JP2004139704A - 光ディスク再生装置及び光ディスク再生方法 - Google Patents

光ディスク再生装置及び光ディスク再生方法 Download PDF

Info

Publication number
JP2004139704A
JP2004139704A JP2002305612A JP2002305612A JP2004139704A JP 2004139704 A JP2004139704 A JP 2004139704A JP 2002305612 A JP2002305612 A JP 2002305612A JP 2002305612 A JP2002305612 A JP 2002305612A JP 2004139704 A JP2004139704 A JP 2004139704A
Authority
JP
Japan
Prior art keywords
signal
optical disc
disk
area
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305612A
Other languages
English (en)
Inventor
Toshikazu Kobayashi
小林 俊和
Takashi Enohara
榎原 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Interactive Entertainment Inc
Original Assignee
Sony Computer Entertainment Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Computer Entertainment Inc filed Critical Sony Computer Entertainment Inc
Priority to JP2002305612A priority Critical patent/JP2004139704A/ja
Priority to CNB03801081XA priority patent/CN1305046C/zh
Priority to KR1020047004132A priority patent/KR20050050047A/ko
Priority to DE60325641T priority patent/DE60325641D1/de
Priority to PCT/JP2003/010487 priority patent/WO2004036563A1/ja
Priority to AT03772202T priority patent/ATE419619T1/de
Priority to EP03772202A priority patent/EP1580736B1/en
Priority to US10/659,751 priority patent/US7230896B2/en
Priority to TW092125200A priority patent/TW200407861A/zh
Publication of JP2004139704A publication Critical patent/JP2004139704A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/22Means responsive to presence or absence of recorded information signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08517Methods for track change, selection or preliminary positioning by moving the head with tracking pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0953Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for eccentricity of the disc or disc tracks

