JP2008165922A - 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置 - Google Patents

熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置 Download PDF

Info

Publication number
JP2008165922A
JP2008165922A JP2006355351A JP2006355351A JP2008165922A JP 2008165922 A JP2008165922 A JP 2008165922A JP 2006355351 A JP2006355351 A JP 2006355351A JP 2006355351 A JP2006355351 A JP 2006355351A JP 2008165922 A JP2008165922 A JP 2008165922A
Authority
JP
Japan
Prior art keywords
light
laser diode
magnetic head
field light
medium facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006355351A
Other languages
English (en)
Inventor
Kosuke Tanaka
浩介 田中
Koji Shimazawa
幸司 島沢
Hidetsugu Komura
英嗣 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006355351A priority Critical patent/JP2008165922A/ja
Priority to US12/003,452 priority patent/US7876646B2/en
Publication of JP2008165922A publication Critical patent/JP2008165922A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Abstract

【課題】 簡易的な構造でレーザダイオード素子の温度上昇に伴う記録媒体の加熱不足を防止することが可能なハードディスク装置を提供する。
【解決手段】媒体対向面S、この反対側に位置する第1面2201、及び媒体対向面Sと第1面2201との間の側面を有するスライダ基板と、媒体対向面S側に近接場光発生部36と、これに近接した磁気記録素子34とを有し、スライダ基板220の側面の一つ2202に固定された磁気ヘッド部32と、出射光が近接場光発生部36に到達するようにスライダ基板220との相対位置が固定されたレーザダイオード素子40とを備え、レーザダイオード素子40の出射光が近接場光発生部36に到達する直前の波長をλinとし、照射光が照射された際に近接場光発生部36から発生する近接場光の発生効率が最大となる照射光の波長をλmaxとしたとき、λin<λmaxである。
【選択図】図7

Description

本発明は、熱アシスト磁気記録方式により信号の書き込みを行う熱アシスト磁気ヘッド、この熱アシスト磁気ヘッドを備えたヘッドジンバルアセンブリ(HGA)及びこのHGAを備えたハードディスク装置に関する。
ハードディスク装置の高記録密度化に伴い、薄膜磁気ヘッドのさらなる性能の向上が要求されている。薄膜磁気ヘッドとしては、磁気抵抗(MR)効果素子等の磁気検出素子と電磁コイル素子等の磁気記録素子とを積層した構造である複合型薄膜磁気ヘッドが広く用いられており、これらの素子によって磁気記録媒体である磁気ディスクにデータ信号が読み書きされる。
一般に、磁気記録媒体は、いわば磁性微粒子が集合した不連続体であり、それぞれの磁性微粒子は単磁区構造となっている。ここで、1つの記録ビットは、複数の磁性微粒子から構成されている。従って、記録密度を高めるためには、磁性微粒子を小さくして、記録ビットの境界の凹凸を減少させなければならない。しかし、磁性微粒子を小さくすると、体積減少に伴う磁化の熱安定性の低下が問題となる。
磁化の熱安定性の目安は、KV/kTで与えられる。ここで、Kは磁性微粒子の磁気異方性エネルギー、Vは1つの磁性微粒子の体積、kはボルツマン定数、Tは絶対温度である。磁性微粒子を小さくするということは、まさにVを小さくすることであり、そのままではKV/kTが小さくなって熱安定性が損なわれる。この問題への対策として、同時にKを大きくすることが考えられるが、このKの増加は、記録媒体の保磁力の増加をもたらす。これに対して、磁気ヘッドによる書き込み磁界強度は、ヘッド内の磁極を構成する軟磁性材料の飽和磁束密度でほぼ決定されてしまう。従って、保磁力が、この書き込み磁界強度の限界から決まる許容値を超えると書き込みが不可能となってしまう。
このような磁化の熱安定性の問題を解決する方法として、Kの大きな磁性材料を用いる一方で、書き込み磁界印加の直前に記録媒体に熱を加えることによって、保磁力を小さくして書き込みを行う、いわゆる熱アシスト磁気記録方式が提案されている。この方式は、磁気ドミネント記録方式と光ドミネント記録方式とに大別される。磁気ドミネント記録方式においては、書き込みの主体は電磁コイル素子であり、光の放射径はトラック幅(記録幅)に比べて大きくなっている。一方、光ドミネント記録方式においては、書き込みの主体は光放射部であり、光の放射径はトラック幅(記録幅)とほぼ同じとなっている。すなわち、磁気ドミネント記録方式は、空間分解能を磁界に持たせているのに対し、光ドミネント記録方式は、空間分解能を光に持たせている。
このような熱アシスト磁気ヘッド記録装置として、特許文献1〜7及び非特許文献1には、磁界を発生する磁気記録素子を備えたスライダとは離れた位置に半導体レーザ等の光源を設け、この光源からの光を光ファイバやレンズ等を介してスライダの媒体対向面まで導く構造が開示されている。
また、特許文献8〜11及び非特許文献2には、スライダの側面に磁気記録素子及び光源を集積した熱アシスト磁気ヘッドや、スライダの媒体対向面に磁気記録素子及び光源を集積した熱アシスト磁気ヘッドが開示されている。
また、高効率集光素子であるSIL(Solid Immersion Lens)や近接場光発生素子であるプラズモン・プローブを用いた磁気ヘッドの研究も行われている。特許文献12には、平面導波路の先端にプラズモン・プローブを設けた装置が開示されている。
国際公開WO92/02931号パンフレット(特表平6−500194号公報) 国際公開WO98/09284号パンフレット(特表2002−511176号公報) 特開平10−162444号公報 国際公開WO99/53482号パンフレット(特表2002−512725号公報) 特開2000−173093号公報 特開2002−298302号公報 特開2001−255254号公報 特開2001−283404号公報 特開2001−325756号公報 特開2004−158067号公報 特開2004−303299号公報 米国特許6,795,630号明細書 ShintaroMiyanishi他著 "Near-field Assisted Magnetic Recording"IEEE TRANSACTIONS ON MAGNETICS、2005年、第41巻、第10号、p.2817−2821 庄野敬二、押木満雅著 「熱アシスト磁気記録の現状と課題」 日本応用磁気学会誌、2005年、第29巻、第1号、p.5−13
しかしながら、熱アシスト磁気ヘッドの記録動作中は、光源であるレーザダイオード素子(半導体レーザ素子)の温度が上昇する。そして、レーザダイオード素子は、素子の温度が上昇すると出射光の強度が低下することが知られている。出射光の強度が低下すると、記録媒体の加熱が不足してその保磁力を十分に減少させることができず、書き込み不良が発生してしまう。
このような不具合を防止するため、レーザダイオード素子の近傍に温度検出素子を設け、出射光の強度が一定になるようにレーザダイオード素子の電源部にフィードバックすることも考えられる。しかし、そのような方法を採用すると熱アシスト磁気ヘッドの構造が複雑となり、製造コストが増加してしまう。
本発明は、このような課題に鑑みてなされたものであり、簡易的な構造でレーザダイオード素子の温度上昇に伴う記録媒体の加熱不足を防止することが可能な熱アシスト磁気ヘッド、この熱アシスト磁気ヘッドを備えたHGA及びこのHGAを備えたハードディスク装置を提供することを目的とする。
本発明に係る熱アシスト磁気ヘッドは、媒体対向面、この媒体対向面の反対側に位置する第1面、及び媒体対向面と第1面との間に位置する側面を有するスライダ基板と、媒体対向面側に近接場光発生部と、この近接場光発生部に近接した磁気記録素子とを有し、スライダ基板の側面の一つに固定された磁気ヘッド部と、出射光が近接場光発生部に到達するようにスライダ基板との相対位置が固定されたレーザダイオード素子とを備え、レーザダイオード素子の出射光が近接場光発生部に到達する直前の波長をλinとし、照射光が照射された際に近接場光発生部から発生する近接場光の発生効率が最大となる照射光の波長をλmaxとしたとき、λin<λmaxであることを特徴とする。
本発明によれば、レーザダイオード素子から出射された出射光は、近接場光発生部に到達するため、近接場光発生部から近接場光が発生する。そして、近接場光発生部は媒体対向面の磁気記録素子に近接した位置にあるため、媒体対向面に対向する磁気記録媒体の記録領域の温度が上昇し、当該記録領域の保持力が一時的に低下する。この保持力の低下期間内に磁気記録素子に通電を行い、書き込み磁界を発生させることで、記録領域に情報を書き込むことができる。
さらに、磁気ヘッド部とスライダ基板の位置関係が、従来の磁気ヘッドと同様の関係、即ち磁気ヘッド部の集積面が、スライダ基板の側面と平行、かつ媒体対向面と直交するため、従来の薄膜磁気ヘッドの製造方法を用いて磁気ヘッド部の磁気記録素子を容易に形成することができる。
その上、本発明によれば、熱アシスト磁気ヘッドの動作時にレーザダイオード素子の温度が上昇しても、磁気記録媒体の加熱不足を十分に防止することができる。即ち、レーザダイオード素子は、それ自体の温度が上昇すると出射光の強度が低下すると共に、出射光の波長が長波長側へシフトすることが知られている。本発明においては、レーザダイオード素子の出射光が近接場光発生部に到達する直前の波長λinは、近接場光発生部から最も効率よく近接場光を発生させる照射光の波長λmax、言い換えると、一定強度の照射光を近接場光発生部に照射した際に最も高強度の近接場光を発生させることが可能な照射光の波長λmaxよりも短波長としている。これにより、レーザダイオード素子の温度が上昇すると、レーザダイオード素子の出射光の波長は長波長側へシフトして、近接場光の発生効率が上昇する。その結果、温度上昇によるレーザダイオード素子の出射光の強度低下を補償することができ、近接場光の強度の減少は十分に防止されるため、磁気記録媒体の記録領域を十分に加熱することができる。
また、磁気ヘッド部は、近接場光発生部が形成された光出射面を含む平面導波路のコアをさらに有し、レーザダイオード素子の出射光は、平面導波路の光入射面に入射することが好ましい。これにより、レーザダイオード素子の出射光を平面導波路の光入射面に入射するようにすれば、レーザダイオード素子の出射光を容易に近接場光発光部まで導くことができる。
また、熱アシスト磁気ヘッドは、スライダ基板の第1面に固定された第2面を有する光源支持基板をさらに備え、光入射面は、光出射面の反対側の面に形成され、レーザダイオード素子は、光入射面に対向して光源支持基板に固定されていることが好ましい。
これにより、光源支持基板にはレーザダイオード素子が固定され、スライダ基板の第1面は光源支持基板の第2面に固定されるため、スライダ基板とレーザダイオード素子との位置関係が固定される。レーザダイオード素子はコアの光入射面に対向しているので、光ファイバ、レンズ、ミラー等を用いた長距離の光伝播は行われず、取り付け誤差や光の結合損失を許容して、レーザダイオード素子の出射光を媒体対向面の近接場光発生部まで導くことができ、かつ、構造も簡単にできる。
さらに、レーザダイオード素子が媒体対向面から離れた位置かつスライダの近傍にあるので、レーザダイオード素子から発生する熱による磁気記録素子等への悪影響やレーザダイオード素子と媒体との接触等の可能性が抑制される。
本発明に係るHGAは、上述の熱アシスト磁気ヘッドと、熱アシスト磁気ヘッドを支持するサスペンションとを備えることが好ましく、本発明に係るハードディスク装置は、上記HGAと、媒体対向面に対向する磁気記録媒体とを備えることが好ましい。
上記HGAを備えたハードディスク装置では、磁気記録媒体の加熱不足による書き込み不良の発生を十分に低減することができる。
本発明の熱アシスト磁気ヘッド、この熱アシスト磁気ヘッドを備えたHGA及びハードディスク装置によれば、簡易的な構造でレーザダイオード素子の温度上昇に伴う記録媒体の加熱不足を防止することが可能である。
以下に、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。なお、各図面において、同一の要素は、同一の参照番号を用いて示されている。また、図面中の構成要素内及び構成要素間の寸法比は、図面の見易さのため、それぞれ任意となっている。
(ハードディスク装置)
図1は、実施の形態に係るハードディスク装置の斜視図である。
ハードディスク装置1は、スピンドルモータ11の回転軸の回りを回転する複数の磁気記録媒体である磁気ディスク10、熱アシスト磁気ヘッド21をトラック上に位置決めするためのアセンブリキャリッジ装置12、この熱アシスト磁気ヘッド21の書き込み及び読み出し動作を制御し、さらに後に詳述する熱アシスト磁気記録用のレーザ光を発生させる光源であるレーザダイオードを制御するための記録再生及び発光制御回路(制御回路)13を備えている。
アセンブリキャリッジ装置12には、複数の駆動アーム14が設けられている。これらの駆動アーム14は、ボイスコイルモータ(VCM)15によってピボットベアリング軸16を中心にして揺動可能であり、この軸16に沿った方向に積層されている。各駆動アーム14の先端部には、ヘッドジンバルアセンブリ(HGA)17が取り付けられている。各HGA17には、熱アシスト磁気ヘッド21が、各磁気ディスク10の表面に対向するように設けられている。磁気ディスク10の表面に対向する面が熱アシスト磁気ヘッド21の媒体対向面S(エアベアリング面とも呼ばれる)である。なお、磁気ディスク10、駆動アーム14、HGA17及び熱アシスト磁気ヘッド21は、単数であってもよい。
(HGA)
図2は、HGA17の斜視図である。同図は、HGA17の媒体対向面Sを上にして示してある。
