JP2004151046A - 近接場光発生プローブ及び近接場光発生装置 - Google Patents

近接場光発生プローブ及び近接場光発生装置 Download PDF

Info

Publication number
JP2004151046A
JP2004151046A JP2002319251A JP2002319251A JP2004151046A JP 2004151046 A JP2004151046 A JP 2004151046A JP 2002319251 A JP2002319251 A JP 2002319251A JP 2002319251 A JP2002319251 A JP 2002319251A JP 2004151046 A JP2004151046 A JP 2004151046A
Authority
JP
Japan
Prior art keywords
scatterer
light
field light
generated
vertex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319251A
Other languages
English (en)
Other versions
JP4325172B2 (ja
JP2004151046A5 (ja
Inventor
Takuya Matsumoto
拓也 松本
Hideki Saga
秀樹 嵯峨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002319251A priority Critical patent/JP4325172B2/ja
Priority to US10/455,373 priority patent/US7529158B2/en
Publication of JP2004151046A publication Critical patent/JP2004151046A/ja
Publication of JP2004151046A5 publication Critical patent/JP2004151046A5/ja
Priority to US12/382,903 priority patent/US7933169B2/en
Application granted granted Critical
Publication of JP4325172B2 publication Critical patent/JP4325172B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • G01Q70/12Nanotube tips
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10552Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base
    • G11B11/10554Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base the transducers being disposed on the same side of the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/1058Flying heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Optical Head (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

