JP2009150899A - 近接場光発生装置 - Google Patents

近接場光発生装置 Download PDF

Info

Publication number
JP2009150899A
JP2009150899A JP2009018973A JP2009018973A JP2009150899A JP 2009150899 A JP2009150899 A JP 2009150899A JP 2009018973 A JP2009018973 A JP 2009018973A JP 2009018973 A JP2009018973 A JP 2009018973A JP 2009150899 A JP2009150899 A JP 2009150899A
Authority
JP
Japan
Prior art keywords
light
scatterer
field light
generated
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009018973A
Other languages
English (en)
Inventor
Takuya Matsumoto
拓也 松本
Masafumi Kiguchi
雅史 木口
Yasushi Suketa
裕史 助田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009018973A priority Critical patent/JP2009150899A/ja
Publication of JP2009150899A publication Critical patent/JP2009150899A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Head (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】本発明は、高分解能、高効率な近接場光プローブを提供することを目的とする。
【解決手段】基板表面に形成された幅が徐々に小さくなった平面状の散乱体11を用いて近接場光を発生させる。このとき散乱体11の面積を光スポットの面積より小さくし、さらに散乱体の材質、形状、寸法をプラズモン共鳴が発生するように設定することにより、近接場光強度を増強する。
【効果】 光の光利用効率の近接場光発生装置を得ることができる。
【選択図】 図1

