以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の図面の記載において、同じ要素又は類似する要素には、同じ又は類似の符号を付しており、説明を省略する場合がある。
本発明の実施の形態に係る近接場光検出素子である再生ヘッドの形態について、図1及び図2を用いて説明する。図1は、本発明の実施の形態における再生ヘッドの概略構成を示す斜視図であり、図2は、図1に示すy方向から見た再生ヘッドの断面図である。なお、図2においては、説明を容易にするために、電源9、電流検出素子10、制御部12、反射光13は省略されている。この点に関しては、後述する各図も同様である。
図1に示すように、本実施の形態の再生ヘッドは、導電性の散乱体1、半導体レーザ等からなる光源6、散乱体1の近接場光が発生する領域(近接場光発生領域)に設けられた光電変換素子7、散乱体1等を担持する透明基板8、光電変換素子7に電流を流すための電源9、光電変換素子7に流れる電流を検出する電流検出素子10、及び散乱体1と記録媒体5との間隔を一定に保つ制御等を行う制御部12を備える。
光源6から出射される入射光2は、レンズ等の集光素子(図示省略)を通り、透明基板8を経て散乱体1に達し、透明基板8は、光源6から出射された光を散乱体1に導く導波部材として機能する。ここで、散乱体1及び光電変換素子7を光源6の光の出射面近傍に配置した場合、集光素子や透明基板8が不要となる。また、情報記録媒体である記録媒体5が書換え可能な材料からなる場合、後述する近接場光により、記録マーク4が消去されることを防ぐため、入射光2の強度は、適宜調節する必要がある。
光源6は、x方向に偏光した入射光2を散乱体1に照射し、一定強度の近接場光を散乱体1の近傍に発生させる。また同時に、電源9から光電変換素子7に一定のバイアス電圧を加えるとともに、記録マーク4が記録済みの記録媒体5に散乱体1を近接させて一定の距離を保ちながら、散乱体1を記録媒体5に対してx方向に相対的に移動させる。
また、透明基板8下面からの反射光13の光量が再生ヘッド(散乱体1)と記録媒体5との距離により敏感に変化するので、この全反射光量を制御部12内部の光検出器によりモニタし、制御部12内部の制御回路にフィードバックすることにより、散乱体1と記録媒体5の距離を一定に保つことができる。なお、散乱体1と記録媒体5との距離の制御方法は、上記の例に特に限定されず、他の制御方法を用いてもよい。
このとき、記録媒体5では、記録される情報に応じて、すなわち、記録マーク4の位置に応じて、記録媒体5上の誘電率が変化し、この誘電率の変化により散乱体1から発生される近接場光の強度が変化する。したがって、散乱体1と記録マーク4との相対的な位置関係の違いにより、近接場光の強度が変化する。一方、光電変換素子7の電気伝導率は、近接場光の強度変化に応じて変化するので、その電気伝導率変化を、光電変換素子7を流れる電流の変化として電流検出素子10により検出することにより、記録マーク4を検出することができ、記録媒体5から情報を高いS/N比で再生することができる。
また、本実施の形態では、図2に示すように、散乱体1及び光電変換素子7を透明基板8内に埋め込み、透明基板8及び散乱体1の双方の記録媒体5側の表面が同一平面になる構成とした。これにより、散乱体1の磨耗を防ぐことができる。
次に、散乱体1についてさらに詳細に説明する。散乱体1は、近接場光を発生する頂点3に向かい幅が狭くなる形状を有しており、具体的には、その頂点3の中心角の二等分線がx方向と一致する扇形膜とした。この散乱体1に、x方向に偏光した、適当な波長を持つ光を入射すると、散乱体1に表面プラズモンが誘起され、特に、散乱体1の頂点3付近に強い近接場光を発生させることができる。ここで、散乱体1近傍の近接場光発生領域は、例えば、散乱体1から100nm以内の領域であり、好ましくは、散乱体1から50nm以内の領域であり、より好ましくは、散乱体1から40nm以内の領域である。