【課題】本発明は、散乱体を用いたプローブにおいて、強い近接場光が発生する点以外の部分で発生する近接場光がノイズとなる。
【解決手段】散乱体の強い近接場光が発生する頂点以外の部分の表面を、削る深さが近接場光のしみ出し深さ以上になるように削る。
【効果】試料観察や記録マークを再生する場合のノイズを抑えることが出来る。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、近接場光を発生させる近接場光発生プローブ及び装置に関する。
【0002】
【従来の技術】
近年、平面金属散乱体を用いたプローブが提案されている。これは、図43に示すように、三角形の形状をした平面状金属散乱体351を平面基板上に形成したプローブである。a)には、金属散乱体351を1つ形成したプローブを、b)には、金属散乱体351を2つ形成したプローブを示す。X方向に偏光した光を入射させると、頂点352に局在した近接場光が発生する。特に、入射光の波長をプラズモンの共鳴に合せることにより非常に強い近接場光を発生させることが出来る(Technical Digest of 6th international conference on near field optics and related techniques, the Netherlands, Aug. 27−31, 2000, p55)。a)では、金属散乱体351の頂点352から、近接場光が発生し、b)では、金属散乱体354を2つ、それぞれの頂点の間隔が数10nm以下になるように配置され、頂点間353に局在した近接場光が発生する。なお、本明細書で近接場光とは、局在した光、すなわち波数が虚数成分を持つ光をいう。
【非特許文献1】Technical Digest of 6th international conference on near field optics and related techniques, the Netherlands, Aug. 27−31, 2000, p55
【0003】
【発明が解決しようとする課題】
上記の三角形の形状をした平面状の散乱体を用いたプローブは、非常に高い近接場光発生効率を実現することが可能である。このプローブでは、光の振動数と金属中に発生するプラズモンの共鳴周波数を一致させると非常に高い効率が得られる。
【0004】
しかし、上記のような平面状の散乱体を用いる場合、近接場光が発生する頂点以外の部分にも弱い近接場光が発生してしまう。例えば、図1に示すような三角形の形状をした散乱体を用いる場合、プラズモン共鳴を発生させるためには散乱体の長さ(L)は光波長以下にすることが好ましい。このとき、強い近接場光が発生する頂点12以外の頂点13も励起用の光スポットの中に入る。その結果この頂点13にも弱い近接場光が発生してしまう。このように、頂点13にも近接場光が発生すると、試料観察や記録マークを再生する場合、そこから発生する散乱光がノイズとして検出されてしまう。
【0005】
本発明は、散乱体を用いたプローブで、強い近接場光が発生する点以外の部分で発生する近接場光の影響を小さくすることを目的とする。
【0006】
【課題を解決するための手段】
上記目的は、以下の構成とすることによって達成される。即ち、散乱体を1の箇所で近接場光を発生させるようにし、この1の箇所以外の表面と試料(または媒体)との間隔が近接場光が発生する1の箇所と試料(または媒体)との間隔よりも大きくなるように、近接場光が発生する1の箇所以外の厚さを薄くした。この時、近接場光が発生する1の箇所以外の表面と試料(または媒体)との間隔が近接場光のしみ出し深さ以上になるように薄くすると良い。ここで、近接場光強度のしみ出し深さとは光強度が散乱体表面での強度の1/2となる距離と定義する。図2に示すように、近接場光強度は散乱体表面から離れると減少し、しみ出し深さは、通常2nm以上10nm以下である。近接場光が発生する1の頂点以外の表面と試料(または媒体)との間隔が近接場光のしみ出し深さ以上になるように薄くすると、近接場光が発生する1の頂点以外の部分で発生する近接場光は試料または媒体に到達しなくなる。したがって、近接場光が発生する1の頂点以外で発生する近接場光により発生するノイズ成分を小さくすることができる。散乱体は、その散乱体の面の方向と試料または記録媒体の面の方向とが実質的に平行になるように配置されることとなるが、ここで、散乱体の面の方向とは薄くする前の状態で考えた散乱体の面の方向を言う。また実質的に平行とは、散乱体の面と試料または記録媒体表面とのなす角が10度以内であることを言う。なお、頂点とは、第1の線(辺)と第2の線(辺)が現実に交差する点のみならず、所定の曲率を有する場合も含まれる。
【0007】
上記の散乱体は、曲率半径が入射光の波長より小さな頂点を持ち、その頂点に向かい幅が徐々に小さくなった平面状の散乱体(例えば、平面状の三角形または扇形、台形の散乱体)にする。これら散乱体の幅が狭くなった部分にある頂点近傍を除いて表面を削る。光源からの光を散乱体に入射させると、幅が狭くなった部分の頂点に、散乱体中の電荷が集中し、その結果、前記頂点近傍に強い近接場光が発生する。特に、プラズモン共鳴が発生するように入射光の波長、散乱体の材質、長さなどを調整すると、幅が狭くなった部分にある頂点近傍に非常に強い近接場光が発生する。このとき頂点の他端側のエッジにも弱い近接場光が発生するが、この部分は試料または媒体から離れているため、試料または媒体に到達しない。
【0008】
上記の散乱体は、1つの頂点を除いて表面を削った平面状の円または楕円または長方形の形状をした散乱体であっても良い。楕円の場合、長軸方向に偏光した光を入射させると、プラズモン共鳴が発生し、長軸上にある2つの頂点に強い近接場光が発生するが、片側の表面を削ることにより、そこで発生する近接場光が試料または記録媒体に到達することを防ぐことが出来る。
【0009】
上記削る部分は、例えば削った面が散乱体の削る前の状態の面に対し実質的に水平になるように削り、削った面と削らない部分の境界部は斜めになるように削る。ここで実質的に水平とは、削った面と散乱体の面のなす角が10度以内であることを言う。
【0010】
上記散乱体は、平面状の散乱体の面と試料または記録媒体の面のなす角が実質的に垂直になるように配置しても良い。ここで実質的に垂直とは、散乱体の面と試料または記録媒体の面のなす角が、80度以上90度以下になることを言う。
【0011】
なお、試料または媒体に対しほぼ平行に散乱体を設置した場合には、平面状とは、Z軸(厚さ)方向に比べてXY(平面)方向に延伸しているとの意味である。一方、試料または媒体に対しほぼ垂直に散乱体を設置した場合には、平面状とは、Z軸(平面)方向に比べてXY(厚さ)方向に延伸しているとの意味である。
【0012】
【発明の実施の形態】
(実施例1)
本発明の近接場光発生器は、図3に示すように、頂点22に強い近接場光25が発生する平面状の散乱体21とそれを支持する基板24から構成される。前記平面状の散乱体は、散乱体の面の方向と試料または記録媒体27の面の方向とのなす角が実質的に平行になるように配置され、前記散乱体の表面は、強い近接場光が発生する頂点22近傍以外の部分(他端側の頂点もしくはエッジ23の周辺26)において、削る深さdが近接場光のしみ出し深さ以上になるように、削り取られている。言い換えれば、前記散乱体の表面は、近接場光を発生させたい頂点22近傍以外の部分(他端側の頂点もしくはエッジ23の周辺26)において、近接場光のしみ出し深さ以上の距離dだけ記録媒体27に対して離間している。光源19からの光を集光素子17を通して散乱体21に入射させると、頂点22に強い近接場光が発生するが、このとき頂点22の他端側23にも弱い近接場光が発生する。しかし、削る深さdが近接場光のしみ出し深さ以上であるであるため、他端側23近傍で発生する近接場光は試料または記録媒体27に到達しない。すなわち、試料または記録媒体27表面で測定した光強度は、他端側23近傍において無視できる程小さくなる。なお、本明細書では、頂点とは、第1の線(辺)と第2の線(辺)が現実に交差する点のみならず、所定の曲率を有する場合も含まれる。また、光は矢印29の方向から入射させても良い。図3では、散乱体がdだけ薄くなった場合を示したが、図44に示す通り、散乱体の近接場光を発生させる頂点22近傍以外の部分について、近接場光のしみ出し深さ以上の距離だけ試料(または媒体)27に対し離間させるようにしても良い。
【0013】
散乱体の材質は、金属(例えば金、銀、銅、アルミ、マグネシウム、チタン、クロム)や半導体(例えばSi、GaAs)などの導電性のあるものにする。散乱体が形成される基板は、光透過性のあるもの(ここでは透過率が70%以上あるものと定義する)であると好ましい。なぜなら、基板を通して光を入射させる(すなわち図3中矢印28の方向に入射させる)ことが出来るためである。例えば、散乱体を形成する基板の材質はSiOやサファイア、GaNなどにする。
【0014】
上記の散乱体は、曲率半径が入射光の波長より小さな頂点を持ち、その頂点に向かい幅が徐々に小さくなった平面状の散乱体(例えば、平面状の三角形、扇形、台形)にする。図4(a)に形状が三角形の場合の実施例を示す。この実施例では、頂点12以外の部分を、削った面が散乱体の面に対し実質的に水平になるように削り、削る部分と削らない部分の境界部30は斜めになるように削った。光源からの光を、偏光方向が図中のx方向を向くように入射させると、散乱体11中の電荷が偏光方向と同一方向に振動し、頂点12に集中する。その結果、頂点12近傍に強い近接場光が発生する。特に、プラズモン共鳴が発生するように入射光の波長、散乱体の材質、長さLなどを調整すると、頂点12近傍に非常に強い近接場光が発生する。このとき頂点13近傍にも近接場光が発生するが、その周辺16が、削る深さdが近接場光のしみ出し深さ以上になるように削られているため、試料または媒体表面までその近接場光は到達しない。なお、境界部30の傾き(図3中θ)は、大きすぎると境界部30により散乱体中の電子の振動が妨げられ、頂点22に発生する近接場光強度が低下してしまう。境界部30の傾きθは60度以下にするのが好ましい。
【0015】
図5に、三角形の形状をした散乱体近傍の近接場光強度分布を示す。これは、Finite Difference Time Domain(FDTD)法(Journal of Optical Society of America A, Vol.12, No.9, p1974−1983, 1995, (和名)ジャーナルオブオプティカルソサエティオブアメリカA1)を用いて求めた。図5(a)が表面を削らない場合、図5(b)が表面を削った場合を示す。散乱体の材質は金とし、散乱体は空気中に置かれているとした。頂点12の曲率半径は20nm、厚さtは30nm、頂点12の頂角θは60°、長さLは150nm、削る部分の削る深さdは5nm、削る部分と削らない部分の境界部分30の傾きθは30度とした。光波長は780nmで、観測面は頂点12から5nm離れた面内とした。強度の値は、近接場光強度と入射光強度との比を表す。この図に示すように、表面を削ることにより、頂点13近傍の強度を小さくすることが出来た。なお、表面を削ることにより、光スポットの大きさ(近接場光の広がり)も小さくなった。これは、頂点12近傍の散乱体が削られたため、その部分に発生する近接場光(図5(a)中A)が試料または媒体に到達しなくなったためと考えられる。図6に頂点12に発生する近接場光強度(観測面は頂点12から2nm離れた位置)の光波長依存性を示す。この図に示すように、波長700nm付近でプラズモン共鳴が発生し、近接場光強度が最大となる。
【0016】
上記の散乱体の形状は、1つの頂点近傍を除いて表面を削った平面状の円または楕円であっても良い。図4(b)にその例を示す。この実施例では、頂点33周辺を水平に削り、削る部分と削らない部分の境界部30は斜めになるように削った。この散乱体に、偏光方向がXの方向になるように光を入射させると頂点32およびその反対側の頂点33に近接場光が発生する。ただし、頂点33の周辺34は、削る深さdが近接場光のしみ出し深さ以上になるように削られているため、頂点33近傍に発生する近接場光は試料または媒体表面まで到達しない。
【0017】
上記頂点32に強い近接場光を発生させるためには、形状を楕円にし、頂点32は楕円の長軸上の1点とし、入射光の偏光方向を長軸に平行な方向にするのが好ましい。特に、楕円の長軸長Lと短軸長L、散乱体の材質、および光波長などを調整することによりプラズモン共鳴を励起すると、非常に強い近接場光を発生させることが出来る。本実施例では、散乱体の材質を金、長軸長Lを100nm、短軸長Lを40nm、厚さtを35nm、削る深さdを10nmとし、入射光の波長は633nmにした。なお、光スポットの大きさは、短軸長Lが小さい程小さくなる。したがって、図7(a)に示すように、短軸長Lが厚さtより小さくなるようにしても良い。図7(a)の実施例では、散乱体の材質を金、長軸長Lを100nm短軸長Lを10nm、厚さtを40nm、削る深さdを10nmとした。
【0018】
上記散乱体の形状は、1つの辺近傍を除いて表面を削った直方体であっても良い。図4(c)にその例を示す。この実施例では、辺37周辺を水平に削り、削る部分と削らない部分の境界部30は斜めになるように削った。この散乱体に、偏光方向がXの方向になるように光を光を入射させると、辺36およびその反対側の辺37近傍に近接場光が発生する。ただし、辺37の周辺部38は、削る深さdが近接場光のしみ出し深さ以上になるように削られているため、辺37近傍に発生する近接場光は試料または媒体表面まで到達しない。
【0019】
上記辺36に強い近接場光を発生させるためには、辺36は短辺とすることが好ましく、そのとき入射光の偏光方向は長辺に平行な方向(図4(c)中X方向)にするのが好ましい。特に、長辺の長さLと短辺の長さL、および光波長を調整することによりプラズモン共鳴を励起すると、非常に強い近接場光を発生させることが出来る。本実施例では、長辺の長さLを100nm、短辺の長さLを40nm、厚さtを35nm、削る深さdを5nmとし、入射光の波長は633nmにした。なお、光スポットの大きさは、短辺の長さLが小さい程小さくなる。したがって、図7(b)に示すように、短辺の長さLが厚さtより小さくなるようにしても良い。図7(b)の実施例では、散乱体の材質を金、長辺の長さLを100nm、短辺の長さLを10nm、厚さtを40nm、削る深さdを10nmとした。
【0020】
上記削る部分(図3中26)は、図8および図9に示すように、削った面と削らない部分の境界30が曲面となるように削っても良い。細かな凹凸のある試料を測定する場合は、このように削ることにより、近接場光が発生する頂点22が凹んだ部分の中に入り込みやすくなる。したがって、より正確に試料形状を測定することが可能になる。