Description

本発明は、近接場光を発生させる近接場光発生装置に関する。
従来の光学顕微鏡では、光はレンズを用いて集光させる。この場合、分解能は光波長により制限される。これに対し近接場光学顕微鏡では、レンズの代わりに、寸法がナノメートルオーダーの微小構造、例えば径が光波長以下の微小開口を用いて光を集光させる。光をこの微小構造に当てると、その微小構造近傍には近接場光と呼ばれる局在した光が発生する。この近接場光を試料近傍に近づけ、試料表面上を走査させることにより、微小構造の寸法で決まる分解能で試料の形状や光学特性を測定することができる。近年この顕微鏡は、生体試料、半導体量子構造、高分子材料等の形状測定や分光、および高密度光記録など幅広い分野に応用され始めている。なお、本明細書で近接場光とは、局在した光、すなわち波数が虚数成分を持つ光をいう。
近接場光発生器(以下近接場光プローブと呼ぶ)としては、光波長以下の微小開口をもつ先鋭化された光ファイバ(光ファイバ・プローブ)が広く用いられる。このファイバ・プローブは、光ファイバの一端を、加熱しながら引き伸ばしたり、化学エッチング法を用いることにより先鋭化した後、先端以外を金属でコーティングすることにより作製される。光ファイバに光を導入することにより、先端に形成された微小開口近傍に近接場光を発生させることができる。
しかし上記のファイバ・プローブは、光利用効率が低いという欠点を持つ。例えば開口径が80nmのとき、ファイバに入射する光の強度とファイバ先端から出射する光の強度の比は105以下である(Applied Physics Letters, (和名)アプライドフィジックスレターズ, Vol.68, No 19, p2612-2614,1996)。
そこで、平面金属散乱体を用いたプローブが提案されている。これは、図34に示すように、三角形の形状をした平面状金属散乱体341を平面基板上に形成したプローブである。
a)には、金属散乱体341を1つ形成したプローブを、b)には、金属散乱体341を2つ形成したプローブを示す。X方向に偏光した光を入射させると、頂点342に局在した近接場光が発生する。特に、入射光の波長をプラズモンの共鳴に合せることにより非常に強い近接場光を発生させることが出来る(Technical Digest of 6th international conference on near field optics and related techniques, the Netherlands, Aug. 27-31, 2000, p55)。a)では、金属散乱体341の頂点342から、近接場光が発生し、b)では、金属散乱体314を2つ、それぞれの頂点の間隔が数10nm以下になるように配置され、頂点間343に局在した近接場光が発生する。
Applied Physics Letters, (和名)アプライドフィジックスレターズ, Vol.68, No 19, p2612-2614,1996 Technical Digest of 6th international conference on near field optics and related techniques, the Netherlands, Aug. 27-31, 2000, p55
上記の三角形の形状をした平面状の散乱体を用いたプローブは、非常に高い近接場光発生効率を実現することが可能である。このプローブでは、光の振動数と金属中に発生するプラズモンの共鳴周波数を一致させると非常に高い効率が得られる。
しかし、この従来例において、散乱体の寸法や形状の最適条件は示されていない。
本発明は、平面状の散乱体を用いたプローブにおいて、プラズモンを効率よく発生させるための、最適な散乱体の形状、および寸法を提供し、これにより高分解能、高効率な近接場光プローブを提供することを目的とする。
上記目的は、以下の構成とすることによって達成される。
近接場光が発生する頂点の方向に向かい幅が小さくなった導電性の散乱体により近接場光を発生させ、散乱体の面積が散乱体に照射された光のスポット面積、または散乱体に照射された光の波長の2乗より小さくなるようにする。長さでいうと、散乱体の近接場光が発生する頂点とその頂点から最も遠い点の距離が、散乱体に照射された光のスポット径または照射された光の波長より小さくなるようにする。これにより、散乱体中に照射される光の位相が各点において揃うようになるので、プラズモン共鳴を効率良く励起させることが出来る。また上記散乱体に照射された光のスポット面積は、散乱体の面積の100倍以下(長さで表現すると散乱体に照射された光のスポット径は散乱体の近接場光が発生する頂点と頂点から最も遠い点の距離の10倍以下)にすると良い。これにより散乱体に当たらずに通り抜けてしまう光の量を減らすことができるので、光利用効率を向上させることが出来る。なお、上記の散乱体に入射する光の中心位置は、散乱体に導入される光のエネルギを最大にするために散乱体の中心位置に合わせると良い。または光の強い部分を単一にするために、入射光の中心位置を近接場光が発生する頂点の位置に実質的に一致させても良い。ここで、実質的に一致とは、入射光の中心位置と頂点の距離が入射光の光スポットの半値全幅の1/2以内となることをいう。なお、本明細書では、頂点とは、第1の線(辺)と第2の線(辺)が現実に交差する点のみならず、所定の曲率を有する場合も含まれる。
上記散乱体の面と、試料または記録媒体の面は実質的に平行になるようにする。ここで、実質的に平行とは、散乱体の面と、試料または記録媒体の面のなす角が5°以内であることをいう。これにより、光を試料または記録媒体の面と垂直な方向に光を入射させることが可能になり、従来の顕微鏡や記録/再生装置に用いられる光学系を用いることが可能になる。また、前記散乱体の面と、試料または記録媒体の面のなす角は0度より大きく、90度以下にしても良い。このときは、近接場光が発生する頂点から試料または媒体までの距離が、散乱体の他の部分から試料または媒体までの距離よりも短くなるように散乱体を配置する。これにより、近接場光が発生する頂点と他端側のエッジ部に発生する近接場光の影響を少なくすることが出来る。
上記散乱体の形状は、例えば3点以上の頂点をもつ膜にする。このとき、近接場光が発生する頂点以外の頂点で近接場光が発生するのを防ぐために、その頂点の曲率半径を近接光が発生する頂点の曲率半径よりも大きくする。散乱体の形状は、幅が小さくなる膜と円形の膜を組み合わせた形状の膜または扇型のように曲線部を持つ形状であっても良い。曲線部の曲率半径を近接場光が発生する頂点の曲率半径よりも大きくすることにより、近接場光が発生する頂点以外の部分で近接場光が発生するのを防ぐことが出来る。また、近接場光が発生する頂点の角度は多段階に変化させても良い。例えば、上記の幅が小さくなる膜と円形の膜を組み合わせた形状の膜において近接場光が発生する先端部での頂角を小さくし、先端から離れた部分の角度を大きくすれば、円形の部分の曲率半径をより大きくすることが可能で、円形の部分に発生する近接場光強度を小さくすることが出来る。また逆に、近接場光が発生する先端部での頂角を大きくし、先端から離れた部分の角度を小さくすれば近接場光が発生する頂点の他端側のエッジ部の長さを小さくすることが出来る。これにより、散乱体全体の面積を小さくすることが可能で、後で述べるように多数の散乱体を用いる場合、並べる散乱体の個数を多くすることが出来る。なお、散乱体の面と試料または記録媒体の面のなす角が0度より大きく、90度以下であるときは、近接場光が発生する頂点の頂角は0度にしても良い。なぜなら、近接場光が発生する頂点の頂角が0度のとき、近接場光が発生する頂点の他端側の曲率半径は近接場光が発生する頂点と同程度に小さくなりそこに強い近接場光が発生してしまうが、このように近接場光が発生する頂点の他端側が試料または記録媒体から離れていれば、その影響がないからである。
上記散乱体において、近接場光が発生する頂点の第一の接線と、それと平行な他端側の第二の接線の距離をL、散乱体の誘電率の実数部をe、その周辺の材質の誘電率をem、散乱体の材質に依存する係数をP、近接場光が発生する頂点の角度に依存する係数をA、媒体または試料の誘電率に依存する係数をMとしたとき、
P×(-2.5×(e/em +M+A)+30) < L < P×(-20×(e/em +M+A)+50)
または
P×(-70×(e/em +M+A)-850) < L < P×(-90×(e/em +M+A)+50)
が満たされるようにすると良い。これによりプラズモン共鳴を励起させることが出来、強い近接場光が発生させることが出来る。ここで、散乱体の材質に依存する係数Pは、例えばアルミを70%以上含む場合0.5、マグネシウムを70%以上含む場合0.8、金を70%以上含む場合1、銅を70%以上含む場合1、銀を70%以上含む場合1とする。また、媒体または試料の誘電率に依存する係数Mは、媒体または試料が存在しないときは0、媒体または試料が誘電体であるときは0、媒体または試料が金属や半導体であるとき5とする。角度に依存する係数Aは、近接場光の発生する頂点の頂角をQとしたとき、A = -0.05×Q+3とする。なお、強い近接場光を発生させるためには、上記の近接場光が発生する頂点の頂角Qは30度以上、80度以下にすると良い。
プラズモン共鳴が発生する波長は材料ごとに異なるので、散乱体の材料は使用する波長に合わせるのが良い。例えば、上記の長さLがおよそ100nmであるとき、波長が300〜500nmであればアルミやマグネシウム、波長が400〜700nmであれば銀、波長が500〜800nmであれば金や銅などを用いると良い。また、酸化が起こりにくく、加工が容易なものを選ぶと良く、銀と金では酸化が起きないため金の方が良く、アルミとマグネシウムでは成膜が容易なためアルミの方が良い。
上記散乱体(個数が単数および複数の場合)の厚さは、近接場光が発生する頂点に向かい小さくなるようにすると良い。これにより、散乱体の面と垂直な方向においても、近接場光が発生する点に向かい電荷が集まるため、近接場光強度を強くすることができる。
上記の近接場光が発生する頂点の方向に向かい幅が小さくなった膜状の散乱体近傍に、導電性を持つ第二の散乱体を形成し、第一の散乱体の近接場光が発生する頂点と第二の散乱体との最も近接した間隔が散乱体に入射する光の波長以下になるようにしても良い。これにより、各散乱体中の電荷が互いに相互作用し、各散乱体の間に強い近接場光が発生する。特に、第二の散乱体の形状も近接場光が発生する頂点の方向に向かい幅が小さくなった膜状の散乱体とすると、非常に強い近接場光を発生させることが出来る。このときの各散乱体の面積の総和は、散乱体の個数が1つの場合と同じ理由で、散乱体に照射された光のスポット面積または散乱体に照射された光の波長の2乗以下、または前記複数の散乱体が存在する領域の幅のうち最も長い部分が、散乱体に照射された光のスポット径または散乱体に照射された光の波長以下にする。また光のスポット面積は前記複数の散乱体の面積の総和の100倍以下、または前記散乱体に照射された光のスポット径が前記複数の散乱体が存在する領域の幅のうち最も長い部分の10倍以下にすると良い。
また、前記散乱体は2つの同形状であり、一の散乱体の向きが、他の散乱体を、近接場光が発生する頂点を中心に90度または180度回転させた向きであると良い。
幅が小さくなる形状の散乱体を2つ、第二の散乱体の向きが、第一の散乱体を、近接場光が発生する頂点を中心に180度回転させた向きに配置し、第一および第二の散乱体の材質を等しくし、かつ近接場光が発生する頂点の第一の接線と、それと平行な他端側の第二の接線の距離Lを互いに等しくしたときは、散乱体の誘電率の実数部をe、その周辺の材質の誘電率をem、散乱体の材質に依存する係数をP、近接場光が発生する頂点の角度に依存する係数をA、媒体または試料の誘電率に依存する係数をMとすると、
P×(-2.5×(e/em +M+A)-20) < L < P×(-20)×(e/em +M+A)
または
P×(-70×(e/em +M+A)-900) < L < P×(-90)×(e/em +M+A)
が満たされるようにすると良い。これによりプラズモン共鳴を励起させることが出来、強い近接場光が発生させることが出来る。ここで、散乱体の材質に依存する係数P、媒体または試料の誘電率に依存する係数M、角度に依存する係数Aは、散乱体が1つの場合と同じようにする。
第一の散乱体の近傍に形成する散乱体の個数は2つ以上であっても良い。それぞれの散乱体の向きを異なる方向に配置することにより、近接場光を発生させるのに許される偏光方向の数を増やすことが出来る。また、それぞれの散乱体のプラズモン共鳴周波数を異なるようにすることにより、近接場光を発生させるのに許される波長の範囲を広げることができる。
上記のように散乱体を2つ以上組み合わせる場合は、散乱体に入射する光の中心位置は、各散乱体の近接場光が発生する頂点までの距離の総和が一番小さくなる点に実質的に一致するようにすると良い。ここで実質的に一致とは、入射光の中心位置と頂点の距離が入射光の光スポットの半値全幅の1/2以内となることをいう。
前記の散乱体における試料もしくは記録媒体に近づける面と基板表面が実質的に同一平面上にあるように、散乱体が基板表面に埋め込まれるようにすると、散乱体の磨耗を減らすことが出来る。ここで実質的に同一平面とは、段差が50nm以内であることをいう。または、光記録/再生等、プローブを高速に走査させる必要がある場合は、散乱体近傍にパッド部を形成し、前記散乱体の試料もしくは記録媒体に近づける面とパッド部表面が実質的に同一平面上にあるようにしても散乱体の磨耗を減らすことが出来る。ここでも実質的に同一平面とは、段差が50nm以内であることをいう。
前記散乱体の近傍に、遮光性のある膜を形成し、前記散乱体と前記遮光性のある膜の間隔が前記散乱体に入射する光の波長よりも小さくなるようにしても良い。このようにすることで、バックグランド光の発生を除去することができる。ここで、バックグランド光をなるべく小さくするために、前記遮光膜と前記散乱体が接合された部分を有するようにしても良い。このとき、遮光膜と散乱体が、近接場光が発生する頂点とそれと他端側の電荷が集まるエッジ部以外において接合されるようにする。また、遮光性を上げるため、遮光膜の厚さを厚くしたり、散乱体が試料に近づきやすくするため、散乱体の厚さを厚くしても良い。
バックグランド光の発生を除去するためには、散乱体が形成された第一の層の近傍に、遮光膜が形成された第二の層を形成しても良い。ここで、第一の層と第二の層の間隔が散乱体に入射する光の波長以下にし、第二の層の遮光膜の層に散乱体に入射する光の波長以下の開口を形成し、その開口の位置を前記散乱体の近接場光の発生する頂点の位置に実質的に一致させる。第二の層の開口を通過した光を検出することにより、バックグランド光の検出を低下させることが出来る。
上記の散乱体は、集光素子上の集光点に形成しても良い。これにより集光素子と散乱体の位置調整が不要になる。また、散乱体を光共振器の出射面からの近傍、即ち出射面から10μm以内に形成しても良い。このようにすれば、散乱体に当たらずに反射した光が共振器により戻され、再び散乱体に照射されるので、光利用効率を向上させることが出来る。また散乱体を半導体レーザーの出射面の近傍、即ち出射面から10μm以内に形成しても良い。これにより光源と散乱体の位置調整が不要になる。また、散乱体をフォトダイオードなどの光検出器の受光面近傍即ち受光面から10μm以内に形成しても良い。これにより光検出器と散乱体の位置調整が不要になり、またプローブと検出器の間で発生するエネルギの損失を少なくすることが出来る。
散乱体は、円錐もしくは多角錐の突起の先端に形成された平坦な面上に形成しても良い。これにより試料もしくは記録媒体に近づく部分の面積が小さくなるので、プローブを試料もしくは記録媒体に近づけ易くなる。このとき、円錐もしくは多角錐の側面を金属または遮光性のある膜で覆い、散乱体が形成される平坦な面の面積が前記円錐または多角錐中を伝わる光の波長の2乗以下、または散乱体が形成される平坦な面の幅の最小値が円錐または多角錐中を伝わる光の波長以下になるようにすると、円錐もしくは多角錐の突起により光を集光させることができるので、効率が向上する。
上記の散乱体は、多角錐の突起の側面に形成し、近接場光が発生する頂点の位置と多角錐の頂点の位置が実質的に一致するようにしても良い。例えば、四角錐の1面もしくは対向する2面上に頂点に向かい幅が小さくなる膜を形成する。このようにすれは、プローブの先端が尖っているので、凹凸のある試料の測定が可能になる。ここで、実質的に一致とは近接場光が発生する頂点と多角錐の頂点の距離が50nm以内であることをいう。
上記散乱体を用いたプローブは近接場光学顕微鏡に利用することが出来る。プローブを試料近傍(距離が数10nm以内)に置き、散乱体にレーザーからの光を照射する。プローブで発生した近接場光と試料の相互作用の結果生じた散乱光や発光を対物レンズで集光し、光検出器で検出する。このように、本発明のプローブを用いることにより、高分解能、高効率を両方満たす測定が可能になり、発光や非線形光などの微弱な光信号の空間分布の高分解能測定が可能になる。
上記散乱体を用いたプローブは、近接場光記録/再生装置にも利用することが出来る。散乱体と記録媒体の間隔が数10nm以下になるよう保ちながら、高速に走査させるために、散乱体をスライダ上に形成し、そこにレーザーからの光を入射させる。記録媒体に記録マークを形成するのに十分なパワーの光を入射させると、記録媒体に記録マークが形成される。再生は、散乱体に光を照射し近接場光を発生させ、近接場光と媒体の相互作用の結果生じる散乱光を、対物レンズで集光し光検出器で検出する。このとき、集光レンズにはプローブに光を導入するのに用いた対物レンズを用いても良いし、媒体をはさんでそれと反対側に設置した対物レンズを用いても良い。このように、本発明のプローブを用いて記録/再生を行うことにより、高記録密度、高転送速度を共に満たす記録/再生装置を実現することが可能になる。
上記散乱体を用いたプローブは、露光装置にも利用することが出来る。本発明のプローブを基板表面に形成したレジスト上に近づけ、そこに光を入射させると、プローブにより発生する近接場光によりレジストが露光される。このように本発明のプローブを用いれば、数10nm以下の寸法を持つパターンの露光を高速に行うことが出来る。
幅が徐々に小さくなった平面状の散乱体を用いた近接場光発生器において、散乱体の材料および形状および寸法の最適値が与えられ、その最適値に基づけば、近接場光を効率良く発生させることが可能になる。
本発明の近接場光発生器の形状を示す断面図。 散乱体の面積と近接場光強度の関係を表す図。 散乱体の形状を示す図で、(a)扇型、(b) 三角形、(c)三角形と円を組み合わせたもの、(d)4点以上の頂点を持つもの。 頂角が多段階に変化したもの散乱体を示す図で、(a) 先端の角度が小さくなったもの、(b)先端の角度が大きくなったもの。 散乱体近傍の近接場光強度分布を示す図で、 (a) 形状が三角形のときの分布、(b)形状が扇型のときの分布。 散乱体の長さと共鳴特性の関係を示す図で、(a)各長さごとの波長と近接場光強度の関係を示す図、(b) 各長さごとの誘電率と近接場光強度の関係を示す図。 散乱体近傍の基板の配置方法を示す図で、(a)基板表面に形成されたとき、(b)基板に埋め込まれたとき。 散乱体近傍にSiO2の基板が配置された時の共鳴特性を示す図。 散乱体および散乱体近傍の基板の誘電率と最適な長さの関係を示す図。 近接場光が発生する頂点の頂角と共鳴特性の関係を示す図 散乱体の材質が金、銀、銅、アルミ、マグネシウムであるときの共鳴特性を表す図で、(a)波長と近接場光強度の関係を示す図、(b)誘電率と近接場光強度の関係を示す図。 散乱体近傍に媒体または試料が配置された時の共鳴特性を示す図で、(a)媒体の配置方法、(b)媒体がないとき、および試料または媒体がSiO2、TeFeCo、GeSbTeであるときの共鳴特性。 光の入射方法示す図。 幅が徐々に小さくなる散乱体を2つ組み合わせたときの散乱体の配置方法を示す図で、(a)散乱体が対向するように配置され、散乱体の寸法が互いに等しい場合、(b) 散乱体が対向するように配置され、散乱体の寸法が互いに異なる場合、(c)散乱体の向きが互いに直角になるように配置された時。 扇型の形状をした散乱体を2つ組み合わせたときの、散乱体近傍の近接場光強度分布を示す図。 扇型の形状をした散乱体を2つ組み合わせたときの共鳴特性。 幅が徐々に小さくなる散乱体を2つ以上組み合わせたときの散乱体の配置方法を示す図。 幅が徐々に小さくなる散乱体を2つ以上組み合わせたときの散乱体への光の入射方法を示す図。 散乱体近傍にパッドが形成されたプローブを示す図。 散乱体の厚さが、近接場光の発生する頂点に向かい小さくなったものを示す図。 散乱体近傍に遮光膜が形成されたプローブを示す図で、(a)散乱体と遮光膜の間に間隔がある場合、(b)散乱体と遮光膜が一部においてつながっている場合、(c)散乱体と遮光膜が全面においてつながっている場合。 散乱体と遮光膜が同一材料の場合で、近接場光が発生する頂点部にV字の開口が空けられ、それと他端側に(a)直線状、(b)曲線状の開口が形成された場合。 散乱体と遮光膜の厚さの関係を示す図で、(a)散乱体と遮光膜の厚さが実質的に等しい場合、(b)遮光膜の厚さが散乱体の厚さより厚い場合、(c) 遮光膜の厚さが散乱体の厚さより薄い場合。 散乱体の置かれた層近傍に、開口を持つ遮光膜の層が形成されたプローブを示す図で、(a)斜視図、(b)側面図。 散乱体の置かれた層近傍に、開口を持つ遮光膜の層が形成され、その近傍に光検出器が形成されたプローブを示す図 散乱体の置かれた層近傍に、開口を持つ遮光膜の層が形成されたプローブの作製方法を示す図で、(a)パターン作製工程、(b)光透過性膜作形成工程、(c)レジスト膜形成工程、(d)露光工程、(e)現像工程、(f)遮光膜形成工程、(g)透明基板形成工程、(h)犠牲基板除去工程。 散乱体の面と試料または媒体面のなす角が0度より大きく、90度以下である時のプローブの斜視図で、(a)散乱体が垂直に配置された時、(b)散乱体が斜めに配置された時、(c)近接場光が発生する頂点の頂角が0度であるとき。 散乱体が集光素子または共振器または半導体レーザーの端面に形成されたものを示す図で、(a)Solid Immersion Lens、(b)フレネルレンズ、(c)共振器、(d)面発光レーザの端面に形成されたもの。 散乱体が円錐または多角錐の突起の頂点に形成された平坦な部分に形成されたプローブを示す図で、(a)側面が遮光膜で覆われていないもの、(b)側面が遮光膜で覆われたもの。 散乱体が四角錐の側面に形成されたものを示す図で、(a)散乱体が1つの場合、(b)散乱体が2つの場合。 本発明のプローブの近接場光学顕微鏡への応用例を示す図。 本発明のプローブの近接場光記録/再生装置への応用例を示す図で、(a)全体図、(b)光学系を示す図。 本発明のプローブの露光装置への応用例を示す図。 従来の平面金属散乱体を用いたプローブを示す図。
以下本発明の具体的な実施の形態について説明する。
(実施例1)
以下に、本発明の近接場光発生装置について説明する。
本発明の近接場光発生器は、図1に示すように、平面状基板13および幅が徐々に小さくなり、その先端12の曲率半径が入射光の波長以下となった導電性のある平面状の散乱体11から形成される。光源からの光14を、偏光方向が図中のx方向を向くように入射させると、散乱体11中の電荷が偏光方向と同一方向に振動し、頂点12に集中する。その結果、頂点12近傍に強い近接場光が発生する。
導電性のある散乱体の材質は、例えばSiやGaAsなどの半導体、金、銀、銅、アルミ、マグネシウムなどの金属にする。散乱体が形成される平面基板は、光透過性のあるもの(ここでは透過率が70%以上あるものと定義する)であると好ましい。なぜなら、散乱体を形成した面と反対側の面からも光を入射させることが出来るためである。例えば、散乱体を形成する基板の材質はSiO2やサファイア、GaNなどにする。
上記の散乱体の寸法は、散乱体の面積が入射光の光スポットの面積(図2の点S)よりも小さくなるようにする(長さで言い換えると、頂点12と頂点12から一番離れた点との距離を光スポットの直径d1よりも小さくなるようにする)。これにより、頂点12に集中した電荷と反対の極性も持つ電荷が頂点12の他端側のエッジ16に集まる。すると頂点12に集まった電荷とエッジ16に集まった電荷が互いに引き合うよう相互作用し、電荷の振動が発生する。そして、入射光の振動数がこの電荷振動の共振周波数(プラズモン共鳴周波数)に一致するとき、非常に強い近接場光が頂点12に発生する。
ここで、散乱体の面積が入射光の波長の2乗(図2の点S1)よりも小さくなるようにする(長さで言い換えると、頂点12と頂点12から一番離れた点との距離を入射光の波長よりも小さくする)と、さらに強い近接場光を発生させることができる。なぜなら、これにより散乱体中を振動する電子の位相が皆揃うため、頂点12により効率良く電荷が集中するからである。
なお、光スポット径が散乱体の面積より大きすぎると、効率が低下する。すなわち、散乱体に当たらなかった光は、近接場光の発生に寄与することがないので、その分近接場光の発生効率が低下する。例えば光記録/再生装置に応用する場合、記録密度が約1T/inchのとき、データー転送速度は約1Gbps必要で、このとき1%以上の効率が要求される(M. Ohtsu ed., Near-field Nano/Atom Optics and Technology, Springer-Verlag, Tokyo, 1998, p209)。今、散乱体に当たった光のエネルギのすべてが近接場光のエネルギに変換されるとすると、1%以上の効率を実現するには、光スポットの面積は散乱体の面積の100倍以下である必要がある。これを長さで表現すると、スポット径は、散乱体の近接場光が発生する頂点とその頂点から最も遠い点の距離の10倍以下である必要がある。(散乱体に当たった光のエネルギが近接場光のエネルギに変換される過程で損失があれば、スポット径はさらに小さくする必要がある。)
上記の散乱体の形状は、曲率半径が入射光の波長より小さな頂点を持ち、その頂点に向かい幅が徐々に小さくなった膜状のものが好ましい。ただし、近接場光が発生する頂点以外の部分での曲率半径は近接場光が発生する頂点の曲率半径より大きくするのが好ましい。なぜなら、近接場光が発生する頂点以外の部分にも、近接場光が発生する頂点と同程度の曲率半径を持つ点が存在すると、そこにも近接場光が発生してしまうからである。
上記の散乱体の形状は、例えば、図3(a)のような扇型、図3(b)のような三角形(頂点31に強い近接場光が発生しないように、頂点31の曲率半径r2は頂点12の曲率半径r1より大きくするのが好ましい)、図3(c)のような三角形と頂点の曲率半径r1より大きな曲率半径r3持つ円形の散乱体と組み合わせたもの、図3(d)のような4点以上の頂点を持つものにする。これら散乱体に、x方向に偏光した光を入射させると、頂点12に強い近接場光が発生する。図5に、Finite Difference Time Domain(FDTD)法(Journal of Optical Society of America A, Vol.12, No.9, p1974-1983, 1995, (和名)ジャーナルオブオプティカルソサエティオブアメリカA1)。を用いて求めた、扇型および三角形の形状をした散乱体近傍に発生する近接場光強度分布を示す。図5(a)が扇型、図5(b)が三角形の場合を示す。ここでは、散乱体の材質は金とし、散乱体は空気中に置かれているとした。頂点の曲率半径r1は20nm、厚さは30nm、頂点12の頂角Qは60°、長さL1は150nmとした。図5(b)の三角形の場合、頂点31の曲率半径31は30nmとした。光波長は図5(a)、(b)ともに650nmで、観測面は散乱体表面から10nm離れた位置とした。強度の値は、近接場光強度と入射光強度との比を表す。この図に示すように、頂点12に強い近接場光が発生することが分かる。
頂点の角度Qは図4(a)、(b)のように、多段階に変化させても良い。例えば図3(c)のような幅が徐々に小さくなる形状をした膜と円形の膜を組み合わせた形状の散乱体において、近接場光が発生する先端部12での頂角を小さくし、先端から離れた部分の角度を大きくして図4(a)のようにすれば、円の部分の曲率半径r3を大きくすることが出来、近接場光が発生する頂点と他端側のエッジ部16に発生する近接場光強度を小さくすることが出来る。また逆に、図4(b)のように、近接場光が発生する先端部12での頂角を大きくし、先端から離れた部分の角度を小さくすれば近接場光が発生する頂点の他端側のエッジ部の長さL 7を小さくすることが出来る。これにより、後で述べるように、多数の散乱体を用いる場合、並べる散乱体の個数を多くすることが出来る。
頂点部12に発生する近接場光強度は、散乱体の誘電率(散乱体の材質および入射光の波長に依存する)、形状、寸法および散乱体周辺に置かれる物体の誘電率に依存する。なぜなら、それらのパラメーターにより、散乱体中に発生するプラズマ振動の状態が変化するためである。例えば、散乱体の形状が、図3に示すような形状であるとき、発生する近接場光強度は、散乱体の誘電率(すなわち散乱体の材質および入射光の波長)、散乱体周辺に置かれる物体の誘電率、頂点12における接線と、それと平行な他端側の接線間の距離L1、頂点の角度Qに依存する。
まず、散乱体の長さ依存性について説明する。図3(a)のような扇型の形状をした散乱体において、長さL1を100nmから600nmに変化させたとき、頂点12に発生する近接場光強度と波長の関係がどのように変化するか計算したものを図6(a)に示す。この関係は、FDTD法を用いて求めた。ここでは、散乱体の材質は銀、厚さは30nmとし、散乱体は空気中に置かれているとした。入射光の光スポット径は波長の3倍とし、頂点の曲率半径r1は20nm、頂点の頂角Qは60°とした。縦軸の近接場光強度は、散乱体表面からの距離(図1中z)が2nmのときの値で、近接場光強度と入射光強度との比を表す。この図を、誘電率の分散関係を使いて、近接場光強度と誘電率Re(実数部)の関係に変換すると、図6(b)のようになる。このように、長さL1が100nmのとき誘電率の実数部が-10付近であるとき、プラズモン共鳴が発生し、近接場光強度が最大となる。そして、長さL1がこれよりも長くなるとピークの位置は、誘電率の小さい方へ移動する。また、長さL1が長くなると共鳴の幅が広くなる。これは長さが長くなると、散乱体各部での位相の乱れ(リターデーション)の影響が大きくなるためと考えられる。
ところで、近接場光の発生効率(入射光エネルギと近接場光のエネルギの比)は、集光レンズのNAや散乱体近傍の材料の屈折率、光の吸収率などに依存するが、プラズモン共鳴周波数付近でおよそ10〜20%になると考えられる。このプローブを、例えば光記録/再生装置に応用する場合、記録密度が約1T/inch2のとき、データー転送速度は約1Gbps必要で、このときマーク再生には約1〜2%程度の効率が要求される(M. Ohtsu ed., Near-field Nano/Atom Optics and Technology, Springer-Verlag, Tokyo, 1998, p209)。したがって、図6(b)において、強度がピーク強度の10%以上となる範囲が誘電率の最適値となる。また、マークを記録するにはそのさらに5倍程度の効率が必要で、5〜10%程度の効率が要求される。このときは、図6(b)において、強度がピーク強度の50%以上となる範囲が誘電率の最適値となる。また、さらに次世代の10T/inch2程度の記録密度を実現するには、10Gbps以上のデーター転送速度が必要で、このときマークを再生するには約10%の効率が要求される。このときは、図6(b)において、強度がピーク強度の80%以上となる範囲が誘電率の最適値となる。
なお、図7(a)または(b)のように、散乱体周辺に誘電率の値がemである物体13を置いた場合、この最適な範囲は変化する。例えば、物体13がSiO2(誘電率em=2)であるときの共鳴特性を図8に示す。このように共鳴を起こす誘電率は物体13を置かなかった場合の値のem倍となる。
以上の誘電率の最適範囲をまとめて図示すると図9のようになる。ここで、最適な領域の境界は直線で近似した。この最適範囲を式で表すと次のようになる(長さの最適範囲として表した)。
(1)近接場光強度がピーク強度の10%となるとき
(-2.5×(e/em )+30) < L1 < (-20×(e/em )+50)
(2)近接場光強度がピーク強度の50%となるとき
(-3×(e/em)+30) < L1 < (-12.5×(e/em )+50)
(3)近接場光強度がピーク強度の80%となるとき
(-3.5×(e/em )+30) < L1 < (-9×(e/em )+50)
なお、図6(b)に示すように、長さが400nm以上となるとき、第2の共鳴点が誘電率の大きな領域に発生する。例えば長さが400nmのとき、誘電率が約-10となる位置にピークが存在する。効率が1〜2%程度で十分な場合は、この共鳴点を用いても良い。すなわち、つぎの範囲に長さL1を設定しても良い。
(-70×(e/em )-850) < L1 < (-90×(e/em )+50)
つぎに、頂点12の頂角依存性について説明する。図10に、図3(a)のような扇型の散乱体において、頂点12の角度Qを20度から50度に変化させたとき、近接場光強度と誘電率の関係がどのように変化するか、FDTD法を用いて計算した結果を示す。散乱体の材質は銀、厚さは30nmとし、頂点の曲率半径r1は20nm、長さLは150nmと仮定した。入射光の光スポット径は波長の3倍とした。縦軸の近接場光強度は、散乱体からの距離zが2nmのときの値で、近接場光強度と入射光強度との比を表す。この図に示すように、角度を小さくすると、最適な誘電率はわずかに大きくなる。この角度依存性を考慮すると、上記の長さL1の最適値はつぎのようになる。
(1)近接場光強度がピーク強度の10%となるとき
(-2.5×(e/em +A)+30) < L1 < (-20×(e/em +A)+50)
(2)近接場光強度がピーク強度の50%となるとき
(-3×(e/em +A)+30) < L1 < (-12.5×(e/em +A)+50)
(3)近接場光強度がピーク強度の80%となるとき
(-3.5×(e/em +A)+30) < L1 < (-9×(e/em +A)+50)
(4)第2の共振点を利用するとき
(-70×(e/em +A)-850) < L1 < (-90×(e/em +A)+50)
ここで、Aは角度に依存する係数で、頂点12の頂角Qとつぎの関係にある。
A = -0.05×Q+3
ところで、近接場光強度は、頂点12の頂角Qが80度以上になると低下する。上に述べたような、10%以上の高い効率が要求される場合は、角度を80度以下にするのが好ましい。ただし、角度が小さすぎると、頂点12と他端側のエッジ16における近接場光強度も強くなってしまう。エッジ16における強度が頂点12における強度の1/2以下になるようにするには、角度を30度以上にするのが好ましい。
上記の計算結果は、散乱体の材質を銀とした場合であるが、この材質を他の金属に替えると上記の関係は異なってくる。図11(a)に金属をアルミ、金、銀、マグネシウムにした場合の波長と近接場光強度の関係を示す。ここでは、散乱体の厚さは30nmとし、近接場光が発生する頂点の曲率半径r1は20nm、頂角は60度、長さLは100nmとした。これを、誘電率の実数部と近接場光強度の関係に変換すると、図11(b)のようになる。このように、近接場光が最大となる誘電率の値は材料ごとに異なっている。これは、各材料ごとに波長と誘電率の関係(分散関係)が異なっていることによると考えられる。すなわち、誘電率の値が同じであっても、それを与える波長は材料により異なる。例えば、誘電率が-15となる波長は、銀が約700nmであるのに対し、アルミは350nmとなる。プラズモン共鳴は長さL1と波長の比が小さくなると、リターデーションの影響を受け特性が変化するが、このように例え誘電率が同じでもそのときの波長が異なるとリターデーションの受けやすさが異なるため、プラズモンの共鳴特性は異なってくると考えられる。
上記の材質による特性の違いは、近似的に、最適値に補正係数をかけることにより補正できる。すなわち、長さL1の最適値はつぎのように表される。
(1)近接場光強度がピーク強度の10%となるとき
P×(-2.5×(e/em +A)+30) < L1 < P×(-20×(e/em +A)+50)
(2)近接場光強度がピーク強度の50%となるとき
P×(-3×(e/em +A)+30) < L1 < P×(-12.5×(e/em +A)+50)
(3)近接場光強度がピーク強度の80%となるとき
P×(-3.5×(e/em +A)+30) < L1 < P×(-9×(e/em +A)+50)
(4)第2の共振点を利用するとき
P×(-70×(e/em +A)-850) < L1 < P×(-90×(e/em +A)+50)
ここで、Pは散乱体の材質に依存する係数で、例えばアルミを70%以上含む場合0.5、マグネシウムを70%以上含む場合0.8、金を70%以上含む場合1、銅を70%以上含む場合1、銀を70%以上含む場合1となる。
(実施例2)
次に、散乱体の位置について、説明する。
上記のプローブを試料、もしくは記録媒体(例えばTeFeCoなどの光磁気媒体、GeSbTeなどの相変化媒体)に近づける場合、プローブの近接場光と試料もしくは媒体との相互作用が大きいため、共振の位置が変化する。例として、図12(a)のように基板13に埋め込まれた散乱体11を、TeFeCoまたはGeSbTeまたはSiO2の基板に近づけた場合と近づけない場合の共振特性を図12(b)に示す。この計算では、散乱体の形状は扇型とし長さL1を150nm、頂点の曲率半径r1は20nm、厚さは30nm、基板13の材質はSiO2、プローブと媒体の距離s2は10nmとした。このように、近づける媒体が金属や半導体の場合、近接場光強度が最大となる誘電率がマイナス側にシフトする。したがって、この時の長さL1の最適値は次のように表される。