散乱体1の材料としては、入射光2の周波数に対する誘電率の実数部が負である半導体材料が、表面プラズモン共鳴を誘起する上で望ましい。例えば、Au、Ag、Al、Pt、Cu、Mo、Ni、Mg、Ir等の材料では、可視光から赤外光までの周波数帯で誘電率の実数部が負になり、半導体レーザを光源として用いることができるので、好適である。
これらの材料の紫外域以下の周波数帯では、金属の誘電率の実数部が正となり、光に対し通常の誘電体として振舞うので、プラズモン共鳴が起こらない。また、中赤外域から遠赤外域以上の周波数帯では、表面プラズモンの波長と振動数との関係が、伝播光のそれとほぼ等しくなるため、光の局在効果及び増強効果が小さくなってしまう。以上のことを鑑みて、入射光の波長は、400nm〜2μmであることが好ましく、500nm〜1μmであることがより好ましい。
上記のようにして発生した近接場光の広がり寸法は、入射光の波長ではなく、散乱体1の形状及び寸法で決まる。本実施の形態では、近接場光の広がり寸法は、扇型膜の散乱体1の頂点3の先端径(直径)に依存しており、先端径を入射光の波長よりも小さくすることが好ましく、先端径を10nm以下にすることがより好ましい。この場合、回折限界以下の近接場光スポットを形成することができ、かつ近接場光の高出力化を図ることができる。扇型膜の散乱体1の頂点3の寸法によっては、入射光2の強度に対して数百〜数千倍の近接場光を出力することも可能となる。
なお、散乱体1の形状は、近接場光を発生させるための頂点を持つ形状であればよく、例えば一つの頂点に向かい幅が小さくなる形状であることが好ましいが、ここに示した扇形に限るものではない。例えば、一つの頂点に向かい幅が同じであるロッド形状のものでもよいが、一つの頂点に向かい幅が小さくなる形状の方が、プラズモン共鳴を起こす波長域を広くする効果がある。また、その近接場光を発生させる頂点をできるだけ先鋭化することが、より広がりの小さな近接場光を発生させる上で望ましい。
また、散乱体1に効率よく近接場光を発生させるためには、入射光2の偏光方向を、散乱体1の頂点3の中心角の二等分線の方向、すなわちx方向に一致させ、また、その波長を、散乱体1の材料、形状及び寸法、並びに周囲の物質の誘電率で決まる表面プラズモンの共鳴条件を満たす周波数に対応させることが望ましい。なお、表面プラズモンの共鳴条件を満たす波長を持つ光源がない場合は、逆に所望の波長で共鳴条件を満たすように、散乱体1の材料、形状及び寸法、並びに周囲の物質の誘電率を調整すればよい。
次に、光電変換素子7について詳細に説明する。光電変換素子7は、照射される光の強度によりその電気伝導率が変化する材料、すなわち、近接場光の強度変化に応じて電気伝導率が変化する半導体材料からなることが好ましく、例えば、入射光2の波長が630nmの場合、吸収端の波長が630nm以上のInSb、PbSe、PbTe、InAs、Ge、GaSb、Si、InP、GaAs、CdTe、AlSb、CdSe等を用いることができる。
また、光電変換素子7は、入射光2の波長に対し実質的に透明で、かつ、多光子吸収過程(例えば、2光子吸収過程)による入射光2の吸収が可能である材料からなることがより好ましい。ここで、実質的に透明とは、光の吸収率が5%以下であり、望ましくは1%以下であることを意味する。例えば、入射光2の波長が630nmの場合、吸収端の波長が315nmから630nmまでの間にある、GaP、CdS、ZnS、Fe2O3、Cu2O3、In2O3、WO3、Fe2TiO3、PbO、V2O5、FeTiO3、Bi2O3、Nb2O3、TiO2、SrTiO3、ZnO、BaTiO3、CaTiO3、KTaO3、SnO2等を用いると有効である。この場合、光電変換素子7のうち、光強度の強い部分でのみ電気伝導率が変化する。すなわち、散乱体1による強い近接場光の強度変化でのみ電気伝導率が変化するので、入射光2のうち光電変換素子7に直接入射した成分や、弱い散乱光、反射光等の背景光の影響を受けにくくなり、再生時のS/N比低下を防ぐことができる。
上記のように、散乱体1と記録マーク4との相対的な位置関係の違いから近接場光の強度が変化するので、それに伴い光電変換素子7に誘起される光キャリア濃度が変化し、結果的に電気伝導率が変化する。したがって、上記の材料からなる光電変換素子7の両端に、電源9により一定のバイアス電圧をかけておけば、その電気伝導率の変化を電流の変化として電流検出素子10にて検出し、情報を再生することができる。
また、光電変換素子7が導電性の高い材料からなる場合は、散乱体1の近接場光の発生を抑制する恐れがある。この場合は、図2に示すように、散乱体1と光電変換素子7との間に一定の間隔を設ければよい。
光電変換素子7を形成する領域は、散乱体1の近接場光発生領域のみとすることが望ましい。具体的には、散乱体1から30nm以内に光電変換素子7を形成することが望ましく、散乱体1から10nm以内に光電変換素子7を形成することがより望ましい。例えば、散乱体1から30nm以内とは、散乱体1と光電変換素子7との最短距離が30nm以下であることを意味する。この場合、光電変換素子7に照射される光のうち、散乱体1からの近接場光の強度が最も大きくなり、近接場光以外の光、すなわち入射光2のうち光電変換素子7に直接照射された成分や、入射光2のうち散乱体1からはみ出して散乱体1以外のもの(例えば記録媒体5)に照射されて散乱された光が、背景光となって再生時のS/N比が低下することを防ぐことができる。
次に、散乱体1と記録媒体5との距離と、再生信号との関係について詳細に説明する。散乱体1と記録媒体5との距離が近接しているほど、近接場光と記録マーク4との相互作用が大きくなり、それに伴う近接場光の強度変化も大きくなるので、散乱体1と記録媒体5とが近接していることが、再生時の高いS/N比を得る上で望ましい。しかし、近接するほど、その距離を一定に保つことが難しくなるだけでなく、再生時に近接場光により記録マーク4や未記録部が変化してしまう可能性があるので、散乱体1と記録媒体5の距離は、必要なS/N比と記録媒体5の特性とを考慮し、適宜決めればよい。
実際に、単一記録マークを散乱体1に対して相対運動させた時の、散乱体1付近の光強度変化を求めるため、FDTD法(時間領域差分法)を用いて電磁場解析を行った。まず、図3を用いて、その解析モデルを説明する。
図3に示すように、散乱体1の形状は、扇型形状であり、その半径、先端径、中心角及び膜厚をそれぞれl、d、θ、tとすると、(l,d,θ,t)=(100nm,10nm,60°,30nm)とした。散乱体1は、透明基板8に埋め込まれ、散乱体1及び透明基板8の−z側の面が同一平面となる構成とした。記録媒体5の膜厚を20nmとし、記録媒体5と散乱体1との距離を5nmとした。記録マーク4の形状は、記録媒体5に埋め込まれた円柱状であるとし、その直径を20nm、その膜厚を記録媒体5と同じ20nmとした。
散乱体1、透明基板8及び記録媒体5の材料は各々、金、SiO2、アモルファス状態のGeSbTe相変化材料とし、記録マーク4は、結晶状態のGeSbTeとした。散乱体1の扇形の中心角の二等分線の方向にx軸をとり、散乱体1の扇形の頂点のうち、最も+z側にある点をx座標、y座標、z座標の原点とした。
入射光2は、x方向に偏光した波長830nmの平面波で、+z方向から−z方向に向けて入射するものとした。また、x軸を+z方向に3nm平行移動した直線をLとした。すなわち、直線Lは、散乱体1の+z側の面の3nm上方の位置を通過する直線であり、この直線Lに沿って光電変換素子7の受光面となる−z側の下面が位置することになる。