【0021】
上記削る部分(図3中26)は、図10に示すように、削った部分の表面が散乱体の面に対し斜めになるように削っても良い。強い近接場光が発生する頂点22の他端側の頂点もしくはエッジ23の部分で削る深さdは、近接場光のしみ出し深さ以上になるようにする。このように削ることで、頂点22の突き出た部分の機械的強度を強くすることが出来る。図11に、散乱体の形状を三角形、楕円、長方形とした場合の例を示す。図11(a)に示すような三角形の場合、散乱体の材質を金、頂点12の曲率半径は20nm、厚さtは40nm、頂点12の頂角θは60°、長さLは150nm、削る部分の削る深さdは10nm、光波長は780nmとした。図11(b)に示すような楕円の場合、散乱体の材質を金、長軸長Lを100nm短軸長Lを40nm、厚さtを40nm、削る深さdを10nmとし、入射光の波長は633nmにした。図11(c)に示すような長方形の場合、長辺の長さLを100nm、短辺の長さLを40nm、厚さtを35nm、削る深さdを10nmとし、入射光の波長は633nmにした。
【0022】
上記散乱体は、散乱体の面が試料(または記録媒体)の面に対して傾くように配置しても良いし、散乱体の面と試料または記録媒体の面のなす角が実質的に垂直になるように配置しても良い。ここで実質的に垂直とは、散乱体の面と試料または記録媒体の面のなす角が、80度以上90度以下になることを言う。図13に散乱体の面と試料または記録媒体の面のなす角を実質的に垂直にした場合の実施例を示す。図13(a)の実施例では、散乱体の2つの面のうち、一方の面上にある近接場光が発生する頂点102近傍以外の部分を、削る深さdが近接場光のしみ出し深さ以上になるように削った。(このとき光は矢印111に示すように横から入射させても良いし、矢印112のように斜めに入射させても良い。)なお、本願明細書で、散乱体の平面状の方向を媒体や試料に対しほぼ垂直に配置した場合について、散乱体の厚さとは、近接場光を照射される試料(媒体を含む)に対し垂直方向の厚さをいう。従って、図13の実施例では、dに示す方向が厚さとなる。図13(b)の実施例では、片方の面上にある近接場光が発生する頂点101とそれと反対側の面上にある近接場光が発生する頂点102の間にある頂点103近傍を除いて、削る深さdが近接場光のしみ出し深さ以上になるように削った。もしこのように削らない場合、図12に示すように、散乱体の片面(右面)とその反対側の面(左面)のそれぞれの頂点101、102に近接場光が発生するので分解能が低下してしまう。上記のように頂点部を削れば、片側102(片側のみを削った場合)もしくは頂点103(両側を削った場合)に発生する近接場光のみが試料または媒体に到達する。したがって、分解能が向上する。
【0023】
図14に実際の散乱体の形状を示す。図14(a)の実施例では散乱体の形状を三角形にした。散乱体の材質は金、頂点91の幅wは10nm、幅tは30nm、頂点91の頂角θは60°、長さLは150nm、削る部分の削る深さdは10nm、光波長は635nmとした。この時の近接場光強度分布を図15に示す。この分布は、FDTD法により計算した。この強度分布は頂点101から2nm離れた面で測定した。強度の値は、入射光強度との比を表す。この図に示すように、頂点101側に強い近接場光が発生した。図14(b)の実施例では、散乱体の形状を楕円にした。散乱体の材質が金、長軸の長さLは100nm、短軸の長さは40nm、幅tは30nm、削る深さdは10nmとし、入射光の波長は633nmにした。図14(c)の実施例では、散乱体の形状を長方形にした。長辺の長さLを100nm、短辺の長さLを40nm、幅tを30nm、削る深さdを10nmとし、入射光の波長は633nmにした。
【0024】
図16(a)(b)に、上記先端部の削る部分を階段状にした例を示す。例えば、削る深さdが10nm、幅tが30nm、先端の幅tが5nmになるように削る。細かな凹凸のある試料を測定する場合は、このように削ることにより、先端部102または103が凹んだ部分の中に入り込みやすくなる。したがって、より正確に試料形状を測定することが可能になる。
【0025】
図17に、近接場光強度をさらに強くするために、上記散乱体の近接場光が発生する頂点22近傍に導電性のある第二の散乱体151を形成した場合を示す。ここで、第一の散乱体の近接場光が発生する頂点22と第二の散乱体の間隔(G)を光波長より小さくすると、頂点22に集まる電荷と第二の散乱体中の電荷が互いに相互作用することにより、2つの散乱体の間154に強い近接場光が発生する。
【0026】
第二の散乱体の表面は、第一の散乱体に最も近い点152の他端側の点またはエッジ153が入射光スポット内にないときは、必ずしも第一の散乱体と同様に削る必要はない(図17(a))。しかし、第一の散乱体に最も近い点152の他端側の点またはエッジ153が入射光スポット内あるときは、図17(b)に示すように、第一の散乱体と同様に、第一の散乱体に最も近い点152近傍を除いて表面を削ることが好ましい。
【0027】
第一と第二の散乱体の形状は、必ずしも同一にする必要はない。しかし、同一にすることにより、両方の散乱体中にプラズモン共鳴を同時に励起することが可能になり、より強い近接場光を2つの散乱体の間に発生させることが出来る。例として、図18に三角形の形状をした二つの散乱体を2つ組み合わせた場合の形状を示す。X方向に偏光した光を入射させると、それぞれの散乱体中の電荷が頂点12に集まり、互いに相互作用する。その結果2つの頂点間154に強い近接場光が発生する。本実施例では、散乱体の材質を金、頂点12の曲率半径は20nm、厚さtは40nm、頂点12の頂角θは60°、長さLは150nm、削る部分の削る深さdは10nm、間隔Gは5nm、光波長は780nmとした。
【0028】
上記の散乱体は、図19に示すように、厚さ方向(Z軸方向)を大きくし、XY(平面)方向に比べてZ軸(厚さ)方向に延伸するようにしても良い。このように厚さ方向を大きくすることにより、散乱体中に発生する熱が逃げやすくなる。したがって、入射光パワーの限界値(パワーが大きいと発熱により散乱体が破壊する)を大きくすることが出来る。本実施例では、散乱体の外周部の形状を三角形にし、頂点12以外の表面部16を削った。頂点12とその他端側のエッジの距離Lは150nm、厚さtは300nm、削る深さdは10nmとした。
【0029】
上記の散乱体は、平面状の散乱体に替えて、直径が入射光の波長よりも小さい球もしくは半球、または長軸の長さが入射光の波長よりも小さい回転楕円体もしくは半回転楕円体の散乱体にしても良い。これら散乱体表面の近接場光が発生する1点以外の部分を削ると、近接場光が発生する点の曲率半径を小さくすることができるので、近接場光の広がりをより狭くすることが出来る。すなわち、分解能を向上させることができる。図20にその例を示す。図20 (a)の例では、基板24上に半回転楕円体の形状をした散乱体を形成し、近接場光が発生する点172以外の部分を削った。この散乱体に偏光方向が試料または記録媒体面に垂直な方向(Z方向)を向いた光を入射させると、点172近傍に局在した近接場光が発生する。半回転楕円体の高さhは光波長以下とし、削る深さdは、近接場光のしみ出し深さ以上とするのが好ましい。削った後に形成される突起173の根元の幅aは小さい方が高い分解能が得られる。入射光の波長は、プラズモン共鳴が発生する波長にするのが好ましい。本実施例では、半回転楕円体の高さhは100 nm、幅bは40nm、削る深さは10nm、突起の根元の幅aは15nm、散乱体の材質は金とした。図20(b)の例では、172以外の部分を削ることに替えて、球の散乱体表面に微小な突起174を形成した。このように突起を形成しても、上記の削ったものと同様の効果が得られる。本実施例では、半回転楕円体の高さhは100nm、幅bは40nm、突起の高さdは10nm、根元の幅aは15nm、散乱体の材質は金とした。
(実施例2)
実施例2は、散乱体の摩耗を防ぐための実施例を示す。
【0030】
上記散乱体の面が試料または媒体面に実質的に平行に配置した平面状の散乱体を用いて凹凸のある試料を測定する場合、図3のように、散乱体は基板表面上に形成するのが好ましい。なぜなら、凹んだ部分に近接場光が発生する頂点22が入り込み易いからである。ただし、この時、頂点22は磨耗し易い。これを防ぐためには、図21(a)に示すように、頂点181近傍の散乱体の側面を硬度の高い物質で覆うと良い。ここで、頂点181近傍とは、頂点181からの距離が50nm以下である範囲と定義する。本実施例では、ガラス基板上に長さLが150nm、角度θが60度、厚さtが30nm、材料が金、形状が三角形、表面がd=5nm削られた散乱体を形成し、散乱体側面のうち、頂点181からの距離が30nm以下となる範囲内において、幅tが10nmのカーボンまたはダイアモンドまたはSiまたはSiNの膜を形成した。
【0031】
上記散乱体の面が試料または媒体面に実質的に平行に配置した平面状の散乱体を記録装置へ応用する場合は、図21(a)のように散乱体を形成しても、記録媒体を高速に回転させるため、頂点181が磨耗してしまう。これを防ぐためには、図21(b)のように、散乱体21が基板24に埋め込まれるように形成するか、図21(c)のように、散乱体181の周辺に、パッド183を形成するのが好ましい。散乱体を基板に埋め込む場合は、図21(b)のように、近接場光が発生する頂点181と基板表面182が実質的に同一平面上にあることが好ましい。パッドを形成する場合は、近接場光が発生する頂点とパッド表面が実質的に同一平面上にあることが好ましい。ここで、実質的に同一平面上とは、高さの差が10nm以内であることを言う。本実施例では、ガラス基板表面に長さLが150 nm、頂角θが60度、厚さtが30nm、材料が金、形状が三角形、表面がd=5nm削られた散乱体が、図21(b)のように埋め込まれるように形成した。
【0032】
(実施例3)
実施例3では、散乱体が試料や媒体面に対し垂直になるように配置した例を示す。
【0033】
前記散乱体の面が試料または媒体面に垂直になるように配置した平面状の散乱体を用いて凹凸のある試料を測定する場合、図22のように、近接場光が発生する頂点191は基板表面192から突き出るように形成するのが好ましい。なぜなら、凹んだ部分に頂点191が入り込み易いからである。ただし、上記のように頂点191を突出させるとき、散乱体が試料に接触し破壊され易い。これを防ぐためには、実施例2で説明したとおり、散乱体の側面を硬度の高い材料で覆うのが好ましい。本実施例では、短辺の長さが20nm、長辺の長さが150nm、幅tが30nm、材料が金の長方形の散乱体をガラス基板側面に形成し、頂点191付近を削る深さdが10nmになるように斜めに削った。頂点191は基板表面192からh=50nm突き出るようにし、散乱体側面には、散乱体の破壊を防ぐために幅t=10nmのカーボンまたはダイアモンドまたはSiまたはSiNの膜を形成した。
【0034】
前記散乱体の面が試料または媒体面に垂直になるように配置した平面状の散乱体を記録装置へ応用する場合は、図22(a)のように散乱体を形成しても、記録媒体が高速に回転するため、散乱体先端が磨耗してしまう。これを防ぐためには、図22(b)のように、近接場光が発生する頂点191と基板表面192が実質的に同一平面上にあるように散乱体を形成する。本実施例では、短辺の長さが20nm、長辺の長さが150nm、幅tが30nm、材料が金で、先端部分が削る深さdが10nmとなるように斜めに削られた長方形の散乱体を、頂点181と基板表面182が実質的に同一平面上にあるように形成した。なお、上記散乱体は、図22(c)に示すように、基板に埋め込まれるように形成しても良い。埋め込む時は、近接場光が発生する頂点181と基板表面182が実質的に同一平面上にあることが好ましい。ここで実質的に同一平面上とは高さの差が10nm以内であることを言う。
(実施例4)
実施例4では、散乱体の近接場光が発生する頂点近傍の材料を残りの部分の材料と異なるようにした例を示す。例えば、近接場光が発生する頂点近傍の材料を残りの部分の材料よりも硬度の高い材料にすれば、散乱体の耐久性を向上させることができる。また、近接場光が発生する頂点近傍の材料を発光材料にしても良い。ここで発光材料とは、例えば、フォトルミネッセンス、2次の非線形光、3次の非線形光、ラマン散乱、二光子吸収による発光などを発生させる物質を言う。これら発光をフィルタやグレーティングを用いて励起光から分離し、その強度変化または発光波長のシフト量を検出することにより、近接場光が発生する頂点からの信号のみを選択的に検出することが可能になる。すなわち、バックグランド光の検出を抑えることができ、像のコントラストを向上させることが可能になる。また、発光材料を、特定の物質と反応すると発光強度または発光波長が変化する物質にすれば、高い空間分解能を持つ微小なセンサとしてプローブを用いることが出来る。
【0035】
平面状の散乱体を使うときの実施例を図23および図24に示す。
【0036】
図23(a)および図24(a)の実施例では、材料を変える部分と変えない部分の境界面204が試料または記録媒体面に実質的に平行になるようにした。ここで実質的に平行とは、材料を変える部分と変えない部分の境界面204と試料または記録媒体面のなす角が30度以内であることを言う。本実施例では、散乱体の耐久性を向上させるために、近接場光が発生する頂点202から幅xの領域201の材料をPtまたはPdまたはRhあたはIrまたはTiまたはCrまたはCoまたはSiまたはSiNにした。近接場光が発生する頂点近傍201の材料は硬度の高いものであれば良いが、強い近接場光を発生させるためには、金属や半導体などの導電性のある材料が好ましい。材料を変える部分201の幅xは削る深さd以下になるようにしても良いし、削る深さd以上になるようにしても良い。材料を変える部分201が変えない部分203から剥がれることを防止するためには、材料を変える部分201の幅xを削る深さd以上になるようにし、材料を変える部分201と変えない部分203の接触面積を大きくすることが好ましい。しかし、近接場光が発生する頂点近傍の材料を変えることにより発生する近接場光強度が材料を変えることにより小さくなる場合は(例えば変える部分201の材料の導電性が、変えない部分203の材料の導電性より低い場合)、材料を変える部分201の幅xが削る深さd以下になるようにして、材料を変える部分201の体積を小さくすることが好ましい。本実施例では、削る深さdを10nm、材料を変える部分の幅xを5nmにした。また本実施例では、像のコントラスト向上させるために、近接場光が発生する頂点202から深さxの領域201の材料を蛍光体または非線形物質にした。蛍光体の材料にはRhodamineやCoumarin、Pyridine、Fluorescein、Styrylなどの色素や、GaAs、GaN、CdSなどの半導体を用いた。非線形物質にはCdS、CdTe、LiNbOなどを用いた。高いコントラストを実現するためには、材料を変える部分201の幅xが削る深さd以下になるようにして、発光体の体積を小さくすることが好ましい。本実施例では、削る深さdを10nm、材料を変える部分の幅xを5nmにした。