(1) 近接場光強度がピーク強度の10%となるとき
P×(-2.5×(e/em +A+M)+30) < L1 < P×(-20×(e/em +A+M)+50)
(2)近接場光強度がピーク強度の50%となるとき
P×(-3×(e/em +A+M)+30) < L1 < P×(-12.5×(e/em +A+M)+50)
(3)近接場光強度がピーク強度の80%となるとき
P×(-3.5×(e/em +A+M)+30) < L1 < P×(-9×(e/em +A+M)+50)
(4)第2の共振点を利用するとき
P×(-70×(e/em +A+M)-850) < L1 < P×(-90×(e/em +A+M)+50)
ここでMは試料または媒体の材質により決まるシフト量で、近づける物体がない場合0、近づける物体が誘電体の場合0、金属や半導体の場合5となる。ここで、誘電体とは電気伝導率が10−7 S・m−1 以下であるものをいう。
以上の最適条件は形状が扇型の場合であるが、図3(b),(c),(d)に示すような他の形状にしてもほぼ同じであった。
上記の散乱体へ入射させる光の中心位置は、散乱体上での光強度が最大となるよるに、図1のように散乱体の中心に実質的に一致させる。もしくは、近接場光強度の最大となる位置と入射光の中心位置を一致させるために、図13のように入射光の中心位置を近接場光が発生する頂点12に実質的に一致させても良い。
(実施例3)
次に、散乱体を2つ以上設ける場合について説明する。
近接場光強度をさらに強くするために、上記散乱体の近接場光が発生する頂点近傍に導電性のある第二の散乱体を形成しても良い。ここで、第一の散乱体の近接場光が発生する頂点ともうひとつの散乱体の間隔を光波長より小さくすると、それぞれの散乱体に発生する電荷が互いに相互作用することにより、2つの散乱体の間に強い近接場光が発生する。ここで、強い近接場光を発生させるには、図14(a)に示すように、もう一つの散乱体も、図3や図4のような幅が徐々に小さくなる膜状の散乱体にすると良い。図15に、同一の形状をした散乱体を2つ組み合わせたときの散乱体表面から5nm離れた位置での近接場光強度分布を示す。ここでは、散乱体の形状は扇型とし、散乱体の材質は金、長さL1=L2=100nm、頂角Q1=Q2=60°、先端曲率半径r1、r2を20nm、頂点どうしの間隔G1を8nm、入射光の波長780nmとした。このように、2つの散乱体を組み合わせることにより、2つの頂点間に強い近接場光が発生する。図16に上記の形状をした散乱体に対する、近接場光強度と波長の関係を示す。このように、2つの散乱体の頂点12に集まる電荷が相互作用する結果、散乱体が一つのときに比べて近接場光強度が強くなる誘電率がマイナス側にシフトする。このときの長さL1(=L2)の最適値は、次の式で表される。
(1)近接場光強度がピーク強度の10%となるとき
P×(-2.5×(e/em +M+A)-20) < L1< P×(-20)×(e/em +M+A)
(2)近接場光強度がピーク強度の50%となるとき
P×(-3×(e/em +M+A)-20) < L1 < P×(-12.5)×(e/em +M+A)
(3)近接場光強度がピーク強度の80%となるとき
P×(-3.5×(e/em +M+A)-20) < L1 < P×(-9)×(e/em +M+A)
(4)第2の共振点を利用するとき
P×(-70×(e/em +M+A)-900) < L1< P×(-90)×(e/em +M+A)
ここでPは散乱体の材質に依存する係数、Aは近接場光が発生する頂点の頂角に依存する係数、Mは媒体に依存する係数を表し、それぞれ散乱体が1つのときと同じ値である。
2つの散乱体を組み合わせる場合、波長の異なる2つのレーザーに対応させるために、それぞれの散乱体のプラズモン共鳴周波数(それぞれの散乱体が単独で存在するときの共鳴周波数)が異なるようにしてもよい。例えば、図14(b)のように、長さL1とL2、または頂角Q1とQ2を違う値にする。このようにすれば、それぞれの散乱体がもともと違う共振特性をもつため、共鳴点が2つになるか、もしくは共鳴点が1つで、共鳴波長の幅が広くなる(最適な誘電率の幅が広くなる)。
散乱体が1つの場合、入射光の偏光方向は1つの方向に限られるが、図14(c)のように2つの散乱体を向きが互いに直交するように配置すれば、入射光の偏光方向として直交する2つの方向が許されるようになる。このとき、それぞれの散乱体のプラズモン共鳴周波数が同じになるようにする(長さL1、L2、および角度Q、Q2を等しくする)。また、それぞれの散乱体の頂点先端部の位置は、偏光を変えたときによるスポット位置のずれを小さくするために、なるべく近い方が好ましい。本実施例では、間隔G2を10nmとした。なお、それぞれの散乱体のプラズモン共鳴周波数が異なるようにする(例えば長さL1、L2、または角度Q、Q2を異なる値にする)場合は、偏光方向ごとに入射光の波長を変える。
図3や図4のような頂点に向かい幅が小さくなった形状をした散乱体は図17のように3つ以上(図17の例では4つ)組み合わせても良い。このとき、それぞれの散乱体のプラズモン共鳴周波数が異なるようにする(例えば、長さL1、L2、L3、L4または角度Q1、Q2、Q3、Q4を異なる値にする)と、入射光の波長としていくつかの異なる値が許される。それぞれの散乱体における近接場光の発生する頂点の位置は、波長によるスポット位置のずれを小さくするために、互いに近い方が好ましい。本実施例では、互いの間隔を10nmとした。
上記の散乱体を2つ以上組み合わせる場合は、図18のように、光スポットの中心位置は、それぞれの頂点からの距離の総和が最小になる点に実質的に一致させるのが良い。
上記のように、近接場光が発生する頂点に向かい幅が徐々に小さくなる散乱体を2つ以上組み合わせる場合は、それぞれの散乱体の面積の総和を光スポットの面積より小さくする(長さで表現すると、散乱体が存在する領域の幅のうち最も長い部分L5を、光スポット径d1よりも小さくする)。また、散乱体に入射する光の位相をそろえるためには、それぞれの散乱体の面積の総和を入射光の波長の2乗より小さくする(長さで表現すると、散乱体が存在する領域の幅のうち最も長い部分L5を、入射光の波長よりも小さくする)。
散乱体が1つの場合と同様、散乱体を2つ以上組み合わせる場合も、光スポット径が散乱体の面積より大きすぎると、効率が低下する。例えば、光記録/再生装置に応用する場合、散乱体が1つの場合と同様の理由により、少なくとも光スポットの面積はそれぞれの散乱体の面積の総和の100倍以下である必要がある(長さで表現すると、スポット径は、散乱体が存在する領域の幅のうち最も長い部分の10倍以下である必要がある)。
散乱体は、1つ、あるいは2つ以上であった場合でも、図7(a)のように、平面基板上に飛び出るように形成しても良いし、図7(b)のように平面基板表面に埋め込まれるように形成しても良い。特に、光記録/再生等、プローブを高速に走査させる必要がある場合は、散乱体の磨耗を防ぐため、図7(b)のように埋め込むように形成した方が良い。また、散乱体の磨耗を防ぐため、図19のように、散乱体の周辺に、パッド161を形成しても良い。このとき、散乱体表面とパッド表面が実質的に同じ平面上にあるようにパッドの高さh1を設定すると良い。なお、パッド161は基板13と同じ材料も良いが、基板とは別の材料で形成してもよい。
散乱体が1つ、あるいは2つ以上であった場合でも、散乱体の厚さは、図20のように、場所により異なっていても良い。特に、頂点部12に近づくにつれて厚さt3が徐々に小さくなるようにすると、散乱体の面と垂直方向においても、電荷の集中が起こり、頂点12にさらに効率よく電荷が集まり、より強い近接場光を発生させることが出来る。
(実施例4)
ところで、試料の形状や記録媒体上に形成された記録マークの有無等を検出するために、プローブを透過した光のパワーを検出する場合、散乱体に当たらなかった光は、そのまま検出器で検出されてしまう。この光はバックグランド光として働き、検出のS/N比の低下を招く。これを防ぐために、図21(a)のように、散乱体の近傍に遮光性のある膜182を形成すると好ましい。ここで、遮光性のある膜とは透過率が50%以下である膜と定義する。この遮光性のある膜には、例えば金や銀などの金属、SiやGaAsなどの半導体、カーボンなどの誘電体などを用いる。散乱体と遮光性のある膜の間隔W1を光波長以下(本実施例では50nmとした)にすることにより、バックグランド光の発生を抑制することができる。なお、遮光膜として光吸収性のある膜(透過率同様、反射率も低い膜。ここでは透過率および反射率が50%以下の膜と定義する)を利用する場合、プローブの透過光を検出する方式(Illumination mode)だけでなく、光源側に戻ってくる光を検出する方式(Illumination-Collection mode)の装置においても、バックグランド光を抑制することが可能である。
遮光性のある膜182は、図21(b)のように、頂点部12とその他端側のエッジ部16(頂点12に集まる電極と反対の極性をもつ電荷が集まる部分)以外で、散乱体11と接合させても良い。また、遮光膜に導電性がないものであれば、図21 (c)のように、散乱体12と遮光膜182が完全に接するように配置しても良い。また、遮光性のある膜182の材質を、散乱体11の材質と同じにしても良い。例えば、図22(a)のように、導電性のある遮光膜182中に幅W1が光波長以下であるV字型の開口191(頂点12に相当)と直線状の開口192(頂点の他端側のエッジ部16に相当)、もしくは図22(b)のように、曲線状の開口193を形成する。2つの開口の間隔は、頂点12からその他端側のエッジ16までの距離L1が、上記のプラズモン共鳴条件に合うようにする。曲線状の開口193の曲率半径r4は、頂点12の曲率半径r1より大きくなるようにする。
図23(a)のように、上記の遮光膜182の厚さt2を散乱体11の厚さt1に等しくすると、遮光膜が試料もしくは記録媒体と衝突し、破損することを防ぐことが出来る。また図23(b)のように、t2 > t1となるように、遮光膜を厚くしても良い。本実施例ではt1 を30nm、tを100nmとした。このようにすることにより、遮光膜の遮光性を向上させることが可能で、バックグランド光をより良く抑えることができる。また、図23(c)のように、t2 < t1となるように、散乱体を厚くしても良い。本実施例では、t1 を100nm、t2を50nmとした。このようにすることにより、散乱体が試料に近づきやすくなり、凹凸のある試料の測定が容易になる。
バックグランド光の発生を抑えるためには、図24のように散乱体と遮光用の膜を別の層に形成しても良い。すなわち、開口径d2が散乱体に入射する光の波長以下の開口212を持つ遮光膜211を散乱体11から距離s1離れた位置に形成する。開口212の中心位置は、近接場光が発生する頂点の位置と実質的に同じになるようにし、光を214の方向に入射させたとき、頂点部で発生する散乱光のみが開口を透過するようにする。透過した光213はプローブの上部で検出する。遮光膜の材質は、例えば金、銀、アルミなどの金属、SiやGaAsなどの半導体、カーボンなどの誘電体などにする。本実施例では開口径d2は70nmとした。距離s1は0以上、光波長以下になるようにする。この値は、バックグランド光の量を小さくするにはなるべく小さい方が好ましい。本実施例ではs1=5nmとした。ここで、図25に示すように、フォトダイオードなどの検出器221を基板内に形成しても良い。入射光214を入射させたとき、開口212を通過する光を直接検出器で検出できるように、検出器221を遮光膜211上部に形成する。このようにすれば、開口212に対する検出器221の位置合わせが不要になる。
(実施例5)
次に、プローブの作製方法について説明する。
まず、図26(a)のように、犠牲基板231上に、散乱体11を電子線リソグラフィ等を用いて作製する(散乱体作製工程)。つぎにその上に図26(b)のように、光透過性のある材料(例えば、SiO2やアルミナなどの誘電体)の層232を薄く形成し(光透過性膜形成工程)、図26(c)のように、その上にレジスト層を形成する(レジスト膜形成工程)。これに図26(d)のように、234の方向から光を照射させると、頂点12に強い近接場光が発生するので、その近接場光により、頂点12近傍のレジストが感光される(露光工程)。レジストがネガ型である場合、これを現像すると、図26(e)のように頂点12にレジストが残る(現像工程)。この上に遮光膜211を真空蒸着などにより形成した後、レジストを除去すると図26(f)のように、頂点部12に開口が形成された遮光膜211が形成される(遮光膜形成工程)。つぎに、図26(g)のように、遮光膜の上に光透過性のある基板235を貼り合わせるか、光透過性のある材料(例えば、SiO2やアルミナなどの誘電体)の層を厚く形成し(透明基板形成工程)、最後に犠牲基板231を除去すると(犠牲基板除去工程)、図26(h)のように開口を持つ遮光膜を持ったプローブが作製される。
上記の作製工程で、もし遮光膜が導電性のないものであれば、光透過性膜形成工程を省き、遮光膜211を散乱体11上に直接形成しても良い。また、レジスト膜自体に遮光性があるならば、レジスト膜を遮光膜211とし、感光された部分を開口212として利用しても良い。ただし、この場合レジストには、感光された部分が除去されるポジ型を使う。
(実施例6)
次に、散乱体の設置場所について説明する。
前記の散乱体は、図27(a)や(b)に示すように、散乱体の面が試料または媒体面に対して0度より大きく、90度以下になるように配置しても良い。このとき、頂点12は、試料または媒体に一番近くなるように配置する。光は矢印253のように基板を通して、斜めに入射させても良いし、基板の外側から斜めに入射させても良い。また、散乱体を斜めに配置する場合は、基板と垂直方向(矢印254)に光を入射させることができる。上記のように、試料または媒体に対して散乱体を垂直または斜めに配置する場合、頂点12と他端側のエッジ16は試料または媒体表面から離れている。したがってエッジ16にも強い近接場光が発生しても良く、エッジ16の曲率半径は頂点12と同程度に小さくても良い。すなわち、頂点12の頂角Qは0に近くても良い。極端な場合、図27(c)のように、散乱体の形状は線状であっても良い(長さL1は、プラズモンの共鳴波長に合わせる)。上記の垂直または斜めに配置された散乱体は、基板側面の表面上でなく、基板中に埋め込まれるように形成しても良い。
前記の散乱体は、集光素子上に形成しても良い。例えば散乱体11を、図28(a)に示すようなSolid Immersion Lens261や、図28(b)に示すようなフレネルレンズ263のついた基板13の上に形成する。このとき散乱体は光の集光点に形成する。このようにすれば、集光素子と散乱体の位置調整が不必要になる。また、散乱体を光共振器の出射面の近傍、即ち出射面から10μm以内に形成しても良い。例えば、図28(c)に示すように、光を共振させるための反射膜264を基板に形成し、その反射層264上に開口を形成し、その開口中に散乱体11を形成する。このとき、バックグランド光の発生を抑制するために、散乱体と反射膜の間隔w2は光波長以下にするのが好ましい。本実施例では、wを50nmとした。このように共振器の出射面近傍に形成すれば、散乱体に当たらずに反射した光が共振器により戻され、再び散乱体に照射されるので、光利用効率を向上させることが出来る。また、散乱体は半導体レーザの出射面の近傍、即ち出射面から10μm以内に形成しても良い。例えば、図28(d)に示すように、散乱体11を面発光レーザーの出射面近傍に形成する。このとき、バックグランド光を抑制するために、レーザの出射面上に反射膜を形成し、そこに開口を形成し、その中に散乱体を形成すると良い。この時、散乱体と反射膜の間隔w2は光波長以下にするのが好ましい。本実施例では、wを50nmとした。このように半導体レーザーの出射面に形成することにより、光源と散乱体の位置調整が不必要になる。また、散乱体はフォトダイオードなどの光検出器の受光面近傍、即ち受光面から10μm以内に形成しても良い。これにより、検出器と散乱体の位置位置調整が不要になる。
前記の散乱体は、図29(a)に示すように、円錐もしくは多角錐272の突起先端に形成された平坦な部分271に形成しても良い。このとき、平らな部分の幅の最小値L6は、散乱体が試料に近づきやすくするために、できるだけ小さくするのが好ましい。また、図29(b)に示すように、円錐もしくは多角錐の側面を金属で覆えば、円錐もしくは多角錐の突起が光導波路の働きをし、光を散乱体11のある部分に集光させる働きをする。
この場合、先端の平坦な部分の幅の最小値L6は突起中を伝搬する光の波長以下(面積で表現すると先端の平坦な部分の面積が突起中を伝搬する光の波長の2乗以下)になるようにすれば、散乱体周辺から発生するバックグランド光の発生も抑制することができる。ただし、平坦な部分の幅L6を突起中を伝搬する光の波長の1/2以下にすると、先端から出射する光量が減るため(導波路の径が光波長の1/2以下になると光の伝搬モードが存在しないため)、平坦な部分の幅L6は突起中を伝搬する光の波長の1/2以上(面積で表現すると先端の平坦な部分の面積が突起中を伝搬する光の波長の1/2を2乗した値以上)にした方が良い。本実施例では、SiO2の四角錐の突起の側面を厚さ100nmの金で覆い、先端の幅L6は250nmとした。
前記の散乱体は、多角錐の突起の側面に形成しても良い。例えば、図30(a)に示すように、散乱体11を四角錐の突起側面に形成する。光は四角錐の内側(矢印283)もしくは外側(矢印282)から入射させ、偏光方向は284の方向にする。長さL1は、プラズモン共鳴波長に合わせる。また、散乱体を図30(b)に示すように、四角錐の形状をした基板281の2つの側面に形成しても良い。このとき2つの面に形成された散乱体の間に、間隔G3が入射光の波長以下(本実施例では10 nmとした)の隙間を形成する。
前記の先端もしくは側面に散乱体が形成された円錐もしくは多角錐の突起は、原子間力顕微鏡のカンチレバの先端に形成しても良い。
(実施例7)
図31に、上記の近接場光プローブを近接場光学顕微鏡に応用した例を示す。ここでは、散乱体を原子間力顕微鏡のカンチレバの先端に形成したプローブを用いた例を示す。試料910は基板911の上に置き、その表面に、上記の近接場光プローブ901を近づける。レーザー906から出射した光はレンズ916によりコリメートされ、ビームスプリッタ905を通過後、対物レンズ904に入射する。光は対物レンズにより集光され金属の微小構造部で収束する。プローブで発生した発光は、対物レンズ904により集光され、検出器907で検出されるか、もしくは試料の反対側に置かれた対物レンズ912により集光され、検出器913で検出される。試料をピエゾ素子908を使い水平方向に走査させると、試料により検出される発光強度が変化し、その変化を記録することにより、試料の像を得ることができる。ここで、試料からの信号の偏光方向が、入射光の偏光方向と異なっている場合、偏光子917、918を光路中に起き(レーザーが直線偏光の場合偏光子918のみで良い)、偏光子918の偏光方向が入射光の偏光方向に対し直角になるようにすると、コントラストを向上させることができる。
プローブ先端と試料表面の間隔は近接場光のしみだし深さである数10 nm以内にする必要があるが、その間隔はプローブ先端と試料表面の間に働く原子間力を測定することにより制御する。すなわちプローブを数nm以内の振幅でピエゾ909を使い縦方向に振動させ、その振幅が一定になるようにプローブ先端と試料表面の間隔を制御する。振幅の変化の測定は、レーザー906から出射した光とは別の光をカンチレバーの上面902に当て、そこからの反射光をPSD(Position Sensing Detector)で検出することにより行う。振幅の変化の測定は、レーザー906から出射した光のうち、カンチレバーの上面902で反射したものを、PSD 914で検出することにより行っても良い。
(実施例8)
上記近接場プローブの光記録/再生装置への応用例を図32に示す。散乱体はスライダ702上に形成され、対物レンズ、光源、検出器等を搭載した光ヘッド703上に搭載される。このスライダをディスク701に近づける。光ヘッドはキャリッジアクチュエーター704を用いて、ディスクの半径方向に動かされる。光ヘッド内部の光学系は図32(b)のように構成する。光源には半導体レーザー708を用い(本実施例では波長780nm、出力30mWの半導体レーザーを用いた)、出射光をコリメーターレンズ709、ビーム整形プリズム710を用いて円形の平行ビームにする。このビームはビームスプリッタ712、ミラー714、対物レンズ707を通過後、近接場光プローブ702に入射する。対物レンズの位置はアクチュエーター706を用いて調整される。また、トラッキングのため近接場光プローブの位置を微調整するためには、圧電素子711を用いる。プローブ702はサスペンション705に取り付けられていて、このサスペンションの力によりディスク701に押し付けられる。本実施例では光ディスク701には相変化媒体を用い、記録マークは、近接場プローブにより発生した近接場光により結晶相をアモルファス相に変化させることにより形成した。再生は、ディスクから戻ってくる光の強度変化を検出することにより行う。すなわち、近接場光がディスクにより散乱される割合が、記録マークの有無により変化するので、その散乱光の強度変化を検出することにより行う。実際には、ディスクからの光(信号光)をビームスプリッタ-712により入射光と分離し、集光レンズ715を通過させた後、検出器717で検出する。ここで、ディスクからの信号光の偏光方向が、入射光の偏光方向と異なっている場合、偏光子716を光路中に起き、偏光子716の偏光方向が入射光の偏光方向に対し直角になるようにすると、コントラストを向上させることができる。
(実施例9)
上記近接場プローブは、光リソグラフィ用の露光装置へ応用することも可能である。図33(a)、(b)にその応用例を示す。加工する基板322上にフォトレジスト321を塗布し、そこに幅が徐々に小さくなる散乱体11を有するプローブを近づける。ここにフォトレジストを感光させる光を入射させると頂点部12に局在する強い近接場光が発生し、その部分のフォトレジストが感光される。露光後は、フォトレジストを現像し、エッチング等の加工を基板322に施す。ここで、入射光の波長は、レジストが感光し、かつプラズモン共鳴が励起される波長にすると好ましい。本実施例では、散乱体11の材質をアルミにし、波長442nmの光を入射させた。本発明のプローブを用いることにより、光波長以下の微細な散乱体を、非常に低パワーの光で露光させることが可能で、またプローブをレジスト上で高速に走査させることも可能なので露光時間の低減化も可能である。
11 近接場光が発生する頂点に向かい幅が徐々に小さくなる平面状の散乱体
12 近接場光が発生する頂点
13 基板
14 入射光
16 近接場光が発生する頂点と他端側のエッジ
91 試料または媒体
161 パッド
171 試料または媒体
181 散乱体と遮光膜の間に形成された開口
182 遮光膜
183 近接場光が発生する頂点近傍に形成された開口
184 近接場光が発生する頂点と他端側のエッジ近傍に形成された開口
191 近接場光が発生する頂点近傍に形成されたV字の開口
192 近接場光が発生する頂点と他端側のエッジ近傍に形成された直線状の開口
193 近接場光が発生する頂点と他端側のエッジ近傍に形成された曲線状の開口
211 遮光膜
212 開口
213 開口を透過した光
214 入射光
221 光検出器
231 犠牲基板
232 光透過性層
233 レジスト層
234 露光用の光の入射方向
235 透明基板
251 基板
253 斜めに入射する入射光
254 垂直に入射する入射光
255 斜めに削られた基板面
261 Solid Immersion Lens
262 対物レンズ
263 フレネルレンズ
264 反射膜
265 遮光膜
266 電極
267 反射膜
268 活性層
271 円錐または多角錐の突起の先端に形成された平坦な面
272 円錐または多角錐の突起の側面
281 四角錐
282 外側から入射する入射光
283 内側から入射する入射光
284 偏光方向
901 近接場光プローブ
902 カンチレバの裏面
904 集光レンズ
905 ビームスプリッタ
906 半導体レーザ
907 検出器
908 走査用ピエゾ素子
909 振動用ピエゾ素子
910 試料
911 基板
912 集光レンズ
913 検出器
914 PSD
916 コリメートレンズ
701 記録ディスク
702 スライダ
703 光ヘッド
704 アクチュエータ
705 サスペンション
706 アクチュエーター
707 対物レンズ
708 半導体レーザー
709 コリメートレンズ
710 ビーム整形プリズム
711 圧電素子
712 ビームスプリッタ
714 ミラー
715 集光レンズ
716 偏光子
717 光検出器
321 フォトレジスト
322 基板
341 平面状金属パターン
342 頂点
343 2つの頂点間。

Claims (4)

  1. 光が入射されることにより近接場光を発生する散乱体と、当該散乱体を支持する基板とを備え、前記散乱体で発生した近接場光を試料に放射する近接場発生装置であって、
    前記散乱体は、その長手方向が前記試料に対して垂直ないし斜めに配置されるように前記基板に支持され、
    前記散乱体は、近接場光が発生する頂点部からなる第1部分と、当該頂点部の曲率半径よりも長い幅を有する第2の部分とを有することを特徴とする近接場発生装置。
  2. 請求項1に記載の近接場発生装置において、
    前記第2の部分が、前記頂点部の曲率半径よりも大きな曲率半径を有する円形形状をなすことを特徴とする近接場発生装置。
  3. 請求項1に記載の近接場発生装置において、
    前記散乱体が扇形または三角形形状であることを特徴とする近接場発生装置。
  4. 請求項1に記載の近接場発生装置において、
    前記第2の部分が多角形であり、当該多角形の頂角の角度が、前記第1の部分が備える頂点部の角度よりも大きいことを特徴とする近接場発生装置。
JP2009018973A 2009-01-30 2009-01-30 近接場光発生装置 Pending JP2009150899A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018973A JP2009150899A (ja) 2009-01-30 2009-01-30 近接場光発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018973A JP2009150899A (ja) 2009-01-30 2009-01-30 近接場光発生装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006134686A Division JP4281760B2 (ja) 2006-05-15 2006-05-15 記録再生装置

Publications (1)

Publication Number Publication Date
JP2009150899A true JP2009150899A (ja) 2009-07-09

Family

ID=40920136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018973A Pending JP2009150899A (ja) 2009-01-30 2009-01-30 近接場光発生装置

Country Status (1)

Country Link
JP (1) JP2009150899A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033925A1 (ja) * 2009-09-16 2011-03-24 コニカミノルタオプト株式会社 近接場プローブ、および近接場導入・検出装置
JP2011198450A (ja) * 2010-03-19 2011-10-06 Tdk Corp 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
JP2012052848A (ja) * 2010-08-31 2012-03-15 Canon Inc 散乱型近接場光プローブ、散乱型近接場光プローブを備えた近接場光学顕微鏡
WO2012043028A1 (ja) 2010-09-29 2012-04-05 株式会社日立ハイテクノロジーズ 生体ポリマーの光学的解析装置及び方法
US8194511B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
WO2012165400A1 (ja) 2011-06-03 2012-12-06 株式会社日立ハイテクノロジーズ 生体ポリマーの光学的解析装置及び方法
CN113758901A (zh) * 2020-06-04 2021-12-07 中国科学院苏州纳米技术与纳米仿生研究所 衍射层析显微成像系统及方法
DE112014006967B4 (de) 2014-10-16 2023-03-02 Hitachi High-Tech Corporation Fixierposition-Steuervorrichtung und Verfahren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255254A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255254A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033925A1 (ja) * 2009-09-16 2011-03-24 コニカミノルタオプト株式会社 近接場プローブ、および近接場導入・検出装置
JP2011198450A (ja) * 2010-03-19 2011-10-06 Tdk Corp 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
US8194510B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8194511B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
JP2012052848A (ja) * 2010-08-31 2012-03-15 Canon Inc 散乱型近接場光プローブ、散乱型近接場光プローブを備えた近接場光学顕微鏡
WO2012043028A1 (ja) 2010-09-29 2012-04-05 株式会社日立ハイテクノロジーズ 生体ポリマーの光学的解析装置及び方法
WO2012165400A1 (ja) 2011-06-03 2012-12-06 株式会社日立ハイテクノロジーズ 生体ポリマーの光学的解析装置及び方法
DE112014006967B4 (de) 2014-10-16 2023-03-02 Hitachi High-Tech Corporation Fixierposition-Steuervorrichtung und Verfahren
CN113758901A (zh) * 2020-06-04 2021-12-07 中国科学院苏州纳米技术与纳米仿生研究所 衍射层析显微成像系统及方法
CN113758901B (zh) * 2020-06-04 2024-04-12 中国科学院苏州纳米技术与纳米仿生研究所 衍射层析显微成像系统及方法

Similar Documents

Publication Publication Date Title
JP4032689B2 (ja) 近接場光を用いた測定装置/記録再生装置
US7529158B2 (en) Optical near-field generator and recording apparatus using the optical near-field generator
JP2009150899A (ja) 近接場光発生装置
JP3882456B2 (ja) 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
US7279253B2 (en) Near-field light generating structure, near-field exposure mask, and near-field generating method
JP4591500B2 (ja) 近接場光発生プローブ及び近接場光発生装置
US8553733B2 (en) Light source device, observation device, and processing device
JP5068457B2 (ja) 光学素子
KR20070091678A (ko) 반경 방향으로 편광된 방사빔을 이용하여 작은 구멍을 통한광 전달을 향상시키는 장치 및 방법
JP2008217962A (ja) 近接場光発生装置、近接場光発生方法及び情報記録再生装置
JP4281760B2 (ja) 記録再生装置
JP4217570B2 (ja) 近接場光源装置、該近接場光源装置を有する光ヘッド、光学装置、露光装置、顕微鏡装置
JP4032708B2 (ja) 近接場光発生器およびそれを用いた近接場光学顕微鏡および光記録/再生装置およびセンサ
JP4144870B2 (ja) 近接場光を発生させる構造体、該構造体を有する近接場光ヘッド、該ヘッドを有する記録再生装置及び表面観察装置
JP2002221478A (ja) 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
CN113687465B (zh) 基于全介质超表面的表面等离激元近场聚焦透镜
JP4837521B2 (ja) 表面プラズモンポラリトン集束器、情報記録ヘッドおよび記録装置
JP2002221477A (ja) 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
JP3892264B2 (ja) 近視野光発生素子の作製方法
JP2000131216A (ja) 走査型近接場光学装置
JP2004216473A (ja) 近視野光発生素子、近視野光記録装置、および近視野光顕微鏡
Goto Optical Disk Pickup
JP2011242308A (ja) 近接場光プローブ
WO2009119250A1 (ja) 集光素子及び熱アシスト磁気記録光ヘッド
JP2002365197A (ja) 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録再生装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220