JP4081485B2 - 熱アシスト記録装置用ヘッド及び熱アシスト記録装置 - Google Patents

熱アシスト記録装置用ヘッド及び熱アシスト記録装置 Download PDF

Info

Publication number
JP4081485B2
JP4081485B2 JP2005318511A JP2005318511A JP4081485B2 JP 4081485 B2 JP4081485 B2 JP 4081485B2 JP 2005318511 A JP2005318511 A JP 2005318511A JP 2005318511 A JP2005318511 A JP 2005318511A JP 4081485 B2 JP4081485 B2 JP 4081485B2
Authority
JP
Japan
Prior art keywords
scatterer
magnetic pole
magnetic
light
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005318511A
Other languages
English (en)
Other versions
JP2007128573A (ja
Inventor
拓也 松本
文子 赤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005318511A priority Critical patent/JP4081485B2/ja
Priority to US11/590,785 priority patent/US8130598B2/en
Publication of JP2007128573A publication Critical patent/JP2007128573A/ja
Application granted granted Critical
Publication of JP4081485B2 publication Critical patent/JP4081485B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1272Assembling or shaping of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • G11B11/10536Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording using thermic beams, e.g. lasers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Description

本発明は,熱アシスト記録装置用ヘッド及び熱アシスト記録装置に関する。
近年,1Tb/in2以上の記録密度を実現する記録方式として,熱アシスト記録方式が提案されている(H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys. 38, Part 1, 1839 (1999)))。従来の磁気記録装置では,記録密度が1Tb/in2以上になると,熱揺らぎによる記録情報の消失が問題となる。これを防ぐためには,磁気記録媒体の保磁力を上げる必要があるが,記録ヘッドから発生させることができる磁界の大きさには限りがあるため,保磁力を上げすぎると媒体に記録ビットを形成することが不可能となる。これを解決するために,熱アシスト記録方式では,記録の瞬間,媒体を光で加熱し保磁力を低下させる。これにより,高保磁力媒体への記録が可能となり,1Tb/in2以上の記録密度実現が可能となる。
この熱アシスト記録装置において,照射する光のスポット径は,記録ビットと同程度の大きさ(数10nm)にする必要がある。なぜなら,光スポット径がそれよりも大きいと,隣接トラックの情報を消去してしまうからである。このような微小な領域を加熱するためには,近接場光を用いる。近接場光は,光波長以下の微小物体近傍に存在する局在した電磁場(波数が虚数成分を持つ光)であり,径が光波長以下の微小開口や金属の散乱体を用いて発生させる。例えば,Technical Digest of 6th international conference on near field optics and related techniques, the Netherlands, Aug. 27-31, 2000, p55では,高効率な近接場光発生器として三角形の形状をした金属散乱体を用いた近接場光発生器が提案されている。金属散乱体に光を入射させると,金属散乱体中にプラズモン共鳴が励起され,三角形の頂点に強い近接場光が発生する。この近接場光発生器を用いることにより,光を数10nm以下の領域に高効率に集めることが可能になる。
特開平5-101329号公報には,主極の先端にZn等が拡散されていることが記載されている。しかし,それは散乱体として用いるものではない。
Jpn. J. Appl. Phys. 38, Part 1, 1839 (1999) Technical Digest of 6th international conference on near field optics and related techniques, the Netherlands, Aug. 27-31, 2000, p55 特開平5-101329号公報
上記熱アシスト記録装置において,記録マークを形成するためには,近接場光発生器を利用して媒体を加熱すると同時に,加熱点と同じ場所に強い磁場を印加する必要がある。
本発明は,近接場光による加熱点と重なるように,強い磁場を印加することのできる金属散乱体を用いた熱アシスト記録用ヘッドを提供することを目的とする。
を目的とする。
上記目的を達成するため,本発明では,導電性を有する散乱体の上部に磁極を配置する構造を採用した。散乱体の上部に配置するとは,散乱体の近接場光が発生する点とその反対側に位置する端部を結ぶ線上の中点が磁極の下部に位置するように配置することを言う。このとき,磁極の幅は,スライダ浮上面と磁極底面の距離をPsとしたとき,Ps以上,かつ500nm以下にするのが好ましい。また,近接場光が発生する頂点の位置に対する磁極の端部の位置(x1)は,散乱体のある方向をプラス方向,散乱体のある方向と反対の方向をマイナス方向とするとき,−100nm<x1<Psを満たすようにすると良い。また,スライダ浮上面と磁極底面の距離は,散乱体を構成する材料の表皮厚以上,磁極の幅以下にすると良い。ここで,表皮厚とは,材料の屈折率の虚部をk,光の角振動数をω,光速をcとしたとき,c/(2ωk)となる厚さを言う。なお,磁界強度を強くするために,近接場光を発生させるための散乱体の材質を軟磁性体にして磁極と一体化させても良い。
近接場光が発生する散乱体の頂点の周辺に,第2の散乱体を配置してもよい。このとき,近接場光が発生する頂点と反対側に位置する散乱体の端部が磁極の端部に実質的に重なるに配置すると良い。このように,第2の散乱体を配置すれば,第2の散乱体が入射光のエネルギーを磁極内側に引き込む働きをするため,近接場光を発生させる散乱体の頂点が磁極の内側にあっても強い近接場光を発生させることが可能になる。なお,第2の散乱体はバックグランド光を抑制するための遮光膜にしても良い。散乱体上に置かれた磁極は,磁気記録装置に用いられる単磁極ヘッドの主磁極に結合するように配置しても良い。
本発明によると,近接場光発生素子として導電性を有する散乱体を用いた熱アシスト記録用ヘッドにおいて,近接場光が発生する点に強い磁界を印加することが出来る。
以下,図面を参照して本発明の実施の形態を説明する。
[実施例1]
本発明の熱アシスト記録装置用ヘッドでは,図1及び図2に示すように,ヘッドの母体となるスライダ5の底部に近接場光を発生するための導電性を有する散乱体1を配置し,散乱体1の上側(媒体7と反対側の方向)に磁界を発生させるためのコイル3を配置した。そして,近接場光が発生する位置における磁界強度を強くするために,散乱体の上部に磁極2を配置した。ここで,散乱体の上部に配置するとは,散乱体の近接場光が発生する点とその反対側の端部を結ぶ線上の中点が磁極の下部に位置するように配置することを言う。