【0037】
材料を変える部分と変えない部分の境界面の方向は任意であり、例えば、図23(b)および図24(b)に示すように、材料を変える部分と変えない部分の境界面204が試料または記録媒体面に対し実質的に垂直になるようにしても良い。本実施例では、図23(b)および図24(b)の場合ともに、材料を変える部分と変えない部分の境界面204と試料または記録媒体面のなす角は90度、変える部分の幅xは5nm、削る深さdは10nm、変える部分の材料は、PtまたはPdまたはRhあたはIrまたはTiまたはCrまたはCoまたはSiまたはSiNなどの硬度の高いもの、およびRhodamineやCoumarin、Pyridine、Fluorescein、Styrylなどの色素や、GaAs、GaN、CdSなどの半導体の蛍光材料、およびCdS、CdTe、LiNbOなどの非線形物質にした。
(実施例5)
実施例5は削られた部分を所定の物質で埋め込んだ例を示す。図25に、上記表面が削られた部分221を散乱体の材料とは異なる物質で埋めた例を示す。例えば、削られた部分221をSiOやAlなどの誘電体で埋めれば、近接場光のしみ出し深さが小さくなるので、近接場光が発生する頂点22以外で発生する近接場光が、試料または記録媒体27にさらに到達しにくくなる。本実施例では、図25(a)または(b)のように、金の散乱体を、表面から5nm削り、そこをSiOまたはAlまたはCrの誘電体で埋めた。
(実施例6)
次に、遮光膜を用いた例を示す。試料の形状や記録媒体上に形成された記録マークの有無等を検出するために、プローブを透過した光のパワーを検出する場合、散乱体に当たらなかった光は、そのまま検出器で検出されてしまう。この光はバックグランド光として働き、検出のS/N比の低下を招く。これを防ぐために、図26のように、散乱体の近傍に遮光性のある膜241を形成すると好ましい。ここで、遮光性のある膜とは透過率が50%以下である膜と定義する。この遮光性のある膜には、例えば金や銀などの金属、SiやGaAsなどの半導体、カーボンなどの誘電体などを用いる。散乱体と遮光性のある膜の間隔Wを光波長以下(本実施例では50nmとした)にすることにより、バックグランド光の発生を抑制することができる。なお、遮光膜として光吸収性のある膜(透過率同様、反射率も低い膜。ここでは透過率および反射率が50%以下の膜と定義する)を利用する場合、プローブの透過光を検出する方式(Illumination mode)だけでなく、光源側に戻ってくる光を検出する方式(Illumination−Collection mode)の装置においても、バックグランド光を抑制することが可能である。本実施例では、図26(a)および図26(b)に示すように、近接場光が発生する頂点22以外の表面が削られた、三角形または楕円の形状をした散乱体を形成し、その周辺に遮光膜241を形成した。散乱体および遮光膜の材料はともに金とし、散乱体と遮光性のある膜の間隔Wは50 nmとした。
【0038】
なお、各実施例に共通することだが、上記の散乱体へ入射させる光の中心位置は、散乱体上での光強度が最大となるよるに、図27(a)のように散乱体の中心に実質的に一致させる。もしくは、近接場光強度の最大となる位置と入射光の中心位置を一致させるために、図27(b)のように入射光の中心位置を近接場光が発生する頂点22に実質的に一致させても良い。ここで実質的に一致とは、入射光の中心位置と頂点の距離が入射光の光スポットの半値全幅の1/2以内となることをいう。
(実施例7)
実施例7は、散乱体を所定の素子上に形成した例を示す。
【0039】
まず、散乱体を集光素子上に形成した例を示す。散乱体21を、図28(a)に示すようなSolid Immersion Lens281や、図28(b)に示すようなフレネルレンズ284のついた基板24、図28(c)に示すような凸レンズ285のついた基板24などの上に形成する。このとき散乱体は光の集光点に形成する。このようにすれば、集光素子と散乱体の位置調整が不必要になる。また、図28(d)に示すように、散乱体を導波路286の終端に形成しても良い。このとき、なるべく多くの光が散乱体に当たるようにするには、導波路終端の径wは、光波長以下にすることが好ましい。しかし、wが光の波長の1/2以下になると、導波路中に光の伝播モードが存在しなくなる。したがってwは導波路中の波長の1/2以上にすることが好ましい。また、散乱体を光共振器の出射面の近傍、即ち出射面から10μm以内に形成しても良い。例えば、図29(a)に示すように、光を共振させるための反射膜291を基板に形成し、その反射層291上に開口を形成し、その開口中に散乱体21を形成する。このとき、バックグランド光の発生を抑制するために、散乱体と反射膜の間隔wは光波長以下にするのが好ましい。本実施例では、wを50nmとした。このように共振器の出射面近傍に形成すれば、散乱体に当たらずに反射した光が共振器により戻され、再び散乱体に照射されるので、光利用効率を向上させることが出来る。また、散乱体は半導体レーザの出射面の近傍、即ち出射面から10μm以内に形成しても良い。例えば、図29(b)に示すように、散乱体11を面発光レーザー293の出射面近傍に形成する。このとき、バックグランド光を抑制するために、レーザの出射面上に反射膜292を形成し、そこに開口を形成し、その中に散乱体を形成すると良い。この時、散乱体と反射膜の間隔wは光波長以下にするのが好ましい。本実施例では、wを50nmとした。このように半導体レーザーの出射面に形成することにより、光源と散乱体の位置調整が不必要になる。また、散乱体はフォトダイオードなどの光検出器の受光面近傍、即ち受光面から10μm以内に形成しても良い。これにより、検出器と散乱体の位置位置調整が不要になる。
【0040】
前記の散乱体は、図30(a)に示すように、円錐もしくは多角錐302の突起先端に形成された平坦な部分301に形成しても良い。このとき、平らな部分の幅の最小値Wは、散乱体が試料に近づきやすくするために、できるだけ小さくするのが好ましい。また、図30(b)に示すように、円錐もしくは多角錐の側面を金属で覆えば、円錐もしくは多角錐の突起が光導波路の働きをし、光を散乱体21のある部分に集光させる働きをする。この場合、先端の平坦な部分の幅の最小値Wは突起中を伝搬する光の波長以下(面積で表現すると先端の平坦な部分の面積が突起中を伝搬する光の波長の2乗以下)になるようにすれば、散乱体周辺から発生するバックグランド光の発生も抑制することができる。ただし、平坦な部分の幅wを突起中を伝搬する光の波長の1/2以下にすると、先端から出射する光量が減るため(導波路の径が光波長の1/2以下になると光の伝搬モードが存在しないため)、平坦な部分の幅wは突起中を伝搬する光の波長の1/2以上(面積で表現すると先端の平坦な部分の面積が突起中を伝搬する光の波長の1/2を2乗した値以上)にした方が良い。本実施例では、SiOの四角錐の突起の側面を厚さ100nmの金で覆い、先端の幅wは250nmとした。
(実施例8)
次に、前記プローブの作製方法について説明する。散乱体の面と試料または媒体面が実質的に平行になる場合は、図31(a)のように、まず基板24中に埋め込まれた散乱体21を形成する。つぎに、図31(b)のようにイオンミリングやRIEなどの異方性エッチングを用い、散乱体部分を斜めに選択的に削る。このとき、近接場光が発生する部分22は基板24の影となるため、エッチングされずに残り、残りの部分のみが削られる。散乱体の面と試料または媒体面が実質的に垂直になる場合も、図32に示すような同様の方法で作製可能である。
【0041】
また、前記近接場光が発生する頂点近傍の材料が残りの部分とは異なった散乱体は図33のように作製する。まず図33(a)のように、近接場光が発生する頂点近傍の材料262と残りの部分の材料261で構成される2層の膜でできた散乱体を、異なる材料同士の境界面が基板表面263に対し実質的に平行になり、かつ基板24中に埋め込まれるように形成する。このとき散乱体の面は基板表面263、すなわち試料または媒体面に対し実質的に平行であっても良いし、実質的に垂直であっても良い(図33は散乱体の面が基板表面に対し実質的に平行である場合を示す)。つぎに、図33(b)のようにイオンミリングやRIEなどの異方性エッチングを用い、散乱体の部分を斜めに削る。このとき、近接場光が発生する部分22近傍は基板24の影となるため、エッチングされずに残り、残りの部分のみが削られる。
【0042】
また、図34のように異なる材料どうしの境界面が基板表面263に対し実質的に垂直になるように加工することも可能である。このとき散乱体の面は基板表面に対し実質的に平行であっても良いし、実質的に垂直であっても良い(図34は散乱体の面が基板表面に対し実質的に垂直である場合を示す)。まず図34(a)のように、近接場光が発生する頂点近傍の材料262と残りの部分の材料261で構成される2層の膜でできた散乱体を基板24中に埋め込むように形成する。つぎに図34(b)のように、イオンミリングやRIEなどの異方性エッチングを用い、散乱体の部分を斜めに削る。
【0043】
また、前記の異なる材料どうしの境界面が基板表面に対し実質的に垂直である場合、イオンミリングやRIEなどの異方性エッチングを用いて散乱体の部分を斜めに削ることに替えて、図35に示すように、近接場光が発生する頂点近傍の材料の部分262を残して、残りの部分261のみを、RIEなどの選択エッチングによりエッチングしても良い。
【0044】
図36に、導波路終端に散乱体を形成したプローブの作製方法を示す。この実施例では、散乱体の形状は長方形とした。まず、基板360上に、散乱体の材質でできた部分361と導波路の材質で出来た部分362の2層で構成された細線を形成する(図36(a))。このとき、散乱体の材質でできた部分361の厚さtは長方形の長辺の長さLに等しくなるようにし、細線の長さLは作製する散乱体の厚さより大きくなるようにする。本実施例では、基板の材質をガラス、散乱体の材質を金、導波路の材質を不純物を拡散させたガラスにし、厚さtは150nm、細線の長さLは500nmとした。つぎに、図36(b)に示すように、細線を覆うように導波路363を形成した後、図36(c)中の矢印の方向に研磨する。このとき、細線の長さが散乱体の厚さtに等しくなる点で、研磨を止める。最後に図31で示した方法により、近接場光が発生する点36以外の表面を、イオンミリングなどの異方性エッチングにより削る。なお、三角形の形状をした散乱体を作製するために、上記の細線の形状を三角柱にしても良い。
(実施例9)
実施例9は、応用装置について説明する。図37に、上記の近接場光プローブを近接場光学顕微鏡に応用した例を示す。ここでは、散乱体を原子間力顕微鏡のカンチレバの先端に形成したプローブを用いた例を示す。試料910は基板911の上に置き、その表面に、上記の近接場光プローブ901を近づけた。レーザー906から出射した光はレンズ916によりコリメートされ、ビームスプリッタ905を通過後、対物レンズ904に入射するようにした。光は対物レンズにより集光され金属の微小構造部で収束する。プローブからの光は、対物レンズ904により集光され、検出器907で検出されるか、もしくは試料の反対側に置かれた対物レンズ912により集光され、検出器913で検出されるようにした。試料をピエゾ素子908を使い水平方向に走査させると、試料表面で発生する散乱光強度が変化する。この変化を記録することにより、試料の像を得た。ここで、試料からの信号の偏光方向が、入射光の偏光方向と異なっている場合、偏光子917、918を光路中に起き(レーザーが直線偏光の場合偏光子918のみで良い)、偏光子918の偏光方向が入射光の偏光方向に対し直角になるようにすると、コントラストを向上させることができる。また、上記散乱体の近接場光が発生する頂点近傍に発光物質を形成した場合は、検出器の前にバンドパスフィルターを置き、発光のみを検出できるようにする。
【0045】
上記プローブ先端と試料表面の間隔は近接場光のしみ出し深さである数10 nm以内にする必要があるが、その間隔はプローブ先端と試料表面の間に働く原子間力を測定することにより制御する。すなわちプローブを数nm以内の振幅でピエゾ909を使い縦方向に振動させ、その振幅が一定になるようにプローブ先端と試料表面の間隔を制御する。振幅の変化の測定は、レーザー906から出射した光とは別の光をカンチレバーの上面902に当て、そこからの反射光をPSD(Position Sensing Detector)で検出することにより行う。
【0046】
上記近接場プローブの記録/再生装置への応用例を図38に示す。散乱体と記録媒体の間隔が数10nm以下になるよう保ちながら、高速に走査させるため、散乱体はスライダ702上に形成され、そこに、光源、検出器等を搭載した光ヘッド703からの光を入射させた。本実施例では、スライダ中に集光素子を集積化し、スライダには並行光を入射させるようにした。光ヘッドはキャリッジアクチュエーター704を用いて、ディスクの半径方向に動かされるようにした。光ヘッド内部の光学系は図38(b)のように構成した。光源には半導体レーザー708を用い(波長780nm、出力30mWの半導体レーザーを用いた)、出射光をコリメーターレンズ709、ビーム整形プリズム710を用いて円形の平行ビームにした。このビームはビームスプリッタ712、ミラー714を通過後、近接場光プローブ702に入射するようにした。トラッキングのため近接場光プローブの位置を微調整するためには、圧電素子711を用いた。プローブ702はサスペンション705に取り付けられていて、このサスペンションの力によりディスク701に押し付けられるようにした。本実施例では光ディスク701には相変化媒体を用い、記録マークは、近接場プローブにより発生した近接場光により結晶相をアモルファス相に変化させることにより形成した。再生は、ディスクから戻ってくる光の強度変化を検出することにより行った。すなわち、近接場光がディスクにより散乱される割合が、記録マークの有無により変化するので、その散乱光の強度変化を検出することにより行う。実際には、ディスクからの光(信号光)をビームスプリッタ−712により入射光と分離し、集光レンズ715を通過させた後、検出器717で検出した。ここで、ディスクからの信号光の偏光方向が、入射光の偏光方向と異なっている場合、偏光子716を光路中に起き、偏光子716の偏光方向が入射光の偏光方向に対し直角になるようにすると、コントラストを向上させることができる。
【0047】
上記記録/再生装置へ応用する場合、図39に示すように、散乱体は、散乱体の近接場光が発生する頂点22の接線方向332とトラックに平行な方向331が直交するように配置するのが好ましい。なぜなら、図5および図15に示すように、近接場光強度分布は近接場光が発生する頂点22の接線方向に伸びた形状をしている。記録/再生装置では、トラッキングサーボを容易にするためには、記録マークの形状はトラック方向に垂直な方向に長い方が好ましい。したがって、そのようなマークを記録するためには、散乱体は、散乱体の近接場光が発生する頂点22の接線方向332とトラックに平行な方向331が直交するように配置するのが好ましい。
【0048】
上記の記録/再生装置において、媒体には磁気媒体を用いても良い。図40に磁気媒体用ヘッドの例を示す。散乱体21はスライダ407の表面に形成し、散乱体21周辺に磁界印加用コイル405を形成した。光源である半導体レーザ401はスライダ上に形成し、そこから発生する光はコリメートレンズ402、ミラー403および集光レンズ404を通過後、散乱体21に入射するようにした。なお、上記の記録/再生装置において、再生には磁気再生ヘッドを用いても良い。磁気再生ヘッドを用いることにより、光検出用の光学系が不要になるため装置を小型化することが可能になる。図40の実施例では、散乱体の近くにGMR素子406を設置した。
【0049】
上記の磁気媒体を用いた記録/再生装置において、磁界印加素子として、磁気記録装置で使用される記録ヘッドを用いても良い。図41(a)にその実施例を示す。この実施例では、磁極412に接するように導波路411を形成し、その先端に散乱体21を形成した。光源である半導体レーザ401はスライダ上に形成し、そこから発生する光はコリメートレンズ402、ミラー403および集光レンズ404を通過後、導波路411に入射するようにした。再生はGMR素子406で行うようにした。図41(b)に、散乱体周辺の拡大図を示す。この実施例では、散乱体の形状は長方形とし、長方形の長辺の長さLは100 nm、短辺の長さLは20nm、厚さtは40 nm、削る深さdは10 nmとした。光照射により温度が上昇する領域と磁界が印加される領域は重なる必要があるため、近接場光が発生する点36と磁極412はできるだけ近い方が良く、本実施例では5 nmとした。導波路先端の径Wは300 nmとした。
【0050】
上記近接場プローブは、光リソグラフィ用の露光装置へ応用することも可能である。図42(a)、(b)にその実施例を示す。加工する基板342上にフォトレジスト341を塗布し、そこに散乱体21を有するプローブを近づける。ここにフォトレジストを感光させる光を入射させると頂点22に強い近接場光が発生し、その部分のフォトレジストが感光される。ここで、入射光の波長は、レジストが感光し、かつプラズモン共鳴が励起される波長にすると好ましい。本実施例では、散乱体21の材質をアルミにし、波長442nmの光を入射させた。このように本発明のプローブを用いれば、数10nm以下の寸法を持つ微細なパターンの露光を高速に行うことが出来る。
【0051】
なお、本願発明は以下の構成を包含する。
1.光源と、近接場光を発生させる導電性の散乱体を備え、前記散乱体上の近接場光が発生する1つの頂点以外の部分の表面が削られた近接場光発生装置を用いた記録または再生装置。
2.上記1記載の記録または再生装置であって、前記散乱体の近接場光が発生する頂点の接線方向が記録トラックの方向と直交するように配置されている。
3.光源と、近接場光を発生させる導電性の散乱体を備え、前記散乱体上の近接場光が発生する1つの頂点以外の部分の表面が削られた近接場光発生装置を用いた近接場光学顕微鏡。
4.光源と、近接場光を発生させる導電性の散乱体を備え、前記散乱体上の近接場光が発生する1つの頂点以外の部分の表面が削られた近接場光発生装置を用いた露光装置。
【非特許文献2】Journal of Optical Society of America A, Vol.12, No.9,
p1974−1983, 1995
【0052】
【発明の効果】
散乱体を用いたプローブで、強い近接場光が発生する点以外の部分で発生する近接場光の影響を小さくできる。
【図面の簡単な説明】
【図1】従来の近接場光発生装置の形状を示す図で、(a)断面図、(b) 斜視図。
【図2】散乱体からの距離と近接場光強度の関係を示す図。
【図3】本発明の近接場光発生器の形状を示す断面図で、(a)散乱体周辺部、(b)全体図。
【図4】散乱体の形状を示す図で、(a)三角形の散乱体、(b) 円または楕円の散乱体、(c)長方形の散乱体。
【図5】散乱体近傍の近接場光強度分布を示す図で、 (a) 従来の近接場光発生装置の分布、(b)本発明の近接場光発生装置の分布。
【図6】頂点部以外の部分の表面が削られた三角形の散乱体の共鳴特性を示す図。
【図7】頂点部以外の部分の表面が削られた散乱体を示す図。
【図8】削る部分と削らない部分の境界面が曲面になった散乱体の断面図。
【図9】削る部分と削らない部分の境界面が曲面になった散乱体の斜視図で、(a)三角形の場合、(b) 円または楕円の場合、(c)長方形の場合。
【図10】削る部分を斜めに削った散乱体の断面図。
【図11】削る部分を斜めに削った散乱体の斜視図で、(a)三角形の場合、(b) 円または楕円の場合、(c)長方形の場合。
【図12】従来の平面状の散乱体を試料または記録媒体に対し垂直に配置したときの断面図。
【図13】平面状の散乱体を試料または記録媒体に対し垂直に配置し、片側もしくは両側の面の頂点を斜めに削った場合の断面図で、(a)片側を削った場合、(b)両側を削った場合。
【図14】平面状の散乱体を試料または記録媒体に対し垂直に配置し、片側の面の頂点を斜めに削った場合の斜視図で、(a)三角形の場合、(b) 円または楕円の場合、(c)長方形の場合。
【図15】三角形の散乱体を試料または記録媒体に対し垂直に配置し、片側の面の頂点を斜めに削った場合の近接場光強度分布を示す図。
【図16】平面状の散乱体を試料または記録媒体に対し垂直に配置し、片側もしくは両側の面の頂点を階段状に削った場合の断面図で、(a)片側を削った場合、(b)両側を削った場合。
【図17】第一の散乱体近傍に第二の散乱体を形成した時の形状を示す断面図で、(a)第二の散乱体の表面を削らない場合、(b)第二散乱体表面を削った場合。
【図18】表面を削った三角形の散乱体を2つ並べて配置した場合を示す図。
【図19】XY(平面)方向に比べてZ軸(厚さ)方向に延伸させた散乱体を示す図。
【図20】半球または半楕円体の散乱体先端部周辺を削った場合を示す図で、(a)先端部周辺を削った場合、(b)先端部に突起を形成した場合。
【図21】散乱体の磨耗を防ぐ手段を示した図で、(a)近接場光が発生する頂点近傍に補強用の膜を形成する場合、(b)散乱体を基板表面に埋め込む場合、(c)散乱体周辺にパッドを形成する場合。
【図22】散乱体を試料または記録媒体に対し垂直に配置する場合の散乱体の磨耗を防ぐ手段を示した図で(a)近接場光が発生する頂点近傍に補強用の膜を形成する場合、(b)近接場光が発生する頂点と基板表面が実質的に同一平面上にある場合、(c) 散乱体を基板表面に埋め込む場合。
【図23】近接場光が発生する頂点近傍の材料が残りの部分と異なるようにした散乱体を試料または記録媒体に平行に配置したものの断面図で、(a) 材料を変える部分と変えない部分の境界面が試料または記録媒体面に平行になるようにした場合、(b) 材料を変える部分と変えない部分の境界面が試料または記録媒体面に垂直になるようにした場合。
【図24】近接場光が発生する頂点近傍の材料が残りの部分と異なるようにした散乱体を試料または記録媒体に垂直に配置したものの断面図で、(a) 材料を変える部分と変えない部分の境界面が試料または記録媒体面に平行になるようにした場合、(b) 材料を変える部分と変えない部分の境界面が試料または記録媒体面に垂直になるようにした場合。
【図25】削った部分を散乱体とは異なる材料で埋めたものを示す図で、(a) 散乱体を試料または記録媒体に対し平行に配置した場合、(b) 散乱体を試料または記録媒体に対し垂直に配置した場合。
【図26】散乱体周辺に遮光膜を形成したものを表す図で、(a)散乱体の形状が三角形の場合、(b) 散乱体の形状が楕円の場合。
【図27】光スポットと散乱体の位置関係を表す図で、(a) 光の中心位置が散乱体の中心に実質的に一致した場合、(b) 入射光の中心位置が近接場光が発生する頂点に実質的に一致した場合。
【図28】散乱体が集光素子または導波路の端面に形成されたものを示す図で、(a)Solid Immersion Lens、(b)フレネルレンズ、(c)凸レンズ、(d)導波路の終端に形成されたもの。
【図29】散乱体が共振器または半導体レーザーの端面に形成されたものを示す図で、(a)共振器、(b)面発光レーザの端面に形成されたもの。
【図30】散乱体が円錐または多角錐の突起の頂点に形成された平坦な部分に形成されたプローブを示す図で、(a)側面が遮光膜で覆われていないもの、(b)側面が遮光膜で覆われたもの。
【図31】散乱体の面と試料または媒体面が実質的に平行であるプローブの作製方法を示す図で、(a)埋め込みパターン形成工程、(b)異方性エッチング工程。
【図32】散乱体の面と試料または媒体面が実質的に垂直であるプローブの作製方法を示す図で、(a)埋め込みパターン形成工程、(b)異方性エッチング工程。
【図33】近接場光が発生する頂点近傍の材料が残りの部分と異なるようにした散乱体の作製方法を示す図(異なる材料どうしの境界面と基板表面が実質的に平行になる場合)で、(a)2層の埋め込みパターン形成工程、(b)異方性エッチング工程。
【図34】近接場光が発生する頂点近傍の材料が残りの部分と異なるようにした散乱体の作製方法を示す図(異なる材料どうしの境界面と基板表面が実質的に垂直になる場合)で、(a)2層の埋め込みパターン形成工程、(b)異方性エッチング工程。
【図35】近接場光が発生する頂点近傍の材料が残りの部分と異なるようにした散乱体の作製方法を示す図で、(a)2層の埋め込みパターン形成工程、(b)選択エッチング工程。
【図36】導波路の終端に散乱体を形成する方法を示す図で、(a)細線形成工程、(b)導波路形成工程、(c)研磨工程、(d)エッチング工程。
【図37】本発明のプローブの近接場光学顕微鏡への応用例を示す図。
【図38】本発明のプローブの近接場記録/再生装置への応用例を示す図で、(a)全体図、(b)光学系を示す図。
【図39】散乱体の方向とトラックの方向の関係を示す図で、散乱体の形状が(a)三角形の場合、(b) 円または楕円の場合、(c)長方形の場合、(d)長方形の散乱体を記録媒体に対して垂直に配置した場合。
【図40】磁気媒体用記録ヘッドを示す図で、磁界印加コイルの中心に散乱体を設置した場合。
【図41】磁気媒体用記録ヘッドを示す図で、磁気記録ヘッド近傍に散乱体を設置した場合。
【図42】本発明のプローブの露光装置への応用例を示す図で、(a) 散乱体を記録媒体に対して平行に配置した場合、(b) 散乱体を記録媒体に対して垂直に配置した場合。
【図43】従来の平面金属散乱体を用いたプローブを示す図で、(a)散乱体が1つの場合、(b)2つの散乱体を組み合わせた場合。
【図44】本発明のプローブ構造を示す図。
【符号の説明】
11 三角形の形状をした平面状の散乱体
12、103、172、181、191、202 近接場光が発生する頂点
13 近接場光が発生する頂点の他端側の頂点
14、24、911 基板
試料または記録媒体
17、集光素子
18 コリメートレンズ
21 平面状の散乱体
22 近接場光が発生する頂点
23 近接場光が発生する頂点の他端側の頂点またはエッジ
25 近接場光
26 削った部分
27 試料または記録媒体
28 基板側から入射する場合の光の入射方向
29 基板の反対側から入射する場合の光の入射方向
30 削った平面と削らない部分の境界面
31 楕円の形状をした平面状の散乱体
32 近接場光が発生する楕円の一頂点
33 近接場光が発生する頂点の他端側の頂点
34、38 削る部分
35 長方形の形状をした散乱体
36 近接場光が発生する辺
37 近接場光が発生する辺の他端側の辺
101 一方の面上にある近接場光が発生する頂点
102 もう一方の面上にある近接場光が発生する頂点
111 横から入射させる場合の光の入射方向
112 斜めに入射させる場合の光の入射方向
151 第二の散乱体
152 第一の散乱体に一番近い第二の散乱体のエッジまたは頂点
153 他端側のエッジまたは頂点
154 二つの散乱体の間のギャップ
171 半球または半楕円体の散乱体
173、174 微小な突起
182、192 基板表面
183 パッド
184、193 補強用の膜
201 材料が変わった部分
203 材料が変わっていない部分
204 異なる材料どうしの境界面
221 削った部分に散乱体と異なる材料の物質を埋め込んだ部分
231 光スポット
241 遮光膜
242 散乱体と遮光膜の間の部分
261 散乱体
281 ソリッドイマ―ジョンレンズ
282 対物レンズ
283 入射光
284 フレネルレンズ
285 凸レンズ
286 導波路
291 共振器
292 反射膜
293 面発光レーザ
円錐または多角錐の突起の先端に形成された平坦な面
円錐または多角錐の突起の側面
361 散乱体の材質でできた部分
362 導波路の材質でできた部分
363 導波路
401 半導体レーザ
402 コリメートレンズ
403 反射プリズム
404 集光レンズ
405、413 磁気コイル
406 スライダ
411 導波路
412 磁極
414 シールド
901 近接場光プローブ
902 カンチレバの裏面
715,904、912 集光レンズ
712、905 ビームスプリッタ
906 半導体レーザ
907、913 検出器
908 走査用ピエゾ素子
909 振動用ピエゾ素子
910 試料
916、709 コリメートレンズ
701 記録ディスク
702 スライダ
703 光学系
704 アクチュエータ
705 サスペンション
708 半導体レーザー
710 ビーム整形プリズム
711 圧電素子
714 ミラー
716 偏光子
717 光検出器
331 トラックと平行な方向
332 近接場光が発生する頂点における接線方向
333 トラック
341 フォトレジスト
342 加工する基板
351 平面状金属パターン
352 頂点
353 2つの頂点間。