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

【課題】アドレス信号等を用いず、ディスク偏芯量や記録データ量の多少にかかわらずに、データ記録領域と未記録領域との境界位置を高精度に検出し、データを確実且つ迅速に再生可能とする。
【解決手段】ボトムホールド回路17は、RFアンプ16のRFDC信号からボトムホールド信号(BH信号)を生成して比較器18へ送る。比較器18は、基準レベルとBH信号を比較し、BH信号が基準レベルを下回ったらHレベルとなるRfdet信号を生成する。Rfdet信号は、レーザスポットがディスク40のデータ記録領域にあるときHレベルとなり、未記録領域にあるときLレベルとなる信号である。サーボ処理マイコン22は、Rfdet信号がディスク1周期の間中Hレベルになっていることを検出したとき、光学ピックアップ11を制御してトラッキングサーボをかけさせる。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、書き換え若しくは追記型の光ディスクを再生可能な光ディスク再生装置及び光ディスク再生方法に関する。
【0002】
【従来の技術】
従来より、書き換え可能(rewritable)型光ディスクとしては、DVD−RW,DVD+RW,CD−RW等が知られており、追記(write once)型光ディスクとしては、DVD−R,DVD+R,CD−R等が知られている。以下、上記書き換え可能型光ディスク及び追記型光ディスクを、記録可能ディスク若しくは単にディスクと表記する。これら各種の記録可能ディスクを扱う光ディスク記録再生装置は、一般に、ディスクを回転させるためのスピンドルモータ、スピンドルモータの回転軸の先端に設けられたディスクチャッキング機構、ディスク面上にレーザ光を照射して信号を記録又は再生するための光ヘッド、当該光ヘッドをディスク上の所望のトラック位置若しくはその近傍まで移動させるための光ヘッド移動機構、などを備えている。
【0003】
一例として、DVD−RWとDVD−Rの記録可能ディスクに対して記録又は再生を行う場合、光ディスク記録再生装置は、先ず、光ヘッドを初期位置へ移動させ、その初期位置でフォーカスサーボ及びトラッキングサーボをかける。なお、上記初期位置は、装置の機械的精度のばらつきやディスクの寸法精度のばらつきや、複数のフォーマットのディスクを再生することなどを考慮して、リードイン領域よりも若干外側(ディスク外周側)となる位置に設定されていることが多い。ここで、上記ディスクには、グルーブとランドが予め形成されている。上記グルーブは、スピンドルモータの制御用信号やランドプリピット検出用ゲート信号に応じた変調信号(以下、ウォブル信号とする)によりウォブリングされている。ランドには、ディスク記録時の高精度位置決めと記録アドレスやその他記録に必要な情報のためのプリピット(上記ランドプリピット)が形成されている。光ディスク記録再生装置は、上記グルーブのウォブル信号及び上記ランドのランドプリピット信号からアドレス信号を復調することで、上記初期位置での光ディスク上のアドレスを検出する。そして、光ディスク記録再生装置は、上記検出したアドレスに基づいて、記録又は再生を行うべき目標位置まで光ヘッド(若しくはレーザスポット位置)を移動させるための情報を生成し、その情報に応じて光ヘッド(若しくはレーザスポット位置)を移動させる。その後、光ディスク記録再生装置は、当該目標位置でトラッキングサーボ及びフォーカスサーボをロックし、データの記録又は再生を開始する。なお、DVD+RWやCD−R、CD−RWの場合、ランドプリピットは存在しないため、アドレス信号は、ウォブル信号から復調される。
【0004】
ところで、DVD−RやDVD−RW等のディスクを扱う光ディスク記録再生装置は、例えばいわゆるラジアルプッシュプル(Radial Push Pull)方式により上記グルーブにトラッキングサーボをかけるための専用の信号検出回路と、上記ランドプリピット信号からアドレス信号を復調するための復調回路とを備えている。
【0005】
一方で、特にDVD−video,DVD−ROM,DVD−R,DVD−RW等に代表されるDVDの再生装置(以下、光ディスク再生装置とする)は、ディスク面上に記録された信号ピット列からなるトラックに対して、例えばいわゆるディファレンシャルフェーズディテクション(Differential Phase Detection)方式によりトラッキングサーボをかける仕様(いわゆるピットトラッキング方式)となされている。すなわち、上記光ディスク再生装置は、上記グルーブにトラッキングサーボをかけるための信号検出回路やアドレスの復調回路については通常は備えていない。したがって、当該光ディスク再生装置は、上記記録可能ディスク上でデータが記録されている領域(以下、データ記録領域とする)にトラッキングサーボをかけることはできるが、データが記録されていない領域(以下、未記録領域とする)に対してはトラッキングサーボをかけることができない。言い換えると、光ディスク再生装置は、例え光ディスク上にデータ記録領域が存在していたとしても、前記初期位置でデータ記録領域を検出できなかった場合、つまり初期位置にピットトラックが存在しないためにトラッキングサーボをかけることができなかった場合には、当該ディスクに記録されているデータを再生できないことになる。
【0006】
これに対して、例えば、特許文献1には、光ヘッドから出力されたRF信号の振幅ホールドレベルと所定の基準レベルとを比較し、その比較結果に基づいて、記録可能ディスクのデータ記録領域と未記録領域(ミラー面)とを判別可能とした光ディスク再生装置が提案されている。なお、以下の説明で、光ディスクの再生のみ行う光ディスク再生装置の光ヘッドは光学ピックアップと表記する。
【0007】
より具体的に説明すると、特許文献1に記載の光ディスク再生装置は、光学ピックアップを所定の検出位置(以下、第1検出ポイントと呼ぶ)に移動させ、当該第1検出ポイントで光学ピックアップから出力されたRF信号の振幅ホールドレベルを所定の基準レベルと比較する。ここで、上記振幅ホールドレベルが上記基準レベルを下回っているとき、つまり上記第1検出ポイントに対応したディスク上の領域が未記録領域であるとき、光ディスク再生装置は、光学ピックアップを所定量(例えば5mm分)だけディスク内周側に移動させ、その位置(以下、第2検出ポイントと呼ぶ)で再度、光学ピックアップからのRF信号の振幅ホールドレベルを上記所定の基準レベルと比較する。当該第2検出ポイントにおいて上記振幅ホールドレベルが上記基準レベルを上回っているとき、光ディスク再生装置は、光学ピックアップをディスク外周方向へ上記所定量の半分(例えば2.5mm)だけ戻し、その位置を新たな第1検出ポイントとし、再度上記振幅ホールドレベルと基準レベルの比較を行う。光ディスク再生装置は、上記振幅ホールドレベルが基準レベルを超えることになるまで、上記検出ポイントの移動とレベル比較を繰り返す。そして、光ディスク再生装置は、何れかの検出ポイントで上記振幅ホールドレベルが基準レベルを超えた時、つまりデータ記録領域が検出された時、その検出ポイントの位置で直ちにデータの再生を開始する。
【0008】
上記特許文献1に記載の光ディスク再生装置は、上述した検出ポイントの移動とレベル比較を行うことで、光学ピックアップがデータ記録領域上に在るか否かを判断でき、そして、光学ピックアップが未記録領域上に在るときにはそこから脱出してデータ記録領域を検出可能となされている。
【0009】
【特許文献1】
特開平10−172147号公報(第2図、第6図)
【0010】
【発明が解決しようとする課題】
一方、最近は、上記データ記録領域と未記録領域との境界位置を、より高い精度で検出可能な光ディスク再生装置が望まれている。すなわち、上記境界位置を高精度で検出できれば、光ディスク再生装置は、目的とする再生開始位置をより速く且つ高精度に設定することが可能になるだけでなく、例えば、記録されているデータ量が非常に少なくてデータ記録領域の幅(ディスク半径方向の幅)が非常に狭い場合であっても、その記録データを再生することができることになる。
【0011】
ところで、例えば図10に示すようにディスク100のセンターホール101の中心位置が、当該ディスク100の回転中心102からずれていたり、或いは、例えば当該ディスクのチャッキング中心位置が上記回転中心102からずれていたりすると、当該ディスク100の回転中心102とスピンドルモータの回転軸の中心とがずれることになる。以下、このような状態を、ディスク100が偏芯していると表記する。また、上記ディスク100の回転中心102とセンターホール101の中心位置とのずれ量、或いは、上記回転中心102とチャッキング中心位置とのずれ量を、以下、ディスクの偏芯量と表記する。
【0012】
上述のようにディスク100が偏芯している場合、回転している状態のディスク100上に照射されたレーザスポットの軌跡は、図11中のトレースパターンTPaに示すように、その偏芯量に応じた分だけ当該ディスク100の外周側及び内周側に周期的に振れる(うねる)ことになる。一方、ディスク100に偏芯がなかった場合、レーザスポットの軌跡は、図11中のトレースパターンTPbに示すように、ディスク内外周方向ともに振れのない(偏芯量0)ものとなる。なお、図10中の各ディスク位置A,B,C,Dと図11中のディスク位置A,B,C,Dとは対応しているとする。
【0013】
ここで、図10の例のようにセンターホール101がディスク位置D方向へずれて配置されているような場合、ディスク100の回転に伴うレーザスポットの軌跡は、ディスク位置AとCでは偏芯量0と同じになるが、ディスク位置Bでは外周側に偏芯量分だけ振れ、一方、ディスク位置Dでは内周側に偏芯量分だけ振れることになる。また、この図10,図11の例の場合、ディスク位置B,Cは、レーザスポットの軌跡がディスク外周方向へ向かうか、内周方向へ向かうかの偏芯折り返しポイントになっている。当該偏芯折り返しポイントは、レーザスポットとディスクとの間の相対速度が加減速する変化点にもなっている。
【0014】
したがって、この図10,図11の例のようにディスク100が偏芯している場合において、例えば上記境界位置から上記偏芯量に相当する幅まで間の領域(以下、境界領域と呼ぶ)内に、上記レーザスポットが存在していたとすると、当該レーザスポットは、ディスク100の回転に伴ってデータ記録領域と未記録領域を交互に通過してしまうことになる。特に、上記ディスク100の偏芯量が大きくなると、上記境界領域の幅も広がることになるため、上記レーザスポットがデータ記録領域と未記録領域を交互に通過してしまう可能性は高くなる。
【0015】
このような場合、上記光ディスク再生装置は、上記境界位置を検出することが困難にあり、最悪の場合、データ記録領域でトラッキングサーボをかけることができず、サーボを暴走させてしまう虞がある。したがって、例えば上記データ記録領域から上記境界領域(偏芯量に相当する幅)を高い精度で分離できれば、光ディスク再生装置は、当該境界領域を分離した後のデータ記録領域で、確実にトラッキングサーボをかけることが可能になり、その結果として、上記境界位置も迅速に検出できることになる。また、データ記録領域から境界領域を高精度に分離できれば、光ディスク再生装置は、例えばデータ記録領域が上記境界領域(偏芯量に相当する幅)よりも僅かに広い程度の幅しかないような場合であっても、確実にトラッキングサーボをかけることができるようになり、その結果として、当該データ記録領域に記録されているデータを再生可能となる。
【0016】
本発明は、このような課題に鑑みてなされたものであり、グループやランドプリピットから復調したアドレス信号等を用いることなく、データ記録領域と未記録領域との境界位置を高精度に検出でき、また、ディスクの偏芯量の大小やディスクに記録されているデータ量の多少にかかわらずに、データ記録領域を確実に検出し、その結果としてディスクに記録されているデータを確実且つ迅速に再生可能とする、光ディスク再生装置及び光ディスク再生方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の光ディスク再生装置は、第1の領域と第2の領域の少なくとも何れかを有する光ディスクを回転させるモータと、光ディスク上に照射されたスポット光の反射光を受光する光ヘッドと、光ヘッドの出力信号から所定の比較対照信号を生成する信号生成部と、比較対照信号を所定の閾値と比較することにより、上記第1の領域に対応した第1の信号状態と第2の領域に対応した第2の信号状態の少なくとも何れかを含む比較信号を生成する比較部と、スポット光が光ディスク上を少なくとも一周する間比較信号の信号状態を観測し、当該観測結果に基づいて、スポット光が第1の領域と第2の領域の何れに存在するか判断する制御部とを有する。
【0018】
また、本発明の光ディスク再生方法は、第1の領域と第2の領域の少なくとも何れかを有する光ディスクを回転させ、その光ディスク上に照射されたスポット光の反射光を受光して受光信号を生成し、その受光信号から所定の比較対照信号を生成し、当該比較対照信号を所定の閾値と比較することにより、第1の領域に対応した第1の信号状態と第2の領域に対応した第2の信号状態の少なくとも何れかを含む比較信号を生成し、スポット光が光ディスク上を少なくとも一周する間比較信号の信号状態を観測して、スポット光が第1の領域と第2の領域の何れに存在するか判断する。
【0019】
すなわち、本発明によれば、光ディスクの1周に渡り、スポット光が第1の領域と第2の領域の何れに存在するか判断しているため、例えば、光ディスクが1周する間常に光スポットが第1の領域に存在したか、或いは、光ディスクが1周する間に光スポットが一度でも第2の領域を通過したのかを検出できる。ここで例えば、第1の領域がデータ記録領域であるとした場合、光ディスクが1周する間常にスポット光が第1の領域上に存在していたならば、例えば、光ディスクに偏芯が存在したり、ディスクに記録されているデータ量が少なかったとしても、トラッキングサーボが暴走することはなくなる。一方、光ディスクが1周する間にスポット光が一度でも第2の領域を通過した場合には、トラッキングサーボが暴走する虞があるため、本発明では、スポット光を光ディスク半径方向に所定距離だけ移動させて再度の観測を行うことで、第1の領域と第2の境界領域を避けて第1の領域を確実に検出可能としている。
【0020】
このように、本発明によれば、第1の領域(例えばデータ記録領域)と第2の領域(例えば未記録領域)の境界位置を高精度に検出でき、また、光ディスクが偏芯しているときには、その偏芯量に応じた境界領域を第1の領域(データ記録領域)から分離できる。
【0021】
【発明の実施の形態】
[光ディスク再生装置の主要部の概略構成及び基本動作]
図1には、本発明が適用される第1の実施の形態の光ディスク再生装置の主要部の概略構成を示す。第1の実施の形態の光ディスク再生装置は、例えば、ディスク面上の信号ピット列からなるトラックに対してトラッキングサーボをかける仕様となされており、プリグルーブにトラッキングサーボをかけるため構成を備えていないものとする。上記信号ピット列は、記録膜面を凸若しくは凹形状に変化させて形成されたピット列や、いわゆる磁気光学効果型或いは相変化型に対応したピット列など、何れのものであっても良い。
【0022】
図1において、ディスク40は、データ記録領域と未記録領域(ミラー面)を有している記録可能ディスクであり、一例としてDVD−RW又はDVD−Rを挙げることができる。なお、当該ディスク40は、DVD規格以外の各種規格のディスクであっても良く、また、再生専用の光ディスクや、何もデータが記録されていないブランクディスク、多層ディスク、或いは、各ディスク規格に適合していないサポート外ディスクであっても良い。
【0023】
先ず最初に、図1の光ディスク再生装置が、上記ディスク40のデータ記録領域上のトラックをトレースできている状態で、且つ、当該ディスク40からデータを再生している時の各部の基本的動作について説明する。
【0024】
上記ディスク40は、スピンドルモータ10の回転軸30の先端に設けられたチャッキング機構29によりチャッキングされ、上記スピンドルモータ10により所定の速度で回転駆動される。
【0025】
上記スピンドルモータ10は、ドライバアンプ25より供給される駆動信号により駆動される。また、スピンドルモータ10は、例えばホール素子を用いた回転検出機構を備えている。この回転検出機構により検出されたモータ回転検出信号(すなわちディスク回転検出信号)は、ドライバアンプ25を介してFG検出器26へ送られる。
【0026】
FG検出器26は、上記モータ回転検出信号から、上記スピンドルモータ10が回転する周期(すなわちディスク回転周期)を表す回転周期信号を生成し、その回転周期信号をサーボ処理マイクロコンピュータ(以下、サーボ処理マイコン22とする)へ送る。
【0027】
光学ピックアップ11は、レーザ光を発生するレーザダイオードと、所定パターンの受光面に入射した光の強弱を電圧の強弱に変換するための分割フォトディテクタと、上記レーザダイオードから出射されたレーザ光を上記ディスク40の記録面上に集光照射させると共に当該記録面からの反射光を上記受光面上に導くための光学系と、当該光学系に含まれる対物レンズ13をディスク40の記録面に対して平行方向(トラッキング方向)に移動させたり、垂直方向(フォーカシング方向)に移動させるための二軸アクチュエータ12等により構成されている。
【0028】
当該光学ピックアップ11の分割フォトディテクタからの出力信号(以下、PD信号とする)は、RFアンプ16へ送られる。RFアンプ16は、上記分割フォトディテクタの各受光素子に対応するPD信号の加減算、レベル補正を行い、ディスクからの反射信号の総和としてのRF信号(HF信号)を出力する。なお、RF信号は、直流信号として検出されたものであり、グランド(GND)レベルを基準としているため、以下RFDC信号と呼ぶことにする。また、RFアンプ16は、上記RFDC信号の周波数特性を補正(すなわちイコライジング)し、当該補正後の信号(以下、RFEQ信号とする)を、信号復調用DSP(Digital Signal Processor)28へ送る。また、RFアンプ16は、上記PD信号から、フォーカスエラー信号とトラッキングエラー信号を抽出し、それらエラー信号からなるサーボ信号をサーボ処理DSP27へ送る。
【0029】
サーボ処理DSP27は、上記サーボ信号うち、フォーカスエラー信号に基づいて、A/D変換、ディジタルフィルタを介してフォーカスサーボを行うためのフォーカスサーボ制御信号を生成すると共に、上記トラッキングエラー信号に基づいて、A/D変換、ディジタルフィルタを介してトラッキングサーボを行うためのトラッキングサーボ制御信号を生成し、それらサーボ制御信号をドライバアンプ25へ送る。このときのドライバアンプ25は、上記光学ピックアップ11の二軸アクチュエータ12を、上記フォーカスサーボ制御信号に応じてフォーカス方向に駆動させるためのフォーカス駆動信号を生成すると共に、上記トラッキングサーボ制御信号に応じてトラッキング方向に駆動させるためのトラッキング駆動信号を生成する。これらフォーカス駆動信号とトラッキング駆動信号により二軸アクチュエータ12が駆動されることにより、光学ピックアップ11は、ディスク40の記録面上に対物レンズ13の焦点を合わせてレーザスポットを形成すると共に、そのレーザスポットがトラックをトレースできるようにしている。
【0030】
上記信号復調用DSP28は、上記RFアンプ16から供給されたRFEQ信号を2値化し、さらにディスク40への記録時に施されている信号変調処理に対応する信号復調処理を行う。そして、信号復調用DSP28は、上記復調信号に誤り訂正処理やデコード処理等を施し、データを復元する。当該復元されたデータは、図示しない出力端子から外部へ出力される。また、上記信号復調用DSP28は、RFEQ信号からアドレス信号も復調する。当該復調されたアドレス信号は、サーボ処理マイコン22へ送られる。
【0031】
また、当該光ディスク再生装置は、上記光学ピックアップ11をディスク半径方向に移動させるためのピックアップ送り機構を備えている。当該ピックアップ送り機構は、一例として、ディスク40の径方向に沿って延びる送りネジであるリードスクリュー14及び図示しないガイドレールと、上記リードスクリュー14を回転させる送りモータ(例えばステッピングモータ)15などを備えている。また、上記光学ピックアップ11は、上記リードスクリュー14に対応するナット部材を備えている。したがって、上記送りモータ15によりリードスクリュー14を回転させることで、上記光学ピックアップ11はディスク半径方向に移動可能となる。
【0032】
上記ピックアップ送り機構による光学ピックアップ11の移動可能範囲のうち、ディスク最内周側の送り限界位置には、リミットスイッチ31が設けられている。当該リミットスイッチ31は、上記ピックアップ送り機構によって光学ピックアップ11がディスク最内周側の送り限界位置まで到達したとき、それを検出する。このリミットスイッチ31からの検出信号は、サーボ処理マイコン22に送られる。サーボ処理マイコン22は、上記リミットスイッチ31の検出信号が供給された場合、光学ピックアップ11がディスク最内周の送り限界位置にまで達したことを検出する。
【0033】
また、サーボ処理マイコン22は、上記クロック信号と上記回転周期信号、及びアドレス信号に基づいて、上記スピンドルモータ10を所定の速度で回転させるための回転制御情報を生成し、その回転制御情報をサーボ処理DSP27へ送る。サーボ処理DSP27は、上記回転制御情報に基づいて、スピンドルモータ10の回転サーボ制御信号を生成し、当該制御信号をドライバアンプ25へ送る。このときのドライバアンプ25は、上記回転サーボ制御信号に基づいて、上記スピンドルモータ10を回転させるためのモータ駆動信号を生成する。これにより、スピンドルモータ10は、ディスク40上の再生位置に応じた所定の速度で回転することになる。また、サーボ処理マイコン22は、上記アドレス信号を元に、光学ピックアップ11をディスク半径方向に移動させる際の目標位置情報を生成し、その情報をサーボ処理DSP27へ送る。このときのサーボ処理DSP27は、上記目標位置情報に基づいて、上記ピックアップ送り機構の送りモータ15を回転させるためのステップ制御信号を生成し、当該制御信号をドライバアンプ25へ送る。ドライバアンプ25は、上記ステップ制御信号に基づいて、上記送りモータ15を駆動させるためのステップパルス信号を生成する。これにより、送りモータ15は、上記光学ピックアップ11をディスク半径方向の目標位置までステップ送りすることになる。
【0034】
[境界位置検出のための構成及び動作]
次に、本実施の形態の光ディスク再生装置は、ディスク40上のデータ記録領域と未記録領域との境界位置を高精度に検出し、ディスクの偏芯量の大小やディスクに記録されているデータ量の多少にかかわらずに、データ記録領域から確実にデータを再生可能とするために、以下に述べる構成を備え、図2に示すフローチャートの処理を実行する。
【0035】
先ず、サーボ処理マイコン22は、上記ディスク40の再生を開始するのに先立ち、RFDC信号のピーク値のレベル(I14Hレベル)を測定し、当該ピーク値のレベルに基づいて、データ記録領域の有無を判断するための所定の閾値(以下、基準レベル値とする)を決定する。ここで、DVDブックにおける変調レベルの規格によれば、RFDC信号の変調レベルの規格(I14/I14H)は、I14Hレベルの60%以上でなければならないことが規定されている。したがって、本実施の形態の場合、上記基準レベルは当該I14Hレベルの60%の範囲内に入る適当なレベルに設定される。本実施の形態の場合、サーボ処理マイコン22は、上記I14Hレベルの例えば30%〜40%程度のレベルを上記基準レベルとして設定する。なお、I14Hとは、DVDブックの規格上の最大マーク長である14T(Tは記録クロック周期)分のスペース部分(ピット無しのミラー部)でのRF振幅レベルである。また、I14は、14T分の最大RF振幅レベルであるI14Hから、14T分の最小レベル(ピット部分でのRF振幅レベル)であるI14Lを引いたレベルである。そして、(I14/I14H)は変調度を表している。
【0036】
より具体的な動作を説明すると、上記サーボ処理マイコン22は、上記基準レベルを設定するために、先ず、サーボ処理DSP27を介してドライバアンプ25を制御することにより、ステップS0の処理として、光学ピックアップ11を規定の初期位置に移動させた後、ステップS1の処理として、当該光学ピックアップ11のレーザダイオードをオンさせ、さらにステップS2として、二軸アクチュエータ12を駆動させて対物レンズ13をフォーカス方向に上下させる(ステップS2)。このとき、上記RFアンプ16から出力されるRFDC信号は、図3に示すように、上記I14Hレベル(ミラーレベル)の信号(以下、RFpk信号とする)が出力されることになる。
【0037】
また、上記ステップS2において、上記RFpk信号は、例えば100kHzのカットオフ周波数を有するローパスフィルタ(LPF)20に送られる。当該ローパスフィルタ20は、上記RFpk信号にEFM(Eight to Fourteen Modulation)信号成分が含まれている場合にそれを除去するために設けられている。当該ローパスフィルタ20から出力されたRFpk信号は、A/D変換器21によりディジタルデータ(以下、RFpkデータとする)に変換され、サーボ処理マイコン22内のピークレベル検出部24に送られる。そして、ピークレベル検出部24は、上記RFpkデータからRFDC信号のピークレベル(RFDCピークレベル)を表すデータ、すなわちI14Hレベルを表すデータを求め、そのデータを基準レベル決定部23へ送る。なお、当該RFDCピークレベルの検出時において、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御し、上記スピンドルモータ10を短時間ずつ回転させ、ディスク40上の複数の測定ポイントについて各々ピークレベルを検出することにより、それら各測定ポイントによるピークレベルの検出値のばらつきを最小化する。
【0038】
次に、ステップS3として、基準レベル決定部23は、上記I14Hレベルデータの例えば30%〜40%のレベルを基準レベルとして決定する。このように、サーボ処理マイコン22は、ディスク40の規定の測定ポイントでRFDCピークレベルを測定し、そのRFDCピークレベルから基準レベルを決定するようにしている。このため、当該基準レベルは、ディスク毎のばらつきやディスクの種類に応じた最適な値となる。
【0039】
なお、上記サーボ処理マイコン22は、ディスク40の反射率のばらつき等のデータを考慮して設定された固定値を上記基準データとして出力するものであっても良い。或いは、上記サーボ処理マイコン22は、上記基準レベルを固定値とし、RFアンプ16を制御することで、上記I14Hのピーク値がある一定のレベルになるようにRFDC信号のゲインを可変させても良い。その他、サーボ処理マイコン22は、当該光ディスク再生装置に装填されたディスクの種別を判別し、その判別されたディスクの種別に応じた固定値を上記基準レベルとして出力するものであっても良い。
【0040】
上記基準レベルを表すデータは、D/A変換器19に送られる。当該D/A変換器19は、上記基準レベルを表すデータをアナログ値である基準レベル値(所定の閾値)に変換する。この基準レベル値は、比較器18の非反転入力端子に送られる。
【0041】
上述のようにして基準レベルが決定されると、次に、サーボ処理マイコン22は、ステップS4として、二軸アクチュエータ12の対物レンズ13を駆動させてフォーカスサーボをかけ、さらに、ステップS5として、スピンドルモータ10を回転させる。このとき、サーボ処理マイコン22は、FG検出器26からの回転周期信号に基づいて、上記スピンドルモータ10を一定速度で回転させるようにサーボ(スピンドルFGサーボ)をかけるか、若しくは、スピンドルモータ10が規定回転数に達した後に駆動電圧供給を停止させて当該モータ10を惰性で回転させるように、サーボ処理DSP27を制御する。なお、スピンドルモータ10を惰性で回転させることにした場合、データ記録領域と未記録領域との境界位置の検出は、スピンドルモータ10の回転速度が、境界検出時の限界速度以下に低下してしまう前に行われる。
【0042】
また、上記ステップS5のとき、上記RFアンプ16からは、図4に示すようなRFDC信号が出力されることになる。なお、図4は、レーザスポットが、ディスク40上のデータ記録領域と未記録領域の境界位置近傍に在った場合の例を示している。この例の場合のRFDC信号は、上記レーザスポットが、未記録領域上にあるときには略々一定の高いレベルとなり、データ記録領域上にあるときにはグルーブ上に形成された記録ピットに応じてそのレベルが変動し、ディスク上の傷等による欠陥区間上にあるときにはグランド(GND)までレベルが低下するような信号となる。当該RFDC信号は、ボトムホールド回路17へ送られる。
【0043】
ボトムホールド回路17は、上記RFDC信号に含まれる変調成分のボトムホールド信号(以下、適宜BH信号とする)を生成し、そのBH信号を比較器18の反転入力端子へ送る。なお、当該ボトムホールド回路17の時定数(CR時定数)は、例えば1ms〜2msとする。ここで、当該時定数は、ディスク40の偏芯によってレーザスポットがトラックを横切る(以下、トラックトラバースとする)ことで上記RFDC信号の振幅レベルが低下することによる影響を考慮して決定されている。例えば、ディスク40が1回転するのに要する時間を40ms、トラックピッチを0.74μm、ディスク40の最大偏芯量を150μmとすると、上記最大偏芯量時のトラックトラバースによる変調レベル変動の平均影響時間は(40ms/2)/(150μm/0.74μm)=約0.1msとなる。一方、例えば最小偏芯量が10μmであるとすると、当該最小偏芯量時のトラックトラバースによる変調レベル変動の平均影響時間は(40ms/2)/(10μm/0.74μm)=約1.5msとなる。さらに、詳細については後述するが、ディスク40の1周期が40ms、データ記録領域の有無を検出する際の観測サンプリング周期がディスク1回転当たり例えば40回であったとすると、境界領域内におけるデータ記録領域の有無検出の分解能は、40ms÷40=1msとなる。また例えば、観測サンプリング周期がディスク1回転当たり例えば20回であったとすると、境界領域内におけるデータ記録領域の有無検出の分解能は、40ms÷20=2msとなる。これらのことから、本実施の形態によれば、上記偏芯量に応じてレーザスポットがトラックを横切る際の変調レベル低下による影響と、上記境界領域内におけるデータ記録領域の有無検出の分解能とを考慮し、上述のようにボトムホールド回路17の時定数が上記1ms〜2msに設定されている。
【0044】
上記比較器18の非反転入力端子には、先にサーボ処理マイコン22が生成した上記基準レベル値(所定の閾値)が入力されている。当該比較器18は、上記BH信号のレベル値と上記基準レベル値との比較を行い、上記BH信号のレベル値が基準レベル値を超えている時にはL(ロー)レベルとなり、一方、BH信号が基準レベルを下回った時にH(ハイ)レベルとなる信号(以下、Rfdet信号とする)を出力する。すなわち、上記Rfdet信号は、Hレベルのときにはレーザスポットがディスク40のデータ記録領域上に在ることを表しており、一方、Lレベルのときにはレーザスポットが未記録領域上に在ることを表している。このRfdet信号は、サーボ処理マイコン22へ送られる。なお、本実施の形態では、上記RFDC信号のボトムホールド信号と上記基準レベルとを比較することにしているため、例えばディスク上の傷等によりRFDC信号がグランドレベルにまで低下したとしても、その傷等の欠陥区間が上記Rfdet信号のH,Lレベルの検出に影響することはない。別の方法として、図1の例によれば、RFdet信号は、BH信号と基準レベルをD/A変換した信号とを比較することで生成されているが、サーボ処理マイコン22にBH信号をA/D変換して入力し、当該サーボ処理マイコン22が、ソフトウェア処理によりRFdet信号を生成しても良い。
【0045】
またこのときのサーボ処理マイコン22は、ステップS6として、図5に示すように、FG検出器26からの回転周期信号をモニタし、スピンドルモータ11の1回転(すなわちディスク40の1回転)毎のパルスが検出されたか否か判定する。当該ステップS6において、ディスク40の1回転毎のパルスを検出できたとき、サーボ処理マイコン22は次のステップS7以降の処理に進む。
【0046】
ステップS7に進むと、サーボ処理マイコン22は、図5に示すように、所定の観測サンプリング周期毎に、比較器18からのRfdet信号がHレベルになっているか否か判定する。同時に、サーボ処理マイコン22は、ステップS8において、FG検出器26から回転周期信号のパルスを元に、ディスク40が1回転したか否かを判断する。なお、本実施の形態において、例えば、ディスク回転の1周期が40msであり、上記観測サンプリング周期が1msであるとすると、上記サーボ処理マイコン22は、ディスク1回転につき40回の判定処理を行うことになる。もちろん、上記観測サンプリング周期は、上記1msに限定されず、例えば2msであっても良い。観測サンプリング周期が2msである場合、サーボ処理マイコンは、ディスク1回転につき20回の判定処理を行うことになる。
【0047】
当該ステップS7及びステップS8において、ディスク40が1回転する間の各観測サンプリング周期の全てでHレベルが検出された場合(Lレベルが一度も検出されなかった場合)、サーボ処理マイコン22は、ステップS9へ処理を進める。一方、上記ステップS7及びステップS8において、ディスク40が1回転する間の各観測サンプリング周期の全てにおいてHレベルが検出されなかった場合(全てLレベルが検出された場合)、或いは、ディスク40が1回転する間の各観測サンプリング周期のうち一度でもHレベルが検出されないことがあった場合(Lレベルが一度でも検出された場合)、サーボ処理マイコン22は、ステップS11以降へ処理を進める。すなわち、サーボ処理マイコン22は、ディスク40が1回転する間の各観測サンプリング周期において、レーザスポットが常にデータ記録領域上に存在したか、或いは、一度でも未記録領域を通過したか否かを判定する。
【0048】
ここで、例えば、ディスク40が偏芯している状態で、レーザスポットが前記偏芯量に相当する幅の領域(境界領域)外のデータ記録領域上に存在していた場合、上記Rfdet信号は、図5中DM5,DM6,DM7に示す区間のように、ディスク40が1回転する間に常にHレベルの状態となる。なお、ディスク40が偏芯していない状態でレーザスポットがデータ記録領域上に存在していた場合も同様にRfdet信号は、常にHレベルの状態になる。このように、ディスク40の偏芯の有無にかかわらず、ディスク40が1回転する間、常にレーザスポットがデータ記録領域上に存在していた場合、本実施の形態の光ディスク再生装置は、データ記録領域上の信号ピット列からなるトラックに対してトラッキングサーボをかけることができる。
【0049】
したがって、上記ステップS7及びステップS8において、ディスク40が1回転する間の各観測サンプリング周期の全てでHレベルが検出されたと判定してステップS9の処理に進むと、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御することにより、トラッキングサーボをオンにし、次いでステップS10の再生処理ルーチンへ進み、ディスク40のデータ記録領域から信号の再生を開始する。
【0050】
一方で、例えば、ディスク40が偏芯している状態で、レーザスポットが前記境界領域外の未記録領域上に存在していた場合、上記Rfdet信号は、図5中DM1に示す区間のように、ディスク40が1回転する間に常にLレベルの状態となる。なお、ディスク40が偏芯していない状態でレーザスポットが未記録領域上に存在していた場合も同様にRfdet信号は、常にLレベルの状態になる。また例えば、ディスク40が偏芯している状態で上記境界領域内にレーザスポットが存在していた場合、上記Rfdet信号は、図5中DM2,DM3,DM4に示す区間のように、ディスク40が1回転する間にHレベルとLレベルが共存した状態となる。これらのように、ディスク40が1回転する間に、レーザスポットが一度でも未記録領域上を通過してしまう場合、光ディスク再生装置は、トラッキングサーボを確実にかけることができない。
【0051】
このようなことから、ステップS7及びステップS8において、ディスク40が1回転する間にレーザスポットが一度でも未記録領域を通過したと判定してステップS11以降の処理へ進んだ場合、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御し、送りモータ15を規定ステップ分だけ回転させて光学ピックアップ11を所定距離だけディスク内周側へ移動させ、そして、ディスク40が1回転する間の各観測サンプリング周期の全てでHレベルが検出されることになるまで、ステップS11以降の処理を繰り返す。以下、具体的に説明する。
【0052】
ステップS11の処理に進むと、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御し、送りモータ15を規定ステップ分だけ駆動させることにより、光学ピックアップ11を現在の位置からディスク内周側へ所定距離だけ移動させる。本実施の形態において、上記光学ピックアップ11を移動させる所定距離は、例えば50μm(0.05mm)とする。なお、本実施の形態の光ディスク再生装置は、ステップS11の処理の際に、光学ピックアップ11内の二軸アクチュエータにより対物レンズ13をトラッキング方向へ移動させることと、上記送りモータ15による光学ピックアップ11の移動とを組み合わせても良い。また、上記ディスク40の仕様が、例えば、内周側に未記録領域が設けられ外周側からデータが記録されるようなものである場合、本実施の形態の光ディスク再生装置は、ステップS11において光学ピックアップをディスク外周側へ移動させる。さらに他の例として、ステップS0の初期位置がリードイン領域かそれより内周側のデータの無い領域に設定される場合、サーボ処理マイコン22は、ステップS11において、光学ピックアップ11をディスク外周側へ移動させる。
【0053】
次に、サーボ処理マイコン22は、ステップS12として、上記リミットスイッチ31がオンされたか否か観測している。当該ステップS12において、リミットスイッチ31がオンされていないとき、サーボ処理マイコン22は、ステップS13へ処理を進める。
【0054】
一方、ステップS12において、リミットスイッチ31がオンされたことを検出したとき、サーボ処理マイコン22は、ステップS20へ処理を進め、当該ディスク40が最内周まで全くデータの書き込まれていないブランクメディアか、若しくは、DVDの規格でサポートされていないサポート外ディスクであると判断し、当該光ディスク再生装置における再生処理を終了する。
【0055】
ステップS13の処理に進むと、サーボ処理マイコン22は、FG検出器26からの回転周期信号により、スピンドルモータ11の1回転毎(すなわちディスク40の1回転毎)のパルスが検出されたか否か判定する。当該ステップS13において、ディスク40の1回転毎のパルスを検出したとき、サーボ処理マイコン22は、次のステップS14以降へ処理を進める。
【0056】
ステップS14及びその次のステップS15のとき、サーボ処理マイコン22は、上記ステップS7及びステップS8の場合と同様に、光ディスク40が1回転する間、上記観測サンプリング周期毎に、比較器18からのRfdet信号がHレベルであるか否か判定する。但し、このステップS14及びS15のときのサーボ処理マイコン22は、ディスク40が1回転する間に、各観測サンプリング周期のうちの一度でもHレベルでないと判定され場合(一度でもLレベルが検出された場合)にはステップS19へ処理を進め、一方、各観測サンプリング周期の全てでHレベルが検出された場合(一度もLレベルが検出されない場合)にはステップS16へ処理を進める。
【0057】
ステップS16の処理に進むと、サーボ処理マイコン22は、ディスク40が1回転する間中、レーザスポットが常にデータ記録領域上に存在したことを表す数(以下、Rfdetカウント値とする)に「1」を加え、次のステップS17へ処理を進める。
【0058】
一方、ステップS19の処理に進んだ場合、サーボ処理マイコン22は、上記Rfdetカウント値を「0」にリセットした後、ステップS11へ処理を戻す。当該ステップS11の処理へ戻ったとき、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御し、送りモータ15を規定ステップだけ駆動させることにより、光学ピックアップ11をディスク内周方向へ現在の位置からさらに所定距離だけ移動させた後、ステップS12以降の処理を行う。
【0059】
ステップS17へ進むと、サーボ処理マイコン22は、上記Rfdetカウント値が予め決められている規定数を超えたか否か判定する。なお、上記規定数は、例えば「1」や「3」を挙げることができる。図5は、上記規定数が「3」に設定されている場合の例を示している。すなわち、本実施の形態の光ディスク再生装置において、上記Rfdetカウント値の規定数は、ディスク40の再生を開始するポイントを、未記録領域とデータ記録領域との境界位置からどの程度の距離を確保したいかにより決定されるものであり、送りモータ15の1ステップパルス当たりの光学ピックアップ11の送り量や、トラックピッチ、スピンドルモータ10の回転速度等を考慮して決定されている。特に、上述の例のように、Rfdetカウント値の規定数が「3」に設定されている場合、光ディスク再生装置は、データ記録領域の検出マージンを多くとることができるため、より確実にデータ記録領域を検出できることになる。一方、Rfdetカウント値の規定数が「1」に設定されている場合、光ディスク再生装置は、より迅速かつ高い精度でデータ記録領域を検出できることになる。また、上記Rfdetカウント値は、各種リトライが発生した時の再生復帰ポイントとしても使用できる。すなわち、光ディスク再生装置は、上記Rfdetカウント値に応じた位置を再生復帰ポイントとして記憶しておくことで、リトライ時にその再生復帰ポイントに戻って再生を開始すれば、素早い復帰が可能となる。サーボ処理マイコン22は、このステップS17にてRfdetカウント値が規定数を超えていないと判定した場合にはステップS11へ処理を戻す。
【0060】
当該ステップS11の処理へ戻ったとき、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御し、送りモータ15を規定ステップだけ駆動させることにより、光学ピックアップ11をディスク内周方向へ現在の位置からさらに所定距離移動させた後、ステップS12以降の処理を行う。
【0061】
一方、ステップS17において、Rfdetカウント値が規定数(図5の例では「3」)を超えたと判定した場合、サーボ処理マイコン22は、ステップS18へ処理を進める。すなわちこのステップS17からステップS18へ進むときのサーボ処理マイコン22は、光学ピックアップ11を所定距離ずつ規定数分だけ順次移動させたときに、それぞれにおいて上記ディスク40が1回転する間の各観測サンプリング周期の全てでHレベルが検出されたことを検出する。言い換えると、サーボ処理マイコン22は、ディスク40が偏芯している状態であっても、レーザスポットが前記境界領域外のデータ記録領域上に常に存在していて、トラッキングサーボを確実にかけられる状態になっていることを検出する。
【0062】
そして、ステップS18へ進むと、サーボ処理マイコン22は、サーボ処理DSP27を介してドライバアンプ25を制御し、フォーカスサーボをオフにした後、ステップS4へ処理を戻す。このステップS4の処理に戻った場合、その後のステップS7及びステップS8では、ディスク40が1回転する間、レーザスポットは必ずデータ記録領域上に存在することになる。このため、光ディスク再生装置は、ステップS9以降において、トラッキングサーボをかけることができ、ディスク40のデータ記録領域から信号の再生を開始できることになる。
【0063】
以下、図6を参照し、偏芯しているディスク40から本実施の形態の光ディスク再生装置が境界領域を分離してデータ記録領域の再生を開始するまでの動作を具体例を挙げて説明する。なお、この例において、光学ピックアップ11の最小移動単位は50μm、図2のステップS17でのRfdetカウント値の規定数は「1」であるとする。また、データ記録領域と未記録領域の境界位置のうちで外周側の境界位置を基準(0μm)とした場合、データ記録領域はディスク半径方向に0μm〜350μmの幅を有し、未記録領域は−150μm〜0μm及び350μm〜450μmの範囲であるとする。ここで、ディスク40の偏芯量が75μmであるとすると、当該ディスク40の回転によりデータ記録領域内に入り込む境界領域は、0μm〜150μm及び200μm〜350μmの範囲となる。さらに、データ記録領域の検出不成功(NG)はディスク1周期内でRfdet信号が一度でもLレベルになった時とし、データ記録領域の検出成功はディスク1周期内でRfdet信号が全てHレベルになった時とし、そして、データ記録領域を検出できたときにはその位置から再生を開始するものとする。
【0064】
図6において、例えば光学ピックアップ11が−150μm〜−100μmの位置に存在するとき、前記Rfdet信号はディスク1周期に渡り全てLレベルとなるため、本実施の形態の光ディスク再生装置は検出NGと判定する。次に、光学ピックアップ11を内周側に50μm移動させると、当該光学ピックアップ11の位置は−100μm〜−50μmになる。このとき、Rfdet信号はディスク1周期間全てLレベルとなるため、光ディスク再生装置は検出NGと判定する。さらに、光学ピックアップ11を内周側に50μm移動させると、当該光学ピックアップ11の位置は−50μm〜0μmになる。このとき、Rfdet信号はディスク1周期間全てLレベルとなるため、光ディスク再生装置は検出NGと判定する。次に、光学ピックアップ11をさらに内周側に50μm移動させると、当該光学ピックアップ11の位置は0μm〜50μmの境界領域内になる。境界領域の場合、Rfdet信号はディスク1周期内でHレベルとLレベルが存在するものとなるため、光ディスク再生装置は検出NGと判定する。同様に、光学ピックアップ11をさらに内周側に50μm移動させると、当該光学ピックアップ11の位置は50μm〜100μmの境界領域内になる。この場合も、Rfdet信号はディスク1周期内でHレベルとLレベルが存在するものとなり、したがって、光ディスク再生装置は検出NGと判定する。さらに光学ピックアップ11を内周側に50μm移動させると、当該光学ピックアップ11の位置は100μm〜150μmの境界領域内になり、この場合も、Rfdet信号はディスク1周期内でHレベルとLレベルが存在し、光ディスク再生装置は検出NGと判定する。次に、光学ピックアップ11をさらに内周側に50μm移動させると、当該光学ピックアップ11の位置は150μm〜200μmになる。この150μm〜200μmの領域は、境界領域外のデータ記録領域である。このため、Rfdet信号はディスク1周期内で全てHレベルとなり、したがって、光ディスク再生装置は検出OKと判定し、データの再生を開始する。すなわち、この図6の例からわかるように、本実施の形態の光ディスク再生装置は、ディスク40の偏芯量が75μmもあり、その一方で、データ記録領域の幅が350μmしかないような場合であっても、境界領域外の僅か150μm〜200μmの範囲のデータ記録領域を検出できるため、当該データ記録領域に記録されているデータを再生することが可能である。
【0065】
以上説明したように、本実施の形態の光ディスク再生装置は、ディスク40の偏芯の有無や偏芯量の大小にかかわらず、上記データ記録領域から上記境界領域を高い精度で分離でき、且つ、当該境界領域を分離した後のデータ記録領域で、確実にトラッキングサーボをかけることが可能となり、その結果として、上記境界位置を迅速且つ高精度に検出できることになる。なお、境界領域を分離した後のデータ記録領域上の再生開始位置は、上記Rfdetカウント値の規定数が前記「1」の場合には上記境界領域から0.05mmとなり、上記規定数が前記「3」の場合には上記境界領域から0.15mmとなる。また、本実施の形態の光ディスク再生装置は、上述のようにデータ記録領域から境界領域を高精度に分離できるため、再生を開始する場所も高精度に設定可能であり、例えばデータ記録領域が上記境界領域(偏芯量に相当する幅)よりも僅かに広い程度の幅しかないような場合であっても、確実にトラッキングサーボをかけることができ、その結果として、当該データ記録領域に記録されているデータを再生可能である。さらに、本実施の形態の光ディスク再生装置は、従来の光ディスク再生装置のように、境界領域でトラッキングサーボが誤動作することなく、また、例えば一旦ディスク内周側に移動させた光学ピックアップをディスク外周側に戻すというような無駄な動作も無い。
【0066】
[第2の実施の形態]
以下、本発明の第2の実施の形態として、RFDC信号のボトムホールド信号(BH信号)とトップホールド信号(以下、TH信号とする)を生成し、それらBH信号とTH信号の差分(以下、RFpp信号とする)を、基準レベル値と比較する例を挙げる。
【0067】
当該第2の実施の形態の光ディスク再生装置は、図1のボトムホールド回路17及び比較器18に代えて、図7に示す構成を設ける。なお、第2の実施の形態の光ディスク再生装置は、図7に示す構成以外の部分は図1と同様であり、それらの説明は省略する。
【0068】
この図7の構成の端子50には、RFアンプ16から、前述の図4の例と同様の、図8に示すRFDC信号が供給される。当該RFDC信号は、トップホールド回路51とボトムホールド回路52へ送られる。
【0069】
ボトムホールド回路52は、図8に示すように、上記RFDC信号に含まれる変調成分のボトムホールド信号(BH信号)を生成し、そのBH信号を差動アンプ53の反転入力端子へ送る。トップホールド回路51は、図8に示すように、上記RFDC信号に含まれる変調成分のトップホールド信号(以下、TH信号とする)を生成し、そのTH信号を差動アンプ53の非反転入力端子へ送る。なお、これらホールド回路のホールド時定数は、レーザスポットがディスク40上の傷等の欠陥部分や複数トラックを横切る際の振幅変動に影響されることの無い時定数に設定されている。
【0070】
差動アンプ53は、上記TH信号とBH信号の差分をとることで、図8に示すように、上記変調成分の振幅信号(以下、RFpp信号とする)を生成する。この差動アンプ53から出力された、RFpp信号は、比較器54の非反転入力端子へ送られる。
【0071】
また、上記比較器54の反転入力端子には、前述同様にサーボ処理マイコン22が生成した基準レベル値(閾値)が端子55を介して入力されている。したがって、当該比較器54は、上記RFpp信号のレベル値と上記基準レベル値との比較を行い、図8に示すように、上記RFpp信号のレベル値が基準レベル値を下回っている時にはLレベルとなり、一方、RFpp信号が基準レベルを超えた時にはHレベルとなる信号(Rfdet信号)を出力する。当該第2の実施の形態では、上記BH信号とTH信号との差分であるRFpp信号と上記基準レベルを比較することにしているため、例えばディスク上の傷等によりRFDC信号がグランドレベルにまで低下したとしても、その傷等の欠陥区間が上記Rfdet信号のH,Lレベルの検出に影響することはない。なお、当該第2の実施の形態の場合の基準レベルは、第1の実施の形態の基準レベルとは異なる値であっても良い。
【0072】
そして、上記Rfdet信号は、前述の図4と例と同様に、Hレベルのときにはレーザスポットがディスク40のデータ記録領域上に在ることを表しており、一方、Lレベルのときにはレーザスポットが未記録領域上に在ることを表している。このRfdet信号は、サーボ処理マイコン22へ送られる。これ以降の処理は前述同様である。なお、図9は、当該第2の実施の形態の光ディスク再生装置における各部の信号波形を、前述の図5と同様にして示している。図9の例と前記図5の例との違いは、基準レベルとの比較対照が図5の例ではBH信号であったのに対して、図9の例ではRFpp信号になっていることである。
【0073】
当該第2の実施の形態の光ディスク再生装置は、基本的に前述の第1の実施の形態と同様の効果を有し、ディスク40の偏芯の有無や偏芯量の大小にかかわらず境界領域を高精度で分離でき、且つ、確実にトラッキングサーボをかけることができ、境界位置を迅速且つ高精度に検出できる。また、この光ディスク再生装置は、データ記録領域が境界領域よりも僅かに広い程度の幅しかないような場合であっても、確実にトラッキングサーボをかけることができ、データ記録領域に記録されているデータを再生可能である。
【0074】
なお、上述した第1,第2の実施の形態によれば、データ記録領域と境界領域を分離して確実にデータ記録領域を見つけるための検出時間は、必ずしもディスク40の1周期に合わせる必要はなく、上記ディスク40の1周期に相当する時間であれば良い。特に、1周期に相当する時間にした場合、FG検出器26からの回転周期信号を用いる場合よりもサーボ処理マイコン22の処理は軽減される。
【0075】
また、上述した説明は、本発明の一例である。このため、本発明は上述した例に限定されることなく、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることはもちろんである。例えば、本発明は、プリグループにトラッキングサーボをかけるための構成を元々備えている光ディスク記録再生装置において、特に再生開始前に未記録領域とデータ記録領域の境界位置を検出する際にも適用可能である。
【0076】
【発明の効果】
本発明によれば、光ディスクの1周に渡り、スポット光が第1の領域と第2の領域の何れに存在するか判断しているため、例えばデータ記録領域である第1の領域を確実に検出でき、また例えば、光ディスクが1周する間常にスポット光が第1の領域(例えばデータ記録領域)上に存在している時にトラッキングサーボをかければ、光ディスクの偏芯量の大小やディスクに記録されているデータ量の多少にかかわらずに、当該光ディスクに記録されているデータを確実且つ迅速に再生可能となる。
【0077】
また、本発明によれば、光ディスクが1周する間にスポット光が一度でも第2の領域を通過した場合、スポット光を光ディスク半径方向に所定距離だけ移動させて再度の観測を行うことにより、第1の領域(例えばデータ記録領域)と第2の領域(例えば未記録領域)の境界位置を高精度に検出でき、また、光ディスクが偏芯しているときにはその偏芯量に応じた境界領域を第1の領域(データ記録領域)から分離できる。
【図面の簡単な説明】
【図1】第1の実施の形態の光ディスク再生装置の概略構成を示すブロック図である。
【図2】第1の実施の形態の光ディスク再生装置が、ディスク上のデータ記録領域と未記録領域との境界位置を検出し、データ記録領域で再生を開始するまでの処理のフローチャートである。
【図3】I14Hレベルを元に決定される基準レベルの説明に用いる図である。
【図4】第1の実施の形態におけるRFDC信号、BH信号、基準レベル、Rfdet信号の関係説明に用いるタイミングチャートである。
【図5】第1の実施の形態の光ディスク再生装置が、光学ピックアップを順次移動させてデータ記録領域の再生を開始するまでの動作説明に用いるタイミングチャートである。
【図6】本実施の形態の光ディスク再生装置が、幅の狭いデータ記録領域から境界領域を分離し、データ記録領域で再生を開始するまでの具体的な動作説明に用いる図である。
【図7】第2の実施の形態の光ディスク再生装置に設けられる構成を示すブロック図である。
【図8】第2の実施の形態におけるRFDC信号、TH信号、BH信号、基準レベル、Rfdet信号の関係説明に用いるタイミングチャートである。
【図9】第2の実施の形態の光ディスク再生装置が、光学ピックアップを順次移動させてデータ記録領域の再生を開始するまでの動作説明に用いるタイミングチャートである。
【図10】偏芯ディスクの一例を示す図である。
【図11】偏芯ディスク上をレーザスポットが通過した軌跡とディスク位置との関係説明に用いる図である。
【符号の説明】
10…スピンドルモータ、11…光学ピックアップ、12…二軸アクチュエータ、13…対物レンズ、14…リードスクリュー、15…送りモータ、16…RFアンプ、17…ボトムホールド回路、18…比較器、19…D/A変換器、20…ローパスフィルタ、21…A/D変換器、22…サーボ処理マイコン、23…基準レベル決定部、24…ピークレベル検出部、25…ドライバアンプ、26…FG検出器、27…サーボ処理DSP、28…信号復調用DSP、31…リミットスイッチ

Claims (10)

  1. 第1の領域と第2の領域の少なくとも何れかを有する光ディスクを、回転させるモータと、
    上記光ディスク上にスポット光を照射し、上記スポット光が上記光ディスクにより反射された光を受光する光ヘッドと、
    上記光ヘッドの出力信号から所定の比較対照信号を生成する信号生成部と、
    上記比較対照信号を所定の閾値と比較することにより、上記第1の領域に対応した第1の信号状態と上記第2の領域に対応した第2の信号状態の少なくとも何れかを含む比較信号を生成する比較部と、
    上記スポット光が上記光ディスク上を少なくとも一周する間上記比較信号の信号状態を観測し、当該観測結果に基づいて、上記スポット光が第1の領域と第2の領域の何れに存在するか判断する制御部とを有する
    ことを特徴とする光ディスク再生装置。
  2. 請求項1記載の光ディスク再生装置であって、
    上記制御部は、上記観測結果に基づいて、上記スポット光が光ディスク上を少なくとも一周する間上記第1の信号状態が継続したか否かを判断することを特徴とする光ディスク再生装置。
  3. 請求項1又は請求項2記載の光ディスク再生装置であって、
    上記制御部は、上記スポット光が光ディスク上を少なくとも一周する間上記第1の信号状態が継続したことを検出した時、上記光ヘッドを制御してトラッキングサーボを開始させることを特徴とする光ディスク再生装置。
  4. 請求項1又は請求項2記載の光ディスク再生装置であって、
    上記スポット光を上記光ディスク半径方向に移動させるスポット光移動部を有し、
    上記制御部は、上記スポット光が光ディスク上を少なくとも一周する間に上記第2の信号状態を一度でも検出したとき、上記スポット光移動部を制御して、上記スポット光を光ディスク半径方向に所定距離だけ移動させることを特徴とする光ディスク再生装置。
  5. 請求項4記載の光ディスク再生装置であって、
    上記制御部は、上記スポット光が光ディスク上を少なくとも一周する間上記第1の信号状態が継続したことを最初に検出した後、上記スポット光移動部を制御して上記スポット光を上記所定距離だけ移動させることを所定回数行い、当該所定回数の全てにて上記第1の信号状態の上記継続を検出したとき、上記光ヘッドを制御してトラッキングサーボを開始させることを特徴とする光ディスク再生装置。
  6. 請求項2から請求項5のうち、何れか一項記載の光ディスク再生装置であって、
    上記制御部は、上記第1の信号状態の上記継続を検出したとき、上記スポット光と光ディスクとの相対位置を記憶し、当該相対位置を次回のスポット光照射開始の初期位置に設定することを特徴とする光ディスク再生装置。
  7. 請求項1から請求項6のうち、何れか一項記載の光ディスク再生装置であって、
    上記信号生成部は、上記光ヘッドの出力信号のボトムホールド信号を上記比較対照信号として生成し、
    上記比較部は、当該比較対照信号が所定の閾値を下回ったときに上記第1の信号状態となり、上記比較対照信号が所定の閾値を超えたときに上記第2の信号状態となる上記比較信号を生成することを特徴とする光ディスク再生装置。
  8. 請求項1から請求項6のうち、何れか一項記載の光ディスク再生装置であって、
    上記信号生成部は、上記光ヘッドの出力信号のトップホールド信号とボトムホールド信号の差分信号を上記比較対照信号として生成し、
    上記比較部は、当該比較対照信号が所定の閾値を超えたときに上記第1の信号状態となり、上記比較対照信号が所定の閾値を下回ったときに上記第2の信号状態となる上記比較信号を生成することを特徴とする光ディスク再生装置。
  9. 請求項1から請求項8のうち、何れか一項記載の光ディスク再生装置であって、
    上記光ディスク上のミラー面にスポット光が照射された時の上記光ヘッドの出力信号のピークレベルを検出し、当該ピークレベル範囲内の所定のレベルを上記閾値として生成する閾値生成部を有することを特徴とする光ディスク再生装置。
  10. 第1の領域と第2の領域の少なくとも何れかを有する光ディスクを回転させ、
    上記光ディスク上に照射されたスポット光が当該光ディスクにより反射された光の受光信号を生成し、
    上記受光信号から所定の比較対照信号を生成し、
    上記比較対照信号を所定の閾値と比較することにより、上記第1の領域に対応した第1の信号状態と上記第2の領域に対応した第2の信号状態の少なくとも何れかを含む比較信号を生成し、
    上記スポット光が上記光ディスク上を少なくとも一周する間、上記比較信号の信号状態を観測し、当該観測結果に基づいて、上記スポット光が第1の領域と第2の領域の何れに存在するか判断する
    ことを特徴とする光ディスク再生方法。
JP2002305612A 2002-10-21 2002-10-21 光ディスク再生装置及び光ディスク再生方法 Pending JP2004139704A (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002305612A JP2004139704A (ja) 2002-10-21 2002-10-21 光ディスク再生装置及び光ディスク再生方法
CNB03801081XA CN1305046C (zh) 2002-10-21 2003-08-20 光盘重放装置和光盘重放方法
KR1020047004132A KR20050050047A (ko) 2002-10-21 2003-08-20 광 디스크 재생 장치 및 재생 방법
DE60325641T DE60325641D1 (de) 2002-10-21 2003-08-20 Wiedergabeeinrichtung und wiedergabeverfahren für optische datenträger
PCT/JP2003/010487 WO2004036563A1 (ja) 2002-10-21 2003-08-20 光ディスク再生装置及び光ディスク再生方法
AT03772202T ATE419619T1 (de) 2002-10-21 2003-08-20 Wiedergabeeinrichtung und wiedergabeverfahren für optische datenträger
EP03772202A EP1580736B1 (en) 2002-10-21 2003-08-20 Optical disc reproduction device and optical disc reproduction method
US10/659,751 US7230896B2 (en) 2002-10-21 2003-09-10 Optical disk reproducing device and optical disk reproducing method
TW092125200A TW200407861A (en) 2002-10-21 2003-09-12 Optical disk reproducing device and optical disk reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305612A JP2004139704A (ja) 2002-10-21 2002-10-21 光ディスク再生装置及び光ディスク再生方法

Publications (1)

Publication Number Publication Date
JP2004139704A true JP2004139704A (ja) 2004-05-13

Family

ID=32105174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305612A Pending JP2004139704A (ja) 2002-10-21 2002-10-21 光ディスク再生装置及び光ディスク再生方法

Country Status (9)

Country Link
US (1) US7230896B2 (ja)
EP (1) EP1580736B1 (ja)
JP (1) JP2004139704A (ja)
KR (1) KR20050050047A (ja)
CN (1) CN1305046C (ja)
AT (1) ATE419619T1 (ja)
DE (1) DE60325641D1 (ja)
TW (1) TW200407861A (ja)
WO (1) WO2004036563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143175A (ja) * 2012-01-13 2013-07-22 Hitachi Consumer Electronics Co Ltd 光ディスク装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310313B2 (ja) * 2004-06-23 2009-08-05 パナソニック株式会社 記録領域検出回路
KR101027402B1 (ko) * 2004-11-16 2011-04-11 주식회사 히타치엘지 데이터 스토리지 코리아 블랭크 디스크에 대한 서보 조정방법
TW200807406A (en) * 2006-07-20 2008-02-01 Sunplus Technology Co Ltd Identification method for optical disk type
JP4272222B2 (ja) * 2006-07-28 2009-06-03 株式会社ソニー・コンピュータエンタテインメント 光ディスク装置、その制御方法、及びプログラム
US8045434B2 (en) * 2006-09-28 2011-10-25 Mediatek Inc. Method of accessing information stored in predetermined data area on optical disc and information reproducing apparatus thereof
JP4674643B2 (ja) * 2009-02-17 2011-04-20 ソニー株式会社 光ディスク再生装置および光ディスク記録再生装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US159343A (en) * 1875-02-02 Improvement in stays for the bottoms of pantaloons
JPS5625238A (en) * 1979-08-03 1981-03-11 Toshiba Corp Data recording system of optical disk
US4970608A (en) * 1988-03-18 1990-11-13 Olympus Optical Co., Ltd. Editing system for rearranging allocation of information units on an information recording medium
JP3413680B2 (ja) * 1994-06-02 2003-06-03 ソニー株式会社 追記型光ディスク装置及び追記型光ディスクの領域境界検索方法
JPH10172147A (ja) * 1996-12-13 1998-06-26 Sony Corp 光ディスク再生装置
JP2003514338A (ja) * 1999-11-12 2003-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ データ保持ディスクから情報を再生するための装置
JP2001243638A (ja) * 2000-02-24 2001-09-07 Pioneer Electronic Corp 情報再生装置及びその情報再生方法
JP3690955B2 (ja) * 2000-03-01 2005-08-31 松下電器産業株式会社 光ディスク装置
DE10064051A1 (de) * 2000-12-21 2002-12-05 Thomson Brandt Gmbh Positionsregelung mittels Spurzählwert
JP2003030865A (ja) * 2001-07-13 2003-01-31 Sony Corp 記録再生装置及びディスク記録再生方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143175A (ja) * 2012-01-13 2013-07-22 Hitachi Consumer Electronics Co Ltd 光ディスク装置

Also Published As

Publication number Publication date
KR20050050047A (ko) 2005-05-27
EP1580736B1 (en) 2008-12-31
EP1580736A1 (en) 2005-09-28
US7230896B2 (en) 2007-06-12
ATE419619T1 (de) 2009-01-15
EP1580736A4 (en) 2007-10-24
WO2004036563A1 (ja) 2004-04-29
CN1305046C (zh) 2007-03-14
CN1565020A (zh) 2005-01-12
TW200407861A (en) 2004-05-16
DE60325641D1 (de) 2009-02-12
US20040095859A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP2005353142A (ja) 光ディスク判別装置
US6747922B2 (en) Track-jump controlling apparatus and method
JP2004139704A (ja) 光ディスク再生装置及び光ディスク再生方法
JP2004134007A (ja) 光ディスクのトラッキング制御装置および方法
JP2003045056A (ja) 光ディスク装置
KR100510524B1 (ko) 트랙 정보를 이용하여 광픽업의 최내주 이동을 제어하는광 디스크 시스템 및 이에 대한 제어방법
JP2005166122A (ja) 光ディスク装置及び情報再生方法
JP4211152B2 (ja) ディスクドライブ装置
KR100651965B1 (ko) 광 기록매체의 기록 재생 방법 및 장치
KR20020039504A (ko) 틸트 제어 방법 및 장치
JP2004288337A (ja) 光ディスク装置及びディスクモータ制御方法
JP2006179127A (ja) 光ディスク装置及びその制御方法
KR100651969B1 (ko) 광 기록매체의 기록 재생 방법
JP4274001B2 (ja) 光ディスク記録再生方法および光ディスク記録再生装置
JP4085040B2 (ja) 光ディスク装置
JP5076846B2 (ja) 光ディスク装置
JP4396707B2 (ja) 光ディスク装置
JP2000207744A (ja) ピット信号検出回路
KR20020007711A (ko) 광 기록매체의 트랙 판별 방법 및 장치
JP2006318600A (ja) 光ディスク再生装置
JP2008300004A (ja) 光ディスク装置及びその制御方法
JP2009176337A (ja) 光ディスク装置
JPH10241268A (ja) 光ディスク装置
JP2006318590A (ja) 球面収差補正方法および記録再生装置
JP2000099965A (ja) ディスクドライブ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070705