散乱体への光の入射方向は任意であり,散乱体1の上方向,下方向,横方向,斜め方向いずれであっても良い。ただし,下方向から入射させる場合,光は媒体を通過する必要があるため,多くの光エネルギーが媒体に吸収されてしまう。また,横方向や斜め方向から入射させる場合,入射光を導入するためのレンズや導波路などを斜めに作り込む必要があるため,加工が難しくなる。これらのことを考慮すると,光は,散乱体の上方向から入射させるのが好ましい。このとき入射光4は,磁極2の横を通り,回折により散乱体1に入射すると同時に,磁極2の表面を通過して散乱体1に入射する(光は表皮厚分,磁極の内側に侵入する)。
本実施例では,図3に示すように,散乱体1の形状は三角形とし,材質は金,長さSxは100nm,厚さShは50nm,近接場光が発生する頂点11の頂角は60度とした。磁極2の材質はFeCo合金とし,形状は直方体とした。磁極2のx方向の幅Pxは150nm,y方向の幅Pyは100nmとした。磁極の高さPhは,反磁界による磁界強度の低下を防ぐために磁極の幅Px及びPyよりも大きくすることが好ましく,本実施例では,高さPhは500nmとした。散乱体1と磁極2は互いに接するように配置した。磁場は,磁極周辺に配置した円形コイル3を用いて発生した。コイルの材質は銅,コイルの配線の太さCw及びChはいずれも1μmとし,コイルの内径Cdは700nmとした。スライダ5の材質は石英とした。上記散乱体の材質は,導電性を有するものであれば良く,銀,銅,アルミ,鉄,ニッケルなどの金属又は合金,又はSiなどの半導体にしても良い。また,上記磁極の材質は軟磁性体であれば良く,例えば,FeCoNi合金,FeNi合金,FeNiMo合金,FeNiCrCu合金,FeNiNb合金,FeCoPd合金,Fe,FeSi,合金,FeAl合金,FeSiAl合金,フェライト化合物などであっても良い。
図4に,上記実施例において,近接場光が発生する散乱体1の頂点11に対する磁極2の端部の位置x1=0nmであるときの近接場光強度分布を示す。この分布は,Finite Difference Time Domain(FDTD)法を用いて計算した。この計算において,スライダ5は磁気媒体7表面上に置かれている仮定し,磁気記録媒体7は,厚さ6nmの記録層8(材質はFePt),その下に形成された厚さ30nmの金属層9(材質は金)より構成されるとした。ここで金属層9は,熱拡散による記録マークサイズの増大を防ぐためのヒートシンク層の役割を持つと同時に,近接場光強度を増強させる働きも持つ(散乱体中の電荷の鏡像が金属層9中に励起され,その電荷と散乱体中の電荷が相互作用することにより,近接場光強度が増大する)。媒体表面とスライダ底面6の間隔は8nmと仮定した。入射光の波長は780nmとし,入射光は真上から入射させた(矢印4の方向)。偏光方向は図3のx方向になるようにした。近接場光強度は,入射光強度との比で表し,観測位置は媒体表面とした。この図に示すように,散乱体1上部に磁極2が置かれていても,強い近接場光を発生させることが可能で,頂点11付近に発生する近接場光強度は,入射光強度に対して400倍以上となった。スポット径はx方向が15nm,y方向が23nmであった。
図5(a)に,磁極2の幅Pxを変えたときの,媒体表面の温度及び磁界強度の値を示す(入射光4の強度は10mW,スライダ表面におけるスポット径は700nmとした)。磁極の幅が大きくなると,散乱体1に入射する光が磁極2に遮られるため,頂点11に発生する近接場光の強度が低下する。その結果,この図に示すように,媒体表面の温度も低下する。熱アシスト記録装置においては,記録の瞬間,媒体は少なくとも200℃以上に加熱する必要がある。したがって,この図に示すように,磁極の幅Pxは500nm以下にする必要がある。一方,磁極の幅Pxは小さくしすぎると,磁界強度が低下してしまう。熱アシスト記録装置では,熱揺らぎを抑制するために,FePt媒体など室温における異方性磁界(H)が20kOe以上の媒体を利用する。FePt媒体を利用した場合,加熱によるHkの変化は約100Oe/℃であり,200℃に加熱しても2.5kOeにしか下がらない。したがって,記録に必要な磁界も2kOe以上となる。このことを考慮すると,磁極の幅Pxは50nm以上にする必要がある。なお,ここではスライダ浮上面と磁極底面の距離Psは50nmとしたが,スライダ浮上面と磁極底面の距離Psを変えると,磁極の幅の最小値も変化する。Psが小さいほど,Pxの最小値も小さくなり,磁極の幅Pxの最小値はPsとなる。以上をまとめると,磁極の幅Pxは,スライダ浮上面と磁極底面の距離Ps以上,500nm以下にするのが好ましい。なお,y方向の幅Pyに関してもPxの場合と同様に,スライダ浮上面と磁極底面の距離Ps以上,500nm以下にするのが好ましい。
図5(b)に,近接場光が発生する散乱体の頂点11に対する磁極の端部の位置x1を変えたときの,媒体表面の温度及び磁界の強度の値を示す。磁極の端部12の位置x1は,図3において,磁極の端部12が近接場光が発生する頂点11に対して散乱体の中心方向(中心に近づく方向)に位置する場合をプラス,散乱体の中心方向と反対側(中心から遠ざかる方向)に位置する場合をマイナスとした。この図に示すように,x1の値がマイナスになる(近接場光が発生する頂点11が磁極の内側に位置する)と温度が低下する。上記のように,熱アシスト記録装置では,媒体は200℃以上に加熱する必要があり,そのためには,x1は−100nm以上にすると良い。ただし,x1がプラスの場合,近接場光が発生する頂点11は磁極2の外側に位置する。そのため,媒体に印加される磁界強度が低下してしまう。上記のように,必要な磁場は2kOeであるので,それを満たすためには,x1は50nm以下にする必要がある。なお,ここではスライダ浮上面と磁極底面の距離Psは50nmとしたが,スライダ浮上面と磁極底面の距離Psを変えると,x1の最大値も変化する。Psが小さいほど,x1の最大値も小さくなり,x1の最大値はPsとなる。
以上をまとめると,磁極の端部12の位置x1は,−100nm以上,スライダ浮上面と磁極底面の距離Ps以下にするのが好ましい。なお,熱アシスト記録においては,媒体表面の温度分布の勾配(温度をTとしたときdT/dx)の最大値と,磁界分布の勾配(磁界をHとしたときdH/dx)の最大値が重なるように熱源と磁界の位置を調整して記録すると,再生信号のS/N比が最も大きくなる(F. Akagi et al., Japanese Journal of Applied Physics, Vol. 43, No. 11A, 2004, pp. 7483-7488)。したがって,上記x1の最適範囲において,媒体表面の温度分布の勾配(dT/dx)が最大となる位置と,磁界分布の勾配(dH/dx)が最大となる位置が重なるようにx1を設定するのが好ましい。
図5(c)に,スライダ浮上面と磁極底面の距離Psを変えたときの,媒体表面における磁界強度及び媒体表面の温度の値を示す。ここでは,磁極の幅Px,Pyは100nmとした。この図に示すように,スライダ浮上面と磁極底面の距離Psが大きくなると,媒体表面の磁界強度は低下する。上記のように,磁場は2kOe以上必要であるので,それを満たすためには,Psは100nm以下にする必要がある。なお,ここでは磁極の幅Px,Pyは100nmとしたが, Psの最大値は,磁極の幅を変えるとPsの最大値も変化する。磁極の幅が大きいほど,Psの最大値も大きくなり,Psの最大値は磁極の幅Px,Py(PxとPyが異なる場合それらの平均値)となる。一方, Psが小さくなり過ぎると,散乱体の厚さShが薄くなり過ぎるため,光が散乱体を透過してしまい,近接場光強度が低下する。その結果,媒体表面の温度も低下してしまう。上記のように,加熱温度は200℃以上にする必要があり,そのためには,Psは12nm以上にする必要がある。この値は散乱体1を構成する材料の表皮厚(Sd)に相当する。ここで,表皮厚(Sd)とは,材料の屈折率の虚部をk,光の角振動数をω,光速をcとしたとき,
Sd=c/(2ωk)
となる厚さを言う。なお,図5(c)は,散乱体の材質が金の場合であるが,散乱体の材質を変えた場合も,Psの最小値は上記の表皮厚となる。以上をまとめると,スライダ浮上面と磁極底面の距離Psは,Sd<Ps<磁極の幅,となるようにするのが好ましい。
上記実施例では,磁極2と散乱体1は互いに接するように設置したが,図6に示すように,磁極2と散乱体1の間に隙間を設けても良い。このように隙間を設ければ,入射光が磁極の下に入り込みやすくなるため,散乱体1の頂点11に発生する近接場光強度をより大きくすることが出来る。本実施例では,散乱体1の厚さShは30nmとし,散乱体と磁極の間隔G1は30nmとした。磁極及び散乱体の他の寸法は,図3の実施例と同じとした。
図7は,磁極のx方向の幅Pxを散乱体の幅Sxよりも大きくし,かつ磁極の下部の一部を取り除いた場合の実施例を示す。磁極2の幅Pxを大きくすることにより発生する磁界強度を大きくすることが出来る。しかし,このとき,入射光4が散乱体1に入り込みにくくなるため,頂点11に発生する近接場光強度は低下してしまう。そこで本実施例では,その強度の低下を抑えるために,磁極2の下部の一部13を取り除いた。散乱体1の幅Sxは100nm,厚さは30nmとし,近接場光が発生する頂点11の頂角は60度とした。磁極2の幅Pxは300nm,Pyは100nm,高さPhは400nmとした。近接場光強度と磁界強度を強くするためには,散乱体1の頂点11の位置は磁極2の段差部14の位置に実質的に一致するようにすると良い。本実施例では磁極下部の下がった部分の幅P1は,100nmとし,取り除いた部分13の高さP2は70nmとした。
図8に,上記実施例における,近接場光強度分布を示す。この計算において,スライダ5は磁気記録媒体7の表面上に置かれていると仮定し,磁気記録媒体7は,厚さ6nmの記録層8(材質はFePt)と,その下に形成された厚さ30nmの金属層9(材質は金)より構成されるとした。媒体表面とスライダ底面6の間隔は8nmと仮定した。入射光の波長は780nmとし,入射光は真上から入射させた(矢印4の方向)。偏光方向は図7のx方向になるようにした。この図に示すように,散乱体1の頂点11付近に強い近接場光が発生し,その強度は入射光強度に対して約800倍となった。入射光のスポット径はx方向が15nm,y方向が23nmであった。
図9は,磁極のy方向の幅Pyを散乱体の幅Syよりも大きくし,かつ磁極の下部の一部を取り除いた場合の実施例を示す。磁極2の幅Pyを大きくすることにより発生する磁界強度を大きくすることが出来る。しかしこのとき,散乱体1の頂点11に発生する近接場光強度は低下してしまう。本実施例では,近接場光強度の低下を抑えるために,散乱体1の両側に位置する磁極の下部の一部15を取り除いた。このように,磁極2の下部の一部を取り除くことにより,入射光が散乱体1に入り込みやすくなるため,近接場光強度の低下を防ぐことが出来る。本実施例では,磁極2の幅Pxは100nm,Pyは300nm,高さPhは500nmとした。散乱体1の幅Sxは100nm,厚さは30nmとし,近接場光が発生する頂点11の頂角は60度とした。近接場光強度を強くするためには,磁極下部の下がった部分の幅P3は,散乱体1の幅Sy以下になるようにすると良く,本実施例では100nmとした。磁極下部の取り除いた部分15の高さP4は50nmとした。
図10は,C字の形状をした磁極を用いた場合の実施例を示す。磁界強度を大きくするために磁極2のx方向の幅Px及びy方向の幅Pyを,散乱体の幅Sx及びSyよりも大きくすると,頂点11に発生する近接場光強度は低下する。本実施例では,それを防ぐために,近接場光が発生する散乱体1の頂点11付近15の部分において,磁極の一部を取り除き,C字の形状をした磁極を用いた。このようにすることで,取り除いた部分15を通して光が下側に侵入し,散乱体1に入射する光の光量が増加する。磁極2の材質はFeCo合金とし,幅Pxは200nm,Pyは300nm,高さPhは500nmとした。磁極2の取り除いた部分15のy方向の幅は100nmとした。近接場光強度を強くするためには,散乱体1上部における磁極の幅P6は,散乱体1の幅Sx以下になるようにし,かつ散乱体1の頂点11の位置が磁極の端部12の位置に実質的に一致するようにすると良い。散乱体1上部における磁極の幅P6は100nmとした。散乱体1の幅Sxは100nm,厚さは30nmとし,近接場光が発生する頂点11の頂角は60度とした。
図11は,T字の形状をした磁極を用いた場合の実施例を示す。強い近接場光を発生させるためには,散乱体1上部の磁極2の幅Px及びPyはなるべく小さくする必要があるが,その分,磁界強度は小さくなる。それを補うために,本実施例では,散乱体1上部の磁極2よりも大きな幅を有する磁極16を,散乱体1上部の磁極に接するように配置し,磁極2の形状がT字になるようにした。散乱体1の幅Sxは100nm,厚さは30nmとし,近接場光が発生する散乱体1の頂点11の頂角は60度とした。近接場光強度及び磁界強度を強くするためには,散乱体上部の磁極2の幅Px,Pyは,散乱体1の幅Sx,Sy以下になるようにし,かつ散乱体1の頂点11の位置が,磁極2と大きな幅を有する磁極16の接合部27の位置に実質的に一致するようにすると良い。本実施例では,散乱体1上部の磁極2の寸法は,幅Pxを100nm,幅Pyを100nm,高さPhを500nmとし,幅が太い磁極16の寸法は,幅P7を150nm,幅P8を300nmとした。入射光が入り込みやすくなるように,幅が太くなった磁極16の下部の一部は取り除いた。散乱体上部の磁極2と幅が太くなった磁極16の段差部の高さP9は50nmとした。
図12は,磁極の上部の幅を下部の幅Px,Pyに比べて大きくした場合の実施例を示す。このように磁極2の幅を徐々に小さくすることにより,磁極下部における磁束密度を大きくすることが出来る。本実施例では,磁極下部の形状は正方形とし,その幅Px,Pyはいずれも100nmとした。側面の傾き角θ1は60度とした。高さPhは600nmとした。散乱体1の材質は金,長さSxを100nm,厚さShを30nmとし,近接場光が発生する頂点11の頂角は60度とした。
上記磁極の形状は,直方体に替えて,三角柱,円柱にしても良い。図13(a)は,磁極の形状を三角形にした場合の実施例を示す。本実施例では,磁極2のxy方向の寸法は,散乱体1の寸法と同じとし,散乱体1と磁極2の端部が互いに接するように配置した。散乱体1の材質は金,長さSxを100nm,厚さShを30nmとし,近接場光が発生する頂点11の頂角は60度とした。磁極2の材質はFeCo合金,厚さPhは500nmとした。図13(b)は,磁極の形状を円柱にした場合の実施例を示す。散乱体1の寸法は,上記の磁極2の形状が三角形である場合と同じとした。磁極2の材質はFeCo合金,直径Pdは150nm,高さPhを500nmとした。
[実施例2]
次に,散乱体の形状を変えた場合の実施例について説明する。
散乱体の形状は,三角形に替えて,台形,長方形,楕円形,球等にしても良い。図14(a)は,散乱体の形状を台形にした場合の実施例を示す。散乱体1の材質は金とし,長さSxを100nm,上辺の長さS2を40nm,下辺の長さS1を100nm, 厚さShを30nmとした。磁極2の形状も台形とし,xy方向の寸法は,散乱体1と同じとし,散乱体1と磁極2が重なるように配置した。磁極2の厚さPhは500nmとした。磁極2の材質はFeCo合金とした。x方向に偏光した波長780nmの光を上側から入射させ,散乱体1の頂点11に近接場光を発生させた。図14(b)は,散乱体の形状を長方形にした場合の実施例を示す。散乱体1の材質は金とし,x方向の幅Sxを100nm,y方向の幅Syを30nm,厚さShを30nmとした。磁極2の形状は直方体とし,xy方向の寸法は散乱体1と同じとし,散乱体1と磁極2が重なるように配置した。磁極2の厚さPhは500nmとした。磁極2の材質はFeCo合金とした。波長780nmの光を上側から入射させ,偏光方向はx方向とした。
近接場光スポットの大きさをさらに小さくするために,特開2004-151046号公報に示されるように,散乱体の表面の一部を削っても良い。図15(a)は,三角形の形状をした散乱体の表面を削った場合の実施例を示す。散乱体1の材質は金,長さSxを100nm,厚さShを50nmとし,近接場光が発生する頂点11の頂角は60度とした。頂点11以外の部分において表面を削った。削る深さS2は15nmとした。磁極2の材質はFeCo合金とし,磁極の形状は三角柱とした。磁極のxy方向の寸法は,散乱体の寸法と同じとし,磁極の高さPhは400nmとした。波長780nmの光を上側から入射させ,偏光方向はx方向とした。図15(b)は,長方形の形状をした散乱体の表面を削った場合の実施例を示す。散乱体1の材質は金とし,x方向の幅Sxを100nm,y方向の幅Syを30nm,厚さShを50nmとした。削る深さS2は15nmとした。磁極2の材質はFeCo合金とし,磁極の形状は直方体とした。磁極のxy方向の寸法は,散乱体の寸法と同じとし,磁極の高さPhは400nmとした。波長780nmの光を上側から入射させ,偏光方向はx方向とした。