Claims (18)

  1. 光源と、
    前記光源からの光を照射されることによって、近接場光を発生させる導電性の散乱体を備え、
    前記散乱体の、近接場光が発生する箇所における厚さよりも、前記箇所以外の領域における厚さが、薄いことを特徴とする近接場光発生装置。
  2. 前記近接場光を照射される媒体と前記領域との距離は、前記近接場光のしみ出し深さ以上であることを特徴とする請求項1記載の近接場光発生装置。
  3. 前記散乱体は平面状の散乱体であり、
    前記散乱体は、設置される試料または媒体面に対し実質的に平行になるように配置されていることを特徴とする請求項1記載の近接場光発生装置。
  4. 前記散乱体は第1の面とその反対側の第2の面を有する平面状の散乱体であり、
    前記散乱体の平面の方向が、設置される試料または媒体面に対し実質的に垂直になるように前記散乱体は配置され、かつ前記第1の面上にある近接場が発生する箇所以外の部分、または前記第1の面上にある前記試料または媒体面に近接する頂点と前記第2の面上にある前記試料または媒体面に近接する頂点の間にある頂点以外の部分において、その厚さが前記近接場が発生する箇所の厚さよりも薄くされたことを特徴とする請求項1に記載の近接場光発生装置。
  5. 前記散乱体は、近接場光を発生させる1の頂点の方向に向かい幅が小さくなった平面状の散乱体、円の形状をした平面状の散乱体、楕円の形状をした平面状の散乱体、長方形の形状をした平面状の散乱体のいずれかであることを特徴とする請求項1に記載の近接場光発生装置。
  6. 前記散乱体の近接場光が発生する箇所近傍に導電性を持つ別の散乱体が形成され、前記散乱体同士の間隔は、前記光源から入射する光の波長以下であることを特徴とする請求項1記載の近接場光発生装置。
  7. 前記散乱体は、その直径が入射光の波長よりも小さい球もしくは半球、または、長軸の長さが入射光の波長よりも小さい回転楕円体もしくは半回転楕円体の形状を持つ散乱体で、かつ前記散乱体表面の近接場光が発生する1点以外の部分が薄くされたことを特徴とする請求項1記載の近接場光発生装置
  8. 前記散乱体の近接場光が発生する頂点近傍を構成する材料が、残りの部分を構成する材料と異なっていることを特徴とする請求項1記載の近接場光発生装置。
  9. 前記散乱体の近接場光が発生する頂点近傍を構成する材料の硬度が残りの部分を構成する材料の硬度より強いことを特徴とする請求項8記載の近接場光発生装置。
  10. 前記散乱体の近接場光が発生する頂点近傍を構成する材料が発光物質であることを特徴とする請求項8記載の近接場光発生装置。
  11. 前記散乱体は基板に埋め込まれて形成され、前記散乱体の近接場光が発生する箇所と前記基板表面とが、実質的に同一平面上にあることを特徴とする請求項1記載の近接場光発生装置。
  12. 前記散乱体が基板上に形成され、前記基板の前記散乱体の周囲にはパッド部が形成され、前記散乱体の近接場光が発生する頂点とパッド部表面とが実質的に同一平面上にあることを特徴とする請求項1記載の近接場光発生装置。
  13. 前記表面を削った部分に、散乱体を構成する材料とは異なった材料を埋め込んだことを特徴とする請求項1記載の近接場光発生装置。
  14. 前記散乱体に入射する光の中心位置が、前記散乱体の中心位置または前記近接場光が発生する頂点の位置に実質的に一致することを特徴とする請求項1記載の近接場光発生装置。
  15. 前記散乱体の近傍に、遮光膜が形成され、前記散乱体と前記遮光膜の間隔が前記光源からの光の波長よりも小さいことを特徴とする請求項1記載の近接場光発生装置。
  16. 前記散乱体が、集光素子上の集光点、光導波路の終端、光共振器の近傍、半導体レーザーの出射面近傍、光検出器の受光面近傍、円錐もしくは多角錐の突起の先端部の何れかに形成されたことを特徴とする請求項1記載の近接場光発生装置。
  17. 光を照射されることによって、近接場光を発生させる導電性の散乱体を備え、前記散乱体の近接場光が発生する1つの箇所の厚さよりも、前記箇所以外の領域の厚さが薄く形成されていることを特徴とする近接場光発生プローブ。
  18. 光源と、
    前記光源からの光を照射されることによって、所定の箇所で近接場光を発生させる導電性の散乱体と、
    前記散乱体から発生した近接場光を照射する媒体または試料を設置する手段と、
    前記散乱体の前記所定の箇所以外の領域と、設置される前記媒体または試料との間隔は、前記近接場光のしみ出し深さ以上の距離離れていることを特徴とする近接場光応用装置。
JP2002319251A 2002-11-01 2002-11-01 近接場光発生プローブ及び近接場光発生装置 Expired - Fee Related JP4325172B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002319251A JP4325172B2 (ja) 2002-11-01 2002-11-01 近接場光発生プローブ及び近接場光発生装置
US10/455,373 US7529158B2 (en) 2002-11-01 2003-06-06 Optical near-field generator and recording apparatus using the optical near-field generator
US12/382,903 US7933169B2 (en) 2002-11-01 2009-03-26 Optical head for near-field recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319251A JP4325172B2 (ja) 2002-11-01 2002-11-01 近接場光発生プローブ及び近接場光発生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007311901A Division JP4591500B2 (ja) 2007-12-03 2007-12-03 近接場光発生プローブ及び近接場光発生装置