上記の条件において、まず、記録マークがない時(記録マーク4が無限遠にある時に相当)の直線L上の光増強度を図4に示す。ここで、光増強度とは、光強度の入射光強度に対する比である。図4から、特に、散乱体1の頂点(位置x=0nm)付近で、近接場光に伴う強い光強度が得られていることが分かる。
次に、単一の記録マーク4が形成された記録媒体5をx方向に移動したとき、直線L上の光強度の変化を考える。記録媒体5の移動中、単一の記録マーク4の中心位置(±z面の円の中心)は、(x,y)=(−100nm,0nm)〜(60nm,0nm)の範囲で−x方向から+x方向へと移動する。記録媒体5の移動の間に、直線L上のx=−1nmの地点(点Pとおく)の光強度の変化を表した図が図5である。なお、図5において、横軸は、記録マーク4の中心のx方向位置座標、縦軸は、記録マーク4が各地点にある時の点Pにおける光強度の、記録マークがないときの点Pの光強度に対する変化率である。
図5から、記録マーク4による、点Pにおける光強度の変調の割合は、記録マーク4の中心のx座標が散乱体1の頂点と一致するときに(記録マーク位置x=0nm)最大となり、約6%となることが分かる。これは、入射光2の強度の約5倍の変化量に相当する。これより、点P付近に光電変換素子7を配置すれば、それを流れる電流の変化により、図5のような信号が得られる。ただし、光電変換素子7の電気伝導率の変化は、光の強度に比例すると仮定し、また、光電変換素子7の存在による近接場光の強度及び分布の変化は考慮していない。
次に、光電変換素子7を配置する領域について説明する。記録マーク4がない時の、x軸、z軸に沿った光増強度をそれぞれ図6、図7に示す。図6、図7から、近接場光が入射光強度に対して大きいのは、x方向、z方向共に、散乱体1からの距離が30nm以内の領域であることが分かる。よって、この場合、近接場光以外の光によるS/N比の低下を防ぐには、光電変換素子7と散乱体1との最短距離が30nm以内となるよう光電変換素子7を配置することが望ましい。
上記のように、本実施の形態では、散乱体1の近傍、すなわち近接場光が発生する領域に光導電性の光電変換素子7を設け、散乱体1と記録マーク4との相対的な位置関係の違いにより生じる近接場光の変化を、光電変換素子7の電気伝導率の変化として直接検出することができる。この方法は、従来例と比較し、伝播光よりも信号強度の強い近接場光を支配的に検出できる点で、より直接的な検出方法であり、再生信号のS/N比を向上することができる。さらに、伝播光を受光素子へ導く再生光学系が不要となり、再生ヘッドの低コスト化に大きく貢献する。
なお、上記の説明では、光電変換素子7が散乱体1に対して光源6側にある場合を考えたが、散乱体1に対して記録媒体5側にある場合も考えられる。散乱体1に対して記録媒体5側でも、上記と同様に、記録マーク4による光強度の変調を同じFDTD法により解析した。この例では、x軸をz方向に−32nm平行移動させた直線をMとした。すなわち、直線Mは、散乱体1の−z側の面のおよそ2nm下方の位置を通過する直線であり、この直線Mに沿って光電変換素子7の受光面となる+z側の上面が位置することになる。
まず、記録マーク4がない時の直線M上の光増強度を図8に示す。図8から、光電変換素子7が散乱体1に対して記録媒体5側にある場合でも、散乱体1の頂点(x=0nm)付近で、近接場光に伴う強い光強度が得られていることが分かる。
また、直線M上のx=−18nmの地点を点Qとおき、記録媒体5の移動に伴い、単一の記録マーク4が(x,y)=(−100nm,0nm)〜(60nm,0nm)の範囲で−x方向から+x方向へと移動したときの点Qにおける光強度の、記録マークがないときの点Qにおける光強度に対する変化率を図9に示す。図9から、記録マーク4により、点Qにおける光強度が最大で16%程度変調されていることが分かる。これは、入射光2の強度の20倍もの変化量に相当する。これより、点Q付近に光電変換素子7を配置すれば、それを流れる電流の変化により、図9のような信号が得られるはずである。ただし、光電変換素子7の抵抗の変化は、光の強度に比例すると仮定し、また、光電変換素子の存在による近接場光の強度及び分布の変化は考慮していない。