[実施例3]
次に,散乱体を軟磁性体にした場合の実施例について説明する。
散乱体の材質は,軟磁性体に替えても良い。図16は,散乱体の材質をFeCo合金にして,散乱体に磁極の役割を持たせた場合の実施例を示す。FeCo合金は導電性を有するため,金などの金属を用いた場合と同様,頂点11に近接場光を発生させることが可能である。このようにすることにより,磁極(散乱体)と媒体の距離を小さくすることが出来るので,媒体に印加する磁界強度を大きくすることが出来る。
本実施例では,軟磁性体で出来た散乱体17の形状は三角形とした。散乱体17の長さSxをプラズモン共鳴が発生するように調整すると,頂点11に発生する近接場光強度を強くすることが出来る。本実施例ではSx=140nmとした。散乱体の厚さShは500nmとし,近接場光が発生する頂点11の頂角は60度とした。光スポット径を小さくするために,図15の場合と同様,散乱体表面を,頂点11部を残して削った。削る深さS2は15nmとした。入射光の波長は780nmとし,散乱体上部(矢印4の方向)から入射させた。偏光方向はx方向とした。上記散乱体の材質は,導電性を有する軟磁性体であれば何でもよく,FeCoNi合金,FeNi合金,FeNiMo合金,FeNiCrCu合金,FeNiNb合金,FeCoPd合金,Fe,FeSi,合金,FeAl合金,FeSiAl合金,フェライト化合物であっても良い。
図17に,上記実施例における,近接場光強度分布を示す。この計算において,スライダ5は磁気記録媒体7の表面上に置かれていると仮定し,磁気媒体7は,厚さ6nmの記録層8(材質はFePt)と,その下に形成された厚さ30nmの金属層9(材質は金)より構成されるとした。媒体表面とスライダ底面6の間隔は8nmと仮定した。入射光の波長は780nmとし,入射光は真上から入射させた(矢印4の方向)。偏光方向は図16のx方向になるようにした。この図に示すように,散乱体の頂点11付近に強い近接場光が発生し,その強度は入射光強度に対して約280倍となった。スポット径はx方向が15nm,y方向が23nmであった。
散乱体の材質を軟磁性体にする場合,一般に軟磁性体の導電率は小さいため,頂点11に発生する近接場光強度は低下する。これを防ぐために,軟磁性体で出来た散乱体の一部を,軟磁性体よりも導電率の高い材料に替えても良い。図18は,軟磁性体で出来た散乱体17の内側に材質が金の部分18を形成した場合の実施例を示す。軟磁性体で出来た散乱体17の材質はFeCo合金,形状は三角形とした。長さSxは140nm,高さShは500nmとし,近接場光が発生する頂点11の頂角は60度とした。光スポット径を小さくするために,図15の場合と同様,散乱体表面を,頂点11部を残して削った。削る深さS2は15nmとした。金の部分18の形状は,散乱体17と同じとし,長さS4は100nm,高さS3は50nmとした。入射光の波長は780nmとし,散乱体上部(矢印4の方向)から入射させた。偏光方向はx方向とした。内側に形成する導電率の高い部分18の材質は,導電率が散乱体17を構成する軟磁性材料の導電率よりも高いものであれば良く。例えば,銀,アルミ,銅にしても良い。内側に形成する導電率の高い部分18の高さS3はさらに大きくしても良く,S3=Shとなるように内側全体を導電性の高い材料で埋めても良い。
[実施例4]
次に,近接場光が発生する散乱体の頂点11の周辺に,第2の散乱体が置かれた場合の実施例について説明する。
図19に示すように,近接場光が発生する散乱体1の頂点11の周辺に,導電性を有する第2の散乱体19を置いた場合,第2の散乱体19が入射光のエネルギーを磁極2の内側に引き込む働きをするため,近接場光を発生させる散乱体1の頂点11が磁極2の内側にあっても強い近接場光を発生させることが可能になる。すなわち,磁極2の中心付近を加熱することが可能になる。磁界強度は,磁極の中心に近いほど強くなるので,これにより,加熱領域により強い磁界を印加することが可能になる。
本実施例では,三角形の形状をした散乱体1を直方体の磁極2の下に配置し,近接場光が発生する頂点11の近くに直方体の散乱体19を配置した。散乱体1の材質は金とし,幅Sxを100nm,厚さShを30nmとし,近接場光が発生する頂点11の頂角は60度とした。磁極2の形状は直方体とし,散乱体1に接するように設置した。磁極のx方向の幅Pxは200nm,y方向の幅Pyは100nm,高さPhは400nmとした。第2の散乱体19の材質は金とし,x方向の幅Bxは150nm,y方向の幅Byは100が,厚さBhは30nmとした。近接場光が発生する散乱体1の頂点11から第2の散乱体の端部までの距離x3は50nmとした。入射光は磁極上側(矢印4の方向)から入射させ,偏光方向はx方向とした。入射光の波長は780nmとした。上記実施例では第2の散乱体の材質は金としたが,他の材質でも良く,アルミ,銀,銅,シリコンなどの他の金属や半導体にしても良い。
図20に,上記構造により発生する近接場光の強度分布の計算結果を示す。この計算において,スライダ5は磁気記録媒体表面上に置かれている仮定し,記録層8の膜厚は6nm,その下の金属層9(材質は金)の厚さは30nm,媒体表面とスライダ底面6の間隔は8nmと仮定した。この図に示すように,磁極の中心付近に強い近接場光を発生させることが可能で,散乱体1の頂点11付近に発生する近接場光強度は,入射光強度に対して800倍以上となった。
図21に,近接場光が発生する散乱体1の頂点11に対する磁極の端部の位置x1と頂点11に発生する近接場光強度の関係の計算結果を示す。磁極2の端部12の位置x1は,図19において,磁極2の端部12が近接場光が発生する散乱体1の頂点11に対して右側に位置する場合をプラス,左側に位置する場合をマイナスとした。このグラフに示されるように,実施例1の場合と同様なx1=0付近のピークの他に,x1=−100nmにもピークが存在する。ここでは磁極のx方向の幅Pxは200nm,第1の散乱体の幅Sxは100としたので,このx1=−100nmなる位置は,散乱体1の近接場光が発生する頂点11の反対側の端部20が磁極の端部21に実質的に重なる位置に相当する。すなわち,近接場光が発生する頂点11と反対側に位置する散乱体1の端部20が磁極の端部21に実質的に重なるとき,頂点11に発生する近接場光強度が最も強くなる。
磁極のy方向の幅Pyは,図3の実施例と同様に,スライダ浮上面と磁極底面の距離Ps以上,500nm以下にするのが好ましいが,x方向の幅は,第2の散乱体が入射光のエネルギーを磁極の中心に引き込む働きをするため大きくなっても近接場光強度は大きく低下しない。したがって,Pxはスライダ浮上面と磁極底面の距離Ps以上であれば良い。
図22は,上記第2の散乱体を,バックグランド光を抑制するための遮光膜22にした場合の実施例を示す。近接場光を発生させるための散乱体1に光が入射するとき,散乱体に当たらなかった光はバックグランド光として,媒体に入射し,その当たった範囲が加熱されてしまう。このバックグランド光を抑制するためには,散乱体1の周囲に遮光性を有する膜22を設けると良い。この遮光膜22は,入射光のエネルギーを磁極2の内側に引き込むための第2の散乱体と同じ働きをする。本実施例では,三角形の形状をした散乱体1周辺に,長方形の開口を持つ遮光膜22を形成した。散乱体1の材質は金とし,幅Sxを100nm,厚さShを50nmとし,近接場光が発生する頂点11の頂角は60度とした。遮光膜の材質は金とし,開口部23のx方向の幅a1は210nm,y方向の幅a2は240nmとした。近接場光が発生する頂点11と遮光膜22の距離a4は20nmとした。遮光膜22の厚さa3は50nmとした。磁極2の形状は直方体とし,散乱体1に接するように設置した。近接場光が発生する頂点11の反対側にある散乱体1の端部20と磁極2の端部21は実質的に重なるように配置した。磁極の材質はFeCo合金,x方向の幅Pxは200nm,y方向の幅Pyは100nm,高さPhは400nmとした。入射光は磁極上側(矢印4の方向)から入射させ,偏光方向はx方向とした。入射光の波長は780nmとした。