HGA17は、サスペンション20の先端部に、熱アシスト磁気ヘッド21を固着し、さらにその熱アシスト磁気ヘッド21の端子電極に配線部材203の一端を電気的に接続して構成される。サスペンション20は、ロードビーム200と、このロードビーム200上に固着され支持された弾性を有するフレクシャ201と、フレックシャの先端に板ばね状に形成されたタング部204と、ロードビーム200の基部に設けられたベースプレート202と、フレクシャ201上に設けられておりリード導体及びその両端に電気的に接続された接続パッドからなる配線部材203とから主として構成されている。
なお、HGA17におけるサスペンションの構造は、以上述べた構造に限定されるものではないことは明らかである。なお、図示されていないが、サスペンション20の途中にヘッド駆動用ICチップを装着してもよい。
(熱アシスト磁気ヘッド)
図3は、図1に示した熱アシスト磁気ヘッド21の近傍の拡大斜視図である。
配線部材203は、記録信号用の一対の電極パッド237、237、読出信号用の一対の電極パッド238、238、光源駆動用の一対の電極パッド247、248に接続されている。
熱アシスト磁気ヘッド21は、スライダ22と、光源支持基板230及び熱アシスト磁気記録用の光源となるレーザダイオード(発光素子)40を備えた光源ユニット23とが、スライダ基板220の背面(第1面)2201及び光源支持基板230の接着面(第2面)2300を接面させて接着、固定された構成を有している。ここで、スライダ基板220の背面2201は、スライダ22の媒体対向面Sとは反対側の面である。また、光源支持基板230の底面2301がフレクシャ201のタング部204に、例えば、エポキシ樹脂等の接着剤により接着されている。
スライダ22は、スライダ基板220及びデータ信号の書き込み及び読み出しを行う磁気ヘッド部32を備えている。
スライダ基板220は、板状を呈し、適切な浮上量を得るように加工された媒体対向面Sを有する。スライダ基板220は導電性のアルティック(Al−TiC)等から形成されている。
磁気ヘッド部32は、スライダ基板220の媒体対向面Sに対して略垂直な側面である集積面2202に形成されている。磁気ヘッド部32は、磁気情報を検出する磁気検出素子としてのMR効果素子33、磁界の生成により磁気情報を書き込む垂直(面内でも良い)磁気記録素子としての電磁コイル素子34、MR効果素子33及び電磁コイル素子34の間を通して設けられている平面導波路としての導波路(コア)35、磁気ディスクの記録層部分を加熱するための近接場光を発生させる近接場光発生部(プラズモン・プローブ)36、及び、これらMR効果素子33、電磁コイル素子34、コア35及び近接場光発生部36を覆うように集積面2202上に形成された絶縁層(クラッド)38とを備えている。
更に、磁気ヘッド部32は、絶縁層38の露出面上に形成され、MR効果素子33の入出力端子にそれぞれ接続された一対の信号端子用の電極パッド371、371、電磁コイル素子34の両端にそれぞれ接続された一対の信号端子用の電極パッド373、373、及び、スライダ基板220と電気的に接続されたグランド用の電極パッド375を備えている。ビアホール375aを介して、スライダ基板220と電気的に接続された電極パッド375は、フレクシャ201の電極パッド247と、ボンディングワイヤにより接続されており、スライダ基板220の電位は電極パッド247により、例えばグラウンド電位に制御されている。
MR効果素子33、電磁コイル素子34、及び近接場光発生部36の各端面は、媒体対向面S上に露出している。また、レーザダイオード40の両端は、それぞれ電極パッド47,48に接続されている。
図4は、図3に示した熱アシスト磁気ヘッド21のIV−IV矢印断面図である。
MR効果素子33は、MR積層体332と、このMR積層体332を挟む位置に配置されている下部シールド層330及び上部シールド層334とを含む。下部シールド層330及び上部シールド層334は、例えば、フレームめっき法を含むパターンめっき法等によって形成された厚さ0.5〜3μm程度のNiFe、CoFeNi、CoFe、FeN若しくはFeZrN等の磁性材料で構成することができる。上下部シールド層334及び330は、MR積層体332が雑音となる外部磁界の影響を受けることを防止する。
MR積層体332は、面内通電型(CIP(Current In Plane))巨大磁気抵抗(GMR(Giant Magneto Resistance))多層膜、垂直通電型(CPP(Current Perpendicular to Plane))GMR多層膜、又はトンネル磁気抵抗(TMR(Tunnel Magneto Resistance))多層膜等の磁気抵抗効果膜を含み、非常に高い感度で磁気ディスクからの信号磁界を感受する。
MR積層体332は、例えば、TMR効果多層膜を含む場合、IrMn、PtMn、NiMn、RuRhMn等からなる厚さ5〜15nm程度の反強磁性層と、例えば強磁性材料であるCoFe等、又はRu等の非磁性金属層を挟んだ2層のCoFe等から構成されており反強磁性層によって磁化方向が固定されている磁化固定層と、例えばAl、AlCu等からなる厚さ0.5〜1nm程度の金属膜が真空装置内に導入された酸素によって又は自然酸化によって酸化された非磁性誘電材料からなるトンネルバリア層と、例えば強磁性材料である厚さ1nm程度のCoFe等と厚さ3〜4nm程度のNiFe等との2層膜から構成されておりトンネルバリア層を介して磁化固定層との間でトンネル交換結合をなす磁化自由層とが、順次積層された構造を有している。
MR効果素子33と導波路35との間には、下部シールド層330と同様の材料からなる素子間シールド層148が形成されている。素子間シールド層148は、MR効果素子33を、電磁コイル素子34より発生する磁界から遮断して読み出しの際の外来ノイズを防止する役割を果たす。また、素子間シールド層148と導波路35との間に、さらに、バッキングコイル部が形成されていてもよい。バッキングコイル部は、電磁コイル素子34から発生してMR効果素子33の上下部電極層を経由する磁束ループを打ち消す磁束を発生させて、磁気ディスクへの不要な書き込み又は消去動作である広域隣接トラック消去(WATE)現象の抑制を図るものである。
MR積層体332の媒体対向面Sとは反対側のシールド層330、334間、シールド層330、334、148の媒体対向面Sとは反対側、下部シールド層330とスライダ基板220との間、及び、素子間シールド層148と導波路35との間にはアルミナ等から形成された絶縁層38が形成されている。
なお、MR積層体332がCIP−GMR多層膜を含む場合、上下部シールド層334及び330の各々とMR積層体332との間に、アルミナ等により形成されたアルミナ等の絶縁用の上下部シールドギャップ層がそれぞれ設けられる。さらに、図示は省略するが、MR積層体332にセンス電流を供給して再生出力を取り出すためのMRリード導体層が形成される。一方、MR積層体332がCPP−GMR多層膜又はTMR多層膜を含む場合、上下部シールド層334及び330はそれぞれ上下部の電極層としても機能する。この場合、上下部シールドギャップ層とMRリード導体層とは不要であって省略される。
MR積層体332のトラック幅方向の両側には、磁区の安定化用の縦バイアス磁界を印加するための、CoTa,CoCrPt,CoPt等の強磁性材料からなるハードバイアス層HM(図7参照)が形成される。
電磁コイル素子34は、垂直磁気記録用が好ましく、図4に示すように、主磁極層340、ギャップ層341a、コイル絶縁層341b、コイル層342、及び補助磁極層344を備えている。
主磁極層340は、コイル層342によって誘導された磁束を、書き込みがなされる磁気ディスク(媒体)の記録層まで収束させながら導くための導磁路である。ここで、主磁極層340の媒体対向面S側の端部のトラック幅方向(図4の紙面奥行き方向)の幅及び積層方向(図4の左右方向)の厚みは、他の部分に比べて小さくすることが好ましい。この結果、高記録密度化に対応した微細で強い書き込み磁界を発生可能となる。
主磁極層340に磁気的に結合した補助磁極層344の媒体対向面S側の端部は、補助磁極層344の他の部分よりも層断面が広いトレーリングシールド部を形成している。補助磁極層344は、主磁極層340の媒体対向面S側の端部とアルミナ等の絶縁材料により形成されたギャップ層(クラッド)341a,コイル絶縁層341bを介して対向している。このような補助磁極層344を設けることによって、媒体対向面S近傍における補助磁極層344と主磁極層340との間において磁界勾配がより急峻になる。この結果、信号出力のジッタが小さくなって読み出し時のエラーレートを小さくすることができる。
補助磁極層344は、例えば、厚さ約0.5〜約5μmの、例えばフレームめっき法、スパッタリング法等を用いて形成されたNi、Fe及びCoのうちいずれか2つ若しくは3つからなる合金、又はこれらを主成分として所定の元素が添加された合金等から構成されている。
ギャップ層341aは、コイル層342と主磁極層340とを離間しており、例えば、厚さ約0.01〜約0.5μmの、例えばスパッタリング法、CVD法等を用いて形成されたAl又はDLC等から構成されている。
コイル層342は、例えば、厚さ約0.5〜約3μmの、例えばフレームめっき法等を用いて形成されたCu等から構成されている。主磁極層340の後端と補助磁極層344の媒体対向面Sから離れた部分とが結合され、コイル層342はこの結合部分を取り囲むように形成されている。
コイル絶縁層341bは、コイル層342と、補助磁極層344とを離間し、例えば、厚さ約0.1〜約5μmの熱硬化されたアルミナやレジスト層等の電気絶縁材料から構成されている。
図5は、熱アシスト磁気ヘッド21の回路図である。
配線部材203を構成する配線の1つは、電極パッド247及び電極パッド47を介してレーザダイオード40のカソードに電気的に接続されており、別の配線は電極パッド248及び電極パッド48を介してレーザダイオード40のアノードに電気的に接続されている。電極パッド247,248間に駆動電流を供給するとレーザダイオード40が発光する。この光は、平面導波路のコア及び媒体対向面S(図4参照)を介して磁気記録媒体の記録領域Rに照射される。
配線部材203を構成する別の一対の配線は、電極パッド237、ボンディングワイヤBW及び電極パッド371を介して電磁コイル素子34の両端にそれぞれ接続されている。一対の電極パッド237間に電圧を印加すると、磁気記録素子としての電磁コイル素子34に通電が行われ、書き込み磁界が発生する。熱アシスト磁気ヘッド21では、レーザダイオード40から出射された光は、平面導波路のコア35の光入射面354に入射して、媒体対向面Sに設けられた光出射面から出射し、磁気記録媒体の記録領域Rに照射される(図4参照)。したがって、媒体対向面に対向する磁気記録媒体の記録領域Rの温度が上昇し、記録領域Rの保持力が一時的に低下する。この保持力の低下期間内に電磁コイル素子34に通電を行い、書き込み磁界を発生させることで、記録領域Rに情報を書き込むことができる。
配線部材203を構成する別の一対の配線は、電極パッド238、ボンディングワイヤBW及び電極パッド373を介してMR効果素子33の両端にそれぞれ接続されている。一対の電極パッド238に電圧を印加するとMR効果素子33にセンス電流が流れる。記録領域Rに書き込まれた情報は、MR効果素子33にセンス電流を流すことで読み出すことができる。
図6は、媒体対向面側から見た磁気ヘッド主要部の平面図である。
リーディング側すなわちスライダ基板220側の辺の長さがトレーリング側の辺の長さよりも短い逆台形となるように、媒体対向面S側の主磁極層340の先端は、先細り形状にされている。
主磁極層340の媒体対向面側の端面には、ロータリーアクチュエータでの駆動により発生するスキュー角の影響によって隣接トラックに不要な書き込み等を及ぼさないように、ベベル角θが付けられている。ベベル角θの大きさは、例えば、15°程度である。実際に、書き込み磁界が主に発生するのは、トレーリング側の長辺近傍であり、磁気ドミナントの場合には、この長辺の長さによって書き込みトラックの幅が決定される。
ここで、主磁極層340は、例えば、媒体対向面S側の端部での全厚が約0.01〜約0.5μmであって、この端部以外での全厚が約0.5〜約3.0μmの、例えばフレームめっき法、スパッタリング法等を用いて形成されたNi、Fe及びCoのうちいずれか2つ若しくは3つからなる合金、又はこれらを主成分として所定の元素が添加された合金等から構成されていることが好ましい。また、トラック幅は、例えば、100nmとすることができる。
図7は、熱アシスト磁気ヘッド21の主要部の斜視図である。
導波路(コア)35の厚み方向をX軸、幅方向をY軸、長手方向をZ軸とした場合、レーザダイオード40の発光面からZ軸に沿って出射された光は、光入射面354に入射する。
コア35は、MR効果素子33と電磁コイル素子34との間に位置していて集積面(YZ平面)2202(図4参照)と平行に延びており、磁気ヘッド部32の媒体体対向面Sから、磁気ヘッド部32の媒体対向面Sとは反対側の面32aまで延びており、本例では矩形の板状のものである。コア35は、共に媒体対向面Sから延び、トラック幅方向において対向する2つの側面351a,351b、集積面2202と平行な2つの上面352a、下面352b、媒体対向面Sを形成する光出射面353、及び、光出射面353とは反対側の光入射面354を有している。導波路35の上面352a、下面352b、2つの側面351a、351bは、導波路35よりも屈折率が小さく導波路35に対するクラッドとして機能する絶縁層38と接している。
この導波路35は、光入射面354から入射した光を、この両側面351a、351b、及び上面352a、下面352bで反射させつつ、媒体対向面S側の端面である光出射面353に導くことが可能となっている。コア35のトラック幅方向の幅W35は例えば、1〜200μmとすることができ、厚みT35は例えば2〜10μmとすることができ、高さH35は10〜300μmとすることができる。
コア35は、何れの部分においても、絶縁層38を形成する材料よりも高い屈折率nを有する、例えばスパッタリング法等を用いて形成された誘電材料から構成されている。例えば、クラッドとしての絶縁層38が、SiO(n=1.5)から形成されている場合、コア35は、Al(n=1.63)から形成されていてもよい。さらに、絶縁層38が、Al(n=1.63)から形成されている場合、コア35は、Ta(n=2.16)、Nb(n=2.33)、TiO(n=2.3〜2.55)又はTiO(n=2.3〜2.55)から形成されていてもよい。コア35をこのような材料で構成することによって、材料そのものが有する良好な光学特性によるだけではなく、界面での全反射条件が整うことによって、レーザ光の伝播損失が小さくなり、近接場光の発生効率が向上する。
近接場光発生部36は、導波路35の光出射面353のほぼ中央に配置されている板状部材である。近接場光発生部36は、その端面が媒体対向面Sに露出するように導波路35の光出射面353に埋設されている。そして、レーザダイオード40からの光が近接場光発生部36に照射されることで近接場光が発生する。近接場光発生部36に光を照射すると、近接場光発生部36を構成する金属内の電子がプラズマ振動し、その先端部において電界の集中が生じる。この近接場光の拡がりは、プラズモン・プローブ先端部の半径程度となるため、この先端部の半径をトラック幅以下とすれば、擬似的に出射光が回折限界以下にまで絞り込まれた効果を奏する。
主磁極層340は、コイル層342の螺旋中心から媒体対向面Sに向けて延びている。コイル層342に通電を行うと、主磁極層340を介して磁界が媒体対向面Sまで導かれ、媒体対向面Sから外方に広がる書き込み磁界を発生させることができる。
以上の熱アシスト磁気ヘッド21は、媒体対向面S、媒体対向面Sの反対側に位置する第1面2201、及び媒体対向面と第1面2201との間に位置する側面を有するスライダ基板220と、媒体対向面S側に光出射面353を有する平面導波路のコア35と、光出射面353に近接した磁気記録素子34とを有し、スライダ基板220の側面の一つに固定された磁気ヘッド部32と、第1面2201に固定された第2面2300を有する光源支持基板230と、コア35の光入射面354に対向し、光源支持基板230に固定された発光素子40とを備えている(図4参照)。なお、近接とは光出射面353によって加熱された磁気記録媒体の記録領域Rが、元の温度に戻る前に磁気記録素子34からの磁界を当該記録領域に与えることが可能な距離である。また、コア35のX軸方向の厚みは一定であり、XY断面は四角形である。
光源支持基板230にはレーザダイオード40が固定されており、スライダ基板220の第1面2201は光源支持基板230の第2面2300に固定されているので、スライダ基板220とレーザダイオード40との位置関係が固定される。レーザダイオード40はコアの光入射面354に対向しているので、従来のような長距離の光伝播は行われず、取り付け誤差や光の結合損失を許容して、発光素子の出射光を媒体対向面まで導くことができる。
図8は、媒体対向面Sから見た近接場光発生部(プラズモン・プローブ)36の斜視図である。
近接場光発生部36は、媒体対向面Sから見て三角形状を呈し、導電材料により形成されている。三角形の底辺36dがスライダ基板220の集積面2202と平行すなわちトラック幅方向と平行に配置され、底辺と向き合う頂点36cが底辺36dよりも電磁コイル素子34の主磁極層340側に配置されており、具体的には、頂点36cが主磁極層340のリーディング側エッジEと対向するように配置されている。近接場光発生部36の好ましい形態は、底辺36dの両端の2つの底角がいずれも同じとされた二等辺三角形である。
近接場光発生部36の頂点36cの曲率半径rは5〜100nmとすることが好ましい。三角形の高さH36は、入射されるレーザ光の波長よりも十分に小さく、20〜400nmとすることが好ましい。底辺36dの幅Wは、入射されるレーザ光の波長よりも十分に小さく、20〜400nmとすることが好ましい。頂点36cの角度βは例えば60度である。
近接場光発生部36の厚みT36は10〜100nmとすることが好ましい。
このような近接場光発光部36がコア35の光出射面353に設けられていると、近接場光発光部36の頂点36c近傍に電界が集中して頂点36c近傍から媒体に向かって近接場光が発生する。
近接場光は、入射されるレーザ光の波長及びコア35の形状にも依存するが、一般に、媒体対向面Sから見て近接場光発生部36の境界で最も強い強度を有する。特に、本実施形態では、近接場光発生部36に到達する光の電界ベクトルは、レーザダイオード40の積層方向(X方向)となる。したがって、頂点36c近傍にて最も強い近接場光の放射が起こる。すなわち、磁気ディスクの記録層部分を光により加熱する熱アシスト作用において、この頂点36c近傍と対向する部分が、主要な加熱作用部分となる。
この近接場光の電界強度は、入射光に比べて桁違いに強く、この非常に強力な近接場光が、磁気ディスク表面の対向する局所部分を急速に加熱する。これにより、この局所部分の保磁力が、書き込み磁界による書き込みが可能な大きさまでに低下するので、高密度記録用の高保磁力の磁気ディスクを使用しても、電磁コイル素子34による書き込みが可能となる。なお、近接場光は、媒体対向面Sから磁気ディスクの表面に向かって、10〜30nm程度の深さまで到達する。従って、10nm又はそれ以下の浮上量である現状において、近接場光は、十分に記録層部分に到達することができる。また、このように発生する近接場光のトラック幅方向の幅や媒体移動方向の幅は、上述の近接場光の到達深さと同程度であって、また、この近接場光の電界強度は、距離が離れるに従って指数関数的に減衰するので、非常に局所的に磁気ディスクの記録層部分を加熱することができる。
図9〜図13は、近接場光発生部36への入射光の波長λ(nm)と近接場光強度I(a.u.)との関係をシミュレーションした結果である。シミュレーションの条件としては、近接場光発生部36の頂点36cの角度βを60度とした。近接場光発生部36の材料は、図9〜13の順にそれぞれ、Al,Cu,Ag,Au,Auとした。また、長さH36は、図9〜12がすべて100nmであり、図13が200nmとした。
図9〜図13に示すように、近接場光強度は、特定の入射光の波長でピーク値となることがわかる。図9〜図12の結果より、近接場光発生部36の形状が同一であっても、近接場光発生部36を構成する金属材料の種類によって、近接場光強度がピークとなる入射光の波長が異なることがわかる。具体的には、近接場光発生部36の長さH36が100nmである場合、近接場光強度が最大となる入射光の波長は、近接場光発生部36を構成する金属材料がAl,Cu,Ag,Auの順に、それぞれ、390nm、640nm、560nm、630nmとなる。
また、図12及び図13の結果より、近接場光発生部36を構成する金属材料が同一であっても、近接場光発生部36の形状により、近接場光強度がピークとなる入射光の波長が異なることがわかる。具体的には、近接場光発生部36を構成する金属材料がAuである場合、近接場光強度が最大となる入射光の波長は、近接場光発生部36の長さH36が100nm、200nmの順に、それぞれ630nm、830nmとなる。
このシミュレーション結果から明らかなように、近接場光発生部36の形状や金属材料を適宜選択することにより、近接場光強度がピークとなる入射光の波長を広い範囲で決定することができる。そして、本実施形態では、レーザダイオード40の出射光が近接場光発生部36に到達する直前の波長をλinとし、一定強度の照射光を近接場光発生部36に照射した際に最も高強度の近接場光を発生させることが可能な照射光の波長(つまり、照射光が照射された際に近接場光発生部36から発生する近接場光の発生効率が最大となる照射光の波長)をλmaxとしたとき、λin<λmaxとなるように、近接場光発生部36の形状と金属材料、及びレーザダイオード40の種類等を選択している。例えば、近接場光発生部36として図9に示すシミュレーション条件の形状及び材質である場合、λinの値は390nm未満、好ましくは300〜390nmとなるようにする。
なお、レーザダイオード40の出射光が近接場光発生部36に到達する直前の波長λinとは、本実施形態においては、レーザダイオード40から出射された直後の出射光の波長λの値を、コア35を構成する材料の屈折率nの値で除した値となる。即ち、λin=λ/nである。
上述のように、近接場光発生部36の形状と金属材料、及びレーザダイオード40の種類を選択することにより、熱アシスト磁気記録の実行中に、レーザダイオード40の温度が上昇してその出射光の強度が低下しても、近接場光強度の低下を十分に防止することができる。即ち、レーザダイオードは一般的に、素子の温度が上昇すると、出射光の強度が低下すると共に、その出射光の波長が長波長側へシフトする。そのため、本実施形態においては、レーザダイオード40の出射光の強度が低下しても、その出射光は、近接場光の発生効率が高くなるように波長が長波長側へシフトする。その結果、レーザダイオード40の出射光の強度低下を、近接場光発生部36からの近接場光発生効率の上昇で補償することができるため、近接場光強度の低下を十分に防止することができる。そして、磁気記録媒体の記録領域Rを十分に加熱して、その保磁力を十分に減少させることが可能なため、書き込み不良の発生を十分に防止することができる。
このような近接場光強度の低下防止は、レーザダイオード40の近傍に温度検出器を配置し、その測定温度を基にしてレーザダイオード40の電源部にフィードバックをかけて出射光強度を調整することによっても達成することができる。しかし、そのような方法を採用すると、装置構成が複雑になり、製造時の歩留まりが低下する可能性がある。それに対して、本実施形態においては、温度検出器等の特別の部材を設けずに、単に近接場光発生部36の形状と金属材料、レーザダイオード40の種類、及びコア35を構成する材料を適切に選択することで、レーザダイオード40の出射光強度の調整を行うのと同等の効果を得ることができる。そのため、装置構成を複雑化させることはなく、製造時の歩留り低下の問題も発生しない。
(光源ユニット)
次いで、図3及び図4を再び参照して、熱アシスト磁気ヘッド21の光源ユニット23の構成要素について説明する。
光源ユニット23は、光源支持基板230、及び、外形形状が板状のレーザダイオード(発光素子)40を主として備えている。
光源支持基板230はアルティック(Al−TiC)等からなる基板であり、スライダ基板220の背面2201に接着している接着面2300を有している。接着面2300にはアルミナ等の断熱層230aが形成されている。この接着面2300を底面とした際の一つの側面である素子形成面2302上に、アルミナ等の絶縁材料から形成された絶縁層41が設けられており、この絶縁層41の上に、電極パッド47、48が形成され、電極パッド47上にレーザダイオード40が固定されている。
電極パッド47、48は、絶縁層41の表面かつ媒体対向面Sと交差する面411、言い換えると、スライダ基板220の集積面2202と平行な面411上に、レーザ駆動用に形成されている。
電極パッド47は、図4に示すように、絶縁層41内に設けられたビアホール47aにより光源支持基板230と電気的に接続されている。また、電極パッド47は、レーザダイオード40駆動時の熱をビアホール47aを介して光源支持基板230側へ逃がすためのヒートシンクとしても機能する。
電極パッド47は、図3に示すように、絶縁層41の面411の中央部にトラック幅方向に伸びて形成されている。一方、電極パッド48は、電極パッド47からトラック幅方向に離間した位置に形成されている。各電極パッド47、48は、半田リフローによるフレクシャ201との接続のために、さらに、フレクシャ201側に向かって延びている。
電極パッド47、48は、それぞれ、フレクシャ201の電極パッド247、248とリフロー半田により電気的に接続されており、これにより光源の駆動が可能となっている。また、電極パッド47は上述のように光源支持基板230と電気的に接続されているため、電極パッド247により光源支持基板230の電位を例えばグラウンド電位に制御することが可能となっている。
電極パッド47、48は、例えば、厚さ10nm程度のTa、Ti等からなる下地層を介して形成された、厚さ1〜3μm程度の、例えば真空蒸着法やスパッタリング法等を用いて形成されたAu、Cu等の層から形成することができ。
そして、レーザダイオード40は、電極パッド47の上にAu−Sn等の導電性の半田材料からなる半田層42(図4参照)により電気的に接続されている。このとき、レーザダイオード40は、電極パッド47の一部のみを覆うように電極パッド47に対して配置されている。
図14は、レーザダイオード40の斜視図である。
レーザダイオード40は、通常、光学系ディスクストレージに使用されるものと同じ構造を有していてよく、例えば、n電極40aと、n−GaAs基板40bと、n−InGaAlPクラッド層40cと、第1のInGaAlPガイド層40dと、多重量子井戸(InGaP/InGaAlP)等からなる活性層40eと、第2のInGaAlPガイド層40fと、p−InGaAlPクラッド層40gと、n−GaAs電流阻止層40hと、p−GaAsコンタクト層40iと、p電極40jとが順次積層された構造を有する。これらの多層構造の劈開面の前後には、全反射による発振を励起するためのSiO、Al等からなる反射膜50及び51が成膜されており、レーザ光が放射される出光端400には、一方の反射膜50における活性層40eの位置に開口が設けられている。このようなレーザダイオード40は、膜厚方向に電圧が印加されることにより、出光端400からレーザ光を出射する。
放射されるレーザ光の波長λに関しては、上述のように近接場光発生部36の形状及び金属材料、及びコア35を構成する材料の屈折率nを考慮して、適当な波長λのレーザ光を出射するレーザダイオードを選択する。即ち、レーザダイオード40の出射光が近接場光発生部36に到達する直前の波長をλinとし、一定強度の照射光を近接場光発生部36に照射した際に最も高強度の近接場光を発生させることが可能な照射光の波長をλmaxとしたとき、λin<λmaxの関係を満たすようにする。
レーザダイオード40の大きさは、上述したように、例えば、幅(W40)が200〜350μm、長さ(奥行き、L40)が250〜600μm、厚み(T40)が60〜200μm程度である。ここで、レーザダイオード40の幅W40は、電流阻止層40hの対向端の間隔を下限として、例えば、100μm程度までに小さくすることができる。ただし、レーザダイオード40の長さは、電流密度と関係する量であり、それほど小さくすることはできない。いずれにしても、レーザダイオード40に関しては、搭載の際のハンドリングを考慮して、相当の大きさが確保されることが好ましい。
また、このレーザダイオード40の駆動においては、ハードディスク装置内の電源が使用可能である。実際、ハードディスク装置は、通常、例えば2V程度の電源を備えており、レーザ発振動作には十分の電圧を有している。また、レーザダイオード40の消費電力も、例えば、数十mW程度であり、ハードディスク装置内の電源で十分に賄うことができる。
レーザダイオード40のn電極40aが電極パッド47にAuSn等の半田層42(図4参照)により固定されている。ここで、レーザダイオード40の出光端(光出射面)400が図4の下向き(−Z方向)、すなわち出光端400が接着面2300と平行になるようにレーザダイオード40が光源支持基板230に固定されており、出光端400はスライダ22の導波路35の光入射面354と対向可能となっている。実際のレーザダイオード40の固定においては、例えば、電極パッド47の表面に厚さ0.7〜1μm程度のAuSn合金の蒸着膜を成膜し、レーザダイオード40を乗せた後、熱風ブロア下でホットプレート等による200〜300℃程度までの加熱を行って固定すればよい。
また、電極パッド48と、レーザダイオード40のp電極40jと、がボンディングワイヤにより電気的に接続されている。なお、ボンディングワイヤを使用せず、絶縁層41に段差を設けて電極パッド48とレーザダイオード40のp電極40jとの距離を近づけ、これらをAuSn等の半田で電気的に接続してもよい。また、電極パッド47と接続される電極は、n電極40aでなくp電極40jでもかまわず、この場合、n電極40aが電極パッド48とボンディングワイヤ等により接続される。
ここで、上述したAuSn合金による半田付けをする場合、光源ユニットを例えば300℃前後の高温に加熱することになるが、本実施形態によれば、この光源ユニット23がスライダ22とは別に製造されるため、スライダ内の磁気ヘッド部がこの高温の悪影響を受けずに済む。
そして、上述のスライダ22の背面2201と光源ユニット23の接着面2300とが、例えば、UV硬化型接着剤等の接着剤層44(図4参照)により接着されており、レーザダイオード40の出光端400が導波路35の光入射面354と対向するように配置されている。
なお、レーザダイオード40及び電極パッドの構成は、当然に、上述した実施形態に限定されるものではなく、例えば、レーザダイオード40は、GaAlAs系等、他の半導体材料を用いた他の構成のものであってもよい。さらに、レーザダイオード40と電極との半田付けに、他のろう材を用いて行うことも可能である。さらにまた、レーザダイオード40を、ユニット基板上に直接、半導体材料をエピタキシャル成長させることによって形成してもよい。
(製造方法)
続いて、上述の熱アシスト磁気ヘッドの製造方法について簡単に説明する。
まず、スライダ22を製造する。具体的には、スライダ基板220を用意し、公知の方法を用いてMR効果素子33及び素子間シールド層148を形成し、さらに下地としてアルミナ等の絶縁層38を形成する。
続いて、導波路35及び近接場光発生部36を形成する。この工程を、図15及び図16を参照して詳しく説明する。
図15及び図16は、導波路35及び近接場光発生部36の形成方法の一実施形態を説明する斜視図である。
まず、図15の(A)に示すように、最初に、Al等の絶縁層38a上に、導波路35の一部となる、絶縁層38aよりも屈折率の高いTa等の誘電体膜35aを成膜し、その上に、Au等の金属層36aを製膜し、その上に、リフトオフ用の底部が窪んだレジストパターン1002を形成する。
次いで、図15の(B)に示すように、イオンミリング法等を用いて、レジストパターン1002の直下を除いて、金属層36aの不要部分を除去することにより、誘電体膜35aの上に下部が広い台形状の金属層36aが積層されたパターンが形成される。
その後、図15の(C)に示すように、レジストパターン1002を除去した後に、台形状の金属層36aの両斜面側からそれぞれイオンミリング法等により各斜面の一部をそれぞれ除去して、断面三角形状の金属層36aを形成する。
続いて、図15の(D)に示すように、金属層36aを覆うように誘電体膜35a上に誘電体膜35aと同じ材料による誘電体膜35bを成膜し、将来媒体対向面が形成される側に金属層36aの端面を形成するためのレジストパターン1003を積層し、図16の(A)に示すように、将来媒体対向面が形成される側とは反対側において、金属層36a及び誘電体膜35bをイオンミリング法等により除去し、その後、除去した部分に誘電体膜35bと同じ材料により誘電体膜35cを成膜する。
さらに、図16の(B)に示すように、誘電体膜35b、35c上に、さらに、誘電体膜35bと同じ材料により誘電体膜35dを積層し、所定の幅となるように、誘電体膜35a,35b,35c,35dをパターニングすることにより、導波路35がほぼ完成する。
さらに、その後、図16の(C)に示すように、導波路35を覆うように絶縁層38aと同じ材料で絶縁層38bを更に形成することにより、クラッド層としての絶縁層38が完成する。そして、後述するように金属層36aが露出している側から所定距離ラッピングすることにより所定の厚みの近接場光発光部36及び媒体対向面Sが形成されるのである。
以上の工程により、近接場光発生部36を備えた導波路35を形成することができる。
その後、図4に示すように公知の方法により、電磁コイル素子34を形成し、その後、アルミナ等による絶縁層38を形成し、接続のための電極パッド371等を形成し、その後エアベアリング面やその裏面のラッピングを行うことによりスライダ22が完成する。この後、スライダ22の電磁コイル素子34やMR効果素子33のテストを各スライダごとに行い、良品を選別する。
続いて、光源ユニット23を製造する。まず、図4に示すように、アルティック製等の光源支持基板230を用意し、その表面に公知の方法により断熱層230a、絶縁層41及び電極パッド47、48を形成し、電極パッド47の上にレーザダイオード40をAuSn等の導電性の半田材により固定し、その後、基板の切断分離等により所定の大きさに整形する。これにより、光源ユニット23が完成する。このようにして得た光源ユニットも、レーザダイオードの特性評価、特に、高温連続通電試験による駆動電流のプロファイルを観察し、十分に寿命が長いと考えられるものを選択する。
その後、図17(A)に示すように、良品とされた光源ユニット23の接着面2300と、良品とされたスライダ22の背面2201のいずれか又は両方にUV硬化型接着剤44aを塗布する。UV硬化型接着剤としては、UV硬化型エポキシ樹脂や、UV硬化型アクリル樹脂等が挙げられる。
そして、図17(B)に示すように、光源ユニット23の接着面2300とスライダ22の背面2201とを重ね合わせた後、電極パッド47,48間に電圧を印加してレーザダイオード40を発光させると共に、導波路35の光出射面353に光検出器DTを対向配置し、光源ユニット23とスライダ22とを相対的に図17(B)の矢印方向に移動させ、最も光検出器DTの出力が高くなる位置を探し出し、その位置で、外部からUV硬化型接着剤に紫外線を照射することによりUV硬化型接着剤44aを硬化させ、これによりレーザダイオードの光軸と導波路35の光軸とを合わせた状態で光源ユニット23とスライダ22との接着をすることができる。
続いて、本実施形態にかかる熱アシスト磁気ヘッド21の作用について説明する。
書き込み又は読み出し動作時には、熱アシスト磁気ヘッド21は、回転する磁気ディスク(媒体)10の表面上において流体力学的に所定の浮上量をもって浮上する。この際、MR効果素子33及び電磁コイル素子34の媒体対向面S側の端が磁気ディスク10と微小なスペーシングを介して対向することによって、データ信号磁界の感受による読み出しとデータ信号磁界の印加による書き込みとが行われる。
ここで、データ信号の書き込みの際、光源ユニット23からコア35を通って伝播してきたレーザ光が近接場光発生部36に到達し、近接場光発生部36から近接場光が発生する。この近接場光によって、熱アシスト磁気記録を行うことが可能となる。
熱アシスト磁気記録方式を採用することにより、高保磁力の磁気ディスクに垂直磁気記録用の薄膜磁気ヘッドを用いて書き込みを行い、記録ビットを極微細化することによって、例えば、1Tbits/in級の記録密度を達成することも可能となり得る。
そして、本実施形態では、光源ユニット23を用いることによって、スライダ22のコア35の光入射面(端面)354に、コア35の層面に平行な方向に伝播するレーザ光を入射させることができる。すなわち、集積面2202と媒体対向面Sとが垂直である構成を有する熱アシスト磁気ヘッド21において、適切な大きさ及び方向を有するレーザ光が、確実に供給可能となる。その結果、磁気ディスクの記録層の加熱効率が高い熱アシスト磁気記録を実現可能とする。
そして、本実施形態によれば、磁気ヘッド部32がスライダ基板220に固定され、光源であるレーザダイオード40が光源支持基板230にそれぞれ別に固定されているので、スライダ基板220に固定された電磁コイル素子34と、光源支持基板230に固定されたレーザダイオード40とをそれぞれ独立に試験した上で、良品であるスライダ22と良品である光源ユニット23とを互いに固定することにより良品である熱アシスト磁気ヘッド21を歩留まり良く製造できる。
また、磁気ヘッド部32がスライダ基板220の側面に設けられているので、従来の薄膜磁気ヘッドの製造方法を用いて磁気ヘッド部32の電磁コイル素子34やMR効果素子33等を容易に形成できる。
さらに、レーザダイオード40が媒体対向面Sから離れた位置かつスライダ22の近傍にあるので、レーザダイオード40から発生する熱による電磁コイル素子34やMR効果素子33等への悪影響やレーザダイオード40と磁気ディスク10との接触等の可能性が抑制されると共に、光ファイバ、レンズ、ミラー等が必須では無いので光の伝播損失が低減でき、さらに、磁気記録装置全体の構造も簡単にできる。
また、本実施形態では、光源支持基板230の裏面に断熱層230aが形成されているので、レーザダイオード40から発生する熱がより一層スライダ22に伝導しにくくなっている。
また、上記実施形態では、スライダ基板220と光源支持基板230とには、同じアルティック製の基板を採用しているが、異なる材料の基板を用いることも可能である。この場合でも、スライダ基板220の熱伝導率をλs、光源支持基板230の熱伝導率をλlとすると、λs≦λlを満たすようにすることが好ましい。これにより、レーザダイオード40が発生する熱を、なるべくスライダ基板220に伝わらないようにしつつ光源支持基板230を通して外部に逃がすことが容易となる。
なお、スライダ22及び光源ユニット23の大きさは任意であるが、例えば、スライダ22は、トラック幅方向の幅700μm×長さ(奥行き)850μm×厚み230μmの、いわゆるフェムトスライダであってもよい。この場合、光源ユニット23は、これとほぼ同じ幅及び長さを有することができる。実際、例えば、通常用いられるレーザダイオードの典型的な大きさは、幅250μm×長さ(奥行き)350μm×厚み65μm程度であり、例えば、この大きさの光源支持基板230の側面にこの大きさのレーザダイオード40を設置することが、十分に可能となっている。なお、光源支持基板230の底面に溝を設け、この溝内にレーザダイオード40を設けることも可能である。
また、導波路35の光入射面354に達したレーザ光の遠視野像(ファーフィールドパターン)のスポットにおいて、トラック幅方向の径を、例えば0.5〜1.0μm程度とし、この径に直交する径を、例えば1〜5μm程度とすることができる。これに対応して、このレーザ光を受け取る導波路35の厚みT35を、例えばスポットよりも大きな2〜10μm程度とし、導波路35のトラック幅方向の幅(W35)を、例えば1〜200μm程度とすることが好ましい。
また、電磁コイル素子34が、長手磁気記録用であってもかまわない。この場合、主磁極層340及び補助磁極層344の代わりに、下部磁極層及び上部磁極層が設けられ、さらに、下部磁極層及び上部磁極層の媒体対向面S側の端部に挟持された書き込みギャップ層が設けられる。この書き込みギャップ層位置からの漏洩磁界によって書き込みが行われる。
また、近接光発生部の形状も、上述のものに限られず、たとえば、三角形でなく頂点36cが平らになった台形状でも実施可能であり、また、三角形状または台形状の板を、その頂点同士または短辺同士が所定距離離間して対向するように一対配置した、いわゆる「蝶ネクタイ型」構造でも実施可能である。
図18は、「蝶ネクタイ型」構造の近接場光発生部36の斜視図である。一対の近接場光発生部36がX軸に沿って対向して配置されており、その頂点36c同士が所定の間隔を隔てて突き合されている。この「蝶ネクタイ型」構造においては、頂点36c間の中心部に非常に強い電界の集中が発生し、近接場光が生じる。
また、光源支持基板230を設けない構成も可能である。その場合の具体例を図19に示す。
図19は、上述の実施形態の変形例に係る磁気ヘッドの断面図であり、上述の実施形態の図4に対応するものである。この磁気ヘッド21aは、上述の実施形態と異なり、光源支持基板230を備えていない。そして、コア35のX方向の両側に設けられた絶縁層(クラッド)38のうち、コア35よりも−X方向にある38aのZ方向の高さが、上述の実施形態よりも低くなっている。また、コア35のZ方向の端部の側面には、回折格子部35aが設けられている。また、絶縁層38aの上部には、ミラー部39が設けられている。
この磁気ヘッド21aでは、レーザダイオード40からの出射光60は、図19のX方向から−X方向に進み、ミラー部39で反射し、回折格子部35aの光入射面354aから入射する。回折格子35aは、光入射面354aから入射した光を図19の−Z方向に曲げる効果を有するものであり、レーザダイオードからの出射光60は、コア35内に導かれる。この際、レーザダイオードは、図1におけるHGA17、駆動アーム14又はピボッドベアリング軸16の上面等に配置することができる。このような構成であっても、本発明による効果を発揮することが可能である。
また、コア35を設けずに、この部分に磁気ヘッド部32内にレーザダイオードの出射光を略透過させる透明材料で構成した透過部分を設け、出射光をレンズ等で集光してその透過部分を透過させ、近接場光発生部36に照射する構成にしてもよい。
また、コイル層342は、図4等において1層であるが、2層以上又はヘリカルコイルでもよい。
また、断熱層230aは、スライダ基板220の背面2201に形成されていてもよく、全く設けなくても実施は可能である。
また、光源ユニット23とスライダ22との接着に、UV硬化型接着剤以外の接着剤例えば、レーザダイオード40と電極パッド47との接着に用いたAuSn等の半田層を用いても実施は可能である。
また、上述の例では、コア35の形状として直線導波路を用いたが、これはYZ平面内における外形形状が放物線を描くパラボラ型の導波路とし、その焦点位置に近接場光発生部を配置してもよく、また、YZ平面内における外形形状を楕円形状などとしてもよい。なお、上記熱アシスト磁気ヘッド及びHGAを備えたハードディスク装置では、記録動作中にレーザダイオード素子の温度が上昇してその出射光強度が低下しても、記録媒体の加熱不足を防止することができる。
以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
実施の形態に係るハードディスク装置の斜視図である。 HGA17の斜視図である。 図1に示した熱アシスト磁気ヘッド21の近傍の拡大斜視図である。 図3に示した熱アシスト磁気ヘッド21のIV−IV矢印断面図である。 熱アシスト磁気ヘッド21の回路図である。 媒体対向面側から見た磁気ヘッド主要部の平面図である。 熱アシスト磁気ヘッド21の主要部の斜視図である。 媒体対向面Sから見た近接場光発生部(プラズモン・プローブ)36の斜視図である。 近接場光発生部36への入射光の波長λ(nm)と近接場光強度I(a.u.)との関係のシミュレーション結果を示すグラフである。 近接場光発生部36への入射光の波長λ(nm)と近接場光強度I(a.u.)との関係のシミュレーション結果を示すグラフである。 近接場光発生部36への入射光の波長λ(nm)と近接場光強度I(a.u.)との関係のシミュレーション結果を示すグラフである。 近接場光発生部36への入射光の波長λ(nm)と近接場光強度I(a.u.)との関係のシミュレーション結果を示すグラフである。 近接場光発生部36への入射光の波長λ(nm)と近接場光強度I(a.u.)との関係のシミュレーション結果を示すグラフである。 レーザダイオード40の斜視図である。 導波路35及び近接場光発生部36の形成方法の一実施形態を説明する斜視図である。 導波路35及び近接場光発生部36の形成方法の一実施形態を説明する斜視図である。 熱アシスト磁気ヘッドの製造方法を示す斜視図である。 「蝶ネクタイ型」構造の近接場光発生部36の斜視図である。 実施形態の変形例に係る磁気ヘッドの断面図である。
符号の説明
1…ハードディスク装置、10…磁気ディスク(記録媒体)、17…ヘッドジンバルアセンブリ(HGA)、20…サスペンション、21…熱アシスト磁気ヘッド、22…スライダ、220…スライダ基板、2202…集積面、23…光源ユニット、230…光源支持基板、32…磁気ヘッド部、33…MR効果素子(磁気検出素子)、34…電磁コイル素子(磁気記録素子)、35…導波路、354…光入射面(端面)、36…近接場光発生部、40…レーザダイオード(光源)、400…出光端、S…媒体対向面。

Claims (5)

  1. 媒体対向面、この媒体対向面の反対側に位置する第1面、及び前記媒体対向面と前記第1面との間に位置する側面を有するスライダ基板と、
    前記媒体対向面側に近接場光発生部と、この近接場光発生部に近接した磁気記録素子とを有し、前記スライダ基板の前記側面の一つに固定された磁気ヘッド部と、
    出射光が前記近接場光発生部に到達するように前記スライダ基板との相対位置が固定されたレーザダイオード素子と、
    を備え、
    前記レーザダイオード素子の出射光が前記近接場光発生部に到達する直前の波長をλinとし、照射光が照射された際に前記近接場光発生部から発生する近接場光の発生効率が最大となる前記照射光の波長をλmaxとしたとき、λin<λmaxであることを特徴とする熱アシスト磁気ヘッド。
  2. 前記磁気ヘッド部は、前記近接場光発生部が形成された光出射面を含む平面導波路のコアをさらに有し、前記レーザダイオード素子の出射光は、前記平面導波路の光入射面に入射することを特徴とする請求項1に記載の熱アシスト磁気ヘッド。
  3. 前記熱アシスト磁気ヘッドは、前記スライダ基板の前記第1面に固定された第2面を有する光源支持基板をさらに備え、
    前記光入射面は、前記光出射面の反対側の面に形成され、
    前記レーザダイオード素子は、前記光入射面に対向して前記光源支持基板に固定されていることを特徴とする請求項1又は2に記載の熱アシスト磁気ヘッド。
  4. 請求項1〜3のいずれか一項に記載の熱アシスト磁気ヘッドと、
    前記熱アシスト磁気ヘッドを支持するサスペンションと、
    を備えたヘッドジンバルアセンブリ。
  5. 請求項4に記載のヘッドジンバルアセンブリと、
    前記媒体対向面に対向する磁気記録媒体と、
    を備えたハードディスク装置。
JP2006355351A 2006-12-28 2006-12-28 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置 Withdrawn JP2008165922A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006355351A JP2008165922A (ja) 2006-12-28 2006-12-28 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US12/003,452 US7876646B2 (en) 2006-12-28 2007-12-26 Thermally assisted magnetic head, head gimbal assembly, and hard disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355351A JP2008165922A (ja) 2006-12-28 2006-12-28 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置

Publications (1)

Publication Number Publication Date
JP2008165922A true JP2008165922A (ja) 2008-07-17

Family

ID=39583525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355351A Withdrawn JP2008165922A (ja) 2006-12-28 2006-12-28 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置

Country Status (2)

Country Link
US (1) US7876646B2 (ja)
JP (1) JP2008165922A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096349A (ja) * 2009-09-30 2011-05-12 Seiko Instruments Inc ヘッドジンバルアセンブリ
JP2011096351A (ja) * 2009-09-30 2011-05-12 Seiko Instruments Inc 記録用フレクシャ、それを備えるヘッドジンバルアセンブリ及び記録用フレクシャの製造方法
JP2011198398A (ja) * 2010-03-17 2011-10-06 Seiko Instruments Inc 近接場光アシスト磁気記録ヘッド、ヘッドジンバルアセンブリ及びそれを備えた情報記録再生装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279721B2 (en) * 2006-03-29 2012-10-02 Panasonic Corporation Near-field recording head capable of directly forming light source in slider
JP4450032B2 (ja) * 2007-08-23 2010-04-14 Tdk株式会社 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
JP5055641B2 (ja) * 2008-06-02 2012-10-24 セイコーインスツル株式会社 情報記録再生装置
JP5330757B2 (ja) * 2008-08-06 2013-10-30 エイチジーエスティーネザーランドビーブイ 磁気記録方法及び磁気記録装置
US7965464B2 (en) * 2008-11-20 2011-06-21 Seagate Technology Llc Heat-assisted magnetic recording with shaped magnetic and thermal fields
JP2010146663A (ja) * 2008-12-19 2010-07-01 Sony Corp 記録再生装置及び記録再生システム
US8000175B2 (en) * 2009-01-30 2011-08-16 Tdk Corporation Thermally assisted magnetic head having a semiconductor surface-emitting laser
US7936643B2 (en) * 2009-02-03 2011-05-03 Tdk Corporation Thermal assisted magnetic recording head having surface-emitting semiconductor laser
US7898909B2 (en) * 2009-02-12 2011-03-01 Tdk Corporation Thermal-assisted magnetic recording head having substrate and light reflection section
US8233358B2 (en) * 2009-06-15 2012-07-31 Headway Technologies, Inc. Plasmon antenna with magnetic core for thermally assisted magnetic recording
US8111591B2 (en) * 2009-07-28 2012-02-07 Tdk Corporation Heat-assisted magnetic recording head having laser diode overlaping two recording wiring layers
US8116173B2 (en) * 2009-07-28 2012-02-14 Tdk Corporation Heat-assisted magnetic recording head with laser diode
US8385159B2 (en) * 2010-05-21 2013-02-26 Seagate Technology Llc Near field transducer with shaped energy radiating end
US8773959B2 (en) * 2010-05-21 2014-07-08 Seagate Technology Llc Near field transducer with shaped energy radiating end
US8240025B2 (en) * 2010-09-23 2012-08-14 Tdk Corporation Method for manufacturing head including light source unit for thermal assist
US8341825B2 (en) * 2010-11-16 2013-01-01 Tdk Corporation Method for manufacturing a thermally-assisted magnetic head
US8384405B2 (en) * 2011-04-20 2013-02-26 Tdk Corporation Method for performing burn-in test
JP6120261B2 (ja) * 2012-10-11 2017-04-26 昭和電工株式会社 磁気記録媒体、磁気記録媒体の製造方法および磁気記録再生装置
US9153275B1 (en) 2014-10-15 2015-10-06 HGST Netherlands B.V. Laser-integrated head gimbal assembly having laser contact protection
US9754617B2 (en) 2015-02-23 2017-09-05 Seagate Technology Llc Laser diode unit with enhanced thermal conduction to slider

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130929B2 (ja) 1990-08-10 2001-01-31 ミネソタ マイニング アンド マニュファクチャリング カンパニー 高い記憶密度と直接重ね書きケイパビリティを有する熱磁気記録システム
JPH10162444A (ja) 1996-07-25 1998-06-19 Hitachi Maxell Ltd 光磁気記録媒体と記録再生方法、及び記録再生装置
US6044056A (en) 1996-07-30 2000-03-28 Seagate Technology, Inc. Flying optical head with dynamic mirror
JP2002512725A (ja) 1998-04-09 2002-04-23 シーゲイト テクノロジー エルエルシー 磁気記録でのレーザアシストによるトラック幅の限定及び放射状の制御
JP2000173093A (ja) 1998-12-07 2000-06-23 Hitachi Ltd 光学素子および情報記録再生装置
JP2001283404A (ja) 2000-03-30 2001-10-12 Toshiba Corp 熱アシスト磁気記録ヘッド及びその製造方法と熱アシスト磁気記録装置
JP4019615B2 (ja) 2000-03-10 2007-12-12 富士ゼロックス株式会社 光磁気素子、光磁気ヘッドおよび磁気ディスク装置
JP3882456B2 (ja) 2000-03-13 2007-02-14 株式会社日立製作所 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
JP3903365B2 (ja) 2001-03-29 2007-04-11 株式会社東芝 光アシスト磁気記録ヘッド及び光アシスト磁気記録装置
AU2003218265A1 (en) 2002-06-28 2004-01-19 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
JP4100133B2 (ja) 2002-11-05 2008-06-11 株式会社日立製作所 記録ヘッドおよびそれを用いた情報記録装置
JP4004984B2 (ja) 2003-03-28 2007-11-07 シャープ株式会社 電磁界発生素子、情報記録再生ヘッドおよび情報記録再生装置
JP4635607B2 (ja) 2004-12-28 2011-02-23 Tdk株式会社 熱アシスト磁気記録ヘッド及び熱アシスト磁気記録装置
KR100738078B1 (ko) * 2005-10-12 2007-07-12 삼성전자주식회사 근접장광발생장치와 이를 채용한 열보조 자기기록헤드
JP4081485B2 (ja) * 2005-11-01 2008-04-23 株式会社日立製作所 熱アシスト記録装置用ヘッド及び熱アシスト記録装置
JP2008159158A (ja) * 2006-12-22 2008-07-10 Tdk Corp 熱アシスト磁気ヘッド
JP2008159192A (ja) * 2006-12-25 2008-07-10 Tdk Corp 近接場光発生板、熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096349A (ja) * 2009-09-30 2011-05-12 Seiko Instruments Inc ヘッドジンバルアセンブリ
JP2011096351A (ja) * 2009-09-30 2011-05-12 Seiko Instruments Inc 記録用フレクシャ、それを備えるヘッドジンバルアセンブリ及び記録用フレクシャの製造方法
JP2011198398A (ja) * 2010-03-17 2011-10-06 Seiko Instruments Inc 近接場光アシスト磁気記録ヘッド、ヘッドジンバルアセンブリ及びそれを備えた情報記録再生装置

Also Published As

Publication number Publication date
US20080158709A1 (en) 2008-07-03
US7876646B2 (en) 2011-01-25

Similar Documents

Publication Publication Date Title
JP4364912B2 (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7876646B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
JP4539672B2 (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7940486B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
JP4450032B2 (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7804655B2 (en) Thermally assisted magnetic head
JP4359323B2 (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7974043B2 (en) Thermally assisted magnetic head
US7957085B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
JP2008059696A (ja) 熱アシスト磁気ヘッド
US8243388B2 (en) Heat-assisted magnetic head constituted of slider and light source unit, and manufacturing method of the head
JP2008159192A (ja) 近接場光発生板、熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
US8094523B2 (en) Heat-assisted magnetic recording medium and magnetic recording apparatus with the medium
US8076246B2 (en) Method of manufacturing thermally assisted magnetic head
JP2008159158A (ja) 熱アシスト磁気ヘッド
JP2008016096A (ja) 熱アシスト磁気記録用光源ユニット及び該ユニットを備えた薄膜磁気ヘッドの製造方法
JP2007335027A (ja) 熱アシスト磁気記録用光源ユニット
JP4752756B2 (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ、ハードディスク装置及び熱アシスト磁気ヘッドの製造方法
JP2008010093A (ja) 熱アシスト磁気記録用薄膜磁気ヘッド
JP2008152868A (ja) 熱アシスト磁気ヘッド
JP2008059691A (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
JP2008152869A (ja) 熱アシスト磁気ヘッド
JP2008059693A (ja) 熱アシスト磁気ヘッド
JP2009043368A (ja) 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
JP2008010027A (ja) 熱アシスト磁気記録用光源ユニット

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302