上記のように、光電変換素子7を散乱体1に対し記録媒体5側に設ける場合は、例えば、図10に示すような再生ヘッドの構成を用いることができる。図10に示す構成では、散乱体1は、近接場光を発生する頂点3を持つ略平板状であり、当該頂点3付近以外の部分が散乱体1の厚み方向に削り取られており、散乱体1の厚み方向に削り取った部分を含む空間内に光電変換素子7が配置される。
すなわち、散乱体1のうち、頂点3以外の領域を透明基板8側へ削り取り、その削り取った部分を含む領域に光電変換素子7が設けられる。これにより、光電変換素子7が記録媒体5の移動時に磨耗することを防ぐことができるだけでなく、散乱体1の頂点3が3次元的により先鋭化され、より小さな近接場光スポットを形成することができる。このように、近接場光を発生する頂点3付近以外の散乱体1の所定部分に凹部を形成し、光電変換素子7が凹部内に配置されることが好ましい。
さらに、再生ヘッドの構成は、上記の例に特に限定されず、例えば、図11に示すように、散乱体1及び光電変換素子7の周りに、入射光2を吸収する遮光膜11を設ければ、より背景光の影響を小さくすることができる。すなわち、入射光2のうち記録媒体5に直接照射し、反射した光が背景光となってS/N比が低下することを防ぐことができる。ここで、入射光2が記録媒体5に照射されることを防ぐため、散乱体1と遮光膜11との最短距離w及び光電変換素子7と遮光膜11との最短距離wは、入射光2の波長以下にすることが望ましい。
ここで遮光膜11は、入射光2を吸収する材料を含むことが望ましい。吸収するとは、入射光2に対する遮光膜11の吸収率が80%以上、望ましくは90%以上であることを意味する。例えば、入射光2の波長が630nmの場合、吸収端の波長が630nm以上のInSb、PbSe、PbTe、InAs、Ge、GaSb、Si、InP、GaAs、CdTe、AlSb、CdSe等を用いることができる。遮光膜の形態として、これらの材料を含む材料をスパッタリング等の方法で薄膜化したもの、あるいはこれらの材料を含む微粒子を樹脂等の担体に分散させて薄膜化したものが可能である。
また、散乱体1は、その膜面方向が記録媒体5に対して必ずしも平行である必要はなく、例えば、図12に示すように、その膜面方向が記録媒体5に対して傾斜した構成も可能である。この場合、近接場光を発生させる頂点3が記録媒体5に最も近接するように散乱体1を配置すれば、散乱体1のうち、頂点3以外の部分で発生した近接場光が記録媒体を変化させることを防ぐことができる。このとき、入射光2の偏光方向は、散乱体1の頂点3の中心角の二等分線の方向に一致させることが、広がりが小さくかつ強い近接場光を発生させる上で望ましい。また、入射光2の入射方向を散乱体1の膜厚方向に一致させるようにしてもよい。
また、散乱体1は、単独ではなく、複数組み合わせて使用することもできる。例えば、図13に示すように、同じ形状の2つの散乱体1を、扇形の頂点が互いに向き合うように設けると、双方の散乱体1の電磁的な相互作用により、より広がりが小さくかつより強い近接場光を発生させることができる。
また、図1では、光電変換素子7の電気伝導率変化を検出するために、光電変換素子7の両端に配線し、バイアス電圧を加えていたが、図14のように、電流検出素子10からの一方の配線を散乱体1に接続し、電源9からの他方の配線を光電変換素子7の一端に接続することにより、光電変換素子7及び散乱体1が直列となるよう配線する形態で、光電変換素子7の電気伝導率変化を検出するようにしてもよい。また、散乱体1を複数組み合わせる場合、例えば、2つの散乱体1を用いる場合は、図15に示すように、散乱体1同士に配線し、すなわち、電流検出素子10からの一方の配線を一方の散乱体1に接続し、電源9からの他方の配線を他方の散乱体1に接続し、一方の散乱体1、光電変換素子7及び他方の散乱体1が直列となるよう配線する形態で、光電変換素子7の電気伝導率変化を検出するようにしてもよい。これらの形態では、散乱体1を近接場光発生源としてだけでなく、電気伝導率変化を検出する回路の電極としても用いることができるので、光ヘッドの構造をより簡素化することができる。
また、図14及び図15に示す例では、散乱体1を、電気伝導率変化を検出する回路の電極としても機能させているので、散乱体1が光電変換素子7に直接接触するように配置してもよい。また、散乱体1と光電変換素子7との間にトンネル電流が流れる程度の空隙を作るようにしてもよい。この場合、散乱体1と光電変換素子7との間に微小な空隙を設けた状態で、トンネル電流によって散乱体1から光電変換素子7へ電流を流すことができるので、散乱体1から強い近接場光を発生させながら、散乱体1を、電気伝導率変化を検出する回路の電極としても機能させることができる。
また、記録媒体は、必ずしも均一な膜状でなく、例えば、図16に示すように、微粒子化させて配置し、その一つ一つの記録状態を1ビットに対応させる微粒子化記録媒体14でもよい。このように記録媒体を微粒子化することで、記録や再生の際に発生する熱が所望の記録領域又は再生領域以外の部分まで拡散することを防ぐことができる。また、隣接する記録部分(微粒子化記録媒体の記録マーク15)と未記録部分(未記録の微粒子化記録媒体14)とが相互作用して記録情報が失われることを防ぐこともできる。
なお、散乱体1の材料、形状や寸法、記録媒体5の材料や膜厚、散乱体1と記録媒体5との間の距離は、プラズモン共鳴条件を満たす組み合わせであればよく、上記の例に、特に限定されない。
上記の各実施の形態から本発明について要約すると、以下のようになる。すなわち、本発明に係る近接場光検出素子は、記録される情報に応じて誘電率が変化する情報記録媒体から近接場光を用いて情報を再生する近接場光検出素子であって、光源と、前記光源から出射される光を照射されて近接場光を発生させる導電性の散乱体と、前記散乱体近傍の近接場光発生領域に配置された光電変換素子とを備え、前記散乱体は、前記情報記録媒体に前記近接場光を照射し、前記情報記録媒体の誘電率の変化により発生する前記近接場光の強度変化を前記光電変換素子の電気伝導率変化により検出する。
この近接場光検出素子においては、記録される情報に応じて誘電率が変化する情報記録媒体に近接場光を照射し、光電変換素子が散乱体近傍の近接場光発生領域に配置され、情報記録媒体の誘電率の変化により発生する近接場光の強度変化を光電変換素子の電気伝導率変化により検出しているので、光電変換素子が近接場光に直接晒されて近接場光の出力変化を直接的に検出することができ、再生時に高いS/N比を確保することができる。
前記光電変換素子は、前記散乱体から30nm以内に配置されることが好ましい。
この場合、光電変換素子に照射される光のうち、散乱体からの近接場光の強度が最も大きくなり、近接場光以外の光、すなわち入射光のうち光電変換素子に直接照射された成分や、入射光のうち散乱体からはみ出して散乱体以外のもの(例えば情報記録媒体)に照射されて散乱された光が、背景光となって再生時のS/N比が低下することを防ぐことができる。
前記光電変換素子は、前記近接場光の強度変化に応じて電気伝導率が変化する半導体材料を含むことが好ましい。
この場合、光電変換素子に照射される近接場光の出力変化を、光電変換素子の電気伝導率の変化を用いて、電気的に検出することができる。
前記光電変換素子は、前記光源から出射される光の波長に対して実質的に透明で、かつ、多光子吸収過程により前記光源から出射される光の吸収が可能な材料を含むことが好ましい。
この場合、光電変換素子のうち光強度の強い部分でのみ電気伝導率が変化するので、弱い散乱光や反射光等の背景光による再生時のS/N比低下を防ぐことができる。