Publications (3)

Publication Number Publication Date
JP2004151046A true JP2004151046A (ja) 2004-05-27
JP2004151046A5 JP2004151046A5 (ja) 2005-11-24
JP4325172B2 JP4325172B2 (ja) 2009-09-02

Family

ID=32171283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319251A Expired - Fee Related JP4325172B2 (ja) 2002-11-01 2002-11-01 近接場光発生プローブ及び近接場光発生装置

Country Status (2)

Country Link
US (2) US7529158B2 (ja)
JP (1) JP4325172B2 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121748A1 (ja) * 2004-06-11 2005-12-22 Gifu University 光導波装置
WO2007111304A1 (ja) 2006-03-29 2007-10-04 Matsushita Electric Industrial Co., Ltd. 近接場光ヘッド、近接場光ヘッド装置、近接場光情報装置及び近接場光情報システム
WO2007129543A1 (ja) * 2006-05-09 2007-11-15 Seiko Instruments Inc. 近接場光ヘッド及び情報記録再生装置
WO2007129542A1 (ja) * 2006-05-09 2007-11-15 Seiko Instruments Inc. 近接場光記録素子、近接場光ヘッド及び情報記録再生装置
JP2008090939A (ja) * 2006-10-02 2008-04-17 Sony Corp 近接場光発生装置、近接場光発生方法及び情報記録再生装置
JP2008159192A (ja) * 2006-12-25 2008-07-10 Tdk Corp 近接場光発生板、熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
JP2008159158A (ja) * 2006-12-22 2008-07-10 Tdk Corp 熱アシスト磁気ヘッド
WO2008143082A1 (ja) * 2007-05-21 2008-11-27 Konica Minolta Opto, Inc. 近接場光発生器及びプラズモンプローブ
JP2009070554A (ja) * 2008-11-04 2009-04-02 Hitachi Ltd 熱アシスト記録用磁気ヘッドスライダ及びそれを用いた熱アシスト記録装置
JP2009110569A (ja) * 2007-10-26 2009-05-21 Sharp Corp 近接場光集光素子およびこれを用いた情報記録装置
JPWO2007119519A1 (ja) * 2006-04-13 2009-08-27 シャープ株式会社 磁気センサー素子、磁気再生ヘッド、磁気再生装置及び磁気再生方法
WO2009110222A1 (ja) * 2008-03-03 2009-09-11 パナソニック株式会社 近接場光検出素子及び情報記録媒体の再生方法
JP2010049781A (ja) * 2008-08-20 2010-03-04 Tdk Corp 平面型プラズモンアンテナを備えた熱アシスト磁気ヘッド
JP2010080044A (ja) * 2008-09-26 2010-04-08 Tdk Corp 傾斜した受光面を有するプラズモン・アンテナ
JP2010146663A (ja) * 2008-12-19 2010-07-01 Sony Corp 記録再生装置及び記録再生システム
US7755978B2 (en) 2006-03-14 2010-07-13 Konica Minolta Opto, Inc. Recording head and recorder
US7773342B2 (en) 2006-01-30 2010-08-10 Tdk Corporation Thin-film magnetic head having near-field-light-generating portion with trapezoidal end
US7864635B2 (en) 2006-08-30 2011-01-04 Hitachi, Ltd. Recording head
US7898759B2 (en) 2007-02-22 2011-03-01 Hitachi, Ltd. Thermally assisted magnetic recording head and magnetic recording apparatus
US7911882B2 (en) 2005-12-16 2011-03-22 Tdk Corporation Thin-film magnetic head with near-field-light-generating layer
JP2011146097A (ja) * 2010-01-14 2011-07-28 Hitachi Ltd 熱アシスト磁気記録ヘッド及び熱アシスト磁気記録装置
JP2011159374A (ja) * 2010-01-29 2011-08-18 Headway Technologies Inc 収束レンズを備えた熱アシスト磁気記録ヘッド
US8130598B2 (en) 2005-11-01 2012-03-06 Hitachi, Ltd. Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
US8233359B2 (en) 2006-11-09 2012-07-31 Sharp Kabushiki Kaisha Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method
US8243561B2 (en) 2010-03-05 2012-08-14 Hitachi, Ltd. Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
JP2012160241A (ja) * 2011-02-02 2012-08-23 Seiko Instruments Inc 近接場光発生装置、近接場光ヘッドおよび近接場光発生装置の製造方法
US8400886B2 (en) 2011-08-05 2013-03-19 Tdk Corporation Thermally-assisted magnetic recording head, head gimbal assembly and magnetic recording device
US8406094B2 (en) 2009-07-06 2013-03-26 Hitachi, Ltd. Heat-assisted recording head and heat-assisted recording device
JP2013097855A (ja) * 2011-10-27 2013-05-20 Headway Technologies Inc 異なる金属よりなる2つの部分を含むプラズモンジェネレータ
US8705325B2 (en) 2009-10-26 2014-04-22 Hitachi, Ltd. Thermal-assisted magnetic recording head capable of supressing the temperature rise of scatterer
JPWO2013021625A1 (ja) * 2011-08-09 2015-03-05 パナソニック株式会社 情報記録媒体、情報装置、及び情報記録媒体の製造方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100133B2 (ja) * 2002-11-05 2008-06-11 株式会社日立製作所 記録ヘッドおよびそれを用いた情報記録装置
KR100657947B1 (ko) * 2005-02-02 2006-12-14 삼성전자주식회사 높은 감도와 분해능을 갖는 전계 재생헤드(프로브) 및 그구동 방법
JP4081480B2 (ja) * 2005-08-19 2008-04-23 株式会社日立製作所 磁気光融合記録装置用ヘッド及び磁気光融合記録装置
US7586583B2 (en) 2005-09-15 2009-09-08 Franklin Mark Schellenberg Nanolithography system
JP2007141338A (ja) * 2005-11-17 2007-06-07 Konica Minolta Holdings Inc 集光ヘッド、およびストレージ装置
US20070200276A1 (en) * 2006-02-24 2007-08-30 Micron Technology, Inc. Method for rapid printing of near-field and imprint lithographic features
WO2007105393A1 (ja) * 2006-03-14 2007-09-20 Konica Minolta Opto, Inc. 記録ヘッド及び記録装置
JP4236673B2 (ja) * 2006-04-12 2009-03-11 株式会社日立製作所 近接場光発生器及び近接場光記録再生装置
JP2008047268A (ja) * 2006-08-21 2008-02-28 Tdk Corp 熱アシスト磁気ヘッド
JP4544362B2 (ja) * 2007-02-13 2010-09-15 コニカミノルタオプト株式会社 近接場光発生器、光アシスト式磁気記録ヘッド、光アシスト式磁気記録装置、近接場光顕微鏡装置、近接場光露光装置
JP4364912B2 (ja) * 2007-02-26 2009-11-18 Tdk株式会社 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7821732B2 (en) * 2008-09-25 2010-10-26 Tdk Corporation Thermally assisted magnetic head having an asymmetric plasmon antenna and manufacturing method thereof
US8040760B2 (en) * 2008-10-16 2011-10-18 Seagate Technology Llc Polarization near-field transducer having optical conductive blades
JP2010146662A (ja) * 2008-12-19 2010-07-01 Sony Corp 記録再生装置及び記録再生システム
WO2010095333A1 (ja) * 2009-02-17 2010-08-26 コニカミノルタオプト株式会社 近接場光発生器、光記録ヘッド及び光記録装置
US8325566B2 (en) * 2009-03-19 2012-12-04 Tdk Corporation Thermally-assisted magnetic recording head having a light source at least inclined from an opposed-to-medium surface
US8089831B2 (en) 2010-02-22 2012-01-03 Tdk Corporation Heat-assisted magnetic recording head including plasmon generator
US8116175B2 (en) * 2010-03-08 2012-02-14 Tdk Corporation Heat-assisted magnetic recording head including plasmon generator
US8125857B2 (en) * 2010-03-22 2012-02-28 Tdk Corporation Heat-assisted magnetic recording head including plasmon generator
US8125858B2 (en) * 2010-03-22 2012-02-28 Tdk Corporation Heat-assisted magnetic recording head including plasmon generator
US8305849B2 (en) 2011-01-25 2012-11-06 Tdk Corporation Thermally-assisted magnetic head
US8619515B1 (en) 2012-08-10 2013-12-31 HGST Netherlands B.V. Thermally-assisted recording (TAR) head with reflection layer for near-field transducer
US8619516B1 (en) 2012-08-10 2013-12-31 HGST Netherlands B.V. Thermally-assisted recording (TAR) head with conductive layer between the near-field transducer and the write pole
US8619514B1 (en) 2012-08-10 2013-12-31 HGST Netherlands B.V. Thermally-assisted recording (TAR) head with waveguide having tapered region coupled to near-field transducer
US8848494B2 (en) * 2013-03-04 2014-09-30 Headway Technologies Inc. Plasmon generator including two portions made of different metals
US9202501B2 (en) * 2013-08-15 2015-12-01 Seagate Technology Llc Slider for magnetic recording apparatus with projection comprising optical turning element and methods of fabrication thereof
US9093086B2 (en) 2013-12-06 2015-07-28 HGST Netherlands B.V. Thermally-assisted magnetic recording head
US9437228B2 (en) * 2014-03-24 2016-09-06 Purdue Research Foundation Near field transducer for heat assisted magnetic recording
US9245562B1 (en) 2015-03-30 2016-01-26 Western Digital (Fremont), Llc Magnetic recording writer with a composite main pole
US10403315B2 (en) 2015-05-06 2019-09-03 Western Digital Technologies, Inc. Near-field transducer for heat assisted magnetic recording comprising of thermally stable material layer
US9401158B1 (en) 2015-09-14 2016-07-26 Knowles Electronics, Llc Microphone signal fusion
CN109073675B (zh) * 2015-12-14 2021-01-15 米纳斯吉拉斯联合大学 用于扫描探针显微术的金属装置及其制造方法
US9830930B2 (en) 2015-12-30 2017-11-28 Knowles Electronics, Llc Voice-enhanced awareness mode
US9779716B2 (en) 2015-12-30 2017-10-03 Knowles Electronics, Llc Occlusion reduction and active noise reduction based on seal quality
US9812149B2 (en) 2016-01-28 2017-11-07 Knowles Electronics, Llc Methods and systems for providing consistency in noise reduction during speech and non-speech periods
US10043542B2 (en) 2016-03-25 2018-08-07 Tdk Corporation Plasmon generator with separating layer for thermal assisted magnetic recording head
US9640206B1 (en) 2016-05-27 2017-05-02 Tdk Corporation Thermal assisted magnetic recording head with plasmon generator
US9747935B1 (en) 2016-06-30 2017-08-29 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having pole coupled with the NFT
US11335373B1 (en) * 2021-02-22 2022-05-17 Seagate Technology Llc Plasmonic transducer head for writing data to and reading data from an optical recording medium ultilizing a fluorescent dye