上記遮光膜を形成する場合において,散乱体1の形状は,台形,長方形,楕円にしても良い。図23は散乱体の形状を長方形にし,かつ図15の場合と同様に近接場光が発生する頂点11以外の部分において散乱体表面を削った場合の実施例を示す。散乱体1の材質は金とし,幅Sxを90nm,Syを30nm,厚さShを50nmとし,表面の削る量S2は14nmとした。磁極2の形状は直方体とし,散乱体1に接するように設置した。近接場光が発生する頂点11と反対側にある散乱体1の端部20と磁極2の端部21は実質的に重なるように配置した。遮光膜22の材質は金とし,開口部23のx方向の幅a1は230nm,y方向の幅a2は250とし,頂点11と遮光膜の距離a4は40nmとした。遮光膜22の厚さa3は50nmとした。磁極2の材質はFeCo合金,x方向の幅Pxは200nm,y方向の幅Pyは100nm,高さPhは500nmとした。入射光は磁極上側(矢印4の方向)から入射させ,偏光方向はx方向とした。入射光の波長は780nmとした。なお,上記遮光膜を用いる場合において,開口部の面積を小さくして遮光性能を上げるために,散乱体1の頂点11と反対側の端部20と遮光膜の距離a5を0にしても良い。
図24は,第1の散乱体1を先が徐々に小さくなった形状を持ち,導電性を有するものにし,第2の散乱体19も先が徐々に小さくなった形状を持ち,導電性を有するものにした実施例を示す。このような構造では,それぞれの散乱体の頂点11に集まった電荷が互いに相互作用し,2つの頂点間24に近接場光が発生する。この実施例において,散乱体1及び19の寸法は,それぞれの散乱体中にプラズモンが励起されるように調整すると良い。これにより,2つの頂点間24により強い近接場光を発生させることが出来る。また,図19の実施例と同様,近接場光強度を強くするためには,散乱体の頂点11の反対側にある端部20が磁極2の端部21及び12に実質的に一致するようにそれぞれの散乱体1,19を配置すると良い。本実施例では,2つの散乱体1,19の形状はいずれも三角形であるとし,材質は金,長さSxは100nm,厚さShは30nm,2つの頂点間24の間隔G2は10nmとした。磁極2の形状は直方体とし,散乱体1及び19に接するように設置した。磁極の材質はFeCo合金,x方向の幅Pxは210nm,y方向の幅Pyは100nm,高さPhは400nmとした。入射光は磁極上側(矢印4の方向)から入射させ,偏光方向はx方向とした。入射光の波長は780nmとした。
上記第2の散乱体19は,軟磁性体であっても良く,図25に示すように,第2の散乱体19と磁極2を一体化させても良い。本実施例では,散乱体1の形状,材質,寸法は図19の実施例と同じとし,磁極の寸法は,Pxを200nm,Pyを100nm,Bxを70nm,Bhを30nmにした。
[実施例5]
次に,磁極の上面又は側面に,反射膜を形成した場合の実施例について説明する。
散乱体上部に設けた磁極に光を照射したとき,磁極が光を吸収し,熱膨張する可能性がある。このように磁極が熱膨張すると,散乱体がスライダの浮上面から突き出るために,媒体を破損してしまう可能性がある。このような磁極の加熱を防ぐためには,磁極の上面又は側面又は上面と側面の両方を反射膜で覆うと良い。ここで,反射膜とは,入射光に対する反射率が磁極の反射率よりも大きくなった膜を意味する。
図26は,直方体の磁極2の上面を反射膜26で覆った場合の実施例を示す。本実施例では,三角形の形状をした散乱体1を直方体の磁極2の下に配置した。散乱体1の材質は金とし,幅Sxを100nm,厚さShを30nmとし,近接場光が発生する散乱体1の頂点11の頂角は60度とした。磁極2の形状は直方体とし,散乱体1に接するように設置した。磁極のx方向の幅Pxは100nm,y方向の幅Pyは100nm,高さPhは400nmとした。磁極上面の反射膜26の材料は金とし,厚さMhは30nmとした。入射光は磁極上側(矢印4の方向)から入射させ,偏光方向はx方向とした。入射光の波長は780nmとした。上記実施例では磁極上面の反射膜26の材質は金としたが,反射率が高ければ他の材質でも良く,アルミ,銀,銅,シリコンなどの他の金属や半導体にしても良い。また,上記実施例では,磁極上面のみを覆ったが,磁極側面25も覆っても良い。
[実施例6]
次に,磁気ディスク装置に用いられる単磁極ヘッドと組み合わせた場合の実施例について説明する。
図27は,単磁極ヘッドと散乱体を組み合わせた記録ヘッドの断面図を示す。スライダ5の表面に近接場光を発生させるための散乱体1を形成し,その上に磁極2を形成した。光は波長785nmの半導体レーザ40を用いて発生させ,半導体レーザ40から発生する光をコア部35とクラッド部44から構成される導波路を用いて散乱体1まで導いた。導波路35はクラッド部44で囲まれている。磁界は,薄膜コイル32を用いて発生させ,発生した磁界を主磁極30によって散乱体1の近くに導いた。主磁極30及び薄膜コイル32は,導波路に対して流出端37側に配置した。散乱体1の上部にある磁極2と主磁極30は,磁極36を用いて結合した。薄膜コイル32の反対側には,閉磁路を形成するための補助磁極31を形成した。散乱体1上の磁極2と主磁極30,補助磁極31によって形成される磁気回路に,コイル32が鎖交している。導波路の横には,記録マークを再生するための,磁気再生素子33(Giant Magneto Resistive (GMR)素子又はTunneling Magneto Resistive (TMR)素子)を形成した。磁気再生素子33の周辺には,周りからの磁界を遮蔽するためのシールド34を形成した。この再生素子は,補助磁極31の横(流出端37側)に置いても良い。磁気記録媒体7としては,記録層8,金属層9及び閉磁路を形成するための軟磁性裏打ち層10を有するものを用いた。
図28に,散乱体1周辺の拡大図を示す。本実施例では,三角形の形状をした散乱体1を導波路35の中心部に配置した。散乱体1の向きは,近接場光が発生する頂点11が流出端(Trailing edge)37を向く向きにした。その散乱体上部にはFeCo合金からなる直方体の磁極2を形成し,磁極2と主磁極30は,磁極36で結合した。主磁極30の先端部は,磁束が効率良く磁極36に集まるように,先が徐々に細くなるようにした。散乱体1の材質は金,x方向の幅Sxは100nm,厚さShは50nm,近接場光が発生する頂点11の頂角は60度とし,磁極2の寸法はPxが100nm,Pyが100nm,Phが400nmとなるようにした。主磁極の幅W3は1.5μmとし,主磁極に結合させるための磁極36の寸法は,W6を100nm,W2を300nmとした。散乱体上部の磁極2の下部と主磁極に結合させるための磁極36の距離W1は100nmとした。導波路のコア部35の材料はTiO2,その周辺のクラッド部44の材料はSiOとし,コア部の幅W4及びW5は400nmとした。上記導波路のコア部の材料は,屈折率がクラッド部の屈折率に対して大きければ良く,Ta2O5,SiN,GeドープSiO2,高屈折率ポリマーなどであっても良い。また,導波路の形状は,導波路への光のカップリングが容易になるように,テーパー状にしても良い(導波路出口での径に対し,入り口における径を大きくする)。このとき,導波路出射口から生じるバックグランド光を抑制するために,導波路出口における導波路コア部の幅W4,W5は400nm以下にしても良く,例えば250nmにしても良い。本実施例では磁極36の幅W6は,散乱体1の幅Pyと同じとしたが,磁束が主磁極30から散乱体上部の磁極2へ流れやすくするために,W6>Pyとなるようにしても良い。また,上記実施例では散乱体の材質は金としたが,図16の実施例と同様,FeCoなどの軟磁性体にしても良い。
図29は,図22と同様に散乱体1周辺に遮光膜を形成し,磁極中心部に近接場光を発生させる頂点11が位置するように散乱体1と磁極2を設置した場合の実施例を示す。図28の実施例と同様,散乱体1の上部の磁極2と主磁極30は,磁極36で結合させた。散乱体1及び遮光膜22の材質,形状,寸法は,図22に示される実施例と同じとした。磁極2の材質はFeCo合金とし,寸法はPxが200nm,Pyが100nm,Phが400nmとなるようにした。主磁極の幅W3は1.5μmとし,主磁極に結合させるための磁極36の寸法は,W6を100nm,W2を300nmとした。散乱体上部の磁極2の下部と主磁極に結合させるための磁極36の距離W1は100nmとした。導波路35のコア部の材料はTiO2,その周辺のクラッド部の材料はSiO2とし,コア部の幅W3及びW4は400nmとした。
上記実施例において,散乱体上部の磁極2と主磁極30を結ぶ磁極36の幅は,図30に示すように,下方向(散乱体1がある方向)に行く従い徐々に小さくなるようにしても良い。このようにすることにより,磁束が主磁極30から散乱体上部の磁極2へ流れやすくなるため,磁極2下部に発生する磁界強度を大きくすることが出来る。図30の実施例では,磁極2及び磁極36の寸法は,Pxを200nm,Pyを100nm,Phを400nm,W1を100nm,W2を300nm,広がり角θ2を60度とした。
上記実施例では,主磁極30及び薄膜コイル32は流出端37側に配置したが,図31に示すように,流出端と反対側に配置しても良い。図32は,その場合の散乱体1周辺の拡大図を示す。散乱体1及び磁極の寸法は,図28と同じとし,散乱体1の向きを図28の場合と反対側にした。
図33は,主磁極30を導波路35の両側に設けた場合の実施例を示す。散乱体1の上部には直方体の磁極38を配置し,その磁極38と2つの主磁極30とは,先が徐々に細くなった磁極39により結合させた。散乱体1の材質,形状,寸法は,図3に示される実施例と同じとし,散乱体1上部にある磁極38及び主磁極30と結合させる磁極39の材質はFeCo合金とし,幅W10は100nm,W11は300nm,W14は100nm,W9は100nm,W8は2.2μmとした。主磁極の幅W6及びW7は2μmとした。導波路のコア部35の材質はTiO2とし,コア部の幅W12及びW13は400nmとした。
図34及び35は,入射光をマイクロレンズで集光する場合の実施例を示す。光は半導体レーザ40により発生し,その光をコリメートレンズ42で平行光にした後,スライダ底部に対し垂直方向に進むように,プリズムミラー41で折り返した。スライダ上面にはマイクロレンズ43を形成し入射光を集光させた。集光点に散乱体1を配置し,その上部に磁極2を配置した。磁極2と主磁極30は磁極36により結合した。このとき,主磁極により入射光が妨げられないように,主磁極は,スライダ5の底部に対し平行になるように配置した。磁界は薄膜コイル32により発生させた。散乱体1の材質は金,x方向の幅Sxは100nm,厚さShは50nm,近接場光が発生する頂点11の頂角は60度とした。散乱体1の周辺には,円形の遮光膜22を形成した。遮光膜22の材質は金とした。遮光膜の外径D2は1.5μmとし,開口部の径D1は250nmとした。磁極2の寸法はPxを100nm,Pyを100nm,Phを400nmとした。主磁極30と散乱体上部にある磁極を結びつける磁極36の幅W2は400nm,W6は100nmとし,W1は100nmとした。主磁極30と散乱体上部にある磁極を結びつける磁極36は,主磁極先端部において重なるようにし,重なる部分の長さW7は3μmとした。主磁極の幅はW3は1.5μmとし,主磁極先端の幅は先端に行くに従い徐々に狭くなるようにした。
[実施例7]
次に,本発明のヘッドの記録装置への応用について説明する。
図36に,本発明の記録ヘッドを熱アシスト記録装置へ応用した実施例を示す。本発明の記録ヘッド50はサスペンション51に固定し,ボイスコイルモータ52で位置を動かした。ヘッド表面には浮上用パッドを形成し,記録ディスク53の上を浮上量10nm以下で浮上させた。記録ディスク53としては,磁気記録媒体を用いた。記録ディスク53は,モータによって回転駆動されるスピンドル54に固定されて回転する。記録の瞬間,記録ヘッド50中に設けたコイルにより磁界を発生すると同時に,記録ヘッド50中に形成した半導体レーザを発光させ,記録マークを形成した。再生にはスライダ表面に形成した磁気再生素子33を用いた。再生信号は,信号処理用LSI55で処理した。
本発明の熱アシスト記録用ヘッドの例を示す側断面図。 コイル,磁極,散乱体の位置関係を示す図。 磁極と散乱体の関係を示す図。 媒体表面における近接場光強度の分布図。 磁極の幅,磁極と散乱体の位置関係,スライダ浮上面と磁極底面の距離と媒体表面の温度及び磁界強度の関係を示す図であり,(a)は磁極の幅依存性を示す図,(b)は磁極の位置依存性を示す図,(c)はスライダ浮上面と磁極底面の距離依存性を示す図。 散乱体と磁極の間に隙間を設けた例を示す断面図。 磁極のx方向の幅を,散乱体の幅よりも大きくし,かつ磁極の下部の一部を取り除いた例を示す断面図。 磁極のx方向の幅を,散乱体の幅よりも大きくし,かつ磁極の下部の一部を取り除いた場合における媒体表面における近接場光強度の分布図。 磁極のy方向の幅を,散乱体の幅よりも大きくし,かつ磁極の下部の一部を取り除いた例を示す断面図。 C字の形状をした磁極を用いた例を示す図。 T字の形状をした磁極を用いた例を示す図。 幅が,散乱体に近づくにつれて狭くなった磁極を用いた例を示す図。 三角柱又は円柱の形状をした磁極を用いた例を示す図で,(a)は三角柱の磁極を示す図,(b)は円柱の磁極を示す図。 台形又は長方形の形状をした散乱体を用いた例を示す図で,(a)は台形の散乱体を示す図,(b)は長方形の散乱体を示す図。 近接場光が発生する頂点付近以外の部分において表面が削られた散乱体を用いた場合の例を示す図で,(a)は散乱体の形状が三角形の場合を示す図,(b)は四角形である場合を示す図。 散乱体が軟磁性体より構成される場合の例を示す図。 散乱体が軟磁性体より構成される場合における媒体表面における近接場光強度の分布図。 散乱体が軟磁性体より構成され,その内部に導電率が高くなった部分を有する場合の例を示す図。 磁極の下に第2の散乱体が形成された場合の例を示す図。 磁極の下に第2の散乱体が形成された場合における媒体表面における近接場光強度の分布図。 磁極の下に第2の散乱体が形成された場合において,磁極と散乱体の距離と媒体表面の温度の関係を示す図。 散乱体周辺に遮光膜が形成された場合の例を示す図で,散乱体の形状が三角形の場合を示す図。 散乱体周辺に遮光膜が形成された場合の例を示す図で,散乱体の形状が長方形の場合を示す図。 磁極下部に三角形の形状を持つ散乱体が2つ対向するように配置された場合の例を示す図。 磁極の下に形成する第2の散乱体の材質が軟磁性体である場合の例を示す図。 磁極の上部に反射膜を形成した場合の例を示す図。 単磁極ヘッドと組み合わせた場合の例を示す図で,薄膜コイルが流出端側に配置された場合を示す図。 散乱体,その上に置かれた磁極及び主磁極の関係の例を示す図。 散乱体,その上に置かれた磁極及び主磁極の関係の例を示す図で,散乱体周辺に遮光膜が形成された場合の例を示す図。 散乱体,その上に置かれた磁極及び主磁極の関係の例を示す図で,散乱体上部の磁極と主磁極を結ぶ磁極の幅が下側に行くに従い狭くなった場合の例を示す図。 磁気記録装置用単磁極ヘッドと組み合わせた場合の例を示す図で,薄膜コイルが流出端と反対側に配置された場合を示す図。 薄膜コイルが流出端と反対側に配置された場合における散乱体,その上に置かれた磁極及び主磁極の関係の例を示す図。 主磁極が導波路の両脇に形成された場合の例を示す図。 主磁極をスライダ底面と平行になるように配置した場合の例を示す図。 主磁極をスライダ底面と平行になるように配置した場合における散乱体,その上に置かれた磁極及び主磁極の関係の例を示す図。 記録再生装置の構成例を示す図。
符号の説明
1. 散乱体
2. 磁極
3. 磁界発生用コイル
4. 入射光
5. スライダ
6. スライダ底面
7. 磁気記録媒体
8. 記録層
9. 金属層
10. 軟磁性裏打ち層
11. 頂点
12. 磁極の端部
14. 磁極下部の段差部
17. 軟磁性体よりなる散乱体
18. 導電率が高くなった部分
19. 第2の散乱体
21. 磁極の端部
22. 遮光膜
23. 開口部
24. 2つの頂点間
25. 磁極の側面
26. 反射膜
30. 主磁極
31. 補助磁極
32. 磁界発生用コイル
33. 磁気再生素子
34. シールド
35. 導波路コア部
37. 流出端
38. 磁極
40. 半導体レーザ
41. コリメートレンズ
42. プリズムミラー
43. 集光レンズ
44. 導波路クラッド部
50. 記録ヘッド
51. サスペンション
52. ボイスコイルモータ
53. 記録ディスク
54. スピンドル
55. 信号処理用LSI

Claims (10)

  1. 磁界発生用のコイル及び磁極と近接場光を発生させるための導電性を有する平面状の散乱体とを備え,前記磁極が,前記散乱体の上部に,前記散乱体の面に垂直な方向と前記磁極の軸の方向が実質的に平行になるように配置されていることを特徴とする熱アシスト記録装置用ヘッド。
  2. 請求項1記載の熱アシスト記録装置用ヘッドにおいて,次の3つの条件のうち少なくとも1つを満たすことを特徴とする熱アシスト記録装置用ヘッド。
    (1) 前記コイル,磁極及び散乱体はスライダに搭載され,前記磁極の幅が,スライダの浮上面と前記磁極の底面間の距離以上,500nm以下であること
    (2) 近接場光が発生する前記散乱体の頂点の位置に対する前記磁極の端部の位置が,前記散乱体のある方向をプラス方向,前記散乱体のある方向と反対側の方向をマイナス方向とするとき,−100nm以上,スライダの浮上面と磁極底面の距離以下であること
    (3) 前記散乱体を構成する材料の屈折率の虚部をk,入射光の角振動数をω,光速をcとしたとき,前記散乱体の厚さが,c/(2ωk)以上,前記磁極の幅以下であること
  3. 請求項1記載の熱アシスト記録装置用ヘッドにおいて,前記散乱体周辺部における前記磁極の底部の一部が削られていることを特徴とする熱アシスト記録装置用ヘッド。
  4. 請求項1記載の熱アシスト記録装置用ヘッドにおいて,前記散乱体を構成する材料が軟磁性体であることを特徴とする熱アシスト記録装置用ヘッド。
  5. 請求項1記載の熱アシスト記録装置用ヘッドにおいて,前記散乱体の近接場光が発生する頂点の近くに,第2の散乱体が配置されていることを特徴とする熱アシスト記録装置用ヘッド。
  6. 磁界発生用のコイル及び磁極と近接場光を発生させるための導電性を有する平面状の第1の散乱体とを備え,前記磁極が,前記第1の散乱体の上部に,前記第1の散乱体の面に垂直な方向と前記磁極の軸の方向が実質的に平行になるように配置されており,前記第1の散乱体の近接場光が発生する頂点の近くに第2の散乱体が配置され,前記第1の散乱体の近接場光が発生する頂点と反対側に位置する前記第1の散乱体の端部が,磁極の端部に実質的に重なったことを特徴とする熱アシスト記録装置用ヘッド。
  7. 請求項記載の熱アシスト記録装置用ヘッドにおいて,前記第2の散乱体は,前記近接場光が発生する頂点を有する前記第1の散乱体の周辺に形成された遮光膜であることを特徴とする熱アシスト記録装置用ヘッド。
  8. 請求項1記載の熱アシスト記録装置用ヘッドにおいて,前記磁極の上面及び/又は側面に反射膜が形成されていることを特徴とする熱アシスト記録装置用ヘッド。
  9. 請求項1記載の熱アシスト記録装置用ヘッドにおいて,更に,主磁極と補助磁極を有し,前記磁極は前記主磁極に結合し,前記磁極と前記主磁極と前記補助磁極によって形成される磁気回路に前記コイルが鎖交していることを特徴とする熱アシスト記録装置用ヘッド。
  10. 磁気記録媒体と,前記磁気記録媒体を駆動する媒体駆動部と,前記磁気記録媒体に対して記録・再生動作を行うヘッドと,前記ヘッドを前記磁気記録媒体に対して位置決めするためのヘッド駆動部とを備え,
    前記ヘッドは,磁界発生用のコイルと,近接場光を発生させるための導電性を有する散乱体とを備え,前記散乱体の上部に前記磁極が配置されていることを特徴とする熱アシスト記録装置。
JP2005318511A 2005-11-01 2005-11-01 熱アシスト記録装置用ヘッド及び熱アシスト記録装置 Expired - Fee Related JP4081485B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005318511A JP4081485B2 (ja) 2005-11-01 2005-11-01 熱アシスト記録装置用ヘッド及び熱アシスト記録装置
US11/590,785 US8130598B2 (en) 2005-11-01 2006-11-01 Head for thermal assisted magnetic recording device, and thermal assisted magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318511A JP4081485B2 (ja) 2005-11-01 2005-11-01 熱アシスト記録装置用ヘッド及び熱アシスト記録装置

Publications (2)

Publication Number Publication Date
JP2007128573A JP2007128573A (ja) 2007-05-24
JP4081485B2 true JP4081485B2 (ja) 2008-04-23

Family

ID=37995517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318511A Expired - Fee Related JP4081485B2 (ja) 2005-11-01 2005-11-01 熱アシスト記録装置用ヘッド及び熱アシスト記録装置

Country Status (2)

Country Link
US (1) US8130598B2 (ja)
JP (1) JP4081485B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325172B2 (ja) * 2002-11-01 2009-09-02 株式会社日立製作所 近接場光発生プローブ及び近接場光発生装置
JP2008159158A (ja) * 2006-12-22 2008-07-10 Tdk Corp 熱アシスト磁気ヘッド
JP2008165922A (ja) * 2006-12-28 2008-07-17 Tdk Corp 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
JP4364912B2 (ja) * 2007-02-26 2009-11-18 Tdk株式会社 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US8842504B2 (en) * 2007-07-10 2014-09-23 Seiko Instruments Inc. Near-field light head and information recording/reproducing device
JP4637220B2 (ja) * 2008-01-30 2011-02-23 シャープ株式会社 電磁場発生素子、情報記録再生ヘッド、及び情報記録再生装置
JP5330757B2 (ja) 2008-08-06 2013-10-30 エイチジーエスティーネザーランドビーブイ 磁気記録方法及び磁気記録装置
US7821732B2 (en) * 2008-09-25 2010-10-26 Tdk Corporation Thermally assisted magnetic head having an asymmetric plasmon antenna and manufacturing method thereof
JP5626713B2 (ja) * 2008-10-03 2014-11-19 エイチジーエスティーネザーランドビーブイ ヘッドスライダ、ヘッドアッセンブリ及び磁気ディスク装置
JP5153575B2 (ja) * 2008-10-31 2013-02-27 株式会社日立製作所 熱アシスト磁気記録媒体及び磁気記録装置
JP5479720B2 (ja) 2008-12-03 2014-04-23 エイチジーエスティーネザーランドビーブイ 熱アシスト磁気記録媒体
JP2010135024A (ja) * 2008-12-05 2010-06-17 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体及び磁気記録方法
JP2012069172A (ja) * 2008-12-22 2012-04-05 Hitachi Ltd 熱アシスト記録装置用ヘッド及び熱アシスト記録装置
US8092704B2 (en) 2008-12-30 2012-01-10 Hitachi Global Storage Technologies Netherlands B.V. System, method and apparatus for fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications
US7880996B2 (en) * 2008-12-31 2011-02-01 Hitachi Global Storage Technologies Netherlands B.V. Ridge wave-guide for thermal assisted magnetic recording
US8472286B2 (en) * 2008-12-31 2013-06-25 HGST Netherlands B.V. Near field transducer having main body and wings extending therefrom and only electrically coupled thereby
JP5587883B2 (ja) * 2009-07-06 2014-09-10 株式会社日立製作所 熱アシスト記録用ヘッド及び熱アシスト記録装置
JP5025708B2 (ja) * 2009-10-26 2012-09-12 株式会社日立製作所 熱アシスト記録用ヘッド、熱アシスト記録装置及び近接場光発生装置
US8031561B2 (en) * 2009-10-28 2011-10-04 Hitachi Global Storage Technologies Netherlands B.V. Joint design of thermally-assisted magnetic recording head and patterned media for high optical efficiency
US8284637B2 (en) * 2010-01-25 2012-10-09 Headway Technologies, Inc. Shaped plasmon generators for thermally-assisted magnetic recording
JP5805402B2 (ja) 2011-02-14 2015-11-04 セイコーインスツル株式会社 近接場光発生素子の製造方法
US8270256B1 (en) * 2011-05-06 2012-09-18 Hitachi Global Storage Technologies Netherland B.V. Magnetic recording disk drive with shingled writing and wide-area thermal assistance
US8760978B2 (en) * 2011-12-05 2014-06-24 HGST Netherlands B.V. Magnetic recording head and system having optical waveguide core and/or cladding of an alloyed oxide material
US8614932B1 (en) * 2012-09-17 2013-12-24 Headway Technologies, Inc. Thermally-assisted magnetic recording head having a plasmon generator
JP2015099626A (ja) * 2013-11-19 2015-05-28 株式会社東芝 磁気記録媒体とその製造方法、磁気記録再生装置
US9275658B2 (en) 2014-03-13 2016-03-01 Headway Technologies, Inc. Thermally-assisted magnetic recording head including a plasmon generator
US9218827B1 (en) * 2014-07-18 2015-12-22 Headway Technologies, Inc. Thermally-assisted magnetic recording head including a return path section
US9934795B1 (en) * 2017-06-09 2018-04-03 Seagate Technology Llc Recording head with first and second coils that induce flux into write pole and shield

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901375B2 (ja) 1991-06-05 1999-06-07 アルプス電気株式会社 磁気ヘッド
US6217968B1 (en) * 1997-04-21 2001-04-17 Hitachi Maxell, Ltd. Optical recording medium, optical head and optical recording device
JP4032689B2 (ja) * 2001-10-04 2008-01-16 株式会社日立製作所 近接場光を用いた測定装置/記録再生装置
JP4325172B2 (ja) 2002-11-01 2009-09-02 株式会社日立製作所 近接場光発生プローブ及び近接場光発生装置
JP4100133B2 (ja) * 2002-11-05 2008-06-11 株式会社日立製作所 記録ヘッドおよびそれを用いた情報記録装置
JP4095623B2 (ja) * 2005-04-05 2008-06-04 株式会社日立製作所 磁気光融合記録装置用ヘッド及びその製造方法

Also Published As

Publication number Publication date
US20070096854A1 (en) 2007-05-03
JP2007128573A (ja) 2007-05-24
US8130598B2 (en) 2012-03-06

Similar Documents

Publication Publication Date Title
JP4081485B2 (ja) 熱アシスト記録装置用ヘッド及び熱アシスト記録装置
JP4236673B2 (ja) 近接場光発生器及び近接場光記録再生装置
US8705325B2 (en) Thermal-assisted magnetic recording head capable of supressing the temperature rise of scatterer
US8270260B2 (en) Optically assisted magnetic recording head having a waveguide core with a plate-shaped portion protruding from an air bearing surface side of the core
US8102736B2 (en) Near-field light generator comprising waveguide with inclined end surface
TWI390521B (zh) 磁性記錄設備、磁性記錄裝置以及磁性寫入器
US8369203B2 (en) Thermally-assisted magnetic recording head having concave core at light entrance surface
JP5001413B2 (ja) 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
US7898908B2 (en) Head for thermally assisted magnetic recording device and thermally assisted magnetic recording device
US7911883B2 (en) Near-field light generating element having two different angles
JP5680295B2 (ja) 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
JP5001414B2 (ja) 近接場光発生素子を備えた熱アシスト磁気記録ヘッド
JP5587883B2 (ja) 熱アシスト記録用ヘッド及び熱アシスト記録装置
JP2010160872A (ja) 表面プラズモン・アンテナと溝を有する導波路とを備えた近接場光発生素子
JP2012079398A (ja) 光導波路およびそれを用いた熱アシスト磁気記録ヘッド
JP2008165922A (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US20120275280A1 (en) Thermally-assisted magnetic recording head, head gimbal assembly and magnetic recording device
JP4520524B2 (ja) 熱アシスト記録用磁気ヘッドスライダ及びそれを用いた熱アシスト記録装置
JP2011141942A (ja) 熱アシスト磁気ヘッドおよびその製造方法並びにヘッドジンバルアセンブリおよびハードディスク装置
JP4835746B2 (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置。
US8369192B1 (en) Thermally-assisted magnetic recording head, head gimbal assembly and magnetic recording device
US20060090178A1 (en) Thermally assisted recording of magnetic media using an in-gap optical resonant cavity
US8817581B1 (en) Thermally-assisted magnetic recording head using near-field light
JP2008059691A (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
WO2009147725A1 (ja) 磁気ヘッドおよび情報記憶装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees