JP2004158021A - メモリ・ポート仲裁方法 - Google Patents

メモリ・ポート仲裁方法 Download PDF

Info

Publication number
JP2004158021A
JP2004158021A JP2003406723A JP2003406723A JP2004158021A JP 2004158021 A JP2004158021 A JP 2004158021A JP 2003406723 A JP2003406723 A JP 2003406723A JP 2003406723 A JP2003406723 A JP 2003406723A JP 2004158021 A JP2004158021 A JP 2004158021A
Authority
JP
Japan
Prior art keywords
bus
memory
priority
cache
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003406723A
Other languages
English (en)
Other versions
JP3850829B2 (ja
Inventor
Delek J Lenz
デレク ジェイ. レンツ,
Yasuaki Hagiwara
ヤスアキ ハギワラ,
Teeri Lau
テーリ ラウ,
Chen-Ron Tan
チェンーロン タン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JP2004158021A publication Critical patent/JP2004158021A/ja
Application granted granted Critical
Publication of JP3850829B2 publication Critical patent/JP3850829B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0813Multiuser, multiprocessor or multiprocessing cache systems with a network or matrix configuration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0844Multiple simultaneous or quasi-simultaneous cache accessing
    • G06F12/0855Overlapped cache accessing, e.g. pipeline
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/18Handling requests for interconnection or transfer for access to memory bus based on priority control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/163Interprocessor communication
    • G06F15/167Interprocessor communication using a common memory, e.g. mailbox
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/163Interprocessor communication
    • G06F15/17Interprocessor communication using an input/output type connection, e.g. channel, I/O port
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0215Addressing or allocation; Relocation with look ahead addressing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0815Cache consistency protocols
    • G06F12/0831Cache consistency protocols using a bus scheme, e.g. with bus monitoring or watching means

Abstract

【課題】 1つまたは2つ以上の入出力バスを介して複数のメモリ・アレイおよび複数の入出力デバイスに接続された複数の異種プロセッサをサポートする。
【解決手段】 各装置に当初の優先度を割当てるステップと、第1装置がメモリ・ポートへのサービスをくり返し拒否されるときは第1優先度値よりも低い当初の優先度を有する第1装置に関して優先度を上げるステップと、第2装置がメモリ独占であることが決定されるときは第2優先度値よりも高い当初の優先度を有する第2装置に関して優先度を下げるステップと、第3装置によって発せられる未決のメモリ・アクセス要求によりアドレスされる行がMAUによりサービスを受けた先行メモリ・アクセス要求によりアドレスされる行に対応するときは第3装置に関して優先度を上げるステップと、優先度に従って各装置により発せられるメモリ・ポートのための要求をサービスするステップとを有する。
【選択図】 図2

Description

本発明は、一般的には、マイクロプロセッサ・アーキテクチャに関し、具体的には、複数の異種マイクロプロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャに関する。
以下に列挙した米国特許出願は本件特許出願と同時に米国特許出願され、係属中のものであるが、これらの米国特許出願に開示されており、かつそれぞれ対応して出願された日本での特許出願に開示されている事項は、その出願番号を本明細書で引用することにより本明細書の一部を構成するものとする。
1.発明の名称「高性能RISCマイクロプロセッサ・ア−キテクチャ」(High−Performance RISC Microprocessor Architecture)SMOS−7984MCF/GBR,米国特許出願第07/727,006号、1991年7月8日出願、発明者Le T.Nguyen他、およびこれに対応する特願平5−502150(特表平6−501122号公報)。
2.発明の名称「拡張可能RISCマイクロプロセッサ・アーキテクチヤ」(Extensible RISC Microprocessor Architecture)SMOS−7985MCF/GBR,米国特許出願第07/727,058号、1991年7月8日出願、発明者Le T.Nguyen他、およびこれに対応する特願平5−502153(特表平6−501124号公報)。
3.「アーキテクチャ上の依存関係を隔離したRISCマイクロプロセッサ・アーキテクチャ」(RISC Microprocessor Architecture with Isolated Architectura Dependencies)SMOS−7987MCF/GBR/RCC,米題特許出願第07/726,744号、1991年7月8日出願、発明者Le T.Nguyen他、およびこれに対応する特願平5−502152(特表平6−502034号公報)。
4.発明の名称「複数型レジスタ・セットを採用したRISCマイクロプロセッサ・アーキテクチャ」(RISC Microprocessor Architecture Implementing Multiple Typed Register Sets)SMOS−7988MCF/GBR/RCC,米国特許出願第07/726,773号、1991年7月8日出願、発明者Sanjiv Garg他、およびこれに対応する特願平5−502403(特表平6−501805号公報)。
5.発明の名称「高速トラップと例外状態をインプリメントしたRISCマイクロプロセッサ・アーキテクチャ」(RISC Microprocessor Architecture Impiementing FaSt Trap and Exception State)SMOS−7989MCF/GBR/WSW,米国特許出願第07/726,942号、1991年7月8日出願、発明者Le T.Nguyen他、およびこれに対応する特願平5−502154(特表平6−502035号公報)。
6.発明の名称「シングル・チップ・ページ・プリンタ・コントローラ」(Single Chip Page Printer Controller)SMOS−7991MCF/GBR/HKW,米国特許出願第07/726,929号、1991年7月8日出願、発明者Derek J.Lentz他、およびこれに対応する特願平5−502149(特表平6−501586号公報)。
なお、本明細書の記述は本件出願の優先権の基礎たる米国特許出願07/726,893号の明細書の記載に基づくものであって、当該米国特許出願の番号を参照することによって当該米国特許出願の明細書の記載内容が本明細書の一部分を構成するものとする。
関連技術の説明
複数のプロセッサをサポートできるマイクロプロセッサ・アーキテクチャを有するコンピュータ・システムは、メモリと、データ・バス、アドレス・バスおよび制御信号バスからなるメモリ・システム・バスと、データ・バス、アドレス・バスおよび制御信号バスからなる入出力(I/O)バスと、複数の入出力デバイスと、複数のマイクロプロセッサとを備えているのが代表的である。入出力デバイスは、例えば、直接メモリ・アクセス(DMA)コントローラ・プロセッサ、イーサネット(ETHERNET)チップ、その他の各種入出力デバイスで構成されている。マイクロプロセッサは、例えば、複数の汎用プロセッサと特殊用途のプロセッサとから構成されている。これらのプロセッサはメモリ・システム・バスを介してメモリに接続され、入出力バスを介して入出力デバイスに接続されている。
これらのプロセッサがMAUや入出力デバイスをアクセスするとき、アクセスの衝突が起こらないようにするには、プロセッサと入出力デバイスに優先度(優先順位)を割り当てるメカニズム(方式)を取り入れる必要がある。優先度方式には、固定優先度方式、システム条件が変化すると処理中に(on the fly)優先度を変更できる動的優先度方式、あるいは両方式を組み合わせたものがある。この種の優先度方式では、メモリと入出力デバイスの待ち時間を最小にするのと同時に、キャッシュの一貫性(cache coherency)が保たれるような形で、すべてのプロセッサがメモリと入出力デバイスに容易にアクセスできるようにすることも重要である。例えば、拒否されたセマフォア(semaphore)をアクセスするためにシステム・バスを繰返し使用するようにすると、システム・バスのバンド幅を大幅に縮減することができる。キャッシュ一貫性に問題が起こらないようにする予防的措置がとられていないと、複数のプロセッサが別々に同じデータを読み書きすることを容認することができない。
上述した問題に鑑みて、本発明の主目的は、1つまたは2つ以上の入出力バスを介して複数のメモリ・アレイおよび複数の入出力デバイスに接続された複数の異種プロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャで構成されたコンピュータ・システムを提供することにある。メモリ・アレイは、メモリ・アレイ・ユニット(Memory Array Unit−MAU)と呼ばれる、インタフェース回路をもつサブシステムにグループ化されている。これらのプロセッサの各々は、新規なメモリ制御ユニット(Memory ControI Unit−MCU)を装備している。MCUの各々はスイッチ・ネットワークを備え、このスイッチ・ネットワークはスイッチ仲裁ユニット、データ用キャッシュ・インタフェース回路、命令用キャッシュ・インタフェース回路、入出力インタフェース回路、およびポートと呼ばれる1つまたは2つ以上のポート・インタフェース回路から構成され、ポート・インタフェース回路の各々はポート仲裁ユニットを備えている。
スイッチ・ネットワークは、マスタ(master)デバイスとスレーブ(slave)デバイスとが通信する手段となるものである。スイッチ側から見たとき、マスタ・デバイスとなり得るものには、Dキャッシュ、Iキャッシュ、または入出力ポート(IOU)があり、スレーブ・デバイスとなり得るものには、メモリ・ポートまたはIOUがある。
スイッチ・ネットワークの機能は、様々な命令およびデータ要求をキャッシュ・コントローラ・ユニット(CCU)(Iキャッシュ、Dキャッシュ)とIOUから受け取ることである。これらの要求を受け取ると、スイッチ・ネットワーク内のスイッチ仲裁ユニットとポート・インタフェース回路内のポート仲裁ユニットは要求に優先順位を付けて、該当のメモリ・ポートに要求を引き渡す(これは命令アドレスによって決まる)。そのあと、ポート、場合によっては、複数のポートは必要なタイミング信号を生成し、MAUとの間で必要なデータを送受する。それが書込み(WR)要求のときは、ポートとスイッチとのやりとりは、スイッチがすべての書込みデータをプッシュして書込みデータFIFO(WDF)に入れることを終えると停止する。それが読取り(RD)要求のときは、スイッチとポートとのやりとりは、ポートから読取りデータがスイッチを経由して要求側のマスタに送り返されたときのみ終了する。
スイッチ・ネットワークは4セットの3状態(tristate)バスから構成され、これらのバスを通してキャッシュ、IOUおよびメモリ・ポート間が結ばれている。4セットの3状態バスは、SW_REQ、SW WD、SW RDおよびSW_IDBSTから構成されている。本発明の代表的な実施例では、バスSW REQは29本のワイヤで構成され、アドレス、IDおよび共用信号をマスタ・デバイスからスレーブ・デバイスヘ送るために使用される。IDとは、メモリ要求に付けられたタグであり、要求側デバイスが返却するデータを正しいメモリ・アドレスと関連づけることを可能にするものである。共用信号とは、メモリ・アクセスが共用メモリに対するものであることを示した信号である。マスタ・デバイスがスレーブに対して要求を出すときは、スイッチ上にアドレスの32ビット全部を送る必要はない。これは、マルチメモリ構造では、スイッチがアドレスをデコードし、要求がメモリ・ポート0、ポート1、IOU、その他に対するものかを判別できるためである。各ポートは事前に定義されたメモリ・スペースが割り振られているので、SW REQ上にアドレスの32ビット全部を送信する必要がない。
実際には、例えば、機能コード、データ幅属性といった他の要求属性は、タイミングの制約があるためにSW REQ上に送信されない。情報をスイッチを経由して送る場合は、必要以上に1フェーズだけ遅れてポートに到着するので、メモリ要求に対する待ち時間がさらに増加することになる。従って、この種の要求属性は専用ワイヤ上をポートに送られるので、ポートはそのステート・マシンをもっと早く始動できるので、メモリ待ち時間が減少することになる。
図8に示すように、バスSW_WDは32本のワイヤから構成され、書込みデータをマスタ・デバイス(DキャッシュとIOU)からメモリ・ポート経由でFIFOへ送るために使用される。明らかなように、Iキャッシュはデータの読取りだけを行い、データの書込みは行わない。この3状態バスは「ダブル・ポンプ」(double−pumped)される。つまり、データ・ワードは各クロック・フェーズで転送されるので、必要とするワイヤ数が少なくなり、従って回路費用が節減される。WD00、WD01、WD10およびWD11はデータ・ワードである。これらのバスはダブル・ポンプされるので、バスが折り返してマスタから別のマスタヘ切り替わるとき、バスの衝突が起こらないようにする配慮が必要である。
図9に示すように、バスSW RDは64本のワイヤから構成され、返却読取りデータをスレーブ・デバイス(メモリ・ポートとIOU)からマスタ・デバイスヘ送り返すために使用される。データはフェーズ1のときだけ送信される。このバスは、キャッシュにタイミングの制約があり、そのためにCLK1の立下がり縁でデータが有効であることが必要であるので、ダブル・ポンプされない。データは、クロック1がハイ(高)になるフェーズ1までポートから得ることができないので、SW_RDバスをダブル・ポンプしようとしたとき、キャッシュがデータを得る最も早い時期はCLK1の正エッジであって、負エッジではない。バスSW_RDはダブル・ポンプされないので、このバスはフェース2のときだけアクティブになる(3状態ではない)。バスが別のマスタに切り替わるとき、バス・ドライバが衝突するという問題は起こらない。
バスSW_IDBSTは4本のワイヤから構成され、識別番号(ID)をマスタ・デバイスからスレーブ・デバイスヘ送り、IDとバンク開始信号をスレーブ・デバイスからマスタ・デバイスヘ送るために使用される。
本発明の実施例によれば、ID FIFOは各スレーブ・デバイスに1つしかない。スレーブ・デバイスからのデータは常に順番に返却されるので、IDをポートまで送る必要はない。IDは、スイッチとマスタ・デバイスとを結ぶインタフェースに各ポート用にFIFOが1個あて設けられている別々のFIFOにストアしておくことができる。このために、ポートがn個あればn個のFIFOが各インタフェースに必要になるので、本実施例に比べて回路面積が増加するが、3状態ワイヤは2本だけ少なくすることができる。
ポート・インタフェースとは、スイッチ・ネットワークと外部メモリ(MAU)とを結ぶインタフェースである。このインタフェースは、ポート仲裁ユニットと、介入(intervention)を引き起こす要求と割込みがかけられた読取り要求をストアしておく手段とを備えている。また、スヌープ・アドレス・ジェネレータ(snoop address generator)も備えている。さらに、このインタフェースには正しいタイミング信号を生成してメモリ・モジュールを制御する信号発生器の働きをする回路も実装されている。
本発明のスイッチ・ネットワーク内の装置、例えば、内容アドレス・メモリ(content addressable memory−CAM)、行一致比較回路、動的スイッチ/ポート仲裁回路にはいくつかのアルゴリズムが実装されている。
本発明のアーキテクチャにはセマフォア(semaphore)が取り入れられている。セマフォアは、マルチプロセッサ・システムにおけるソフトウェアを、下述するように「テストおよびセット」命令と同期をとるために使用されるものである。本発明のアーキテクチャでは、セマフォアはキャッシュされない。キャッシュは、CPUが「テストおよびセット」命令を実行すると、MCUからセマフォアをフェッチする。
テストおよびセット・バイパス回路には、スピン・ロックが起こると、つまり、反復的な要求がMAUシステム・バスをアクセスしてセマフォアを得ようとすると起こる、メモリ・バンド幅の損失を防止する単純なアルゴリズムが実装されている。メモリの領域、デバイスなどをロックするセマフォアでテスト命令が実行されると、CAMはそのセマフォアのアドレスをストアする。CAM内のこのエントリ(項目)は、いずれかのプロセッサがそのセマフォアを取り囲むメモリの一部領域に書込みを行うと、クリアされる。要求したセマフォアがまだCAMに残っていれば、そのセマフォアはどのプロセッサによっても解放されていないので、そのセマフォアを得るために実際にメモリをアクセスする必要はない。その代わりに、論理1のブロック($FFFF)(セマフォア失敗)が要求したキャッシュに送り返され、セマフォアがまだロック中であることを知らせる。従って、セマフォアは実際にはアクセスされないので、メモリ幅が節約されることになる。
セマフォアにオール1以外を書くと、そのセマフォアはクリアされる。その場合、スレーブ側CPUは共用メモリを調べて、いずれかのCPU(自身を含めて)が当該セマフォアに書込みを行ったかどうかを確かめる必要がある。いずれかのCPUがCAM内のエントリに一致するセマフォアに書込みを行っていると、CAM内のそのエントリがクリアされる。キャッシュが次にそのセマフォアヘのアクセスを試みたときは、そのエントリがCAMにないので、メイン・メモリからセマフォアを実際にフェッチして、それを「失敗」、つまり、オール1にセットすることになる。
行一致比較回路の機能は、現在の要求が前の要求と同じ行アドレスをもっているかどうかを判定することである。そうであれば、ポートはRAS要求を取り消して(de−assert)、RAS課金前(pre−charge)時間ペナルティを負担する必要がない。従って、メモリ待ち時間が短縮化され、使用可能なバンド幅が増加することになる。行一致は主にダイナミック・ランダム・アクセス・メモリ(DRAM)で使用されるが、MAUを新アドレスの上位ビットにラッチする必要がなくなったので、スタチック・ランダム・アクセス・メモリ(SRAM)や読取専用メモリ(ROM)でも使用可能である。従って、メモリヘのアクセス要求があると、アドレスがスイッチ・ネットワークのアドレス・バスSW_REQ上を送信され、行アドレスがデコードされ、MUXラッチにストアされる。このアドレスが前の要求の行アドレスと判定された場合は、キャッシュまたはIOUが新しい要求を出すと、新アドレスに関連するアドレスがデコードされ、その行アドレスが前の行アドレスと比較される。一致するものがあれば、行一致がヒットしたことになり、一致した要求に下述するように優先度が与えられる。
動的スイッチ/ポート仲裁回路では、2種類の仲裁が行われる。1つは、メモリ・ポートの資源、つまり、ポート0...ポートNの仲裁であり、もう1つはスイッチ・ネットワークのアドレスおよび書込みデータ・バスの資源、SW_REQとSW_WDの仲裁である。
いくつかのデバイスはメイン・メモリからデータを同時に要求することができる。そのデバイスとは、Dキャッシュ、IキャッシュおよびIOUである。各々のマスタに特定の優先度を与える優先度方式は、「重要度」または「緊急度」の高いデバイスができる限り早くサービスを受けられるようにセットアップされる。しかし、厳格な固定仲裁方式は、優先度の低いデバイスを締め出す可能性があるために使用されていない。その代わりに、各種デバイスに異なる優先度を処理中に(on the fly)割り付ける動的仲裁方式が使用されている。この動的仲裁方式に影響を与える要因として、次のものがある。
1.そのデバイスの固有優先度
2.要求したアドレスは以前にサービスを受けた要求と行が一致するか
3.そのデバイスは余りにも多くの回数サービスを受けることが拒否されたか 4.そのマスタは余りにも多くの回数サービスを受けたか
デバイスからの各要求は固有の優先度をもっている。IOUは優先度が最も高く、そのあとにIキャッシュとDキャッシュが続く。しかし、下述するように、Dキャッシュからの介入(intervention−ITV)要求は、スレーブ側処理エレメント(processing element−PE)が更新データをできる限り早く受け取る必要があるために、すべての中で優先度が最も高くなっている。
各種デバイスの固有優先度はいくつかの要因によって変更される。優先度の低いデバイスがサービスを拒否された回数はモニタされており、その回数が所定の値まで達すると、優先度の低いそのデバイスにより高い優先度が与えられる。これに対して、あるデバイスに優先度が与えられる回数もモニタされ、そのデバイスだけがバスを「独占」(hog)していれば、優先度を拒否して優先度の低いデバイスがそのバスをアクセスすることを許可する。要求の固有優先度を変更するために使用される3番目の要因は行一致(row match)である。行一致が重要なのは、主にIキャッシュの場合である。あるデバイスが以前にサービスを受けた要求と同じ行アドレスをもつメモリー・ロケーションを要求すると、要求したデバイスの優先度は高くされる。これが行われるのは、RASの要求を取り消し(de−assert)、RASを再要求する(re−assert)手間を省くためである。行が一致して要求がサービスを受けるたびに、プログラマブル・カウンタはデクリメントされる。例えば、カウンタがゼロまで達すると、行一致優先度ビットがクリアされるので、新しいマスタにバスヘのアクセス権が与えられる。ポートの新マスタが旧マスタと異なるとき、あるいは要求が行が一致した要求でないとき、プログラム可能な値が再びカウンタに事前ロード(pre−load)される。
メモリ・ポートに対する書込み要求は、スイッチ・ネットワークの書込みデータ・バス(SW_WD)が使用可能であるときだけ許可される。使用可能でないときは、他に要求があれば、その要求が選択される。1つだけ例外がある。それはDキャッシュからの介入(ITV)要求である。このような要求が存在し、SW_WDバスが使用可能でないと、どの要求も選択されない。その代わりに、システムはSW WDバスが解放されるまで待ってから介入要求が許可される。
スイッチ・ネットワークには、ソフトウェアで選択可能な2つの仲裁方式が採用されている。その方式とは、次のものである。
1.スレーブ優先度方式。この方式では、スレーブまたは要求されたデバイス(すなわち、メモリまたはIOUポート)に基づいて優先度が与えられる。
2.マスタ優先度方式。この方式では、マスタまたは要求側のデバイス(すなわち、IOU、Dキャッシュ、Iキャッシュ)に基づいて優先度が与えられる。 スレーブ優先度方式では、優先度は常に最初にメモリ・ポート、例えば、ポート0、1、2...に与えられ、次にIOUに与えられ、再びポート0に戻って与えられる。この方式は、一般にラウンド・ロビン(round−robin)方式と呼ばれている。マスタ優先度方式は固定優先度方式であり、優先度は最初にIOUに与えられ、次にDキャッシュおよびIキャッシュに与えられる。スイッチ仲裁のマスタ優先度方式では、介入(ITV)要求に最高の優先度が与えられる場合もある。プリフェッチ・バッファがやがて空になるときは、Iキャッシュに最高の優先度が与えられる場合もある。
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明によるマイクロプロセッサ・アーキテクチャを符号1で総称して示すものである。このアーキテクチャ1には、複数の汎用マイクロプロセッサ2、3、4...N、特殊用途プロセッサ5、オービタ(仲裁回路)6およびメモリ/メモリ・アレイ・ユニット(MAU)7が設けられている。マイクロプロセッサ2〜Nは複数の同種プロセッサでまたは複数の異種プロセッサで構成することが可能である。特殊用途プロセッサ5は例えばグラフィック・コントローラで構成することが可能である。プロセッサ2〜5はすべて1つまたは2つ以上のメモリ・ポートPORTO …PORTN を介してMAUシステム・バス25に接続されている。MAUシステム・バス25は、MAUデータ・バス8、ROW/COLアドレス・バス9、マルチプロセッサ制御バス10、MAU制御バス11およびバス仲裁制御信号バス12からなり、それぞれ複数の双方向信号バス13〜17で結ばれている。バス12は、例えば、アクセスの仲裁を要求し、アクセス許可を与え、あるいはMAUデータ・バス8が使用中(busy)であることを通知するために使用される。オービタ6は双方向信号ライン18を介してバス12に接続されている。MAU7はROW/COLアドレス・バス9およびメモリ制御バス11に接続されており、信号はこれらのバスから単方向信号ライン19と20を介してMAUへ転送され、双方向データ・バス21を介してMAUデータ・バス8へ転送される。データ・バス8と21は、代表例では、64ビット・バスになっているが、ソフトウェア制御の下で32ビット・バスとして動作させることも可能である。このバスは例えば、128ビットといったように、その他のビット幅にすることも可能である。
プロセッサ2〜Nの各々は、代表例では、入出力ポート53を備えている。この入出力ポート53は、以下で図2を参照して詳しく説明するが、直接メモリ・アクセス(DMA)プロセッサ30、イーサネット(ETHERNET)インタフェース31、その他の入出力デバイスなどの複数の周辺入出力デバイスに、32ビット入出力バス33または任意的な32ビット入出力バス34および複数の32ビット双方向信号バス35〜42を介して接続されている。オプションとしての入出力バス34はプロセッサの1つまたは2つ以上が特殊目的入出力デバイス43をアクセスするために使用できる。
図2に示すように、プロセッサ2−Nの各々は、データ用キャッシュ(Dキャッシュ)51と命令用キャッシュ(Iキャッシュ)52を備えたキャッシュ制御ユニット(CCU)49に接続されたメモリ制御ユニット(MCU)(全体を符号50で示している)と入出力ポート53を備えている。入出力ポート53は以下ではIOUと略称することがあるが、入出力バス33または34に接続されている。
MCU50は、CCU49、つまり、Dキャッシュ51とIキャッシュ52(読取専用)、IOU53およびMAU7間でMAUシステム・バス25を経由してデータと命令がそこから転送(読み書き)される回路である。MCU50は、以下で詳しく説明するように、キャッシュ一貫性(cache−coherency)を保証する。このキャッシュ一貫性は、各スレーブ側CPU内のMCUが、MAUアドレス・バス9上のマスタ側CPUのすべてのトランザクションをモニタして、つまり、スヌープ(snoop)して、スレーブ側CPU内のキャッシュがマスタ側CPUから得られる新しいデータを要求しているのか、新しいデータをマスタ側CPUへ送ろうとしているのかを判断することによって達成される。MCU50は6メモリ・ポートで使用するように拡張可能であり、最高4ウェイまでのメモリ・インタリービングをMAUデータ・バス8上で行うことをサポートできる。また、外部64または32ビット・データ・バス8の使用をサポートすることができ、修正ハミング・コードを使用して1データ・ビット・エラーを訂正し、2またはそれ以上のデータ・ビット・エラーを検出する。
本発明のアーキテクチャでは、キャッシュ・サブブロック、つまり、キャッシュ・ラインのサイズは、メモリ・バス・サイズと相関関係がある。例えば、バス・サイズが32ビットならば、サブブロック・サイズは一般に16バイトとなる。バス・サイズが64ビットならば、サブブロック・サイズは一般に32バイトとなる。バス・サイズが128ビットならば、サブブロックは64バイトとなる。上述したように、MCU50は、1、2または4ウェイのインタリービング、つまり、サイクルごとに転送されるバイト数をサポートするようにプログラムできる設計になっている。
MCU50には、ポートPO …PN で示した1つまたは2つ以上のインタフェース、スイッチ・ネットワーク54、Dキャッシュ・インタフェース55、Iキャッシュ・インタフェース56および入出力インタフェース57が装備されている。図3を参照して詳しく後述するが、ポート・インタフェースP0 …PN の各々はそれぞれをPAU0 …PAUN で示したポート仲裁ユニットを備えている。スイッチ・ネットワーク54はスイッチ仲裁ユニット58を備えている。
MCU50が2つまたはそれ以上のポート・インタフェースを装備するときは、ポート・インタフェースP0 …PN の各々は個別のMAUシステム・バスに接続されており、これは図1を参照して上述したバス25と同じものである。図2には、この種の2バスは250 および25N の符号で示されている。バス25N はバス8N 、9N 、10N 、11N および12N から構成され、これらはそれぞれバス13N 、14N 、15N 、16N および17N でポートPN に接続されている。バス8N 〜17N は図1を参照して上述したバス8〜17と同じものである。同様に、ポート・インタフェースの各々は、書込み(WR)データ・バス60、60N 、読取り(RD)データ・バス61、61N 、およびアドレス・バス62、62N からなる複数の同種個別バスを介してスイッチ・ネットワーク54に接続され、複数の制御バス70、71、80、81、90、91および70N 、71N 、80N 、81N 、90N 、91N を介してキャッシュと入出力インタフェース55、56、57の各々に接続されている。なお、符号中の添字N は、ポート・インタフェースPN とキャッシュおよび入出力インタフェースとの間を結ぶバスを示している。
スイッチ・ネットワーク54とDキャッシュ・インタフェース55はWRデータ・バス72、RDデータ・バス73およびアドレス・バス74を介して接続されている。スイッチ・ネットワーク54とIキャッシュ・インタフェース56はRDデータ・バス82およびアドレス・バス83を介して接続されている。上述したように、Iキャッシュ52からは書込み(WR)要求は出されない。スイッチ・ネットワーク54と入出力インタフェース57は、RDデータ・バス92、WRデータ・バス93およびアドレス・バス94からなる複数の双方向信号バスを介して接続されている。
Dキャッシュ・インタフェース55とCCU49、つまり、Dキャッシュ51は、WRデータ・バス100、RDデータ・バス101、アドレス・バス102および対の制御信号バス103、104からなる複数の単方向信号バスを介して接続されている。Iキャッシュ・インタフェース56とCCU49、つまり、Iキャッシュ52は、RDデータ・バス110、アドレス・バス111、および対の制御信号バス112、113からなる複数の単方向信号バスを介して接続されている。入出力インタフェース57とIOU53は、R/W−I/Oマスタ・データ・バス120、R/W−I/Oスレーブ・データ・バス121、対の制御信号ライン123、124および対のアドレス・バス125、126からなる複数の単方向信号バスを介して接続されている。入出力(I/O)マスタおよび入出力(I/O)スレーブという名称は、以下で詳しく説明するように、入出力操作がマスタとして行われているか、スレーブとして行われているとき、特定の信号ラインを利用したデータ伝送を示すために用いられている。
図3は、スイッチ・ネットワーク54のメイン・データ経路を示し、Dキャッシュ・インタフェース55とポート・インタフェースPO 間の接続関係を示したブロック図である。ポート・インタフェースP1 …PN およびIキャッシュと入出力インタフェース56、57間の接続関係も同じであるが、Iキャッシュ・インタフェース56からは書込みデータ要求が出されない点が異なる。図3に示すように、ポート・インタフェースP0 …PN の各々には、さらに、読取り要求の識別コード(ID)をストアするためのID FIFO(先入れ先出し)130と、MAUへのアクセスが許可されるまで書込みデータを一時的にストアしておくための書込みデータ(WD)FIFO131と、ネットワーク54が使用可能になるまで読取りデータを一時的にストアしておくための読取りデータ(RD)FIFO132が設けられている。
スイッチ・ネットワーク54には、それぞれ、要求/アドレス・バスSW_REQ〔28:0〕、書込みデータ・バスSW_WD〔31:0〕、読取りデータ・バスSW_RD〔63:0〕、および識別/バンク開始信号バスSW_IDBST〔3:0〕とも呼ばれる、複数の信号バス140〜143と、スイッチ仲裁ユニット58とが設けられている。スイッチ仲裁ユニット58はマルチポート入出力要求を取り扱うことを目的としている。
キャッシュおよびポート・インタフェースは一部の信号バスで直接に、他の信号バスでスイッチ・ネットワーク・バスを介して間接に接続されている。例えば、ポート・インタフェースP。…PN の各々におけるポ−卜仲裁ユニットPAUはGRANT制御ライン70aおよびREQUEST制御ライン71aからなる対の制御信号バスを介してスイッチ仲裁ユニット58に接続されている。スイッチ仲裁ユニット58はGRANT制御信号ライン71bを介してDキャッシュ・インタフェース55に接続されている。ライン70a、70bおよびライン71a、71bは図2のバス70と71における信号ラインである。ゲート75とレジスタ76、78は、それぞれ、介入を引き起こす要求をストアするためと、割込みをかけられた読取り要求をストアするために設けられている。他方のポート、キャッシュおよび入出力インタフェース間は対応する制御バスで結ばれている。
スイッチ・ネットワーク54の機能は、様々な命令とデータ要求をキャッシュ制御ユニット(CCU)、つまり、Iキャッシュ51、Dキャッシュ52、およびIOU53から受け取ることである。これらを要求を受け取ると、一度に1つの要求を引き受ける、スイッチ・ネットワーク54内のスイッチ仲裁ユニット58は要求に優先順位を付けて、その要求に付随したアドレスに応じて、該当するポート・インタフェースP。…PN または入出力インタフェースに要求を引き渡す。ポートと入出力インタフェースは、例えば、要求に付随するアドレスの上位ビットによって選択される。各ポート・インタフェースはMAUアドレスをストアするためのレジスタ77をもっている。ポート・インタフェースは必要なタイミング信号を発生し、MAU7との間で必要なデータをやりとりする。要求がWR要求ならば、ポート・インタフェースとスイッチ・ネットワーク54との間のやりとりは、スイッチが書込みデータをすべてプッシュしてWDF(書込みFIFO)131に入れたとき停止する。要求がRD要求ならば、スイッチ・ネットワーク54とポート・インタフェースとの間のやりとりは、ポート・インタフェースが読取りデータをスイッチ・ネットワーク54へ送り返したときだけ終了する。
以下で詳しく説明するように、スイッチ・ネットワーク54は、マスタ・デバイスとスレーブ・デバイスとが交信し合うために用意されたものである。この意味において、マスタ・デバイスとなり得るものには、次のものがある。
1.Dキャッシュ
2.Iキャッシュ
3.IOU
スレーブ・デバイスとなり得るものには、次のものがある。
1.メモリ・ポート
2.IOU
スイッチ・ネットワーク54は、必要な介入要求を該当するポート・インタフェースヘ送って、実行させることを担当する。
上述したように、スイッチ・ネットワーク54は、キャッシュ・インタフェース、入出力インタフェースおよびメモリ・ポート・インタフェース間を接続するための4セットの3状態(tri−state)バスから構成されている。4セットの3状態バスとはSW_REQ、SW_WD、SW_RD、SW_IDBSTである。SW_REQ〔28:0〕と名付けたバスは、スレーブ・デバイス側のアドレス、メモリ共用信号およびIDをマスタ・デバイスからスレーブ・デバイスヘ送るために使用される。上記に示したように、マスタとなり得るのは、Dキャッシュ、IキャッシュまたはIOUであり、スレーブ・デバイスとなり得るのはメモリ・ポートまたはIOUである。マスタ・デバイスが要求をスレーブに対して出すときは、アドレスの全32ビットをスイッチ・バスSW_REQ上を送る必要がない。これは、本発明の多重メモリ・ポート構造では、各ポートにはあらかじめ定義されたメモリ空間が割り振られているためである。
機能コード(FC)やデータ幅(WD)などの、他の要求属性は、タイミング上の制約があるためSW_REQバスから送信されない。スイッチ・ネットワーク54上を送られる情報は、その情報が専用ワイヤ上を送られた場合よりも1クロック・フェーズだけ遅れてポート・インタフェースに到着する。従って、初期の要求属性(early request attribute)を1フェーズだけ早くポート・インタフェースヘ送っておけば、ポート・インタフェースはそのステート・マシンを早く始動できるので、メモリ待ち時間が減少することになる。これは、図3に示すように、別の信号ライン79によって行われる。ライン79は図2の制御信号バス70内のラインの1つである。
SW_WD〔31:0〕バスは、書込みデータをマスタ・デバイス(DキャッシュとIOU)からメモリ・ポート・インタフェース内のWD FIFO131へ送るために使用される。この3状態バスはダブル・ポンプされる。つまり、データの32ビットがフェーズごとに転送される。バスはダブル・ポンプ(double−pumped)されるので、回路を設計する際に、バスが折り返して、あるマスタから別のマスタに切り替わるときバスの衝突が起こらないようにする配慮が必要である。理解されるように、ダブル・ポンプを行うと、必要とするビット・ライン数が少なくなるので、必要とされる高価なワイヤ数を最小にし、パフォーマンス低下を最小にすることができる。
図9に示すように、SW_RD〔63:0〕は、返却読取りデー夕をスレーブ・デバイス(メモリ・ポートまたはIOU)からマスタ・デバイスヘ送り返すために使用される。データはクロックのフェーズ1のとき(CLK1がハイのとき)だけ送信される。このバスは、キャッシュにタイミング上の制約があるためダブル・ポンプされない。CLK1の立下がり縁でデータが有効であることがキャッシュの必要条件である。データはフェーズ1時にポート・インタフェースから受信されるので、SW_RDバスがダブル・ポンプされていないと、キャッシュが最も早くデータを得るのは、CLK1の正縁のときであって、CLK1の負縁のときではない。SW_RDバスはダブル・ポンプされないので、このバスはCLK1時だけアクティブであるので(3状態ではない)、バス・バッファが衝突するという問題は起こらない。つまり、2つのバス・ドライバが同じワイヤを同時にドライブすることはない。
SW IDBST〔3:0〕は、識別(ID)コードとバンク開始コードをスレーブ・デバイスからマスタ・デバイスヘバス88を経由して返すために使用される。スレーブ・デバイスからのデータは常に順番に返されるので、一般的にはIDをポートまで送る必要はない。IDは、インタフェース内の各ポートごとに1つあて用意されている個々のFIFOにストアしておくことができる。
再び読取りFIFO132に戻って説明すると、データはスイッチ読取りバスSW_RDが使用可能でないときだけこのFIFOにストアされる。バスSW_RDが現在他のポートで使用中であれば、到来読取りデータは一時的に読取りFIFO132にプッシュされ、SW_RDバスが解放されると、データはFIFOからポップされて、スイッチ・ネットワーク54を通って要求側キャッシュまたはIOUへ転送される。
Dキャッシュ・インタフェース55、Iキャッシュ・インタフェース56、入出力インタフェース57およびポート・インタフェースP0 …PN 間のデータ転送を、Dキャッシュ・インタフェース55との間でデータを受け渡しする場合を例に挙げて、以下説明することにする。
Dキャッシュ、IキャッシュまたはIOUのいずれかがポートをアクセスしたいときは、そのポートが空きになっているかどうかを確かめるために、図3に示すように要求を要求信号ライン70b上をポート仲裁ユニットPAU0 へ送る。ポートが空きになっていれば、ポート・インタフェースは、要求が存在することを要求制御ライン71aを利用してスイッチ仲裁ユニット58に通知する。スイッチ・ネットワーク54が空きになっていれば、スイッチ仲裁ユニット58は、要求が制御ライン71b上で許可されたことを許可制御ライン70a上のポートとマスタ、例えば、Dキャッシュ・インタフェース55に通知する。
要求が書込み要求であれば、Dキャッシュ・インタフェース回路55はバス仲裁制御ユニット172をチェックして、MCU50にMAUバス25が許可されているかどうかを確かめる。MCUにまだバス25が許可されていなければ、バス要求が出される。バスが許可されているか、あるいは許可されると、ポート仲裁ユニット171はスイッチ・バス140、141の要求を行う。スイッチ・バス140、141へのアクセスが許可されると、Dキャッシュ・インタフェース回路55は該当するアドレスをスイッチ・バスSW_REQ140上に送出し、同時に、書込みデータを書込みデータ・バスSW_WD141上に送出し、そのデータをWD FIFO(WDF)131にストアする。データがWDFに置かれると、MCUはデータをMAUに順次に書き出していく。書込みデータをポートに送る前にバスが許可されているかどうかを確かめるようにしたのは、外部プロセッサからのスヌープ要求があるとき、MCUがWDFをチェックしないですむようにするためである。従って、変更されたデータがあるかどうかのチェックは、キャッシュだけで行われる。
要求が読取り要求であり、ポートとスイッチ・ネットワークが上述したように空きになっていると判断されると、ポート・インタフェースはSW_REQバス上を要求側ユニットから送られてきたアドレスを受け取り、MAUアドレス・バス9の許可を得るための仲裁をオービタに要求する。ポートがバスを実際に使用するためには、その前に、MAUアドレス・バスが許可されたとのMAUオービタからの通知が必要である。そのあと、要求はスイッチからポートヘ転送される。MAUアドレス・バス9が空きになっていると、アドレスがMAUアドレス・バス上に送出される。データがいつ受信されるかは、事前にポートに知らされる。ポートはスイッチ返却データ・バスを要求するので、バスが使用中でなければ、データが返却されるとき使用可能になっている。バスが空きになっていると、ポートは読取りデータをバス上に送出し、Dキャッシュ、Iキャッシュまたは入出力インタフェースはそのデータを取り出して、それぞれの要求側ユニットヘ引き渡すことになる。
D/Iキャッシュ51、52が入出力アドレスの要求を行うと、D/Iキャッシュ・インタフェース55、56はその要求を要求バスSW_REQを経由して入出力インタフェース57に受け渡す。入出力インタフェースト57は、要求をストアしておくためのその待ち行列に使用可能なエントリをもっていれば、要求を制御信号ライン90を経由してスイッチ仲裁ユニット58に引き渡す。スイッチ・ネットワーク54が空きになっていれば、もう一度、スイッチ仲裁ユニット58はD/Iキャッシュ・インタフェース55、56に通知して、アドレスをアドレス・バスSW_REQ上に送出できるようにし、それが書込み要求ならば(Dキャッシュのみ)、書込みデータを書込みデータ・バスSW_WD上に送出してIOUへ転送できるようにする。同様に、D/Iキャッシュ・インタフェース55、56からの要求が読取り要求ならば、入出力インタフェース57からの読取りデータは、スイッチ・ネットワークの読取りデータ・バスSW_RDを経由して入出力インタフェース57から転送されて、D/Iキャッシュ・インタフェース55、56に渡され、そこからD/Iキャッシュ51、52へ転送される。
図4に示すように、本発明によるポート・インタフェースとキャッシュには、それぞれを符号160、168で全体を示したテストおよびセット(TS)バイパス回路が設けられている。このバイパス回路はMAUアドレス・バス9上にセマフォアのアドレスがあるかどうかをモニタ、つまり、スヌープ(snoop)する。理解されるように、回路160、168はセマフォアをスピン・ロックしたとき消費されるメモリ・バンド幅を節減する。
TS回路160、168には、スヌープ・アドレス・ジェネレータ(snoop address generator)161、TS内容アドレス・メモリ(CAM−content addressable memory)162、フリップフロツプ163およびMUX164、165が設けられている。
セマフォア(semaphore)とは、メモリ内のアドレス可能ロケーションにストアされて、メモリやその他のアドレス可能資源のある領域へのアクセスを制御するためのフラグまたはラベルである。例えば、あるCPUがセマフォアが関連づけられているあるメモリ領域をアクセスするとき、その領域を他のCPUがアクセスするのを望まないときは、そのアクセスするCPUはセマフォアにオール1を入れる。別のCPUがその領域へのアクセスを試みるときは、まずそのセマフォアを調べる。セマフォアがオール1であることが分かると、その2番目のCPUはアクセスが拒否されることになる。そのときまでに、2番目のCPUがアクセス要求をなん度も出していると、アクセスがなん度も拒否され、その結果、「セマフォアのスピン・ロック」と呼ばれる現象が起こることになる。このセマフォアのスピン・ロックが起こると、アクセス要求のたびに、要求側CPUは読み書きを行わなければならないので、メモリ・バンド幅量が過度に使用されるという問題が起こる。
図4に示したテストおよびセット・バイパス回路160、168には、セマフォアのスピン・ロックが起こったときメモリ・バンド幅の過度の使用を防止する単純なアルゴリズムが実装されている。
動作について説明すると、あるCPU、より正確には、プロセッサ内のあるプロセスがセマフォアが関連づけられているあるメモリ領域を要求するために、まずロードおよびセット命令、つまり、セマフォアヘのアクセス要求と関連する所定の命令を出すと、そのCPUは、まず、そのセマフォアをアクセスし、セマフォアのアドレスをCAM162にストアする。複数のロードおよびセット命令を出すと、複数のエントリがCAM162にストアされることになる。セマフォアがオール1($FFFF)ならば、アクセスが拒否されたことを意味する1が返される。別のプロセスがそのセマフォアを要求するときは、そのCAMを調べる。要求したセマフォアのアドレスがまだCAMに残っていると、セマフォアが別のプロセッサ/プロセスによってまだ解放されていないことがCPUに通知されるので、セマフォアをスピン・ロックさせる必要がない。その代わりに、MCUはオール1(セマフォア失敗)を受け取るので、セマフォアはメモリに要求されないので、メモリ・バンド幅が必要以上に使用されることが防止される。他方、セマフォアのアドレスがCAMになければ、セマフォアが以前に要求されたことがなかったか、すでに解放されていることを意味する。
MAUバスは、バイト・アドレスを提供しない。セマフォアが解放されたときは、CAMをクリアする必要がある。セマフォアを取り囲む最小の検出可能メモリ・ブロックのいずれかの部分へのアクセスがMAUバス上のいずれかのプロセッサによって行われると、CAMがクリアされる。現ブロック・サイズは4または8バイトである。このようにすると、メモリ・ブロック内の別のロケーションヘの書込みによってセマフォアがクリアされなかったときCAMがクリアされる場合があっても、CAMはクリアされたセマフォアのアドレスを保持することはない。セマフォアは、いずれかのプロセッサがオール1以外をセマフォアに書き込むと、クリアされる。
セマフォアが置かれているメモリ・ブロックヘの書込みが行われたあと、セマフォアがテストおよびセット命令によってアクセスされる場合は、メモリが再びアクセスされる。セマフォアがすでにクリアされていると、クリアされた値がCPUに返され、CAMにそのアドレスが再びセットされる。セマフォアがクリアされていないか、再びロックされていたときも、CAMにセマフォア・アドレスがロードされるが、ロックされた値がCPUに返される。
図4の回路160の動作について説明すると、回路160はMAUアドレス・バス9をスヌープし、そこで検出されたアドレス信号を使用して、アドレス・ジェネレータ161で対応するスヌープ・アドレスを生成し、このアドレスはライン169上をCAM162へ送信され、その内容と比較される。ヒットすると、つまり、CAM162内のエントリと一致するものがあると、CAM162のそのエントリがクリアされる。ロードおよびセット要求が例えばDキャッシュからMCUに対して行われると、Dキャッシュ・インタフェース回路はアドレスをCAMのエントリと比較する。CAM162に一致するものが見つかると(ヒットすると)、そのIDがキャッシュ・インタフェースのレジスタ163にラッチされ、このIDとオール1($FFFF)がMUX164、165を経由してキャッシュ・インタフェースに返される。
アドレスをスヌープし、CAM162で比較を行うためにそれからスヌープ・アドレス・ジェネレータ161でスヌープ・アドレスを生成することは、MAUアドレス・バス9上に現れたアドレスが非共用メモリ・ロケーションに対するものであっても、好ましくない影響を与えないで続けられる。スヌープ・アドレス・ジェネレータ161は、一般的には、MAUアドレス・バス9上に現れたMAU行列アドレスの11ビットからキャッシュ・ブロック・アドレス(上位ビット)を、MAU制御信号RAS、CASおよび制御信号バス11上のBKST START MAU制御信号を使用して生成する。
図5に示すように、全体を符号170で示した、キャッシュ一貫性を保つための本発明の他の形態による回路が設けられている。キャッシュ一貰性が必要とされるのは、マルチプロセッサ環境では、マスタ・デバイスとスレーブ・デバイス、つまり、CPUがすべて最新のデータをもつことを保証するためである。
回路170を構成するチップの外側に示すように、オービタ6、メモリ7、MAUアドレス・バス9、MAU制御バス11およびマルチプロセッサ制御バス10が設けられている。回路170には、ポート仲裁ユニット・インタフェース171、バス仲裁制御ユニット172、マルチプロセッサ・コントロール173および図4に示すスヌープ・アドレス・ジェネレータ161が設けられている。Dキャッシュ・インタフェース55は対の制御信号バス174、175とスヌープ・アドレス・バス176を介してマルチプロセッサ・コントロール173に接続されている。Iキャッシュ・インタフェース56は対の制御信号バス177、178とスヌープ・アドレス・バス176を介してマルチプロセッサ・コントロール173に接続されている。スヌープ・アドレス・ジェネレータ161は制御信号バス179を介してマルチプロセッサ・コントロール173に接続されている。マルチプロセッサ・コントロール173はさらに、制御信号バス180を介してマルチプロセッサ制御バス10に、制御信号バス181を介してバス仲裁制御ユニット172に接続されている。ポート仲裁ユニット・インタフェース171は制御信号バス182を介してバス仲裁制御ユニット172に接続されている。バス仲裁制御ユニット172はバス仲裁制御ユニット183を介してオービタ6に接続されている。スヌープ・アドレス・ジェネレータ161は、それぞれ、アドレス・バス14および制御バス16を介してMAUアドレス・バス9およびMAU制御バス11にも接続されている。
キャッシュからの要求が送られるときは、その要求が共用メモリに対するものかどうかを示した属性が一緒に送られる。要求が共用メモリに対するものであるときは、ポート・インタフェースはマルチプロセッサ制御信号(MCS)バス10上を共用信号SHARED_REQを送出する。他のCPUがMCSバス10上にこの共用信号を検出すると、スヌープ・アドレスを得るためにMAUアドレス・バス9をスヌープすることを始める。
スヌーピング(snooping)とは、これまでに簡単に説明したように、キャッシュ一貫性プロトコルである。このプロトコルによれば、制御は共用メモリ・バス上のすべてのキャッシュに配布され、すべてのキャッシュ・コントローラ(CCU)はバスを聴取(1isten)またはスヌープして、共用ブロックのコピーをもっているかどうかを判断する。従って、スヌーピングとは、スレーブ側MCUがバス上のすべてのトランザクションをモニタして、マスタ側MCUから出されたRD/WR要求があるかどうかを調べるプロセスである。スレーブ側MCUの主要な仕事は、バスをスヌープして受信する必要のあるデータがあるかどうかを判断すること、つまり、以前に受信したデータを無効にすることであり、あるいは最新のデータをマスタ側MCUへ送ること、つまり、介入を行うことである。
以下で詳しく説明するように、図5に示すマルチプロセッサ制御回路173はキャッシュからの無効化、介入およびスヌープ・ヒット信号を処理して、以下に詳しく説明するように、スヌープ・ヒットと介入/無効化が示されたときスヌープ・ヒット(SNP_HIT)信号と介入(ITV_REQ)信号をマルチプロセッサ制御信号バス180上に生成する。
図5に示すバス仲裁制御ユニット172は通常の読取りまたは書込みオペレーションにおいてMAUバスの仲裁を行う。また、介入/無効化の場合にもMAUバスの仲裁を行い、外部バス・オービタ6に直接に通じる外部バス仲裁制御信号ピンと直接にインタフェースとなっている。
次に、上述したキャッシュ一貫性を保証するための介入と無効化のオペレーションを、マスタ側中央処理ユニット(MSTR CPU)から出された読取り要求、書込み要求および変更意図付き読取り(read−with−intent−to−modify)要求と関連づけて説明する。
MSTR CPUは読取り要求を出すとき、アドレスをMAU(メモリ・アレイ・ユニット)アドレス・バス9上に送出する。スレーブ側(SLV)CPUはMAUアドレス・バス9上のアドレスをスヌープする。SLV CPUがそのキャッシュ内のアドレス指定したメモリ・ロケーションから取り出したデータが変更されていると、スレーブ側キャッシュ制御ユニット(SLV CCU)は介入信号をマルチプロセッサ制御バス10上に送出し、データが更新、つまり、変更されていることを通知する。MSTRは、ITV信号を検出すると、バスを断念し、SLV CCUは更新データをメイン・メモリ、つまり、MAU7に書き込む。MSTRが要求したデータがMSTRキャッシュ制御ユニット(CCU)によってまだ受信されてないと、MSTR MCUは要求されたデータを破棄し、MAUにデータを要求することを再び主張する。要求されたデータがMSTR CCUへ転送されていた場合は、MSTR MCUはデータを破棄するようにMSTR CCU(IOUがMSTRであれば、IOUコントローラ)に通知する。そのあと、MSTR MCUは、スレーブがメイン・メモリを更新したあと読取り要求を再び出す。その間、ポート・インタフェースはマスタの読取り要求を保留しており、その間にスレーブは変更したデータをメモリに書き戻す。そのあと、読取り要求が実行される。
MSTRが書込み要求を出し、アドレスをMAU(メモリ・アレイ・ユニット)アドレス・バス9上に送出し、スレーブ側CCUがこのアドレスからのオリジナル・データのコピーをそのキャッシュにもっていると、スレーブ側CCUは、そのキャッシュに置かれている対応するデータを無効にする、つまり、破棄する。
MSTRが変更意図付き読取り要求を出し、アドレスをMAUアドレス・バス9上に送出し、スレーブ側MCUがマスタ(MSTR)からアドレス・バス上に送出されたアドレスをもっていると、次の2つの可能な動作のいずれかが取られる。
1.SLV CCUがMSTRがアドレス指定したデータに対応するデータを変更していた場合は、SLVはITV信号を出し、MSTRはその信号を受けてバスを断念し、SLV CCUが変更したデータをメモリに書くことを許可する。このオペレーションは、上述した介入オペレーションに対応している。
2.SLVがMSTRがアドレス指定したデータに対応する未修正データをもっている場合は、SLVはそのデータを無効にする、つまり、破棄する。このオペレーションは、上述した無効化オペレーションに対応している。
図6に示すように、全体を符号190で示した本発明の他の形態による回路が設けられている。この回路190は、行一致比較を行ってメモリ待ち時間を短縮するために使用される。回路190には、コンパレータ191、ラッチ192および対のMUX193、194が設けられている。
行一致比較の機能は、現在の要求が前の要求と同じ行アドレスをもっているかどうかを判断することである。同じ行アドレスをもっていれば、ポートはRAS要求を取り消すための時間ペナルティを負担しないですむ。行一致は主にDRAMで使用されるが、SRAMまたはROMで使用することも可能である。つまり、ROMとSRAMは、DRAMで使用するものと同じように上位と下位のアドレス・セグメントに入れてアドレスをMAUに引き渡すので、MAUを新アドレスの上位、つまり、行ビットにラッチする必要がないためである。
図6に示した行一致回路の動作について説明すると、行アドレスは、そのアドレスの対応する配列選択ビットを含めて、MUX193によってラッチ192にストアされる。新しいアドレスがスイッチ・ネットワーク・アドレス・ラインSW REQに現れるたびに、そのアドレスは新要求MUX194を通って送られ、コンパレータ191で前の要求と比較される。行が一致していると、信号がコンパレータ191の出力から生成され、バス70の一部である信号ライン195を介してポート・インタフェースヘ転送される。行一致がヒットすると、ポート・インタフェースはRAS要求を取り消すことが禁止されるので、RASサイクル・タイムが節約されることになる。
MUX193は行アドレスをスイッチ要求アドレスから抜き出すために使用される。行アドレスをスイッチ・アドレスにマッピングすることは、DRAMの構成(例えば、1Mx1または4Mx1 DRAM)とMAUデータ・バスの幅(例えば、32ビットまたは64ビット)によって異なる。
図1および図5に示すように、外部バス・オービタ6は、主にプログラマブル・ロジック・アレイ(PLA)と記憶素子から構成されたユニットである。このオービタはMAUバス要求を異種CPUから受け取り、どのCPUにバス許可を与えるべきかを、ソフトウェアで選択可能な動的または固定優先度方式に基づいて裁定し、該当するCPUに対して許可を発行する。記憶素子はどのCPUに最後にバスが許可されたかを記憶しておき、動的または柔軟な優先度方式および固定または「ラウンド・ロビン」優先度方式のいずれをも実行できるようにするものである。
図7を参照して、本発明のマルチプロセッサ環境で使用される動的スイッチおよびポート仲裁について、以下説明する。
上述したように、3つのマスタと、MCUのサービスを受ける2つの資源が存在する。3つのマスタとは、Dキャッシュ、IキャッシュおよびIOUである。2つの資源、つまり、スレーブはメモリ・ポートとIOUである。上から明らかなように、IOUはマスタと資源/スレーブの両方になることができる。
本発明によれば、2種類の仲裁が行われる。1つはメモリ・ポートの資源の仲裁に関係するものであり、もう1つはスイッチ・ネットワーク54のバスSW REQとSW_WDの資源の仲裁に関係するものである。
複数のデバイスがメイン・メモリからデータを同時に要求することがある。それらのデバイスとは、Dキャッシュ、IキャッシュおよびIOUである。各マスタに一定の優先度を与える優先度方式は、「重要度」または「緊急度」の高いデバイスからの要求ができるかぎり早くサービスを受けられるようにすることを目的としている。しかし、厳格な固定仲裁方式は、優先度の低いデバイスがいつまでもサービスが受けられない(starving)可能性があるため好ましくない。その代わりに、デバイス別に異なる優先度を処理中に(on the fly)割り当てる動的仲裁方式が取り入れられている。この動的仲裁方式に影響を与える要因として、次のものがある。
1.そのデバイスの固有優先度
2.要求したアドレスと以前にサービスを受けた要求のアドレスとが行一致している
3.デバイスは余りにも多くの回数サービスを拒否されてきた
4.マスタは余りにも多くの回数サービスを受けてきた
図7に示すように、メモリ・ポートを要求するときに使用される動的優先度方式は次のとおりである。
デバイスからの各要求は固有優先度をもっている。IOUが高優先度または通常優先度を要求することができ、次にDキャッシュが、その次にIキャッシュが要求できる。しかし、Dキャッシュからの介入(ITV)要求がすべての中で最も優先度が高くなっている。
特別な高優先度の入出力要求を行うことができる。この優先度は、メモリ待ち時間を最小にしてメモリヘのアクセスを必要とするリアルタイム(実時間)入出力周辺デバイスで使用されることを目的としている。これらの要求は、図7に示すように介入サイクルと行一致を除き、他のすべての要求に優先させることができる。
各種デバイスの固有優先度を変更する要因として、サービス拒否、入出力独占(I/O hog)、行一致といったものがある。あるデバイスがサービスを拒否されるたびに、カウンタがデクリメントされる。カウンタがゼロまで達すると、そのデバイスの優先度は大きくされ、DENY PRIORITYと名付けた優先度レベルがセットされる。これらのカウンタには、最大15までのプログラム可能な値をロードすることができる。カウンタがゼロまで達すると、DENY PRIORITYビットがセットされ、これは最終的には、拒否されたデバイスがサービスを受けたときクリアされる。サービスが拒否されたデバイスの優先度を大きくするため方法によると、サービス窮乏化(starvation)が防止される。注意すべきことは、IOUの固有優先度レベルは本来的にすでに高いので、IOUにはサービス拒否優先度が割り当てられないことである。
IOUはすでに本来的に優先度が高いデバイスであるので、そのデバイスがポートを独占するのをカウンタで防止するようにする必要もある。IOUにポート使用権が許可されるたびに、カウンタはデクリメントされる。カウンタがゼロまで達すると、IOUはバスを独占しているものと扱われ、IOUの優先度レベルは低くされる。IOUの優先度レベルを落とすのは通常優先度の要求の場合だけであり、高優先度の入出力要求の場合は行われない。IOUに要求サイクル時にポート使用権が許与されないときは、独占優先度ビット(hog priority bit)がクリアされる。
要求の固有優先度を変更するもう1つの要因は行一致である。行一致が主に重要なのは、Iキャッシュの場合である。あるデバイスが以前にサービスを更けた要求と同じ行アドレスをもつメモリ・ロケーションを要求すると、要求したデバイスの優先度が高くされる。これが行われるのは、RASを再要求しないで済むようにするためである。
しかし、行一致優先度を持ち続けるには一定の限度がある。この場合も、カウンタはプログラム可能な最大値をセットして使用される。行一致優先度があるために要求がサービスを受けるたびに、カウンタはデクリメントされる。カウンタがゼロまで達すると、行一致優先度ビットがクリアされる。ポートの新しいマスタが割り当てられると、あるいは行一致の要求がないと、カウンタには再びプログラム可能値が事前ロードされる。上述したカウンタはスイッチ仲裁ユニット58に置かれている。
メモリ・ポートに対する書込み要求は、スイッチの書込みデータ・バスSW_WDが使用可能になっているときだけ許可される。使用可能でないときは、別の要求が選択される。1つだけ例外があり、それは、介入信号ITVの場合である。SW_WDが使用可能になっていないと、どの要求も選択されない。その代わりに、プロセッサはSW_WDが空きになるのを待ってから、要求をスイッチ・オービタに受け渡す。
スイッチ・ネットワーク54の仲裁方式は、ポートの仲裁で使用される方式と若干異なっている。図3のスイッチ仲裁ユニット58は、ソフトウェアで選択可能なポートの仲裁を行うとき、2種類の仲裁方式を利用している。
1.優先度がスレーブまたは被要求側デバイス(すなわち、メモリまたはIOUポート)を基準にしているスレーブ優先度方式
2.優先度がマスタまたは要求側デバイス(すなわち、IOU、DキャッシュおよびIキャッシュ)を基準にしているマスタ優先度方式
スレーブ優先度方式では、優先度は常にラウンド・ロビン方式でメモリ・ポートに与えられる。つまり、優先度は最初にメモリ・ポート0、1、2...に与えられ、次にIOUに与えられる。これに対して、マスタ優先度方式では、優先度は最初にIOUに与えられ、次にDキャッシュとIキャッシュに与えられる。勿論、事情によっては、マスタ優先方式に従ってITV要求に最高優先度を与える必要がある場合やそうした方が望ましい場合がある。また、プリフェッチ・バッファがやがて空になる場合に、Iキャッシュに高優先度を与える必要がある場合やそうしたほうが望ましい場合がある。いずれの場合も、使用する優先度方式は、様々な動作条件に合うようにソフトウェアで調整することが可能である。
動的メモリ・リフレッシュも優先度方式に基づいている。ステート・マシンに接続されたカウンタは、あるリフレッシュから次のリフレッシュまでどれだけのサイクルが経過したか、つまり、リフレッシュが要求され、MAUバスが使用中のため拒否された回数を記録するために使用される。カウンタが所定のカウントまで達すると、つまり、経過すると、信号をポートに対して生成して、リフレッシュの必要があることをポートに通知する。ポートが使用中で、DキャッシュやIキャッシュまたはIOUからの要求にサービスを与えている場合は、これまでに拒否したリフレッシュ要求が所定数まで達していなければ、リフレッシュ要求にサービスを与えることを拒否する。言い換えれば、リフレッシュ要求が所定回数まで拒否されたとき、リフレッシュ要求にサービスを与えることに優先度が与えられる。ポートがリフレッシュ要求にサービスを与える準備状態になると、MAUバスの仲裁を始めるようにバス仲裁制御ユニットに通知する。
行は、15マイクロ秒ごとにリフレッシュするのが好ましく、また、所定の期間内に、例えば、少なくとも30マイクロ秒ごとにリフレッシュする必要がある。
RASが低(要求ーassert)になり、CASが要求されなかったときは、リフレッシュが行われたことがすべてのCPUに通知される。すべてのCPUはリフレッシュがいつ行われたかを記録しているので、どのCPUも必要時にリフレッシュを要求することができる。
本発明の好適実施例について説明してきたが、本発明の精神と範囲を逸脱しない限り、種々態様に変更が可能であることは勿論である。従って、上述した実施例は、本発明を説明するための例示にすぎず、その範囲は実施例に限定されることなく、請求の範囲に記載した発明から判断すべきものである。
本発明による複数の異種マイクロプロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャを示すブロック図である。 本発明によるメモリ制御ユニットを示すブロック図である。 本発明によるDキャッシュ・インタフェースとポート・インタフェースとの間の接続状態を示すスイッチ・ネットワークを示すブロック図である。 本発明によるテストおよびセット・バイパス回路を示すブロック図である。 本発明により介入信号を生成し、MAUバスの仲裁を行うために使用される回路を示すブロック図である。 本発明による行一致比較回路を示すブロック図である。 本発明による動的仲裁方式を示す図である。 書込み要求のタイミングを示す図である。 読取り要求のタイミングを示す図である。
符号の説明
1…アーキテクチャ、2、3、4...N…プロセッサ、5…特殊用途プロセッサ、6…オービタ(仲裁回路)、7…メモリ/メモリ・アレイ・ユニット(MAU)、8…MAUデータ・バス、9…ROW/COLアドレス・バス、、10…マルチプロセッサ制御バス、11…MAU制御バス、12…バス仲裁制御信号バス、25…MAUシステム・バス

Claims (2)

  1. メモリ・アレイ・ユニット(MAU)と、前記MAUに結合された複数のメモリ・ポートと、前記メモリ・ポートを通じて前記MAUにアクセスする複数の装置を有するコンピュータ・システムにおいて、前記メモリ・ポートのため仲裁を行うメモリ・ポート仲裁方法であって、
    (1)前記各装置に優先度を割当てるステップと、
    (2)前記優先度に従って前記各装置により発せられる前記メモリ・ポートのための要求をサービスするステップとを有し、
    ステップ(1)は、
    (a)前記装置のそれぞれに当初の優先度を割当てるステップと、
    (b)第1装置がメモリ・ポートへのサービスをくり返し拒否されるときは、第1優先度値よりも低い当初の優先度を有する第1装置に関して優先度を上げるステップと、
    (c)第2装置がメモリ独占であることが決定されるときは、第2優先度値よりも高い当初の優先度を有する第2装置に関して優先度を下げるステップと、
    (d)第3装置によって発せられる未決のメモリ・アクセス要求によりアドレスされる行が、前記MAUによりサービスを受けた先行メモリ・アクセス要求によりアドレスされる行に対応するときは、第3装置に関して優先度を上げるステップと
    を有することを特徴とするメモリ・ポート仲裁方法。
  2. 前記ステップ(c)は、
    中断のあと前記第2装置がはじめてサービスを受けるときは、カウンタを所定の値に初期化するステップと、
    前記第2装置が中断なしにサービスを受けるたびに前記カウンタの数を減じるステップと、
    前記カウンタがゼロに達するときは、前記第2装置がメモリ独占であることを決定するステップと
    を有することを特徴とする請求項1記載のメモリ・ポート仲裁方法。
JP2003406723A 1991-07-08 2003-12-05 メモリ・ポート仲裁方法 Expired - Lifetime JP3850829B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/726,893 US5440752A (en) 1991-07-08 1991-07-08 Microprocessor architecture with a switch network for data transfer between cache, memory port, and IOU

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50215193A Division JP3557617B2 (ja) 1991-07-08 1992-07-07 複数の異種プロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャ

Publications (2)

Publication Number Publication Date
JP2004158021A true JP2004158021A (ja) 2004-06-03
JP3850829B2 JP3850829B2 (ja) 2006-11-29

Family

ID=24920467

Family Applications (7)

Application Number Title Priority Date Filing Date
JP50215193A Expired - Fee Related JP3557617B2 (ja) 1991-07-08 1992-07-07 複数の異種プロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャ
JP2003406721A Expired - Lifetime JP3632766B2 (ja) 1991-07-08 2003-12-05 プロセッサ・システム
JP2003406723A Expired - Lifetime JP3850829B2 (ja) 1991-07-08 2003-12-05 メモリ・ポート仲裁方法
JP2003406720A Expired - Lifetime JP3624951B2 (ja) 1991-07-08 2003-12-05 マルチプロセッサ・システム
JP2003406722A Expired - Lifetime JP3624952B2 (ja) 1991-07-08 2003-12-05 データ転送方法
JP2004265076A Withdrawn JP2005050368A (ja) 1991-07-08 2004-09-13 マルチプロセッサ・システム
JP2004265075A Expired - Fee Related JP3687750B2 (ja) 1991-07-08 2004-09-13 マルチプロセッサ・システム

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP50215193A Expired - Fee Related JP3557617B2 (ja) 1991-07-08 1992-07-07 複数の異種プロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャ
JP2003406721A Expired - Lifetime JP3632766B2 (ja) 1991-07-08 2003-12-05 プロセッサ・システム

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2003406720A Expired - Lifetime JP3624951B2 (ja) 1991-07-08 2003-12-05 マルチプロセッサ・システム
JP2003406722A Expired - Lifetime JP3624952B2 (ja) 1991-07-08 2003-12-05 データ転送方法
JP2004265076A Withdrawn JP2005050368A (ja) 1991-07-08 2004-09-13 マルチプロセッサ・システム
JP2004265075A Expired - Fee Related JP3687750B2 (ja) 1991-07-08 2004-09-13 マルチプロセッサ・システム

Country Status (8)

Country Link
US (9) US5440752A (ja)
EP (3) EP0886225B1 (ja)
JP (7) JP3557617B2 (ja)
KR (1) KR100248902B1 (ja)
AT (3) ATE177221T1 (ja)
DE (3) DE69233655T2 (ja)
HK (2) HK1012742A1 (ja)
WO (1) WO1993001553A1 (ja)

Families Citing this family (307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233493T2 (de) 1991-07-08 2005-07-28 Seiko Epson Corp. RISC-Prozessor mit erweiterbarer Architektur
US5493687A (en) 1991-07-08 1996-02-20 Seiko Epson Corporation RISC microprocessor architecture implementing multiple typed register sets
US5539911A (en) 1991-07-08 1996-07-23 Seiko Epson Corporation High-performance, superscalar-based computer system with out-of-order instruction execution
US5440752A (en) * 1991-07-08 1995-08-08 Seiko Epson Corporation Microprocessor architecture with a switch network for data transfer between cache, memory port, and IOU
JPH07504773A (ja) * 1992-03-18 1995-05-25 セイコーエプソン株式会社 マルチ幅のメモリ・サブシステムをサポートするためのシステム並びに方法
WO1993020505A2 (en) 1992-03-31 1993-10-14 Seiko Epson Corporation Superscalar risc instruction scheduling
EP0638183B1 (en) * 1992-05-01 1997-03-05 Seiko Epson Corporation A system and method for retiring instructions in a superscalar microprocessor
JPH06161873A (ja) * 1992-11-27 1994-06-10 Fujitsu Ltd 主記憶に対する複数のアクセスポイントのハングアップ処理方式
US5628021A (en) 1992-12-31 1997-05-06 Seiko Epson Corporation System and method for assigning tags to control instruction processing in a superscalar processor
EP1107111A3 (en) 1992-12-31 2002-02-06 Seiko Epson Corporation System and method for register renaming
DE69323861T2 (de) * 1993-01-25 1999-10-07 Bull Hn Information Syst Multiprozessorsystem mit gemeinsamem Speicher
US6115547A (en) 1993-03-29 2000-09-05 Trilogy Development Group, Inc. Flash configuration cache
JP3619532B2 (ja) * 1993-11-08 2005-02-09 株式会社ルネサステクノロジ 半導体集積回路装置
GB2286265B (en) * 1994-01-26 1998-02-18 Advanced Risc Mach Ltd selectable processing registers
US5918242A (en) * 1994-03-14 1999-06-29 International Business Machines Corporation General-purpose customizable memory controller
US5748917A (en) * 1994-03-18 1998-05-05 Apple Computer, Inc. Line data architecture and bus interface circuits and methods for dual-edge clocking of data to bus-linked limited capacity devices
JPH086889A (ja) * 1994-06-20 1996-01-12 Fujitsu Ltd 入出力制御装置
US5832303A (en) * 1994-08-22 1998-11-03 Hitachi, Ltd. Large scale interconnecting switch using communication controller groups with multiple input-to-one output signal lines and adaptable crossbar unit using plurality of selectors
US5560016A (en) * 1994-10-06 1996-09-24 Dell Usa, L.P. System and method for dynamic bus access prioritization and arbitration based on changing bus master request frequency
US5623670A (en) * 1995-02-17 1997-04-22 Lucent Technologies Inc. Method and apparatus for crash safe enforcement of mutually exclusive access to shared resources in a multitasking computer system
US5867704A (en) * 1995-02-24 1999-02-02 Matsushita Electric Industrial Co., Ltd. Multiprocessor system shaving processor based idle state detection and method of executing tasks in such a multiprocessor system
JP3115820B2 (ja) * 1995-05-17 2000-12-11 松下電器産業株式会社 インターフェース装置、及びこれを用いたコンピュータ装置
US5754803A (en) 1996-06-27 1998-05-19 Interdigital Technology Corporation Parallel packetized intermodule arbitrated high speed control and data bus
US5799195A (en) * 1995-07-24 1998-08-25 Dell Usa, L.P. Structure and method for detecting occurrence of external events using semaphores
AU6452396A (en) * 1995-07-27 1997-02-26 Intel Corporation Protocol for arbitrating access to a shared memory area using historical state information
US6317803B1 (en) 1996-03-29 2001-11-13 Intel Corporation High-throughput interconnect having pipelined and non-pipelined bus transaction modes
US5911051A (en) * 1996-03-29 1999-06-08 Intel Corporation High-throughput interconnect allowing bus transactions based on partial access requests
US5905999A (en) * 1996-04-29 1999-05-18 International Business Machines Corporation Cache sub-array arbitration
US5745913A (en) * 1996-08-05 1998-04-28 Exponential Technology, Inc. Multi-processor DRAM controller that prioritizes row-miss requests to stale banks
US5845096A (en) * 1996-08-26 1998-12-01 Vlsi Technology, Inc. Adaptive arbitration mechanism for a shared multi-master bus
US6338109B1 (en) * 1996-08-30 2002-01-08 Cypress Semiconductor Corp. Microcontroller development system and applications thereof for development of a universal serial bus microcontroller
US5862355A (en) * 1996-09-12 1999-01-19 Telxon Corporation Method and apparatus for overriding bus prioritization scheme
US6385678B2 (en) * 1996-09-19 2002-05-07 Trimedia Technologies, Inc. Method and apparatus for bus arbitration with weighted bandwidth allocation
US6092229A (en) * 1996-10-09 2000-07-18 Lsi Logic Corporation Single chip systems using general purpose processors
US5974480A (en) * 1996-10-18 1999-10-26 Samsung Electronics Co., Ltd. DMA controller which receives size data for each DMA channel
US6513057B1 (en) 1996-10-28 2003-01-28 Unisys Corporation Heterogeneous symmetric multi-processing system
US6141351A (en) * 1996-12-20 2000-10-31 International Business Machines Corporation Radio frequency bus for broadband microprocessor communications
US5978379A (en) * 1997-01-23 1999-11-02 Gadzoox Networks, Inc. Fiber channel learning bridge, learning half bridge, and protocol
US5931924A (en) * 1997-04-14 1999-08-03 International Business Machines Corporation Method and system for controlling access to a shared resource that each requestor is concurrently assigned at least two pseudo-random priority weights
US5935234A (en) * 1997-04-14 1999-08-10 International Business Machines Corporation Method and system for controlling access to a shared resource in a data processing system utilizing pseudo-random priorities
US6052383A (en) * 1997-05-29 2000-04-18 3Com Corporation LAN to ATM backbone switch module
US5884051A (en) * 1997-06-13 1999-03-16 International Business Machines Corporation System, methods and computer program products for flexibly controlling bus access based on fixed and dynamic priorities
US6658447B2 (en) * 1997-07-08 2003-12-02 Intel Corporation Priority based simultaneous multi-threading
US6185646B1 (en) * 1997-12-03 2001-02-06 International Business Machines Corporation Method and apparatus for transferring data on a synchronous multi-drop
FR2778258A1 (fr) * 1998-04-29 1999-11-05 Texas Instruments France Controleur d'acces de trafic dans une memoire, systeme de calcul comprenant ce controleur d'acces et procede de fonctionnement d'un tel controleur d'acces
JPH11345165A (ja) * 1997-12-05 1999-12-14 Texas Instr Inc <Ti> アクセス待ち時間を減少するため優先度とバースト制御を使用するトラフィック・コントローラ
US6088751A (en) * 1998-02-12 2000-07-11 Vlsi Technology, Inc. Highly configurable bus priority arbitration system
US6789150B1 (en) * 1998-02-16 2004-09-07 Infineon Technologies A.G. Integrated circuit having arbitrated switching between busses
US6178486B1 (en) 1998-02-19 2001-01-23 Quantum Corporation Time allocation shared memory arbitration for disk drive controller
JPH11250005A (ja) * 1998-03-05 1999-09-17 Nec Corp バス制御方法、バス制御装置及びバス制御プログラムを記憶した記憶媒体
US6377581B1 (en) * 1998-05-14 2002-04-23 Vlsi Technology, Inc. Optimized CPU-memory high bandwidth multibus structure simultaneously supporting design reusable blocks
US6286083B1 (en) * 1998-07-08 2001-09-04 Compaq Computer Corporation Computer system with adaptive memory arbitration scheme
US6223239B1 (en) * 1998-08-12 2001-04-24 Compaq Computer Corporation Dual purpose apparatus, method and system for accelerated graphics port or system area network interface
US6249845B1 (en) 1998-08-19 2001-06-19 International Business Machines Corporation Method for supporting cache control instructions within a coherency granule
US6330632B1 (en) 1998-09-30 2001-12-11 Hewlett-Packard Company System for arbitrating access from multiple requestors to multiple shared resources over a shared communications link and giving preference for accessing idle shared resources
US6434649B1 (en) * 1998-10-14 2002-08-13 Hitachi, Ltd. Data streamer
US6728839B1 (en) * 1998-10-28 2004-04-27 Cisco Technology, Inc. Attribute based memory pre-fetching technique
US6233645B1 (en) 1998-11-02 2001-05-15 Compaq Computer Corporation Dynamically disabling speculative prefetch when high priority demand fetch opportunity use is high
US7430171B2 (en) 1998-11-19 2008-09-30 Broadcom Corporation Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost
US6389494B1 (en) 1998-12-30 2002-05-14 Emc Corporation System for interfacing a data storage system to a host utilizing a plurality of busses for carrying end-user data and a separate bus for carrying interface state data
US7117275B1 (en) 1999-01-04 2006-10-03 Emc Corporation Data storage system having separate data transfer section and message network
US7073020B1 (en) 1999-01-04 2006-07-04 Emc Corporation Method for message transfer in computer storage system
US6425060B1 (en) * 1999-01-05 2002-07-23 International Business Machines Corporation Circuit arrangement and method with state-based transaction scheduling
US6411218B1 (en) * 1999-01-22 2002-06-25 Koninklijke Philips Electronics N.V. Priority-encoding device selection using variable arbitrary rankings
DE19904084B4 (de) 1999-02-02 2008-12-11 Force Computers Gmbh Computer
US6639915B1 (en) * 1999-04-07 2003-10-28 Utstarcom, Inc. Method and apparatus for transmission of voice data in a network structure
US6427193B1 (en) 1999-05-18 2002-07-30 Advanced Micro Devices, Inc. Deadlock avoidance using exponential backoff
US6473837B1 (en) 1999-05-18 2002-10-29 Advanced Micro Devices, Inc. Snoop resynchronization mechanism to preserve read ordering
US6415360B1 (en) 1999-05-18 2002-07-02 Advanced Micro Devices, Inc. Minimizing self-modifying code checks for uncacheable memory types
US6266744B1 (en) 1999-05-18 2001-07-24 Advanced Micro Devices, Inc. Store to load forwarding using a dependency link file
US6393536B1 (en) 1999-05-18 2002-05-21 Advanced Micro Devices, Inc. Load/store unit employing last-in-buffer indication for rapid load-hit-store
US6473832B1 (en) 1999-05-18 2002-10-29 Advanced Micro Devices, Inc. Load/store unit having pre-cache and post-cache queues for low latency load memory operations
US7031302B1 (en) * 1999-05-21 2006-04-18 Broadcom Corporation High-speed stats gathering in a network switch
US6779036B1 (en) 1999-07-08 2004-08-17 International Business Machines Corporation Method and apparatus for achieving correct order among bus memory transactions in a physically distributed SMP system
US6467012B1 (en) 1999-07-08 2002-10-15 International Business Machines Corporation Method and apparatus using a distributed system structure to support bus-based cache-coherence protocols for symmetric multiprocessors
US6442597B1 (en) 1999-07-08 2002-08-27 International Business Machines Corporation Providing global coherence in SMP systems using response combination block coupled to address switch connecting node controllers to memory
US6718422B1 (en) 1999-07-29 2004-04-06 International Business Machines Corporation Enhanced bus arbiter utilizing variable priority and fairness
US6629220B1 (en) * 1999-08-20 2003-09-30 Intel Corporation Method and apparatus for dynamic arbitration between a first queue and a second queue based on a high priority transaction type
US6591348B1 (en) 1999-09-09 2003-07-08 International Business Machines Corporation Method and system for resolution of transaction collisions to achieve global coherence in a distributed symmetric multiprocessor system
US6725307B1 (en) 1999-09-23 2004-04-20 International Business Machines Corporation Method and system for controlling data transfers with physical separation of data functionality from address and control functionality in a distributed multi-bus multiprocessor system
US6587930B1 (en) * 1999-09-23 2003-07-01 International Business Machines Corporation Method and system for implementing remstat protocol under inclusion and non-inclusion of L1 data in L2 cache to prevent read-read deadlock
JP3843667B2 (ja) * 1999-10-15 2006-11-08 セイコーエプソン株式会社 データ転送制御装置及び電子機器
US6611796B1 (en) * 1999-10-20 2003-08-26 Texas Instruments Incorporated Method and apparatus for combining memory blocks for in circuit emulation
FR2800551B1 (fr) * 1999-11-03 2002-01-04 St Microelectronics Sa Decodeur mpeg utilisant une memoire partagee
US6529983B1 (en) 1999-11-03 2003-03-04 Cisco Technology, Inc. Group and virtual locking mechanism for inter processor synchronization
US6457085B1 (en) 1999-11-04 2002-09-24 International Business Machines Corporation Method and system for data bus latency reduction using transfer size prediction for split bus designs
US6542949B1 (en) 1999-11-08 2003-04-01 International Business Machines Corporation Method and apparatus for increased performance of a parked data bus in the non-parked direction
US6684279B1 (en) 1999-11-08 2004-01-27 International Business Machines Corporation Method, apparatus, and computer program product for controlling data transfer
US6535941B1 (en) 1999-11-08 2003-03-18 International Business Machines Corporation Method and apparatus for avoiding data bus grant starvation in a non-fair, prioritized arbiter for a split bus system with independent address and data bus grants
US6523076B1 (en) 1999-11-08 2003-02-18 International Business Machines Corporation Method and apparatus for synchronizing multiple bus arbiters on separate chips to give simultaneous grants for the purpose of breaking livelocks
US7529799B2 (en) 1999-11-08 2009-05-05 International Business Machines Corporation Method and apparatus for transaction tag assignment and maintenance in a distributed symmetric multiprocessor system
US6516379B1 (en) 1999-11-08 2003-02-04 International Business Machines Corporation Method and apparatus for transaction pacing to reduce destructive interference between successive transactions in a distributed symmetric multiprocessor system
US6529990B1 (en) 1999-11-08 2003-03-04 International Business Machines Corporation Method and apparatus to eliminate failed snoops of transactions caused by bus timing conflicts in a distributed symmetric multiprocessor system
US6606676B1 (en) 1999-11-08 2003-08-12 International Business Machines Corporation Method and apparatus to distribute interrupts to multiple interrupt handlers in a distributed symmetric multiprocessor system
US6662280B1 (en) 1999-11-10 2003-12-09 Advanced Micro Devices, Inc. Store buffer which forwards data based on index and optional way match
US7793076B1 (en) 1999-12-17 2010-09-07 Intel Corporation Digital signals processor having a plurality of independent dedicated processors
US6769046B2 (en) * 2000-02-14 2004-07-27 Palmchip Corporation System-resource router
US6892237B1 (en) 2000-03-28 2005-05-10 Cisco Technology, Inc. Method and apparatus for high-speed parsing of network messages
US6584513B1 (en) 2000-03-31 2003-06-24 Emc Corporation Direct memory access (DMA) transmitter
US7010575B1 (en) 2000-03-31 2006-03-07 Emc Corporation Data storage system having separate data transfer section and message network having bus arbitration
US6993621B1 (en) 2000-03-31 2006-01-31 Emc Corporation Data storage system having separate data transfer section and message network with plural directors on a common printed circuit board and redundant switching networks
US7003601B1 (en) 2000-03-31 2006-02-21 Emc Corporation Data storage system having separate data transfer section and message network with plural directions on a common printed circuit board
US7007194B1 (en) 2000-06-29 2006-02-28 Emc Corporation Data storage system having point-to-point configuration
US6584531B1 (en) * 2000-04-27 2003-06-24 Lsi Logic Corporation Arbitration circuit with plural arbitration processors using memory bank history
US6651130B1 (en) 2000-04-28 2003-11-18 Emc Corporation Data storage system having separate data transfer section and message network with bus arbitration
US6779071B1 (en) 2000-04-28 2004-08-17 Emc Corporation Data storage system having separate data transfer section and message network with status register
US6505269B1 (en) 2000-05-16 2003-01-07 Cisco Technology, Inc. Dynamic addressing mapping to eliminate memory resource contention in a symmetric multiprocessor system
US6725334B2 (en) * 2000-06-09 2004-04-20 Hewlett-Packard Development Company, L.P. Method and system for exclusive two-level caching in a chip-multiprocessor
US6668308B2 (en) * 2000-06-10 2003-12-23 Hewlett-Packard Development Company, L.P. Scalable architecture based on single-chip multiprocessing
JP2001356961A (ja) * 2000-06-13 2001-12-26 Nec Corp 調停装置
US7103041B1 (en) * 2000-06-30 2006-09-05 Marconi Intellectual Property (Ringfence), Inc. Optimization of number of transceivers used in a switch
GB2364867B (en) * 2000-07-17 2003-12-10 Advanced Risc Mach Ltd A data processing apparatus and slave interface mechanism for controlling access to a slave logic unit by a plurality of master logic units
US6804193B1 (en) * 2000-07-28 2004-10-12 Marconi Intellectual Property (Ringfence) Inc. Protected Ethernet backplane communication
KR100487542B1 (ko) * 2000-07-29 2005-05-03 엘지전자 주식회사 글로벌 버스의 버스 사용권 예약 중재방법
KR100644597B1 (ko) * 2000-08-05 2006-11-10 삼성전자주식회사 버스 시스템 및 그 커맨드 전달방법
US6594736B1 (en) * 2000-08-15 2003-07-15 Src Computers, Inc. System and method for semaphore and atomic operation management in a multiprocessor
CN100440183C (zh) 2000-09-06 2008-12-03 Nxp股份有限公司 处理器间通信系统
US6591385B1 (en) * 2000-09-11 2003-07-08 Agilent Technologies, Inc. Method and apparatus for inserting programmable latency between address and data information in a memory tester
US6901468B1 (en) * 2000-09-27 2005-05-31 Emc Corporation Data storage system having separate data transfer section and message network having bus arbitration
US20020062415A1 (en) * 2000-09-29 2002-05-23 Zarlink Semiconductor N.V. Inc. Slotted memory access method
US7752400B1 (en) * 2000-12-14 2010-07-06 F5 Networks, Inc. Arbitration and crossbar device and method
US7124224B2 (en) * 2000-12-22 2006-10-17 Intel Corporation Method and apparatus for shared resource management in a multiprocessing system
US7225320B2 (en) * 2000-12-28 2007-05-29 Koninklijke Philips Electronics N.V. Control architecture for a high-throughput multi-processor channel decoding system
US6492881B2 (en) * 2001-01-31 2002-12-10 Compaq Information Technologies Group, L.P. Single to differential logic level interface for computer systems
US6845504B2 (en) * 2001-02-08 2005-01-18 International Business Machines Corporation Method and system for managing lock contention in a computer system
US6742160B2 (en) * 2001-02-14 2004-05-25 Intel Corporation Checkerboard parity techniques for a multi-pumped bus
US20020133652A1 (en) * 2001-03-19 2002-09-19 Tai Quan Apparatus for avoiding starvation in hierarchical computer systems that prioritize transactions
US6889343B2 (en) 2001-03-19 2005-05-03 Sun Microsystems, Inc. Method and apparatus for verifying consistency between a first address repeater and a second address repeater
US6826643B2 (en) 2001-03-19 2004-11-30 Sun Microsystems, Inc. Method of synchronizing arbiters within a hierarchical computer system
US6877055B2 (en) 2001-03-19 2005-04-05 Sun Microsystems, Inc. Method and apparatus for efficiently broadcasting transactions between a first address repeater and a second address repeater
US7249242B2 (en) 2002-10-28 2007-07-24 Nvidia Corporation Input pipeline registers for a node in an adaptive computing engine
US7752419B1 (en) * 2001-03-22 2010-07-06 Qst Holdings, Llc Method and system for managing hardware resources to implement system functions using an adaptive computing architecture
US7653710B2 (en) 2002-06-25 2010-01-26 Qst Holdings, Llc. Hardware task manager
US7233998B2 (en) * 2001-03-22 2007-06-19 Sony Computer Entertainment Inc. Computer architecture and software cells for broadband networks
US7962716B2 (en) 2001-03-22 2011-06-14 Qst Holdings, Inc. Adaptive integrated circuitry with heterogeneous and reconfigurable matrices of diverse and adaptive computational units having fixed, application specific computational elements
US6836839B2 (en) 2001-03-22 2004-12-28 Quicksilver Technology, Inc. Adaptive integrated circuitry with heterogeneous and reconfigurable matrices of diverse and adaptive computational units having fixed, application specific computational elements
US6577678B2 (en) 2001-05-08 2003-06-10 Quicksilver Technology Method and system for reconfigurable channel coding
CN1592900A (zh) * 2001-07-05 2005-03-09 皇家菲利浦电子有限公司 处理器集群
GB2379523B (en) * 2001-09-05 2003-11-19 3Com Corp Shared memory system including hardware memory protection
US7237016B1 (en) * 2001-09-07 2007-06-26 Palau Acquisition Corporation (Delaware) Method and system to manage resource requests utilizing link-list queues within an arbiter associated with an interconnect device
US7043569B1 (en) * 2001-09-07 2006-05-09 Chou Norman C Method and system for configuring an interconnect device
US20030088722A1 (en) * 2001-11-02 2003-05-08 David Price System and method for managing priorities in a PCI bus system
US7046635B2 (en) 2001-11-28 2006-05-16 Quicksilver Technology, Inc. System for authorizing functionality in adaptable hardware devices
US8412915B2 (en) 2001-11-30 2013-04-02 Altera Corporation Apparatus, system and method for configuration of adaptive integrated circuitry having heterogeneous computational elements
US6848015B2 (en) * 2001-11-30 2005-01-25 Hewlett-Packard Development Company, L.P. Arbitration technique based on processor task priority
US6986021B2 (en) 2001-11-30 2006-01-10 Quick Silver Technology, Inc. Apparatus, method, system and executable module for configuration and operation of adaptive integrated circuitry having fixed, application specific computational elements
US7215701B2 (en) 2001-12-12 2007-05-08 Sharad Sambhwani Low I/O bandwidth method and system for implementing detection and identification of scrambling codes
US7403981B2 (en) 2002-01-04 2008-07-22 Quicksilver Technology, Inc. Apparatus and method for adaptive multimedia reception and transmission in communication environments
US6845417B2 (en) * 2002-01-09 2005-01-18 Hewlett-Packard Development Company, L.P. Ensuring fairness in a multiprocessor environment using historical abuse recognition in spinlock acquisition
US6807608B2 (en) * 2002-02-15 2004-10-19 International Business Machines Corporation Multiprocessor environment supporting variable-sized coherency transactions
US7849172B2 (en) * 2002-03-01 2010-12-07 Broadcom Corporation Method of analyzing non-preemptive DRAM transactions in real-time unified memory architectures
US7080177B2 (en) * 2002-03-01 2006-07-18 Broadcom Corporation System and method for arbitrating clients in a hierarchical real-time DRAM system
US7328414B1 (en) 2003-05-13 2008-02-05 Qst Holdings, Llc Method and system for creating and programming an adaptive computing engine
US7660984B1 (en) 2003-05-13 2010-02-09 Quicksilver Technology Method and system for achieving individualized protected space in an operating system
US6779092B2 (en) * 2002-05-15 2004-08-17 Hewlett-Packard Development Company, L.P. Reordering requests for access to subdivided resource
EP1376373B1 (en) * 2002-06-20 2006-05-31 Infineon Technologies AG Arrangement having a first device and a second device connected via a cross bar switch
US8108656B2 (en) 2002-08-29 2012-01-31 Qst Holdings, Llc Task definition for specifying resource requirements
US20040059879A1 (en) * 2002-09-23 2004-03-25 Rogers Paul L. Access priority protocol for computer system
JP4181839B2 (ja) * 2002-09-30 2008-11-19 キヤノン株式会社 システムコントローラ
US20040068607A1 (en) * 2002-10-07 2004-04-08 Narad Charles E. Locking memory locations
US7937591B1 (en) 2002-10-25 2011-05-03 Qst Holdings, Llc Method and system for providing a device which can be adapted on an ongoing basis
GB2395306B (en) * 2002-11-15 2006-02-15 Imagination Tech Ltd A configurable processor architecture
US8276135B2 (en) 2002-11-07 2012-09-25 Qst Holdings Llc Profiling of software and circuit designs utilizing data operation analyses
US6985984B2 (en) * 2002-11-07 2006-01-10 Sun Microsystems, Inc. Multiprocessing systems employing hierarchical back-off locks
US7225301B2 (en) 2002-11-22 2007-05-29 Quicksilver Technologies External memory controller node
US7028147B2 (en) * 2002-12-13 2006-04-11 Sun Microsystems, Inc. System and method for efficiently and reliably performing write cache mirroring
US7302616B2 (en) * 2003-04-03 2007-11-27 International Business Machines Corporation Method and apparatus for performing bus tracing with scalable bandwidth in a data processing system having a distributed memory
US7213169B2 (en) * 2003-04-03 2007-05-01 International Business Machines Corporation Method and apparatus for performing imprecise bus tracing in a data processing system having a distributed memory
US7149829B2 (en) * 2003-04-18 2006-12-12 Sonics, Inc. Various methods and apparatuses for arbitration among blocks of functionality
CN100433623C (zh) * 2003-06-11 2008-11-12 硅斯托尔公司 串行高级技术附件(sata)交换机
US7526587B2 (en) * 2004-02-09 2009-04-28 Lsi Corporation Dual port serial advanced technology attachment (SATA) disk drive
US7539797B2 (en) * 2003-06-11 2009-05-26 Lsi Corporation Route aware Serial Advanced Technology Attachment (SATA) Switch
US7523235B2 (en) * 2003-06-11 2009-04-21 Lsi Corporation Serial Advanced Technology Attachment (SATA) switch
US6906961B2 (en) * 2003-06-24 2005-06-14 Micron Technology, Inc. Erase block data splitting
US7321964B2 (en) * 2003-07-08 2008-01-22 Advanced Micro Devices, Inc. Store-to-load forwarding buffer using indexed lookup
US7296105B2 (en) * 2003-10-03 2007-11-13 Sonics, Inc. Method and apparatus for configuring an interconnect to implement arbitration
US7665069B2 (en) * 2003-10-31 2010-02-16 Sonics, Inc. Method and apparatus for establishing a quality of service model
US8504992B2 (en) * 2003-10-31 2013-08-06 Sonics, Inc. Method and apparatus for establishing a quality of service model
US9087036B1 (en) 2004-08-12 2015-07-21 Sonics, Inc. Methods and apparatuses for time annotated transaction level modeling
US7103735B2 (en) * 2003-11-26 2006-09-05 Intel Corporation Methods and apparatus to process cache allocation requests based on priority
US7206922B1 (en) * 2003-12-30 2007-04-17 Cisco Systems, Inc. Instruction memory hierarchy for an embedded processor
US7783802B1 (en) 2004-02-09 2010-08-24 Lsi Corporation Serial advanced technology attachment (SATA) switch that toggles with power control to hard disk drive while avolding interruption to system
US7986630B1 (en) 2004-02-09 2011-07-26 Lsi Corporation High performance architecture for fiber channel targets and target bridges
JP4441286B2 (ja) * 2004-02-10 2010-03-31 株式会社日立製作所 ストレージシステム
KR100604835B1 (ko) * 2004-02-24 2006-07-26 삼성전자주식회사 프로토콜 변환중재회로, 이를 구비하는 시스템과 신호변환중재방법
US7191366B2 (en) * 2004-02-26 2007-03-13 International Business Machines Corporation Method and intelligent slave device transfer control unit for implementing seamless error resumption in a shared memory bus structure
EP1722010B1 (en) * 2004-03-05 2012-04-25 Kitz Corporation Method of preventing nickel leaching from copper alloy made water-contact equipment item, protective film forming agent for nickel leaching prevention and detergent for nickel leaching prevention
US7269708B2 (en) * 2004-04-20 2007-09-11 Rambus Inc. Memory controller for non-homogenous memory system
US20050246463A1 (en) * 2004-04-29 2005-11-03 International Business Machines Corporation Transparent high-speed multistage arbitration system and method
US20050262281A1 (en) * 2004-05-21 2005-11-24 Nayak Prakash H Managing a shared resource
US7437364B1 (en) * 2004-06-30 2008-10-14 Google Inc. System and method of accessing a document efficiently through multi-tier web caching
US8561076B1 (en) * 2004-06-30 2013-10-15 Emc Corporation Prioritization and queuing of media requests
US8224964B1 (en) 2004-06-30 2012-07-17 Google Inc. System and method of accessing a document efficiently through multi-tier web caching
US8676922B1 (en) 2004-06-30 2014-03-18 Google Inc. Automatic proxy setting modification
US7200693B2 (en) * 2004-08-27 2007-04-03 Micron Technology, Inc. Memory system and method having unidirectional data buses
JP4617782B2 (ja) * 2004-09-01 2011-01-26 株式会社日立製作所 データ専用バスを有する無線機
US7739436B2 (en) * 2004-11-01 2010-06-15 Sonics, Inc. Method and apparatus for round robin resource arbitration with a fast request to grant response
US20060111886A1 (en) * 2004-11-23 2006-05-25 Mahesh Siddappa Method and system for modeling of a differential bus device
TWI296084B (en) * 2004-11-30 2008-04-21 Realtek Semiconductor Corp Bus arbiter, bus device, and bus arbitrating method
US20060130124A1 (en) * 2004-12-15 2006-06-15 Guard Insurance Group A Remote Communication System and Method Implementing a Session Server and One or More Object Servers
US7590744B2 (en) * 2004-12-15 2009-09-15 Guard Insurance Group Remote communication system and method implementing a session server and one or more object servers
US7263566B2 (en) 2004-12-30 2007-08-28 Qualcomm Incorporated Method and apparatus of reducing transfer latency in an SOC interconnect
US7752627B2 (en) * 2005-02-04 2010-07-06 Mips Technologies, Inc. Leaky-bucket thread scheduler in a multithreading microprocessor
US7681014B2 (en) * 2005-02-04 2010-03-16 Mips Technologies, Inc. Multithreading instruction scheduler employing thread group priorities
US7613904B2 (en) * 2005-02-04 2009-11-03 Mips Technologies, Inc. Interfacing external thread prioritizing policy enforcing logic with customer modifiable register to processor internal scheduler
US7664936B2 (en) * 2005-02-04 2010-02-16 Mips Technologies, Inc. Prioritizing thread selection partly based on stall likelihood providing status information of instruction operand register usage at pipeline stages
US7657883B2 (en) * 2005-02-04 2010-02-02 Mips Technologies, Inc. Instruction dispatch scheduler employing round-robin apparatus supporting multiple thread priorities for use in multithreading microprocessor
US7853777B2 (en) * 2005-02-04 2010-12-14 Mips Technologies, Inc. Instruction/skid buffers in a multithreading microprocessor that store dispatched instructions to avoid re-fetching flushed instructions
US7631130B2 (en) * 2005-02-04 2009-12-08 Mips Technologies, Inc Barrel-incrementer-based round-robin apparatus and instruction dispatch scheduler employing same for use in multithreading microprocessor
US7657891B2 (en) 2005-02-04 2010-02-02 Mips Technologies, Inc. Multithreading microprocessor with optimized thread scheduler for increasing pipeline utilization efficiency
US7506140B2 (en) * 2005-02-04 2009-03-17 Mips Technologies, Inc. Return data selector employing barrel-incrementer-based round-robin apparatus
US7490230B2 (en) * 2005-02-04 2009-02-10 Mips Technologies, Inc. Fetch director employing barrel-incrementer-based round-robin apparatus for use in multithreading microprocessor
US7209405B2 (en) * 2005-02-23 2007-04-24 Micron Technology, Inc. Memory device and method having multiple internal data buses and memory bank interleaving
JP4449782B2 (ja) 2005-02-25 2010-04-14 ソニー株式会社 撮像装置および画像配信方法
JP4817725B2 (ja) * 2005-06-20 2011-11-16 キヤノン株式会社 データ処理装置及び方法
US7716387B2 (en) * 2005-07-14 2010-05-11 Canon Kabushiki Kaisha Memory control apparatus and method
US7395376B2 (en) * 2005-07-19 2008-07-01 International Business Machines Corporation Method, apparatus, and computer program product for a cache coherency protocol state that predicts locations of shared memory blocks
US20070028027A1 (en) * 2005-07-26 2007-02-01 Micron Technology, Inc. Memory device and method having separate write data and read data buses
US7376817B2 (en) * 2005-08-10 2008-05-20 P.A. Semi, Inc. Partial load/store forward prediction
US8325768B2 (en) * 2005-08-24 2012-12-04 Intel Corporation Interleaving data packets in a packet-based communication system
EP1955175A1 (en) * 2005-09-09 2008-08-13 Freescale Semiconductor, Inc. Interconnect and a method for designing an interconnect
US7969966B2 (en) * 2005-12-19 2011-06-28 Alcatel Lucent System and method for port mapping in a communications network switch
US7421529B2 (en) * 2005-10-20 2008-09-02 Qualcomm Incorporated Method and apparatus to clear semaphore reservation for exclusive access to shared memory
US7366810B2 (en) * 2005-11-16 2008-04-29 Via Technologies, Inc. Method and system for multi-processor arbitration
US7426621B2 (en) * 2005-12-09 2008-09-16 Advanced Micro Devices, Inc. Memory access request arbitration
US9336333B2 (en) * 2006-02-13 2016-05-10 Linkedin Corporation Searching and reference checking within social networks
DE602006019005D1 (de) * 2006-06-27 2011-01-27 Thomson Licensing Verfahren und vorrichtung zur durchführung der arbitrierung
JP4233585B2 (ja) 2006-07-25 2009-03-04 株式会社エヌ・ティ・ティ・ドコモ ペリフェラル切替装置及びペリフェラル切替制御装置
US20080040564A1 (en) * 2006-08-10 2008-02-14 International Business Machines Corporation Sychronized Light Path Scheme Across Mutiple SAS Storage Enclosures
US7961745B2 (en) * 2006-09-16 2011-06-14 Mips Technologies, Inc. Bifurcated transaction selector supporting dynamic priorities in multi-port switch
US7773621B2 (en) * 2006-09-16 2010-08-10 Mips Technologies, Inc. Transaction selector employing round-robin apparatus supporting dynamic priorities in multi-port switch
US7760748B2 (en) * 2006-09-16 2010-07-20 Mips Technologies, Inc. Transaction selector employing barrel-incrementer-based round-robin apparatus supporting dynamic priorities in multi-port switch
US7990989B2 (en) * 2006-09-16 2011-08-02 Mips Technologies, Inc. Transaction selector employing transaction queue group priorities in multi-port switch
US20080091866A1 (en) * 2006-10-12 2008-04-17 International Business Machines Corporation Maintaining forward progress in a shared L2 by detecting and breaking up requestor starvation
US20080098178A1 (en) * 2006-10-23 2008-04-24 Veazey Judson E Data storage on a switching system coupling multiple processors of a computer system
US8745315B2 (en) * 2006-11-06 2014-06-03 Rambus Inc. Memory Systems and methods supporting volatile and wear-leveled nonvolatile physical memory
US8868397B2 (en) * 2006-11-20 2014-10-21 Sonics, Inc. Transaction co-validation across abstraction layers
US7962676B2 (en) 2006-12-22 2011-06-14 Lsi Corporation Debugging multi-port bridge system conforming to serial advanced technology attachment (SATA) or serial attached small computer system interface (SCSI) (SAS) standards using idle/scrambled dwords
US8499308B2 (en) * 2006-12-22 2013-07-30 Lsi Corporation Initiator notification method and apparatus
US7761642B2 (en) 2006-12-22 2010-07-20 Lsi Corporation Serial advanced technology attachment (SATA) and serial attached small computer system interface (SCSI) (SAS) bridging
US7865647B2 (en) * 2006-12-27 2011-01-04 Mips Technologies, Inc. Efficient resource arbitration
US20080182021A1 (en) * 2007-01-31 2008-07-31 Simka Harsono S Continuous ultra-thin copper film formed using a low thermal budget
US8812651B1 (en) 2007-02-15 2014-08-19 Google Inc. Systems and methods for client cache awareness
US7814253B2 (en) * 2007-04-16 2010-10-12 Nvidia Corporation Resource arbiter
US20080270658A1 (en) * 2007-04-27 2008-10-30 Matsushita Electric Industrial Co., Ltd. Processor system, bus controlling method, and semiconductor device
US7685346B2 (en) * 2007-06-26 2010-03-23 Intel Corporation Demotion-based arbitration
US9710384B2 (en) * 2008-01-04 2017-07-18 Micron Technology, Inc. Microprocessor architecture having alternative memory access paths
US9015399B2 (en) 2007-08-20 2015-04-21 Convey Computer Multiple data channel memory module architecture
US8122229B2 (en) * 2007-09-12 2012-02-21 Convey Computer Dispatch mechanism for dispatching instructions from a host processor to a co-processor
US8156307B2 (en) * 2007-08-20 2012-04-10 Convey Computer Multi-processor system having at least one processor that comprises a dynamically reconfigurable instruction set
US8095735B2 (en) 2008-08-05 2012-01-10 Convey Computer Memory interleave for heterogeneous computing
US8561037B2 (en) * 2007-08-29 2013-10-15 Convey Computer Compiler for generating an executable comprising instructions for a plurality of different instruction sets
US7996614B2 (en) 2008-01-04 2011-08-09 International Business Machines Corporation Cache intervention on a separate data bus when on-chip bus has separate read and write data busses
US7778105B2 (en) * 2008-03-17 2010-08-17 Oracle America, Inc. Memory with write port configured for double pump write
CN101546275B (zh) * 2008-03-26 2012-08-22 中国科学院微电子研究所 一种获取多处理器硬件信号量的方法
US7673087B1 (en) * 2008-03-27 2010-03-02 Xilinx, Inc. Arbitration for an embedded processor block core in an integrated circuit
JP5125890B2 (ja) * 2008-08-28 2013-01-23 富士通セミコンダクター株式会社 調停装置及び電子機器
US20100115233A1 (en) * 2008-10-31 2010-05-06 Convey Computer Dynamically-selectable vector register partitioning
US8205066B2 (en) * 2008-10-31 2012-06-19 Convey Computer Dynamically configured coprocessor for different extended instruction set personality specific to application program with shared memory storing instructions invisibly dispatched from host processor
WO2010052679A1 (en) * 2008-11-10 2010-05-14 Nxp B.V. Resource controlling
JP5424161B2 (ja) * 2009-02-16 2014-02-26 独立行政法人情報通信研究機構 需給調停システム、需給調停装置、需給調停方法および需給調停プログラム
WO2010105060A1 (en) 2009-03-11 2010-09-16 Virage Logic Corp. Systems and methods for resource controlling
US20100325327A1 (en) * 2009-06-17 2010-12-23 Freescale Semiconductor, Inc. Programmable arbitration device and method therefor
US8984198B2 (en) * 2009-07-21 2015-03-17 Microchip Technology Incorporated Data space arbiter
JP4929386B2 (ja) 2009-09-07 2012-05-09 株式会社エヌ・ティ・ティ・ドコモ 通信競合管理装置
US8458581B2 (en) * 2009-10-15 2013-06-04 Ansaldo Sts Usa, Inc. System and method to serially transmit vital data from two processors
US10721269B1 (en) 2009-11-06 2020-07-21 F5 Networks, Inc. Methods and system for returning requests with javascript for clients before passing a request to a server
US8423745B1 (en) 2009-11-16 2013-04-16 Convey Computer Systems and methods for mapping a neighborhood of data to general registers of a processing element
EP2526494B1 (en) 2010-01-21 2020-01-15 SVIRAL, Inc. A method and apparatus for a general-purpose, multiple-core system for implementing stream-based computations
US8667197B2 (en) 2010-09-08 2014-03-04 Intel Corporation Providing a fine-grained arbitration system
US8543774B2 (en) 2011-04-05 2013-09-24 Ansaldo Sts Usa, Inc. Programmable logic apparatus employing shared memory, vital processor and non-vital communications processor, and system including the same
US9208109B2 (en) 2011-06-01 2015-12-08 Altera Corporation Memory controllers with dynamic port priority assignment capabilities
US8706936B2 (en) 2011-11-14 2014-04-22 Arm Limited Integrated circuit having a bus network, and method for the integrated circuit
CN102394829A (zh) * 2011-11-14 2012-03-28 上海交通大学 片上互连网络中基于可靠性需求的仲裁方法
US8838849B1 (en) 2011-12-08 2014-09-16 Emc Corporation Link sharing for multiple replication modes
US9128725B2 (en) 2012-05-04 2015-09-08 Apple Inc. Load-store dependency predictor content management
US9600289B2 (en) 2012-05-30 2017-03-21 Apple Inc. Load-store dependency predictor PC hashing
US10430190B2 (en) 2012-06-07 2019-10-01 Micron Technology, Inc. Systems and methods for selectively controlling multithreaded execution of executable code segments
CN103218331B (zh) * 2012-12-07 2015-11-11 浙江大学 采用同步模式切换及帧优先级自动调整的总线装置及方法
US9164793B2 (en) * 2012-12-21 2015-10-20 Microsoft Technology Licensing, Llc Prioritized lock requests to reduce blocking
US9672046B2 (en) 2012-12-28 2017-06-06 Intel Corporation Apparatus and method for intelligently powering heterogeneous processor components
US9329900B2 (en) 2012-12-28 2016-05-03 Intel Corporation Hetergeneous processor apparatus and method
US9639372B2 (en) 2012-12-28 2017-05-02 Intel Corporation Apparatus and method for heterogeneous processors mapping to virtual cores
US9448829B2 (en) 2012-12-28 2016-09-20 Intel Corporation Hetergeneous processor apparatus and method
US9582440B2 (en) * 2013-02-10 2017-02-28 Mellanox Technologies Ltd. Credit based low-latency arbitration with data transfer
US9727345B2 (en) 2013-03-15 2017-08-08 Intel Corporation Method for booting a heterogeneous system and presenting a symmetric core view
US9292442B2 (en) * 2013-04-11 2016-03-22 Qualcomm Incorporated Methods and apparatus for improving performance of semaphore management sequences across a coherent bus
US9135179B2 (en) * 2013-05-01 2015-09-15 Qualcomm, Incorporated System and method of arbitrating cache requests
US9641465B1 (en) 2013-08-22 2017-05-02 Mellanox Technologies, Ltd Packet switch with reduced latency
US9489322B2 (en) 2013-09-03 2016-11-08 Intel Corporation Reducing latency of unified memory transactions
US9710268B2 (en) 2014-04-29 2017-07-18 Apple Inc. Reducing latency for pointer chasing loads
CN103955436B (zh) * 2014-04-30 2018-01-16 华为技术有限公司 一种数据处理装置和终端
KR102285749B1 (ko) 2014-11-10 2021-08-05 삼성전자주식회사 세마포어 기능을 갖는 시스템 온 칩 및 그것의 세마포어 구현 방법
US9892067B2 (en) * 2015-01-29 2018-02-13 International Business Machines Corporation Multiprocessor cache buffer management
US10514925B1 (en) 2016-01-28 2019-12-24 Apple Inc. Load speculation recovery
US10437595B1 (en) 2016-03-15 2019-10-08 Apple Inc. Load/store dependency predictor optimization for replayed loads
CN106569968B (zh) * 2016-11-09 2019-09-17 天津大学 用于可重构处理器的阵列间数据传输结构与调度方法
TWI779069B (zh) 2017-07-30 2022-10-01 埃拉德 希提 具有以記憶體為基礎的分散式處理器架構的記憶體晶片
KR102549540B1 (ko) * 2017-09-22 2023-06-29 삼성전자주식회사 스토리지 장치 및 그 동작 방법
US10871992B2 (en) * 2018-05-30 2020-12-22 Texas Instruments Incorporated Level two first-in-first-out transmission
CN109379304B (zh) * 2018-10-30 2022-05-06 中国电子科技集团公司第五十四研究所 一种用于降低低优先级包延迟的公平调度方法
US11656992B2 (en) * 2019-05-03 2023-05-23 Western Digital Technologies, Inc. Distributed cache with in-network prefetch
US11765250B2 (en) 2020-06-26 2023-09-19 Western Digital Technologies, Inc. Devices and methods for managing network traffic for a distributed cache
US11675706B2 (en) 2020-06-30 2023-06-13 Western Digital Technologies, Inc. Devices and methods for failure detection and recovery for a distributed cache
US11736417B2 (en) 2020-08-17 2023-08-22 Western Digital Technologies, Inc. Devices and methods for network message sequencing
US11914903B2 (en) * 2020-10-12 2024-02-27 Samsung Electronics Co., Ltd. Systems, methods, and devices for accelerators with virtualization and tiered memory
CN114884770B (zh) * 2022-07-13 2022-10-18 南京观海微电子有限公司 一种基于系统总线的多机通讯系统及通讯方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553722A (en) 1978-10-17 1980-04-19 Toshiba Corp Priority control system
US4315308A (en) * 1978-12-21 1982-02-09 Intel Corporation Interface between a microprocessor chip and peripheral subsystems
US4482950A (en) * 1981-09-24 1984-11-13 Dshkhunian Valery Single-chip microcomputer
JPS58178432A (ja) 1982-04-14 1983-10-19 Fujitsu Ltd 優先権選択切替装置
US4597054A (en) * 1982-12-02 1986-06-24 Ncr Corporation Arbiter circuit and method
US4991081A (en) * 1984-10-31 1991-02-05 Texas Instruments Incorporated Cache memory addressable by both physical and virtual addresses
US4829467A (en) * 1984-12-21 1989-05-09 Canon Kabushiki Kaisha Memory controller including a priority order determination circuit
US4736319A (en) * 1985-05-15 1988-04-05 International Business Machines Corp. Interrupt mechanism for multiprocessing system having a plurality of interrupt lines in both a global bus and cell buses
EP0214718A3 (en) * 1985-07-22 1990-04-04 Alliant Computer Systems Corporation Digital computer
US4719569A (en) * 1985-10-11 1988-01-12 Sun Microsystems, Inc. Arbitrator for allocating access to data processing resources
US4760515A (en) * 1985-10-28 1988-07-26 International Business Machines Corporation Arbitration apparatus for determining priority of access to a shared bus on a rotating priority basis
US5283903A (en) * 1986-12-25 1994-02-01 Nec Corporation Priority selector
JPS63216159A (ja) 1987-03-04 1988-09-08 Ricoh Co Ltd バス優先順位制御方式
JPH07113903B2 (ja) * 1987-06-26 1995-12-06 株式会社日立製作所 キャッシュ記憶制御方式
JPS6488761A (en) 1987-09-30 1989-04-03 Pfu Ltd Bus connection system
US4924375A (en) * 1987-10-23 1990-05-08 Chips And Technologies, Inc. Page interleaved memory access
US5089951A (en) * 1987-11-05 1992-02-18 Kabushiki Kaisha Toshiba Microcomputer incorporating memory
JPH0622015B2 (ja) * 1987-11-30 1994-03-23 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン データ処理システムの制御方法
US4959776A (en) * 1987-12-21 1990-09-25 Raytheon Company Method and apparatus for addressing a memory by array transformations
EP0324662A3 (en) * 1988-01-15 1990-01-17 EVANS &amp; SUTHERLAND COMPUTER CORPORATION Crossbar system for controlled data transfer
JPH0650511B2 (ja) 1988-01-18 1994-06-29 株式会社日立製作所 記憶制御方式
US5023776A (en) * 1988-02-22 1991-06-11 International Business Machines Corp. Store queue for a tightly coupled multiple processor configuration with two-level cache buffer storage
US4949247A (en) * 1988-02-23 1990-08-14 Stellar Computer, Inc. System for transferring multiple vector data elements to and from vector memory in a single operation
US4979100A (en) * 1988-04-01 1990-12-18 Sprint International Communications Corp. Communication processor for a packet-switched network
JPH01255042A (ja) 1988-04-04 1989-10-11 Hitachi Ltd 優先制御回路
US5301278A (en) * 1988-04-29 1994-04-05 International Business Machines Corporation Flexible dynamic memory controller
GB8815042D0 (en) * 1988-06-24 1988-08-03 Int Computers Ltd Data processing apparatus
US5097409A (en) * 1988-06-30 1992-03-17 Wang Laboratories, Inc. Multi-processor system with cache memories
US5261057A (en) * 1988-06-30 1993-11-09 Wang Laboratories, Inc. I/O bus to system interface
US4939641A (en) * 1988-06-30 1990-07-03 Wang Laboratories, Inc. Multi-processor system with cache memories
JP2761506B2 (ja) * 1988-07-08 1998-06-04 株式会社日立製作所 主記憶制御装置
JPH0237592A (ja) 1988-07-27 1990-02-07 Hitachi Ltd メモリ制御装置
JPH0271357A (ja) * 1988-09-07 1990-03-09 Fanuc Ltd プロセッサ回路
JPH0279153A (ja) 1988-09-16 1990-03-19 Mitsubishi Electric Corp バス使用権制御装置
JPH0283757A (ja) * 1988-09-21 1990-03-23 Hitachi Ltd 通信制御システム
US5025365A (en) * 1988-11-14 1991-06-18 Unisys Corporation Hardware implemented cache coherency protocol with duplicated distributed directories for high-performance multiprocessors
US5148533A (en) * 1989-01-05 1992-09-15 Bull Hn Information Systems Inc. Apparatus and method for data group coherency in a tightly coupled data processing system with plural execution and data cache units
JPH02181855A (ja) 1989-01-09 1990-07-16 Nec Corp バス優先権判定回路
US5222223A (en) * 1989-02-03 1993-06-22 Digital Equipment Corporation Method and apparatus for ordering and queueing multiple memory requests
US5283886A (en) * 1989-08-11 1994-02-01 Hitachi, Ltd. Multiprocessor cache system having three states for generating invalidating signals upon write accesses
US5303382A (en) * 1989-09-21 1994-04-12 Digital Equipment Corporation Arbiter with programmable dynamic request prioritization
JPH03127157A (ja) 1989-10-12 1991-05-30 Hitachi Ltd 記憶装置の負荷バランス制御方式
US5226125A (en) * 1989-11-17 1993-07-06 Keith Balmer Switch matrix having integrated crosspoint logic and method of operation
EP0429733B1 (en) * 1989-11-17 1999-04-28 Texas Instruments Incorporated Multiprocessor with crossbar between processors and memories
US5168547A (en) * 1989-12-29 1992-12-01 Supercomputer Systems Limited Partnership Distributed architecture for input/output for a multiprocessor system
US5197130A (en) * 1989-12-29 1993-03-23 Supercomputer Systems Limited Partnership Cluster architecture for a highly parallel scalar/vector multiprocessor system
US5404483A (en) * 1990-06-29 1995-04-04 Digital Equipment Corporation Processor and method for delaying the processing of cache coherency transactions during outstanding cache fills
JP3127157B2 (ja) 1990-07-20 2001-01-22 マツダ株式会社 車両のサスペンション装置
US5303362A (en) * 1991-03-20 1994-04-12 Digital Equipment Corporation Coupled memory multiprocessor computer system including cache coherency management protocols
US5313609A (en) * 1991-05-23 1994-05-17 International Business Machines Corporation Optimum write-back strategy for directory-based cache coherence protocols
US5440752A (en) * 1991-07-08 1995-08-08 Seiko Epson Corporation Microprocessor architecture with a switch network for data transfer between cache, memory port, and IOU
JPH0728695A (ja) * 1993-07-08 1995-01-31 Nec Corp メモリコントローラ
US5666494A (en) 1995-03-31 1997-09-09 Samsung Electronics Co., Ltd. Queue management mechanism which allows entries to be processed in any order

Also Published As

Publication number Publication date
JP2004164656A (ja) 2004-06-10
US5440752A (en) 1995-08-08
US20040024987A1 (en) 2004-02-05
JP2005050368A (ja) 2005-02-24
DE69701078D1 (de) 2000-02-10
US7657712B2 (en) 2010-02-02
DE69228521T2 (de) 1999-06-24
DE69701078T2 (de) 2000-06-08
EP0547246A1 (en) 1993-06-23
JP2004158020A (ja) 2004-06-03
US5754800A (en) 1998-05-19
US20060064569A1 (en) 2006-03-23
US5941979A (en) 1999-08-24
EP0547246B1 (en) 1999-03-03
JP2005050367A (ja) 2005-02-24
JP3850829B2 (ja) 2006-11-29
ATE338982T1 (de) 2006-09-15
US20020059508A1 (en) 2002-05-16
EP0886225A1 (en) 1998-12-23
EP0834816A3 (en) 1998-04-22
US6272579B1 (en) 2001-08-07
US6219763B1 (en) 2001-04-17
EP0834816B1 (en) 2000-01-05
JP3624951B2 (ja) 2005-03-02
ATE177221T1 (de) 1999-03-15
JP3687750B2 (ja) 2005-08-24
JP3624952B2 (ja) 2005-03-02
EP0834816A2 (en) 1998-04-08
US6954844B2 (en) 2005-10-11
JP3632766B2 (ja) 2005-03-23
JPH06501123A (ja) 1994-01-27
ATE188563T1 (de) 2000-01-15
EP0886225B1 (en) 2006-09-06
DE69228521D1 (de) 1999-04-08
KR930702724A (ko) 1993-09-09
JP2004171579A (ja) 2004-06-17
DE69233655D1 (de) 2006-10-19
WO1993001553A1 (en) 1993-01-21
JP3557617B2 (ja) 2004-08-25
US5604865A (en) 1997-02-18
HK1012742A1 (en) 1999-08-06
US6611908B2 (en) 2003-08-26
DE69233655T2 (de) 2006-12-21
KR100248902B1 (ko) 2000-03-15
HK1019250A1 (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP3557617B2 (ja) 複数の異種プロセッサをサポートすることのできるマイクロプロセッサ・アーキテクチャ
US9652404B2 (en) Multicore, multibank, fully concurrent coherence controller
US5247648A (en) Maintaining data coherency between a central cache, an I/O cache and a memory
JP3871305B2 (ja) マルチプロセッサ・システムにおけるメモリ・アクセスの動的直列化
CA2051222C (en) Consistent packet switched memory bus for shared memory multiprocessors
US5388247A (en) History buffer control to reduce unnecessary allocations in a memory stream buffer
AU2001245760B2 (en) Cache coherency system and method for a multiprocessor architecture
JP2002530742A (ja) 外部デバイスへのアクセスを優先順序付けるための方法および装置
JP2000215183A (ja) メモリポ―ト仲裁方法
JP2000215185A (ja) プロセッサシステム
JP2000215187A (ja) マルチプロセッサシステム
JP2000215186A (ja) マルチプロセッサシステム
JP2000215184A (ja) デ―タ転送方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050119

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term