前記光電変換素子は、InSb、PbSe、PbTe、InAs、Ge、GaSb、Si、InP、GaAs、CdTe、AlSb、CdSe、GaP、CdS、ZnS、Fe2O3、Cu2O3、In2O3、WO3、Fe2TiO3、PbO、V2O5、FeTiO3、Bi2O3、Nb2O3、TiO2、SrTiO3、ZnO、BaTiO3、CaTiO3、KTaO3、SnO2のうちいずれかを含むことが好ましい。
この場合、散乱体による強い近接場光の強度変化でのみ電気伝導率が変化するので、入射光のうち光電変換素子に直接入射した成分や、弱い散乱光、反射光等の背景光の影響を受けにくくなり、再生時のS/N比低下を防ぐことができる。
前記散乱体は、前記光源から出射される光の周波数に対する誘電率の実数部が負である材料であることが好ましい。
この場合、散乱体を透明基板で担持する構成では、透明基板として用いられる誘電体は、一般に、光源から出射される光の周波数に対する誘電率の実数部が正であり、このような材料と、誘電率の実数部が負である材料との界面でプラズモン共鳴が起こり、近接場光を高出力化でき、効率良く情報記録媒体に近接場光を照射することができる。
前記散乱体は、Au、Ag、Al、Pt、Cu、Mo、Ni、Mg、Irのうちいずれかを含むことが望ましい。この場合、可視光から赤外光までの周波数帯で誘電率の実数部が負になり、半導体レーザを光源として用いることができる。
前記散乱体は、前記近接場光を発生する頂点に向かい幅が狭くなり、その先端径は前記光源から出射される光の波長よりも小さいことが好ましい。この場合、近接場光を発生する頂点を先鋭化することができるので、回折限界以下の近接場光スポットを形成し、かつ近接場光の高出力化を図ることができる。
前記散乱体は、前記光電変換素子の電気伝導率変化を検出するための電極であることが好ましい。この場合、より光学ヘッドの構造を簡素化することができる。
前記散乱体の材料及び寸法、前記光源から出射される光の波長、並びに前記散乱体の周囲の物質は、プラズモン共鳴条件を満たすように設定されることが好ましい。この場合、より強い近接場光を発生させることができる。
前記近接場光を発生する頂点付近以外の前記散乱体の所定部分に凹部が形成され、前記光電変換素子は、前記凹部内に配置されることが好ましい。
この場合、光電変換素子が情報記録媒体の移動時に磨耗することを防止することができるとともに、散乱体の頂点が3次元的に先鋭化され、より広がりの小さな近接場光を形成することができる。
前記散乱体付近に配置された、前記光源から出射される光を吸収する遮光膜をさらに備え、前記散乱体と前記遮光膜との距離又は前記光電変換素子と前記遮光膜との距離は、前記光源から出射される光の波長以下であることが好ましい。
この場合、光源から出射される光が散乱体と遮光膜との間又は光電変換素子と遮光膜との間を通って情報記録媒体に直接照射されることを抑制することができるので、再生時にS/N比の低下を招く背景光となる、情報記録媒体からの反射光を減少することができる。
前記遮光膜は、InSb、PbSe、PbTe、InAs、Ge、GaSb、Si、InP、GaAs、CdTe、AlSb、CdSeのうちいずれかを含むことが好ましい。
この場合、不要な伝播光を吸収することができるので、再生時にS/N比の低下を招く背景光となる、情報記録媒体からの反射光を十分に減少することができる。
本発明に係る情報記録媒体の再生方法は、記録される情報に応じて誘電率が変化する情報記録媒体から情報を再生する情報記録媒体の再生方法であって、前記情報記録媒体に対して導電性の散乱体を相対的に移動させながら、前記散乱体に光を照射して近接場光を発生させ、前記情報記録媒体の誘電率の変化により発生する前記近接場光の強度変化を、前記散乱体近傍の近接場光発生領域に配置された光電変換素子の電気伝導率変化により検出する。