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696372A (en) * 1996-07-31 1997-12-09 Yale University High efficiency near-field electromagnetic probe having a bowtie antenna structure
JP4485012B2 (ja) * 1999-08-30 2010-06-16 セイコーインスツル株式会社 光ヘッド
JP3882456B2 (ja) * 2000-03-13 2007-02-14 株式会社日立製作所 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
JP3793430B2 (ja) * 2001-07-18 2006-07-05 株式会社日立製作所 近接場光を用いた光学装置
JP3932840B2 (ja) * 2001-08-29 2007-06-20 株式会社日立製作所 情報記録方法および情報記録装置
JP4032689B2 (ja) * 2001-10-04 2008-01-16 株式会社日立製作所 近接場光を用いた測定装置/記録再生装置
JP4032708B2 (ja) * 2001-11-19 2008-01-16 株式会社日立製作所 近接場光発生器およびそれを用いた近接場光学顕微鏡および光記録/再生装置およびセンサ
US20030198146A1 (en) * 2002-04-18 2003-10-23 Seagate Technology Llc Heat assisted magnetic recording head with multilayer electromagnetic radiation emission structure
JP4042472B2 (ja) * 2002-06-03 2008-02-06 株式会社日立製作所 情報記録再生ヘッド、情報記録再生装置及び情報記録方法
JP3849606B2 (ja) * 2002-08-06 2006-11-22 株式会社日立製作所 情報記録媒体、情報記録方法、情報再生方法
JP4100133B2 (ja) * 2002-11-05 2008-06-11 株式会社日立製作所 記録ヘッドおよびそれを用いた情報記録装置
US7245562B2 (en) * 2003-08-25 2007-07-17 Koninklijke Philips Electronics N.V. Method and device for high-speed magnetic recording
JP4081480B2 (ja) * 2005-08-19 2008-04-23 株式会社日立製作所 磁気光融合記録装置用ヘッド及び磁気光融合記録装置
JP4081485B2 (ja) * 2005-11-01 2008-04-23 株式会社日立製作所 熱アシスト記録装置用ヘッド及び熱アシスト記録装置
JP4129031B2 (ja) * 2006-06-12 2008-07-30 株式会社日立製作所 近接場光発生器及び記録再生装置
JP5007651B2 (ja) * 2007-02-08 2012-08-22 ソニー株式会社 近接場光発生装置、近接場光発生方法及び情報記録再生装置
US7821732B2 (en) * 2008-09-25 2010-10-26 Tdk Corporation Thermally assisted magnetic head having an asymmetric plasmon antenna and manufacturing method thereof
US7835102B2 (en) * 2008-09-26 2010-11-16 Tdk Corporation Heat assisted magnetic recording head comprising plasmon antenna with flat surfaces opposed to medium

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7702195B2 (en) 2004-06-11 2010-04-20 Gifu Univeristy Optical waveguide
WO2005121748A1 (ja) * 2004-06-11 2005-12-22 Gifu University 光導波装置
US8130598B2 (en) 2005-11-01 2012-03-06 Hitachi, Ltd. Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
US7911882B2 (en) 2005-12-16 2011-03-22 Tdk Corporation Thin-film magnetic head with near-field-light-generating layer
US7773342B2 (en) 2006-01-30 2010-08-10 Tdk Corporation Thin-film magnetic head having near-field-light-generating portion with trapezoidal end
US7755978B2 (en) 2006-03-14 2010-07-13 Konica Minolta Opto, Inc. Recording head and recorder
WO2007111304A1 (ja) 2006-03-29 2007-10-04 Matsushita Electric Industrial Co., Ltd. 近接場光ヘッド、近接場光ヘッド装置、近接場光情報装置及び近接場光情報システム
US8279721B2 (en) 2006-03-29 2012-10-02 Panasonic Corporation Near-field recording head capable of directly forming light source in slider
JPWO2007119519A1 (ja) * 2006-04-13 2009-08-27 シャープ株式会社 磁気センサー素子、磁気再生ヘッド、磁気再生装置及び磁気再生方法
JP4705165B2 (ja) * 2006-04-13 2011-06-22 シャープ株式会社 磁気センサー素子、磁気再生ヘッド、磁気再生装置及び磁気再生方法
US8208214B2 (en) 2006-04-13 2012-06-26 Sharp Kabushiki Kaisha Magnetic sensor device having near field light generation section employing a dielectric layer between a protruding metal layer and magnetic layer
JP4674817B2 (ja) * 2006-05-09 2011-04-20 セイコーインスツル株式会社 近接場光ヘッド及び情報記録再生装置
JP2007305184A (ja) * 2006-05-09 2007-11-22 Seiko Instruments Inc 近接場光記録素子、近接場光ヘッド及び情報記録再生装置
JP2007305185A (ja) * 2006-05-09 2007-11-22 Seiko Instruments Inc 近接場光ヘッド及び情報記録再生装置
JP4569966B2 (ja) * 2006-05-09 2010-10-27 セイコーインスツル株式会社 近接場光記録素子、近接場光ヘッド及び情報記録再生装置
WO2007129542A1 (ja) * 2006-05-09 2007-11-15 Seiko Instruments Inc. 近接場光記録素子、近接場光ヘッド及び情報記録再生装置
WO2007129543A1 (ja) * 2006-05-09 2007-11-15 Seiko Instruments Inc. 近接場光ヘッド及び情報記録再生装置
US7864635B2 (en) 2006-08-30 2011-01-04 Hitachi, Ltd. Recording head
US8023365B2 (en) 2006-10-02 2011-09-20 Sony Corporation Optical near-field generating device, optical near-field generating method and information recording and reproducing apparatus
JP2008090939A (ja) * 2006-10-02 2008-04-17 Sony Corp 近接場光発生装置、近接場光発生方法及び情報記録再生装置
US8233359B2 (en) 2006-11-09 2012-07-31 Sharp Kabushiki Kaisha Magnetic recording medium, magnetic recording/reproducing apparatus, and magnetic recording/reproducing method
JP2008159158A (ja) * 2006-12-22 2008-07-10 Tdk Corp 熱アシスト磁気ヘッド
US8014101B2 (en) 2006-12-25 2011-09-06 Tdk Corporation Near-field light generator plate, thermally assisted magnetic head, head gimbal assembly, and hard disk drive
JP2008159192A (ja) * 2006-12-25 2008-07-10 Tdk Corp 近接場光発生板、熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
US8054571B2 (en) 2007-02-22 2011-11-08 Hitachi, Ltd. Thermally assisted magnetic recording head and magnetic recording apparatus
US7898759B2 (en) 2007-02-22 2011-03-01 Hitachi, Ltd. Thermally assisted magnetic recording head and magnetic recording apparatus
WO2008143082A1 (ja) * 2007-05-21 2008-11-27 Konica Minolta Opto, Inc. 近接場光発生器及びプラズモンプローブ
JP2009110569A (ja) * 2007-10-26 2009-05-21 Sharp Corp 近接場光集光素子およびこれを用いた情報記録装置
WO2009110222A1 (ja) * 2008-03-03 2009-09-11 パナソニック株式会社 近接場光検出素子及び情報記録媒体の再生方法
US8050150B2 (en) 2008-03-03 2011-11-01 Panasonic Corporation Near-field light detection element and information reproducing medium reproducing method
JP5318851B2 (ja) * 2008-03-03 2013-10-16 パナソニック株式会社 近接場光検出素子及び情報記録媒体の再生方法
JP2010049781A (ja) * 2008-08-20 2010-03-04 Tdk Corp 平面型プラズモンアンテナを備えた熱アシスト磁気ヘッド
JP2010080044A (ja) * 2008-09-26 2010-04-08 Tdk Corp 傾斜した受光面を有するプラズモン・アンテナ
JP2009070554A (ja) * 2008-11-04 2009-04-02 Hitachi Ltd 熱アシスト記録用磁気ヘッドスライダ及びそれを用いた熱アシスト記録装置
JP4520524B2 (ja) * 2008-11-04 2010-08-04 株式会社日立製作所 熱アシスト記録用磁気ヘッドスライダ及びそれを用いた熱アシスト記録装置
JP2010146663A (ja) * 2008-12-19 2010-07-01 Sony Corp 記録再生装置及び記録再生システム
US8406094B2 (en) 2009-07-06 2013-03-26 Hitachi, Ltd. Heat-assisted recording head and heat-assisted recording device
US8705325B2 (en) 2009-10-26 2014-04-22 Hitachi, Ltd. Thermal-assisted magnetic recording head capable of supressing the temperature rise of scatterer
JP2011146097A (ja) * 2010-01-14 2011-07-28 Hitachi Ltd 熱アシスト磁気記録ヘッド及び熱アシスト磁気記録装置
US8705327B2 (en) 2010-01-14 2014-04-22 Hitachi, Ltd. Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
JP2011159374A (ja) * 2010-01-29 2011-08-18 Headway Technologies Inc 収束レンズを備えた熱アシスト磁気記録ヘッド
US8355299B2 (en) 2010-01-29 2013-01-15 Headway Technologies, Inc. Heat-assisted magnetic recording head with convergent lens
US8243561B2 (en) 2010-03-05 2012-08-14 Hitachi, Ltd. Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device
JP2012160241A (ja) * 2011-02-02 2012-08-23 Seiko Instruments Inc 近接場光発生装置、近接場光ヘッドおよび近接場光発生装置の製造方法
US8400886B2 (en) 2011-08-05 2013-03-19 Tdk Corporation Thermally-assisted magnetic recording head, head gimbal assembly and magnetic recording device
JPWO2013021625A1 (ja) * 2011-08-09 2015-03-05 パナソニック株式会社 情報記録媒体、情報装置、及び情報記録媒体の製造方法
JP2013097855A (ja) * 2011-10-27 2013-05-20 Headway Technologies Inc 異なる金属よりなる2つの部分を含むプラズモンジェネレータ

Also Published As

Publication number Publication date
JP4325172B2 (ja) 2009-09-02
US7529158B2 (en) 2009-05-05
US20040085862A1 (en) 2004-05-06
US20090207703A1 (en) 2009-08-20
US7933169B2 (en) 2011-04-26

Similar Documents

Publication Publication Date Title
JP4325172B2 (ja) 近接場光発生プローブ及び近接場光発生装置
JP4591500B2 (ja) 近接場光発生プローブ及び近接場光発生装置
JP4032689B2 (ja) 近接場光を用いた測定装置/記録再生装置
JP3882456B2 (ja) 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
JP5068457B2 (ja) 光学素子
US8134894B2 (en) Surface plasmon polariton direction change device, read/write head, laser-assisted magnetic recording apparatus, and optical circuit
JPWO2008099623A1 (ja) 近接場光発生器、光アシスト式磁気記録ヘッド、光アシスト式磁気記録装置、近接場光顕微鏡装置、近接場光露光装置
JP4024570B2 (ja) 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
JP2009150899A (ja) 近接場光発生装置
JP2000173093A (ja) 光学素子および情報記録再生装置
JP4220153B2 (ja) 記録ヘッド、記録ヘッド製作方法および情報記録装置
JP4481243B2 (ja) 電磁場変換素子、電磁場発生ユニット、および記録装置
JP4281760B2 (ja) 記録再生装置
JP4032708B2 (ja) 近接場光発生器およびそれを用いた近接場光学顕微鏡および光記録/再生装置およびセンサ
JP2001236685A (ja) 光ヘッド、光磁気ヘッド、ディスク装置、および光ヘッドの製造方法
JP4681162B2 (ja) 近視野光発生素子の作製方法
US9080966B2 (en) Detection device, information reproduction device, drive device, sensor, and detection method
JP4837521B2 (ja) 表面プラズモンポラリトン集束器、情報記録ヘッドおよび記録装置
US6429419B1 (en) Near-field optical head
JP4610855B2 (ja) 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
JP4201227B2 (ja) 近視野光ヘッド
JP3892264B2 (ja) 近視野光発生素子の作製方法
JP2000099979A (ja) 集光光学装置
JP2002008235A (ja) プラズモンを用いた記録再生装置およびその作製法
US20100002230A1 (en) Apparatus for measuring light proceeding backward with plasmonic device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees