつので、周辺から受ける影響も大きい。アナログ回路に用いられるMIMキャパシタは、デジタル回路に用いられているDRAMキャパシタと違い、線形性やペア性等の応答性が求められる。
【0030】
そのため、この種のMIMキャパシタは、キャパシタの外部にはみ出した電気力線とキャパシタ周辺の電界、磁界とのクロストークの影響を大きく受け、さらに上記MIMキャパシタを用いたアナログ回路の特性も上記クロストークの影響を大きく受けることになる。
【0031】
勿論、このような外部からの擾乱に関する問題は、誘電体膜としてシリコン窒化膜を用いた従来より使用されているMIMキャパシタにも存在する。
【0032】
しかし、タンタルオキサイドやアルミナ(アルミニウムオキサイド)などの高誘電率材料をMIMキャパシタの誘電体膜の材料として用いた場合、図1(b)に示すように、電気力線94はより大きくキャパシタの外部にはみ出す(電気力線94の密度は電界の強さを表す。)。図1(b)には、キャパシタの外部の電界が図1(a)のそれと同じ強度になるところまでの電気力線94が示されている。
【0033】
ここで、図2のキャパシタを被覆する層間絶縁膜(不図示)は、通常、SiOベースの絶縁膜で、その誘電率は3〜4程度である。そのため、誘電体膜92の誘電率は、上記層間絶縁膜の誘電率に比べて大きい。
【0034】
電気力線94の密度は、電気力線94の方向に垂直な方向には連続的に変化する。電気力線94の密度が変化できるのは、上部電極93および下部電極91の表面、もしくは異なる誘電率をもつ材料同士の界面(上部電極93/誘電体膜92、誘電体膜92/下部電極91)のみである。
【0035】
したがって、タンタルオキサイド等の高誘電体材料を用いた場合、電界の連続性から、電界、すなわち電気力線94はキャパシタの外部にはみ出しやすくなるので、図1(b)の誘電体膜92に入射する付近の電気力線94の密度は非常に高くなる。これは、高誘電率膜を用いたMIMキャパシタのペア性の悪化を招く。
【0036】
タンタルオキサイドやニオブオキサイドを誘電体材料に用いたMIMキャパシタにおいて、電極材料に白金を用いた場合には、非常に低いリーク電流が得られる。
【0037】
しかし、この種のMIMキャパシタにおいて、電極材料にチタンナイトライドまたはタンタルナイトライドを用いた場合には、上位機電極材料によってタンタルオキサイドやニオブオキサイドが還元されてしまうために、低リーク電流の実現が困難になるという新たな問題が生じることが明らかになった。
【0038】
以下、図面を参照しながら、上記問題を解決できる本発明の実施形態に係る高容量密度のMIMキャパシタについて説明する。
【0039】
(第1の実施形態)
図2に、高誘電体材料としてタンタルオキサイドまたはニオブオキサイドを用いた、本発明の第1の実施形態に係るMIMキャパシタの構造および電気力線を示す。図2には、MIMキャパシタの片側半分しか示されていない。また、MIMキャパシタは、シリコン基板の上方に形成され、シリコン基板とMIMキャパシタとの間には、例えば、図示しない多層配線層、半導体素子などが形成されている。
【0040】
本実施形態のMIMキャパシタは、下部電極1と、下部電極1の上方に設けられ、中央部に凸部を含む第1の誘電体膜2と、第1の誘電体膜2の凸部の上方に設けられた上部電極3と、下部電極1と第1の誘電体膜2との間に設けられ、第1の誘電体膜2よりも誘電率が小さい第2の誘電体膜4と、上部電極3と第1の誘電体膜2の凸部との間に設けられ、第1の誘電体膜よりも誘電率が小さい第3の誘電体膜5を備えている。
【0041】
下部電極1と上部電極3の材料は、例えば、チタンナイトライドまたはタンタルナイトライドである。第1の誘電体膜2の材料は、例えば、タンタルオキサイドまたはニオブオキサイド(いずれも誘電率は約30)である。
【0042】
下部電極1、上部電極3の材料がチタンナイトライドまたはタンタルナイトライドの場合、第1および第3の誘電体膜2,4の材料は、アルミナ(Al)、シリコンナイトライド、ハフニウムオキサイドおよびジルコニウムオキサイドの少なくとも一つであることが好ましい。その理由は以下の通りである。
【0043】
上記誘電体材料は、チタンナイトライドおよびタンタルナイトライドと反応しない。そのため、上記誘電体材料を用いた場合、下部電極1と第2の誘電体膜4との界面、上部電極3と第3の誘電体膜5との界面に良好なショットキー障壁を形成することができる。これにより、リーク電流の低減化を図れる。
【0044】
また、上記誘電体材料の誘電率は7.5〜20であり、タンタルオキサイドおよびニオブオキサイドの誘電率よりも低く、SiO系の層間絶縁膜の誘電率(3〜3.9)よりも大きい。そのため、本実施形態の効果を実現するのに、適している。
【0045】
このような構造を有するMIMキャパシタは、例えば、下部電極1(第1の導電膜)上に、第2の誘電体膜4、第1の誘電体膜2、第3の誘電体膜5、上部電極3(第2の導電膜)をこれらの順で堆積し、その後、上部電極3、第3の誘電体膜5、第1の誘電体膜2をこれらの順でエッチングすることにより得られる。
【0046】
このとき、上部電極3および第3の誘電体膜5の周縁部は全てエッチングにより除去されるが、第1の誘電体膜2の周辺部は途中の深さまでしかエッチングにより除去されない。
【0047】
また、第2の誘電体膜4は全くエッチングされない。そのため、上部電極3、第3の誘電体膜5および第1の誘電体膜2のエッチング、特に第1の誘電体膜2のエッチングにより生じる第2の誘電体膜4の損傷に起因するリーク電流の増加を防止することができる。
【0048】
リーク電流の低減のためには、上部電極3を下部電極1よりもなるべく小さくし、上部電極3の側面と下部電極1の側面との間の距離をより大きくすることが有効である。上部電極3を小さくすると電荷の蓄積量が減るが、高誘電体材料としてタンタルオキサイドまたはニオブオキサイドを用いることで、必要な電荷の蓄積量を確保することが可能である。しかも、本実施形態によれば、以下に説明するように、タンタルオキサイドまたはニオブオキサイドを用いても、ペア性の劣化は抑制される。
【0049】
本実施形態のMIMキャパシタは、図2に示すように、図1(b)に示したMIMキャパシタに比べて、MIMキャパシタの外部にはみだす電気力線6が抑制される。したがって、電気力線6と、MIMキャパシタ周辺の電界または磁界とのクロストークは抑制される。上記電界または磁界は、例えば、MIMキャパシタ周辺の配線等によって生じる。
【0050】
図2に示された電気力線6の分布(電界分布)は、第1の誘電体膜2の材料にタンタルオキサイド、第1および第3の誘電体膜2,4の材料にアルミナを用いた場合のものである。
【0051】
MIMキャパシタの外部にはみだす電気力線6が抑制された理由は、電界はMIMキャパシタ側面で連続性をもたなければならず(図2では電気力線6の密度が等しくならなければならない。)、その結果、電気力線6が、第2の誘電体膜4中に閉じ込められるようになるからである。
【0052】
また、本実施形態の場合、上部電極3と第1の誘電体膜2との間に、第1の誘電体膜2の誘電率の半分程度以下(<15)の第3の誘電体膜5が設けられているので、上部電極3の近傍の誘電率が減少される。
【0053】
その結果、電界の連続性から、上部電極3が第1の誘電体膜2上に直接設けられている場合(図1(b))に比べて、第1の誘電体膜2を通る電気力線6のしみ出しが抑制される(図2)。これもMIMキャパシタの外部にはみだす電気力線6(電界のしみ出し)が抑制される理由の一つである。
【0054】
ただし、第1の誘電体膜2よりも誘電率が低い第3の誘電体膜5を、上部電極3と第1の誘電体膜2との間に設けることは、MIMキャパシタの容量の観点からは損なことであるので、第3の誘電体膜5の膜厚は薄いことが好ましい。
【0055】
また、図3に示すように、装置中のMIMキャパシタ上には、一般的に、第1の誘電体膜2よりも誘電率が小さい層間絶縁膜7が堆積される。その結果、第1の誘電体膜2の凸部の周辺はそれよりも誘電率が小さい層間絶縁膜(第4の誘電体膜)39で囲まれる。これにより、上部電極3の近傍の誘電率が小さくなり、キャパシタの外部にはみ出す電気力線(電界のしみ出し)は抑制される。
【0056】
このように本実施形態によれば、誘電体膜としてタンタルオキサイド膜やニオブオキサイド膜を用いても、ペア性を劣化させる原因であるMIMキャパシタの外部にはみだす電気力線6(電界のしみ出し)を抑制できる。
【0057】
したがって、本実施形態によれば、高ペア性、低リーク電流および高容量密度のMIMキャパシタを実現できるようになる。これにより、今後あらゆる機器に搭載されると予想されるRF混載LSIチップの面積を小さくでき、ひいては上記機器の小型化を実現することが可能になる。
【0058】
なお、本実施形態では、第2の誘電体膜4は、下部電極1および第2の誘電体膜4と直接接しているが、他の膜を介して間接的に接触していても構わない。同様に、第3の誘電体膜は、上部電極3および第2の誘電体膜4に直接接しているが、他の膜を介して間接的に接触していても構わない。
【0059】
(第2の実施形態)
図4および図5は、本発明の第2の実施形態に係るMIMキャパシタを含む半導体装置の製造工程を示す断面図である。
【0060】
上記MIMキャパシタの上部電極および下部電極は、スパッタ法により形成されたチタンナイトライド膜である。また、上記MIMキャパシタの誘電体膜は、反応性スパッタ法により形成された下部アルミナ膜(第2の誘電体膜)、下部アルミナ膜上に反応性スパッタ法により形成されたタンタルオキサイド膜(第1の誘電体膜)、上記タンタルオキサイド膜上に反応性スパッタ法により形成された上部アルミナ膜(第3の誘電体膜)とを含む積層誘電体膜である。
【0061】
以下、本実施形態のMIMキャパシタの製造方法の詳細について説明する。
【0062】
図4(a)は、周知のMOSトランジスタ、素子分離領域、多層配線層を含むシリコン基板を示している。本実施形態では、図4(a)の多層配線層上にMIMキャパシタを製造する。
【0063】
本実施形態のMIMキャパシタは、例えば、アナログ回路用のキャパシタ、特にRF回路を含むアナログ回路(例えば、RF受信部のノイズフィルター)用のキャパシタである。上記RF回路は、RF混載LSI中のものである。
【0064】
図4(a)に示された周知の構造は、周知の標準的なロジックプロセスにより形成される。以下、図4(a)の構造を形成するためのプロセスについて、簡単に説明する。
【0065】
まず、シリコン基板11上に、素子分離領域(STI)12、ゲート電極部(ゲート絶縁膜、ゲート電極、ゲート上部絶縁膜、ゲート側壁絶縁膜)13、ソース/ドレイン領域14を形成し、その後、層間絶縁膜15を基板の全面上に堆積し、デバイス面の表面を平坦化する。ソース/ドレイン領域14はLDD構造を有するものであるが、図ではLDD構造は省略してある。
【0066】
次に、層間絶縁膜15をエッチングし、コンタクトホールを形成し、その後、該コンタクトホール内にプラグ16を形成する。
【0067】
次に、シリコン窒化膜17、層間絶縁膜18を順次基板の全面上に形成し、層間絶縁膜18、シリコン窒化膜17をエッチングし、ヴィアホールを開口し、その後、デュアルダマシンプロセスにより、上記ヴィアホール内にバリアメタル膜19、配線およびプラグ(DD配線)20を形成する。このようにして第1層目の金属配線層が得られる。バリアメタル膜19は例えばチタンナイトライド膜、DD配線20は例えばCu−DD配線である。また、各DD配線のプロセスにおいて、配線溝および接続孔の内部の金属による埋込み工程は、例えば、電界めっき法により行う。
【0068】
その後、第1層目の金属配線層と同様の方法により、シリコン窒化膜21、層間絶縁膜22、バリアメタル膜23、DD配線24、シリコン窒化膜25、層間絶縁膜26、バリアメタル膜27、DD配線28、シリコン窒化膜29を形成することにより、第2層目の金属配線層、第3層目の金属配線層が得られる。
【0069】
次に、図4(b)に示すように、シリコン窒化膜29上に、下部電極となるチタン膜30、チタンナイトライド膜31をスパッタ法により順次形成する。チタン膜30は、シリコン窒化膜29中に開口された接続孔および該接続孔内に形成されたプラグを介して、上記多層配線層と電気的に接続される。上記プラグは、例えば、デュアルダマシンプロセスにより、チタン膜30と同時に形成されたチタンプラグである。
【0070】
次に、アルミニウム金属ターゲットを用いた反応性スパッタ法により、同図(b)に示すように、チタンナイトライド膜31上にアルミナからなる第2の誘電体膜(以下、本実施形態では、下部アルミナ膜という。)32を形成する。プロセスガスはArとOとの混合ガス、成膜温度は室温、Ar/O 流量比は1.5、スパッタパワーは1.8kWである。スパッタ装置はDCタイプのものを使用する。下部アルミナ膜32の膜厚は3nmである。
【0071】
次に、タンタル金属ターゲットを用いた反応性スパッタ法により、同図(b)に示すように、下部アルミナ膜32上にタンタルオキサイドからなる第1の誘電体膜(以下、本実施形態では、タンタルオキサイド膜という。)33を形成する。プロセスガスはArとOとの混合ガス、成膜温度は200℃。Ar/O流量比は1.3、スパッタパワーは1kWである。スパッタ装置はDCタイプのものを使用する。タンタルオキサイド膜33の膜厚は30nm、誘電率は25である。
【0072】
次に、反応性スパッタ法により、同図(b)に示すように、タンタルオキサイド膜33上にアルミナからなる第3の誘電体膜(以下、本実施形態では、上部アルミナ膜という。)34を形成し、続いて、真空を破らずに、上部アルミナ膜34上に上部電極となるチタンナイトライド膜35を連続的にスパッタ法により形成し、その後、PECVD法により、チタンナイトライド膜35上にシリコン窒化膜36を形成する。上部アルミナ膜34の成膜条件は、下部アルミナ膜32のそれと同じである。アルミナ膜34の膜厚は8nmである。
【0073】
次に、図4(c)に示すように、シリコン窒化膜36上にレジストパターン37を形成し、レジストパターン37をマスクにしてシリコン窒化膜36をエッチングし、レジストパターン37のパターンをシリコン窒化膜36に転写する。この後、レジストパターン37をアッシングにより除去する。
【0074】
次に、図4(d)に示すように、シリコン窒化膜36(ハードマスク)をマスクにして、チタンナイトライド膜35を弗素系のエッチングガスを用いたRIEプロセスによりエッチングし、続いて、弗素系のエッチングガスを塩素系のエッチングガスに変更し、上部アルミナ膜34をRIEプロセスによりエッチングし、さらに、塩素系のエッチングガスを弗素系のエッチングガスと酸素ガスとの混合ガスに変更し、タンタルオキサイド膜33を時間指定で5nm程度RIEプロセスによりエッチングする。これにより、所定形状の上部電極35および上部電極35の下方に凸部を有するタンタルオキサイド膜33が得られる。
【0075】
次に、図5(e)に示すように、シリコン窒化膜36およびタンタルオキサイド膜33上にフォトレジストパターン38を形成し、その後、フォトレジストパターン38をマスクにしてタンタルオキサイド膜33、下部アルミナ膜32、チタンナイトライド膜31、チタン膜30をRIEプロセスにより順次エッチングし、所定形状のタンタルオキサイド膜33、下部アルミナ膜32および下部電極30,31を得る。その後、フォトレジストパターン38をアッシングにより除去する。
【0076】
以上の工程で、MIMキャパシタの基本構造は完成する。その後、図5(f)に示すように、層間絶縁膜39を基板の全面上に形成する工程、上部電極35の引き出し電極40および下部電極31の引き出し電極40を形成する工程等の周知の工程が続く。図6に、以上の製造工程を経て得られた本実施形態の半導体装置の断面図を示す。
【0077】
引き出し電極40,40の具体的なプロセスは以下の通りである。まず、フォトリソグラフィプロセスおよびRIEプロセスにより、層間絶縁膜39、シリコン窒化膜36、タンタルオキサイド膜33、下部アルミナ膜32をエッチングして、上部電極35、下部電極31および上記多層配線層にそれぞれ連通する第1、第2および第3のコンタクトホールを形成する。上記RIEプロセスでは、フッ素系のエッチングガスを用いる。
【0078】
次に、第1、第2および第3のコンタクトホール内を埋め込むように、スパッタ法によりアルミニウム膜を基板の全面上に形成し、その後、上記アルミニウム膜をフォトリソグラフィプロセスおよびRIEプロセスにより加工することにより、上記アルミニウム膜からなる引き出し電極40,40が得られる。
【0079】
ここで、層間絶縁膜39の誘電率は、タンタルオキサイド膜33の誘電率よりも低いことが好ましい。通常、層間絶縁膜39には、いわゆるlow−k膜と呼ばれる低誘電率の誘電体膜が使用されるので、上記要件は満たされる。
【0080】
層間絶縁膜39を基板の全面上に形成すると、タンタルオキサイド膜33の凸部の周辺上に層間絶縁膜39が形成され、タンタルオキサイド膜33の凸部の周囲がそれよりも誘電率が層間絶縁膜39で囲まれる。その結果、上部電極36の近傍の誘電率が小さくなり、キャパシタの外部にはみ出す電気力線(電界のしみ出し)は抑制される。
【0081】
本実施形態のMIMキャパシタの容量は、3.5fF/μmであった。本実施形態でも、第1の実施形態と同様に、高ペア性、低リーク電流および高容量密度のMIMキャパシタを実現できるようになる。これにより、今後あらゆる機器に搭載されると予想されるRF混載LSIチップの面積を小さくでき、ひいては上記機器の小型化を実現することが可能になる。
【0082】
本発明者は、比較例(reference)1〜7として、図7に示す七つのMIMキャパシタを用意した。比較例1〜7のMIMキャパシタにおいて、本実施形態のMIMキャパシタと相当する部分は、本実施形態のMIMキャパシタと同じ参照符号が付されている。また、シリコン窒化膜29、層間絶縁膜39および引き出し電極40,40は簡単のため省略してある。
【0083】
比較例1(図7(a))は、誘電体膜として一つのタンタルオキサイド膜が用いられたキャパシタ、つまり、本実施形態のMIMキャパシタから下部および上部アルミナ膜32,34を除いたMIMキャパシタである。
【0084】
比較例2(図7(b))は、本実施形態のMIMキャパシタから下部および上部アルミナ膜32,34を除いたものであって、かつ、上部電極35の下方に凸部を有しないフラットなタンタルオキサイド膜33を備えたMIMキャパシタである。
【0085】
比較例3(図7(c))は、誘電体膜として、タンタルオキサイド膜と、該タンタルオキサイド膜と上部電極との間にのみ設けられたアルミナ膜とを用いたキャパシタ、つまり、本実施形態のMIMキャパシタから下部アルミナ膜32を除いたMIMキャパシタである。
【0086】
比較例4(図7(d))は、本実施形態のMIMキャパシタから下部アルミナ膜32を除いたものであって、かつ、上部電極35の下方に凸部を有しない表面がフラットなタンタルオキサイド膜33を備えたMIMキャパシタである。
【0087】
比較例5(図7(e))は、誘電体膜としてタンタルオキサイド膜と該タンタルオキサイド膜と下部電極との間にのみ設けられたアルミナ膜とを用いたキャパシタ、つまり、本実施形態のMIMキャパシタから上部アルミナ膜34を除いたMIMキャパシタである。
【0088】
比較例6(図7(f))は、本実施形態のMIMキャパシタから上部アルミナ膜34を除いたものであって、かつ、上部電極35の下方に凸部を有しない表面がフラットなタンタルオキサイド膜33を備えたMIMキャパシタである。
【0089】
比較例7(図7(g))は、上部電極35の下方に凸部を有しない表面がフラットなタンタルオキサイド膜33を備えた点を除いて、本実施形態と同じMIMキャパシタである。
【0090】
比較例1〜6のタンタルオキサイド膜33の膜厚は、比較例1〜6のキャパシタ容量が本実施形態のキャパシタ容量と同じになるように選んだ。比較例7のタンタルオキサイド膜33の膜厚は、本実施形態のタンタルオキサイド膜33の膜厚と同じである。
【0091】
表1に、比較例1〜7および本実施形態のMIMキャパシタについて、キャパシタのペア性(3σmatching)の値と、100℃で±3.6V印加条件で評価したリーク電流の値を示す。
【0092】
【表1】
Figure 2004266009
【0093】
表1から、表面がフラットなタンタルオキサイド膜33を用いたMIMキャパシタ(比較例1)は、上部電極35の下方に凸部を有するタンタルオキサイド膜33を用いたMIMキャパシタ(比較例3,5、実施形態)に比べて、ペア性が悪いことがわかる。
【0094】
また、アルミナ膜32/タンタルオキサイド膜33/アルミナ膜34の3層構造(実施形態)ではなく、タンタルオキサイド33の単層構造、またはタンタルオキサイド膜とアルミナ膜32(またはアルミナ膜34)との2層構造の場合でも、上部電極35の下方に凸部を有するタンタルオキサイド膜33を用いた場合(比較例1,3,5)には、良好なペア性が得られることがわかる。しかし、リーク電流は、本実施形態に比べて、タンタルオキサイド膜33とチタンナイトライド膜31(またはチタンナイトライド膜35)との反応を反映して悪い。
【0095】
また、下部電極側のみにアルミナ膜を設けた2層構造のキャパシタ誘電体膜を用いた場合(比較例3)、リーク電流はある程度低い値を示すが、上部電極側のみにアルミナ膜を設けた2層構造のキャパシタ誘電体膜を用いた場合(比較例5)、比較例3に比べてリーク電流は大きいことがわかる。
【0096】
この理由は以下のように考えられる。上部電極35の下方に凸部を有するタンタルオキサイド膜33を用いたキャパシタの製造プロセスは、タンタルオキサイド膜33をRIEプロセスによりエッチングする工程(図4(d))を含む。このときの工程で、タンタルオキサイド膜33中に欠陥が形成され、タンタルオキサイド膜33の絶縁性が大幅に低下する。このような絶縁性の低下が、リーク電流の増加の原因であると考えられる。したがって、キャパシタの少なくとも下部電極側にアルミナ膜などの誘電体膜をはさみこむことは必須であることがわかった。
【0097】
また、上部電極35の下方に凸部を有するタンタルオキサイド膜33を用いた場合でも、上部電極35と接する誘電体膜がアルミナ膜34である場合(比較例5,本実施形態)の方が、上部電極35と接する誘電体膜がタンタルオキサイド膜33である場合(比較例1,3)に比べて、良好なペア性が得られることがわかる。
【0098】
したがって、上部電極35とタンタルオキサイド膜33との間に、タンタルオキサイドよりも誘電率が低い材料からなる誘電体膜を設けることは、リーク電流の抑制だけでなく、良好なペア性を実現するのにも有効であることがわかった。
【0099】
(第3の実施形態)
本実施形態のMIMキャパシタが第2の実施形態と異なる点は、第2および第3の誘電体膜としてジルコニウムオキサイド(ZrO)膜、第1の誘電体膜としてニオブオキサイド膜を用いたことにある。
【0100】
本実施形態のMIMキャパシタと第2の実施形態のMIMキャパシタとは同じ構造を有するので、第2の実施形態の説明で用いた図4および図5を参照しながら、本実施形態のMIMキャパシタを含む半導体装置の製造方法について説明する。
【0101】
まず、図4(a)に示すように、MOSトランジスタ、素子分離、多層配線層を含むシリコン基板を周知のプロセスにより形成する。
【0102】
次に、図4(b)に示すように、シリコン窒化膜29上に、チタン膜30、チタンナイトライド膜31をスパッタ法により順次形成する。ここまでは第2の実施形態と同じである。
【0103】
次に、ジルコニウム金属ターゲットを用いた反応性スパッタ法により、同図(b)に示すように、チタンナイトライド膜31上にジルコニウムオキサイドからなる第2の誘電体膜(以下、本実施形態では、下部ジルコニウムオキサイド膜という。)32を形成する。プロセスガスはArとOとの混合ガス、成膜温度は300℃、Ar/O流量比は1.00、スパッタパワーは1.0kWである。スパッタ装置はDCタイプのものを使用する。下部ジルコニウムオキサイド膜32の膜厚は9nm、誘電率は18である。
【0104】
次に、ニオブ金属ターゲットを用いた反応性スパッタ法により、同図(b)に示すように、下部ジルコニウムオキサイド膜32上にニオブオキサイドからなる第1の誘電体膜(以下、本実施形態では、ニオブオキサイド膜という。)33を形成する。プロセスガスは、ArとOとの混合ガス、成膜温度は300℃。Ar/O流量比は1.3、スパッタパワーは1kWである。スパッタ装置はDCタイプのものを使用する。ニオブオキサイド膜33の膜厚は36nm、誘電率は18である。
【0105】
次に、反応性スパッタ法により、同図(b)に示すように、ニオブオキサイド膜33上にジルコニウムオキサイドからなる第3の誘電体膜(以下、本実施形態では、上部ジルコニウムオキサイド膜という。)34を形成し、続いて、真空を破らずに、上部ジルコニウムオキサイド膜34上に上部電極となるチタンナイトライド膜35を連続的にスパッタ法により形成し、その後、PECVD法により、チタンナイトライド膜35上にシリコン窒化膜36を形成する。上部ジルコニウムオキサイド膜34の成膜条件は、下部ジルコニウムオキサイド膜32のそれと同じである。上部ジルコニウムオキサイド膜34の膜厚は15nmである。
【0106】
次に、図4(c)に示すように、シリコン窒化膜36上にレジストパターン37を形成し、レジストパターン37をマスクにしてシリコン窒化膜36をエッチングし、レジストパターン37のパターンをシリコン窒化膜36に転写する。この後、レジストパターン37をアッシングにより除去する。
【0107】
次に、図4(d)に示すように、シリコン窒化膜36をマスクにして、チタンナイトライド膜35を弗素系のエッチングガスを用いたRIEプロセスによりエッチングし、続いて、弗素系のエッチングガスを塩素系のエッチングガスに変更し、上部ジルコニウムオキサイド膜34をRIEプロセスによりエッチングし、さらに、塩素系のエッチングガスを弗素系のエッチングガスと酸素ガスとの混合ガスに変更し、ニオブオキサイド膜33を時間指定で5nm程度RIEプロセスによりエッチングする。これにより、所定形状の上部電極35および上部電極35の下方に凸部を有するニオブオキサイド膜33が得られる。
【0108】
次に、図5(e)に示すように、シリコン窒化膜36およびニオブオキサイド膜33上にフォトレジストパターン38を形成し、その後、フォトレジストパターン38をマスクにしてニオブオキサイド膜33、下部ジルコニウムオキサイド膜32、チタンナイトライド膜31、チタン膜30をRIEプロセスにより順次エッチングし、所定形状の下部電極30,31を得る。その後、フォトレジストパターン38をアッシングにより除去する。
【0109】
以上の工程で、MIMキャパシタの基本構造は完成する。その後、図5(f)に示すように、層間絶縁膜39を基板の全面上に形成し、上部電極35の引き出し電極40および下部電極31の引き出し電極40を形成する工程等の周知の工程が続く。以上の製造方法により得られた本実施形態の半導体デバイスの断面図は、第2の実施形態の半導体デバイスの断面を示す図6と同じである。
【0110】
引き出し電極40,40の具体的なプロセスは以下の通りである。まず、フォトリソグラフィプロセスおよびRIEプロセスにより、層間絶縁膜39、シリコン窒化膜36、ニオブオキサイド膜33、下部ジルコニウムオキサイド膜32をエッチングして、上部電極35、下部電極31および上記多層配線層にそれぞれ連通する第1、第2および第3のコンタクトホールを形成する。RIEプロセスではフッ素系のエッチングガスを用いる。
【0111】
次に、第1、第2および第3のコンタクトホール内を埋め込むように、スパッタ法によりアルミニウム膜を基板の全面上に形成し、その後、上記アルミニウム膜をフォトリソグラフィプロセスおよびRIEプロセスにより加工することにより、上記アルミニウム膜からなる引き出し電極40,40が得られる。
【0112】
本実施形態のMIMキャパシタの容量は3.5fF/μmであった。また、本実施形態のMIMキャパシタのペア性を評価したところ、3σマッチングで2.1%μmの値が得られ、第2の実施形態と同様に良好な結果が得られた。したがって、本実施形態でも、第1の実施形態と同様に、高ペア性、低リーク電流および高容量密度のMIMキャパシタを実現できるようになる。これにより、今後あらゆる機器に搭載されると予想されるRF混載LSIチップの面積を小さくでき、ひいては上記機器の小型化を実現することが可能になる。
【0113】
(第4の実施形態)
本実施形態のMIMキャパシタが第2の実施形態と異なる点は、第2および第3の誘電体膜としてタンタルオキサイド(ZrO)膜、第1の誘電体膜としてシリコン窒化膜を用いたことにある。
【0114】
本実施形態のMIMキャパシタと第2の実施形態のMIMキャパシタとは同じ構造を有するので、第2の実施形態の説明で用いた図4および図5を参照しながら、本実施形態のMIMキャパシタを含む半導体装置の製造方法について説明する。
【0115】
まず、図4(a)に示すように、MOSトランジスタ、素子分離、多層配線層を含むシリコン基板を周知のプロセスにより形成する。
【0116】
次に、図4(b)に示すように、シリコン窒化膜29上に、チタン膜30、チタンナイトライド膜31をスパッタ法により順次形成する。ここまでは第2の実施形態と同じである。
【0117】
次に、焼結窒化シリコンセラミックターゲットを用いた反応性スパッタ法により、同図(b)に示すように、チタンナイトライド膜31上に窒化シリコンからなる第2の誘電体膜(以下、本実施形態では、下部シリコン窒化膜という。)32を形成する。プロセスガスはArとNとの混合ガス、成膜温度は300℃、Ar/N流量比は10、スパッタパワーは1.0kWである。スパッタ装置はRFタイプのものを使用する。下部シリコン窒化膜32の膜厚は2nm、誘電率は7.5である。
【0118】
次に、タンタル金属ターゲットを用いた反応性スパッタ法により、同図(b)に示すように、下部シリコン窒化膜32上にタンタルオキサイドからなる第2の誘電体膜(以下、本実施形態では、タンタルオキサイド膜という。)33を形成する。プロセスガスはArとOとの混合ガス、成膜温度は200℃。Ar/O流量比は1.5、スパッタパワーは1.8kWである。スパッタ装置はDCタイプのものを使用する。タンタルオキサイド膜33の膜厚は25nmである。
【0119】
次に、反応性スパッタ法により、同図(b)に示すように、タンタルオキサイド膜33上に窒化シリコンからなる第3の誘電体膜(以下、本実施形態では、上部シリコン窒化膜という。)34を形成し、続いて、真空を破らずに、上部シリコン窒化膜34上に上部電極となるチタンナイトライド膜35を連続的にスパッタ法により形成し、その後、PECVD法により、チタンナイトライド膜35上にシリコン窒化膜36を形成する。上部シリコン窒化膜34の成膜条件は、下部シリコン窒化膜32のそれと同じである。上部シリコン窒化膜34の膜厚は10nmである。
【0120】
次に、図4(c)に示すように、シリコン窒化膜36上にレジストパターン37を形成し、レジストパターン37をマスクにしてシリコン窒化膜36をエッチングし、レジストパターン37のパターンをシリコン窒化膜36に転写する。この後、レジストパターン37をアッシングにより除去する。
【0121】
次に、図4(d)に示すように、シリコン窒化膜36をマスクにして、チタンナイトライド膜35を弗素系のエッチングガスを用いたRIEプロセスによりエッチングする。このとき、上部シリコン窒化膜34はマスク(シリコン窒化膜36)と同じ材料なので、上部シリコン窒化膜34は殆どエッチングされない。
【0122】
次に、同図(d)に示すように、弗素系のエッチングガスを臭素系のエッチングガスに変更し、上部シリコン窒化膜34をRIEプロセスによりエッチングし、さらに、臭素系のエッチングガスを弗素系のエッチングガスと酸素ガスとの混合ガスに変更し、タンタルオキサイド膜33を時間指定で5nm程度RIEプロセスによりエッチングする。これにより、MIMキャパシタの上部電極35が形成されるとともに、上部電極35の下方に凸部を有するタンタルオキサイド膜33が形成される。
【0123】
次に、図5(e)に示すように、シリコン窒化膜36およびタンタルオキサイド膜33上にフォトレジストパターン38を形成し、その後、フォトレジストパターン38をマスクにしてタンタルオキサイド膜33、下部シリコン窒化膜32、チタンナイトライド膜31、チタン膜30をRIEプロセスにより順次エッチングし、所定形状の下部電極30,31を得る。その後、フォトレジストパターン38をアッシングにより除去する。
【0124】
以上の工程で、MIMキャパシタの基本構造は完成する。その後、図5(f)に示すように、層間絶縁膜39を基板の全面上に形成し、上部電極35の引き出し電極40および下部電極31の引き出し電極40を形成する工程等の周知の工程が続く。以上の製造方法により得られた本実施形態の半導体デバイスの断面図は、第2の実施形態の半導体デバイスの断面を示す図6と同じである。
【0125】
引き出し電極40,40の具体的なプロセスは以下の通りである。まず、フォトリソグラフィプロセスおよびRIEプロセスにより、層間絶縁膜39、シリコン窒化膜36、タンタルオキサイド膜33、下部シリコン窒化膜32をエッチングして、上部電極35、下部電極31および上記多層配線層にそれぞれ連通する第1、第2および第3のコンタクトホールを形成する。RIEプロセスではフッ素系のエッチングガスを用いる。
【0126】
次に、第1、第2および第3のコンタクトホール内を埋め込むように、スパッタ法によりアルミニウム膜を基板の全面上に形成し、その後、上記アルミニウム膜をフォトリソグラフィプロセスおよびRIEプロセスにより加工することにより、上記アルミニウム膜からなる引き出し電極40,40が得られる。
【0127】
本実施形態のMIMキャパシタの容量は3.5fF/μmであった。また、本実施形態のMIMキャパシタのペア性を評価したところ、3σマッチングで1.8%μmの値が得られ、第2および第3の実施形態と同様に良好な結果が得られた。したがって、本実施形態でも、第1の実施形態と同様に、高ペア性、低リーク電流および高容量密度のMIMキャパシタを実現できるようになる。これにより、今後あらゆる機器に搭載されると予想されるRF混載LSIチップの面積を小さくでき、ひいては上記機器の小型化を実現することが可能になる。
【0128】
なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、上部電極35および下部電極31として、チタン膜30とチタンナイトライド膜との積層膜を使用したが、その代わりに、チタン膜30、タングステンナイトライド膜、タンタルナイトライド膜等の金属を含む単層導電膜、あるいはチタンナイトライド膜/AlCu膜/チタンナイトライド膜等の金属を含む多層導電膜も使用することが可能である。また、上記実施形態では、上部電極35として、チタンナイトライド膜を使用したが、その代わりに、下部電極31の場合と同様の種々の導電膜が使用可能である。
【0129】
また、上記実施形態では、シリコン基板を用いたが、その代わりに、SOI基板、SiGe基板、歪みシリコン基板を用いても構わない。
【0130】
さらに、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決できる場合には、この構成要件が削除された構成が発明として抽出され得る。
【0131】
その他、本発明の要旨を逸脱しない範囲で、種々変形して実施できる。
【0132】
【発明の効果】
以上詳説したように本発明によれば、MIMキャパシタの容量密度の増加を容易に図れる半導体装置およびその製造方法を実現できるようになる。
【図面の簡単な説明】
【図1】従来のキャパシタにより生じる電気力線を示す図
【図2】第1の実施形態のMIMキャパシタの構造および電気力線を示す図
【図3】第1の実施形態の装置中のMIMキャパシタを示す断面図
【図4】第2の実施形態に係るMIMキャパシタを含む半導体装置の製造工程を示す断面図
【図5】図4に続く同半導体装置の製造工程を示す断面図
【図6】第2の実施形態に係るMIMキャパシタを含む半導体装置を示す断面図
【図7】比較例1〜7のMIMキャパシタを示す断面図
【符号の説明】
1…下部電極、2…第1の誘電体膜、3…上部電極、4…第2の誘電体膜、5…第3の誘電体膜、6…電気力線、7…層間絶縁膜、11…シリコン基板、12…素子分離領域、13…ゲート電極部、14…ソース/ドレイン領域、15…層間絶縁膜、16…プラグ、17…シリコン窒化膜、18…層間絶縁膜、19…バリアメタル膜、21…配線およびプラグ(DD配線)、22…シリコン窒化膜、23…バリアメタル膜、24…DD配線、25…シリコン窒化膜、26…層間絶縁膜、27…バリアメタル膜、28…DD配線、29…シリコン窒化膜、30…チタン膜(下部電極)、31…チタンナイトライド膜(下部電極)、32…第2の誘電体膜、33…第1の誘電体膜、34…第3の誘電体膜、35…チタンナイトライド膜(上部電極)、36…シリコン窒化膜、37,38…レジストパターン、39…層間絶縁膜(第4の誘電体膜)、40,40…引き出し電極。

Claims (12)

  1. 半導体基板と、
    前記半導体基板の上方に設けられたキャパシタとを備え、
    前記キャパシタは、
    金属を含む下部電極と、
    前記下部電極の上方に設けられ、タンタルオキサイドまたはニオブオキサイドを含み、上面に凸部を含む第1の誘電体膜と、
    前記第1の誘電体膜の前記凸部の上方に設けられ、金属を含む上部電極と、
    前記下部電極と前記第1の誘電体膜との間に設けられ、前記第1の誘電体膜よりも誘電率が小さい第2の誘電体膜と、
    前記第1の誘電体膜の前記凸部と前記上部電極との間に設けられ、前記第1の誘電体膜よりも誘電率が小さい第3の誘電体膜と
    を備えていることを特徴とする半導体装置。
  2. 前記上部電極、前記第3の誘電体膜および前記第1の誘電体膜の前記凸部は、上から見た形状および寸法が同じであることを特徴とする請求項1に記載の半導体装置。
  3. 前記金属は、チタンまたはタンタルであることを特徴する請求項1または2に記載の半導体装置。
  4. 前記第2および第3の誘電体膜の材料は、シリコンナイトライド、アルミニウムオキサイド、ハフニウムオキサイドおよびジルコニウムオキサイドの少なくとも一つであることを特徴とする請求項1ないし3のいずれか1項に記載の半導体装置。
  5. 前記キャパシタ上に設けられ、前記第1の誘電体膜よりも誘電率が低い第4の誘電体膜をさらに備えていることを特徴とする請求項1ないし4のいずれか1項に記載の半導体装置。
  6. 半導体基板を用意する工程と、
    前記半導体基板の上方に、金属を含む下部電極、積層誘電体膜および前記下部電極よりも小さく、金属を含む上部電極を含むキャパシタを形成する工程とを有し、
    前記キャパシタを形成する工程は、
    前記下部電極となる第1の導電膜を形成する工程と、
    前記第1の導電膜上に、タンタルオキサイドまたはニオブオキサイドを含む第1の誘電体膜と、前記第1の誘電体膜よりも誘電率が小さい第2および第3の誘電体膜とを形成する工程であって、かつ、これらの誘電体膜を前記第2の誘電体膜、前記第1の誘電体膜、前記第3の誘電体膜の順で前記第1の導電膜上に形成する工程と、
    前記第3の誘電体膜上に前記上部電極となる第2の導電膜を形成する工程と、
    前記第2の導電膜をエッチングして、前記上部電極を形成する工程と、
    前記第3の誘電体膜をエッチングし、前記上部電極の側面よりも外側の部分の前記第3の誘電体膜を除去する工程と、
    前記第1の誘電体膜をエッチングし、前記第1の誘電体膜の上面から前記第1の誘電体膜の途中の深さまでの部分であって、かつ、前記上部電極の側面よりも外側の部分の前記第1の誘電体膜を除去する工程と
    を有することを特徴とする半導体装置の製造方法。
  7. 前記上部電極および前記下部電極は、金属を含むことを特徴とする請求項6に記載の半導体装置の製造方法。
  8. 前記第2および第3の誘電体膜の材料は、シリコンナイトライド、アルミニウムオキサイド、ハフニウムオキサイドおよびジルコニウムオキサイドの少なくとも一つであることを特徴とする請求項6ないし8のいずれか1項に記載の半導体装置。
  9. 前記金属は、チタンまたはタンタルであることを特徴する請求項8に記載の半導体装置の製造方法。
  10. 前記第2の導電膜を弗素系のガスを用いてエッチングし、前記第3の誘電体膜を塩素系のガスを用いてエッチングし、前記第1の誘電体膜を弗素系のガスと酸素ガスとの混合ガスを用いてエッチングすることを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記第1の誘電体膜、前記第2の誘電体膜および前記第1の導電膜をエッチングし、前記第下部電極を形成する工程をさらに含むことを特徴とする請求項6ないし10のいずれか1項に記載の半導体装置の製造方法。
  12. 前記キャパシタ上に前記第1の誘電体膜よりも誘電率が低い第4の誘電体膜を形成する工程をさらに有することを特徴とする請求項6ないし11のいずれか1項に記載の半導体装置の製造方法。
JP2003053184A 2003-02-28 2003-02-28 半導体装置およびその製造方法 Expired - Fee Related JP3822569B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003053184A JP3822569B2 (ja) 2003-02-28 2003-02-28 半導体装置およびその製造方法
US10/653,209 US6891218B2 (en) 2003-02-28 2003-09-03 Semiconductor device and method of manufacturing same
TW093105148A TWI240298B (en) 2003-02-28 2004-02-27 Semiconductor device and the manufacturing method thereof
CNB2004100060973A CN100379000C (zh) 2003-02-28 2004-02-27 半导体器件及其制造方法
US11/074,656 US7202126B2 (en) 2003-02-28 2005-03-09 Semiconductor device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053184A JP3822569B2 (ja) 2003-02-28 2003-02-28 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004266009A true JP2004266009A (ja) 2004-09-24
JP3822569B2 JP3822569B2 (ja) 2006-09-20

Family

ID=32905756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053184A Expired - Fee Related JP3822569B2 (ja) 2003-02-28 2003-02-28 半導体装置およびその製造方法

Country Status (4)

Country Link
US (2) US6891218B2 (ja)
JP (1) JP3822569B2 (ja)
CN (1) CN100379000C (ja)
TW (1) TWI240298B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114609A1 (ja) * 2007-03-19 2008-09-25 Nec Corporation 半導体装置及びその製造方法
KR100945877B1 (ko) 2007-11-26 2010-03-05 주식회사 동부하이텍 반도체 소자의 커패시터 제조 방법
JP2010278159A (ja) * 2009-05-27 2010-12-09 Renesas Electronics Corp 半導体装置、下層配線設計装置、下層配線設計方法およびコンピュータプログラム
JP2011211236A (ja) * 2011-07-15 2011-10-20 Renesas Electronics Corp 半導体装置
US11430730B2 (en) 2018-06-21 2022-08-30 Dai Nippon Printing Co., Ltd. Wiring substrate and semiconductor device
KR20240066096A (ko) 2022-11-07 2024-05-14 도쿄엘렉트론가부시키가이샤 반도체 장치의 제조 방법 및 반도체 장치

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165559A (ja) * 2002-11-15 2004-06-10 Toshiba Corp 半導体装置
KR100949004B1 (ko) * 2002-12-24 2010-03-23 동부일렉트로닉스 주식회사 Mim 구조의 커패시터 제조방법
JP2005191182A (ja) * 2003-12-25 2005-07-14 Nec Electronics Corp 半導体装置及びその製造方法
KR100549002B1 (ko) * 2004-02-04 2006-02-02 삼성전자주식회사 복층 엠아이엠 커패시터를 갖는 반도체소자 및 그것을제조하는 방법
JP2006060044A (ja) * 2004-08-20 2006-03-02 Canon Anelva Corp 磁気抵抗効果素子の製造方法
JP2006173175A (ja) * 2004-12-13 2006-06-29 Hitachi Ltd 半導体集積回路装置および製造方法
KR100809336B1 (ko) * 2006-10-02 2008-03-05 삼성전자주식회사 메모리 소자의 제조 방법
JP4252110B2 (ja) * 2007-03-29 2009-04-08 パナソニック株式会社 不揮発性記憶装置、不揮発性記憶素子および不揮発性記憶素子アレイ
US8395053B2 (en) * 2007-06-27 2013-03-12 Stats Chippac Ltd. Circuit system with circuit element and reference plane
JP5198146B2 (ja) * 2008-05-22 2013-05-15 株式会社東芝 不揮発性記憶装置
KR20100041179A (ko) * 2008-10-13 2010-04-22 매그나칩 반도체 유한회사 유전체, 이를 구비한 캐패시터 및 그 제조방법, 반도체 소자 제조방법
KR20100079081A (ko) * 2008-12-30 2010-07-08 주식회사 동부하이텍 엠아이엠 커패시터 및 그의 제조 방법
JP2010206094A (ja) * 2009-03-05 2010-09-16 Elpida Memory Inc 半導体装置及びその製造方法
US8110414B2 (en) * 2009-04-30 2012-02-07 Texas Instruments Incorporated Forming integrated circuit devices with metal-insulator-metal capacitors using selective etch of top electrodes
KR20120039460A (ko) * 2010-10-15 2012-04-25 삼성전자주식회사 반도체 패키지
FR2971362B1 (fr) * 2011-02-04 2013-09-06 St Microelectronics Crolles 2 Procédé de fabrication d'un condensateur tin/ta2o5/tin
US8860002B2 (en) * 2012-12-20 2014-10-14 Intermolecular, Inc. Limited maximum fields of electrode-switching layer interfaces in Re-RAM cells
TWI622176B (zh) * 2015-12-04 2018-04-21 力晶科技股份有限公司 Mim電容之結構及其製造方法
US10546915B2 (en) 2017-12-26 2020-01-28 International Business Machines Corporation Buried MIM capacitor structure with landing pads

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149817B2 (ja) * 1997-05-30 2001-03-26 日本電気株式会社 半導体装置およびその製造方法
JP2000183289A (ja) 1998-12-18 2000-06-30 Murata Mfg Co Ltd 誘電体素子の特性制御方法
JP2000208720A (ja) 1999-01-13 2000-07-28 Lucent Technol Inc 電子デバイス、momキャパシタ、mosトランジスタ、拡散バリア層
JP2000082782A (ja) 1999-06-25 2000-03-21 Seiko Epson Corp 強誘電体装置
JP3505465B2 (ja) 2000-03-28 2004-03-08 株式会社東芝 半導体装置及びその製造方法
KR100818058B1 (ko) * 2002-06-28 2008-03-31 매그나칩 반도체 유한회사 엠아이엠 캐패시터 형성방법
US6940117B2 (en) * 2002-12-03 2005-09-06 International Business Machines Corporation Prevention of Ta2O5 mim cap shorting in the beol anneal cycles
KR100520590B1 (ko) * 2002-12-31 2005-10-10 주식회사 하이닉스반도체 반도체소자의 캐패시터 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114609A1 (ja) * 2007-03-19 2008-09-25 Nec Corporation 半導体装置及びその製造方法
JP5534170B2 (ja) * 2007-03-19 2014-06-25 日本電気株式会社 半導体装置及びその製造方法
KR100945877B1 (ko) 2007-11-26 2010-03-05 주식회사 동부하이텍 반도체 소자의 커패시터 제조 방법
JP2010278159A (ja) * 2009-05-27 2010-12-09 Renesas Electronics Corp 半導体装置、下層配線設計装置、下層配線設計方法およびコンピュータプログラム
JP2011211236A (ja) * 2011-07-15 2011-10-20 Renesas Electronics Corp 半導体装置
US11430730B2 (en) 2018-06-21 2022-08-30 Dai Nippon Printing Co., Ltd. Wiring substrate and semiconductor device
KR20240066096A (ko) 2022-11-07 2024-05-14 도쿄엘렉트론가부시키가이샤 반도체 장치의 제조 방법 및 반도체 장치

Also Published As

Publication number Publication date
JP3822569B2 (ja) 2006-09-20
US20050156221A1 (en) 2005-07-21
TWI240298B (en) 2005-09-21
CN100379000C (zh) 2008-04-02
US20040169216A1 (en) 2004-09-02
TW200423208A (en) 2004-11-01
US7202126B2 (en) 2007-04-10
CN1525563A (zh) 2004-09-01
US6891218B2 (en) 2005-05-10

Similar Documents

Publication Publication Date Title
JP3822569B2 (ja) 半導体装置およびその製造方法
US6927125B2 (en) Interdigitated capacitor and method of manufacturing thereof
TWI408798B (zh) 積體電路結構
KR100873542B1 (ko) 반도체 다이 내 전압 의존도가 낮은 고밀도 합성 mim커패시터
JP3842745B2 (ja) 半導体装置およびその製造方法
US6525427B2 (en) BEOL decoupling capacitor
CN102456750B (zh) 用于提高电容器容量和兼容性的方法和装置
US5939766A (en) High quality capacitor for sub-micrometer integrated circuits
CN103383933B (zh) 半导体器件及其制造方法
JP3895126B2 (ja) 半導体装置の製造方法
US20030011043A1 (en) MIM capacitor structure and process for making the same
JP2016527700A (ja) 金属絶縁体金属キャパシタ構造
JP2004214668A (ja) Mimキャパシタおよびその作製方法
US20040135189A1 (en) Semiconductor device
JP4837943B2 (ja) 半導体装置およびその製造方法
US6825080B1 (en) Method for forming a MIM capacitor
TWI622176B (zh) Mim電容之結構及其製造方法
JP2001320026A (ja) 半導体装置およびその製造方法
US20230395649A1 (en) Metal-insulator-metal (mim) capacitor module
JP2010040775A (ja) 半導体装置及びその製造方法
KR100734144B1 (ko) Mim 커패시터 형성 방법
TWI232472B (en) Metal-insulator-metal (MIM) capacitor and fabrication method for making the same
JP2003258108A (ja) 半導体装置およびその製造方法
JP2003188265A (ja) Mim型容量素子の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees