JP2001261344A - Mn−Znフェライトおよびその製造方法 - Google Patents

Mn−Znフェライトおよびその製造方法

Info

Publication number
JP2001261344A
JP2001261344A JP2000072265A JP2000072265A JP2001261344A JP 2001261344 A JP2001261344 A JP 2001261344A JP 2000072265 A JP2000072265 A JP 2000072265A JP 2000072265 A JP2000072265 A JP 2000072265A JP 2001261344 A JP2001261344 A JP 2001261344A
Authority
JP
Japan
Prior art keywords
mol
ferrite
firing
composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000072265A
Other languages
English (en)
Other versions
JP3418827B2 (ja
Inventor
Osamu Kobayashi
修 小林
Osamu Yamada
修 山田
Kiyoshi Ito
清 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2000072265A priority Critical patent/JP3418827B2/ja
Priority to US09/795,133 priority patent/US6468441B1/en
Priority to EP01105327A priority patent/EP1134202A1/en
Publication of JP2001261344A publication Critical patent/JP2001261344A/ja
Application granted granted Critical
Publication of JP3418827B2 publication Critical patent/JP3418827B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

(57)【要約】 【課題】 1Ωmのオーダーを超える比抵抗を有し、か
つ1MHz を超える高周波数帯域においても磁心損失の低
いMn −Zn フェライトを提供する。 【解決手段】 基本成分組成が、Fe2O3 44.0 〜49.8 mo
l%、ZnO 6.0〜15.0 mol%(ただし、15.0 mol%は除
く)、CoO 0.1〜3.0 mol%、Mn2O3 0.02〜1.20 mol
%、残部 MnOからなり、Fe2O3 を化学量論組成である50
mol%より低い範囲に抑制すると共に、CoO、Mn2O3
適当量加え、さらに平均結晶粒径を10μm未満とする
ことにより、所期の目的を達成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、軟磁性を有する酸
化物磁性材料に係り、より詳しくはスイッチング電源ト
ランス、ロータリートランスなどに向けて好適なMn −
Zn フェライトとその製造方法に関する。
【0002】
【従来の技術】軟磁性を有する代表的な酸化物磁性材料
としては、Mn −Zn フェライトがある。このMn −Z
n フェライトは、従来一般には化学量論組成である50 m
ol%よりも多いFe2O3 、平均的には52〜55 mol%のFe2O
3 と、10〜24 mol%のZnO と、残部 MnOとを含有する基
本成分組成となっている。そして、通常は、Fe2O3 、Zn
O 、MnO の各原料粉末を所定の割合で混合した後、仮
焼、粉砕、成分調整、造粒、成形の各工程を経て所定の
形状とし、しかる後、窒素を流すことにより酸素濃度を
低く抑えた還元性雰囲気中で、1200〜1400℃に2〜4時
間保持する焼成処理を行って製造される。このように還
元性雰囲気中で焼成する理由は、Fe3+ の一部を還元す
ることによりFe2+ を生成させるためである。このFe
2+ は正の結晶磁気異方性を有し、Fe3+ の負の結晶磁
気異方性を打ち消して軟磁性を高める効果がある。
【0003】
【発明が解決しようとする課題】上記したFe2+ の生成
量は焼成並びに焼成後の冷却時の酸素濃度に依存し、こ
の設定を誤ると良好な軟磁気特性を確保することは困難
となる。そこで、従来は実験的に下記(1)式を確立
し、この(1)式に従って焼成並びに焼成後の冷却時の
酸素濃度を厳しく管理している。ここで、Tは温度
(℃)、Po2 は酸素濃度(%)、bは定数であり、通
常、この定数として7〜8を採用している。この定数が
7〜8ということは、焼成中の酸素濃度を狭い範囲に制
御しなければならないことを意味し、焼成処理が極めて
面倒になり、製造コストも嵩むという問題があった。 log Po2=−14540 /(T+273 )+b … (1)
【0004】ところで、近年、電子機器の小型高性能化
に伴い、処理信号が高周波数化される傾向にあり、高周
波数帯域においても優れた磁気特性を有する磁性材料が
必要になってきている。しかるに、Mn −Zn フェライ
トを磁心材料として用いる場合は、使用する周波数帯域
が高くなるに従って渦電流が流れ、これによる損失が大
きくなる。したがって、磁心材料として使用できる周波
数の上限を高めるには、その比抵抗をできるだけ大きく
する必要がある。しかし、上記した一般的なMn−Zn
フェライトは、Fe2O3 が化学量論組成である50 mol%よ
りも過剰であるため、Fe2+ が多く存在し、上記したF
e3+ とFe2+ との間(イオン間)での電子の授受が容易
なため、その比抵抗はおよそ1Ωmのオーダー(一桁の
オーダー)かそれより小さい値である。したがって、使
用できる周波数も数百kHz 程度が限界で、これを超える
周波数帯域では透磁率(初透磁率)が著しく低下して、
軟磁性材料としての特性を全く失ってしまう、という問
題があった。
【0005】なお、一部では、Mn −Zn フェライトの
見かけ上の抵抗を高めるため、副成分としてCaO、SiO2
等を添加して結晶粒界を高抵抗化すると共に、1200℃程
度の低温焼成を行って、結晶粒界を一般的な、およそ2
0μmから5μm程度に小さくして結晶粒界の割合を増や
す対策を採っている場合もある。しかし、このような対
策を採用しても、結晶粒内そのものの抵抗が低いため、
1Ωmのオーダーを超える比抵抗を得ることは難しく、
根本的な解決には至らない。
【0006】また、例えば、CaO、SiO2、SnO2 、TiO2
添加して高抵抗化を図ったMn −Zn フェライトが開発
され、特願平9−18092号に明らかにされている。
しかし、その比抵抗は 0.3〜2.0 Ωmと低く、高周波数
帯域において使用するには不十分である。同じくSnO2
等を加えたMn -Zn フェライトがEPC 1,304,237に明ら
かにされている。この特許に記載のMn -Zn フェライ
トは、Fe2+ を3〜7mol%も含有している。上述した
ように比抵抗はFe2+ 量に依存し、この特許に記載のM
n -Zn フェライトでは、従来一般のMn−Znフェラ
イトの比抵抗を上回ることはできない。
【0007】一方、最近、偏向ヨーク用コア材として、
Fe2O3 を50 mol%未満とすることで高抵抗化したMn −
Zn フェライトが開発され、特開平7−230909号
公報、特開平10−208926号公報、特開平11−
199235号公報等に明らかにされている。しかしな
がら、これら何れの公報に記載のMn −Zn フェライト
についても、用途が偏向ヨーク用コア材である点と、各
公報に記載の発明の実施例からみて、64〜100 kHzとい
う周波数帯域での使用を目的としたフェライト材であ
る。高い比抵抗をねらってFe2O3 を50 mol%未満とした
のは、偏向ヨーク用のコアに銅線を直に巻付けることを
可能にするためであり、1MHzを超えるような高周波数
帯域において良好な磁気特性は得られていない。つま
り、高い比抵抗をねらてFe2O 3 を50 mol%未満とするだ
けでは、1MHzを超えるような高周波数帯域において磁
心材料として使用できない。
【0008】さらに、初透磁率の温度係数を小さくする
ために、Fe2O3 が50 mol%以下のMn -Zn フェライト
にCoO を1.3〜1.5 mol%添加したものが、特公昭52−
4753号公報に開示されている。これも1MHz を超え
るような高周波数帯域において低損失特性を得ることを
意図したものではなく、また、焼成および冷却時の酸素
濃度も厳密には制御されていない。
【0009】本発明は、上記従来の問題点に鑑みてなさ
れたもので、その目的とするところは、優れた磁気特性
を有することはもちろん、1Ωmのオーダー(一桁のオ
ーダー)を超える大きな比抵抗を有し、かつ1MHz を超
える高周波数帯域においても磁心損失の低いMn −Zn
フェライトを提供し、併せてこのようなMn −Zn フェ
ライトを容易かつ安価に得ることができる製造方法を提
供することにある。
【0010】
【課題を解決するための手段】上記目的を達成するた
め、本発明に係るMn −Zn フェライトの一つは、基本
成分組成が、Fe2O3 44.0 〜49.8 mol%、 ZnO 6.0 〜1
5.0 mol%(ただし、15.0mol%は除く)、CoO 0.1〜3.0
mol%、Mn2O3 0.02〜1.20 mol%、残部MnO からなり、
平均結晶粒径が10μm未満であることを特徴とする。
また、本発明に係るMn −Zn フェライトの他の一つ
は、基本成分組成が、Fe 2O3 44.0 〜49.8 mol%、 ZnO
6.0 〜15.0 mol%(ただし、15.0 mol%は除く)、CoO
0.1〜3.0 mol%、CuO 0.1〜6.0 mol%、Mn2O3 0.02〜1.
20 mol%、残部MnO からなり、平均結晶粒径が10μm
未満であることを特徴とする。また、本発明に係るMn
−Zn フェライトの、さらに他の一つは、上記した二つ
の発明の基本成分組成に加えて、副成分として、CaO 0.
005〜0.200 mass%、SiO2 0.005〜0.050 mass%、ZrO2
0.010〜0.200 mass%、Ta2O5 0.010〜0.200 mass%、Hf
O2 0.010〜0.200 mass%およびNb2O5 0.010〜0.200 mas
s%のうちの1種または2種以上を含有することを特徴
とする。
【0011】一方、上記目的を達成するための本発明に
係るMn −Zn フェライトの製造方法は、上記のように
構成したMn −Zn フェライトの組成となるように成分
調整した混合粉末を用いて成形を行った後、前記(1) 式
で、定数bとして6〜12の範囲から選択した任意の値
で規定される酸素濃度の雰囲気中で焼成および少なくと
も 500℃までの焼成後の冷却を行うことを特徴とする。
【0012】
【発明の実施の形態】従来の一般的なMn −Zn フェラ
イトでは、前述したようにFe2O3 が化学量論組成である
50 mol%よりも多い。この過剰分のFe2O3 をヘマタイト
として析出させないため、窒素を流すことにより酸素濃
度をかなり低く抑えた条件下、つまり前記(1)式にお
ける定数bが7〜8で焼成および冷却をしなければなら
なかった。一方、本発明においては、Fe2O3 を50 mol%
未満の44.0〜49.8 mol%としているため、ヘマタイトは
析出し難く、焼成中の酸素濃度の範囲を多少広くしても
良好な磁気特性が得られる。また、従来のFe2O3 が50 m
ol%よりも多いMn -Znフェライトでは、Fe2+ がおよ
そ3.0 mol%存在するのに対し、本発明のMn−Znフ
ェライトでは、Fe2+ が0.1〜0.7 mol%と少ないため
に、比抵抗が非常に高い。したがって、高周波数帯域に
おいてもさほど渦電流が大きくならず、良好な初透磁率
が得られる。しかし、このFe2O3 が少なすぎると飽和磁
化の低下を招くので、少なくとも44.0 mol%以上必要で
ある。
【0013】主成分としてのZnO は、キュリー温度や飽
和磁化に影響を与えるが、少なすぎると初透磁率が低下
し、逆に多すぎると飽和磁化やキュリー温度が低下して
しまう。電源トランス用フェライトは80〜100 ℃程度の
環境で使用される場合が多く、キュリー温度や飽和磁化
が高いことが特に重要になるため、上記範囲6.0 〜15.0
mol%(ただし、15.0 mol%は除く)とする。
【0014】CoO はCo2+ が正の結晶磁気異方性を持つ
ため、同じ正の結晶磁気異方性を持つFe2+ が少量しか
存在しなくても、Fe3+ の負の結晶磁気異方性を相殺す
ることができる。さらに、Co2+ は誘導磁気異方性を発
生させることにより高周波数帯域の損失を低減させる効
果もある。ただし、その含有量があまりに少ないとその
効果は小さく、逆に多すぎると磁歪が大きくなり初透磁
率が低下するため、0.1〜3.0 mol%とする。
【0015】上記フェライト中のマンガン成分は、Mn
2+ およびMn3+ として存在するが、Mn3+ は結晶格子
を歪ませる等の理由で初透磁率を著しく低下させるた
め、Mn2O 3 として1.20 mol%以下とする。ただし、少な
すぎると比抵抗が著しく低下するため、Mn2O3 として少
なくとも0.02 mol%を含有させるようにする。
【0016】本発明は、基本成分としてCuO をさらに含
有させてもよいものである。このCuO は、低温焼成を可
能にする効果があるが、あまり少ないとその効果が小さ
く、逆に多すぎると磁心損失が大きくなるため、0.1〜
6.0 mol%とする。
【0017】本発明は、副成分としてCaO 、SiO2、ZrO2
、Ta2O5 、HfO2 あるいはNb2O5 を含有させることがで
きる。これら副成分は、何れも結晶粒成長を促進する作
用があり、平均結晶粒径を10μm未満とするのに有効
である。ただし、それらの含有量が少なすぎるとその効
果が小さく、逆に多すぎると異常粒成長が起こってしま
うので、CaO 0.005〜0.200 mass%、 SiO2 は0.005〜0.
050 mass%、ZrO2 は0.010〜0.200 mass%、Ta2O5 は0.
010〜0.200 mass%、HfO2 は0.010〜0.200 mass%、Nb2
O5 は0.010〜0.200 mass%とする。
【0018】高周波数帯域におけるフェライトの磁心損
失は、主に渦電流損失と残留損失とからなる。上記した
ように本発明に係るMn −Zn フェライトは比抵抗が非
常に高く、渦電流損失は小さい。さらに平均結晶粒径を
10μm未満と小さくしているので、結晶粒内の磁壁の
数が減少し、残留損失を大幅に低減するこことができ
る。
【0019】本発明では、上記したように焼成および焼
成後の冷却を、前記(1) 式における定数bとして6〜1
2の範囲内の任意の値を用いて求めた酸素濃度の雰囲気
中で行うことで、Mn3+ 量を制御する。定数bとして1
2より大きい値を選択した場合は、フェライト中のMn
3+ 量が1.20 mol%よりも多くなり、初透磁率は急激に
低下する。したがって、初透磁率を高くするためには、
フェライト中のMn3+量を少なくする必要があり、定数
bは小さな値を選択するのが望ましいが、6より小さい
値を選択すると、Fe2+ が多くなったり、あるいはMn
3+ が少なくなり過ぎることによって、比抵抗が著しく
低下してしまうので、この定数bは少なくとも6とす
る。
【0020】Mn −Zn フェライトの製造に際しては、
予め主成分としてのFe2O3、ZnO、CoO、Mn2O3 およびMnO
の各原料粉末を所定の比率となるように秤量し、これ
らを混合して混合粉末を得、次に、この混合粉末を仮
焼、微粉砕する。前記仮焼温度は、目標組成によって多
少異なるが、800 〜1000℃の温度範囲内で適宜の温度を
選択する。また、混合粉末の微粉砕には汎用のボールミ
ルを用いることができる。なお、副成分としてのCaO 、
SiO2、ZrO2 、Ta2O5 、HfO2 あるいはNb2O5 を含有させ
る場合は、前記微細な混合粉末に、これら副成分の粉末
を適量添加混合し、目標成分の混合粉末を得る。その後
は、通常のフェライト製造プロセスに従って造粒、成形
を行い、さらに、1000〜1400℃で焼成を行う。なお、前
記造粒は、ポリビニルアルコール、ポリアクリルアミ
ド、メチルセルロース、ポリエチレンオキシド、グリセ
リン等のバインダーを添加する方法を、また成形は、例
えば、80MPa 以上の圧力を加えて行う方法をそれぞれ採
用することができる。
【0021】上記した焼成および焼成後の冷却は、焼成
炉中に窒素ガス等の不活性ガスを流して酸素濃度を制御
する。この場合、前記 (1)式中の定数は6〜12の範囲
内で任意の値を選択することができるので、従来一般
の、Fe2O3 が50 mol%よりも多いMn −Zn フェライト
を焼成する場合に選択した定数b(7〜8)と比較し
て、その許容範囲はかなり広く、容易に酸素濃度の制御
を行うことができる。また、この場合、上記(1) 式に基
づく焼成後の冷却は、500 ℃より低い温度では、酸素濃
度によらず酸化または還元の反応を無視できるため、50
0 ℃までとすれば十分である。
【0022】
【実施例】実施例1 Fe2O3 が42.0〜51.0 mol%、CoO が0〜4.0 mol%、残
部が MnO、Mn2O3 およびZnO で、MnO とMn2O3 とを全て
MnO として換算したときのMnO とZnO とでモル比が3:
1となるように各原料粉末をボールミルにて混合した
後、空気中、 850℃で2時間仮焼し、さらにボールミル
にて20時間粉砕して、混合粉末を得た。次に、この混合
粉末を先の組成となるように成分調整し、さらにボール
ミルにて1時間混合した。次に、この混合粉末にポリビ
ニルアルコールを加えて造粒し、80MPa の圧力で外径18
mm,内径10mm,高さ4mmのトロイダルコア(成形体)を
成形した。その後、この成形体を焼成炉に入れ、窒素を
流すことにより、前記(1) 式中の定数bを8として求め
られる酸素濃度となるように雰囲気を調整し、1200℃で
2時間焼成および焼成後の冷却を行い、表1に示すよう
な試料1−1〜1−9を得た。そして、上記のようにし
て得た各試料1−1〜1−9について、金属顕微鏡によ
る観察を行って平均結晶粒径を求めた。その結果、いず
れの試料共、平均結晶粒径はおよそ7μmとなってい
た。さらに、上記試料1−1〜1−9について、蛍光X
線分析によって最終的な成分組成を確認すると共に、比
抵抗、2MHz における初透磁率、2MHz‐25mTにおける
磁心損失を測定した。それらの結果を表1に一括して示
す。
【0023】
【表1】
【0024】表1に示す結果より、Fe2O3 が50.0 mol%
よりも多い試料1−1および1−2に対し、Fe2O3 が5
0.0 mol%未満の試料1−3〜1−9は、いずれも比抵
抗が著しく高くなっている。さらに、これらの試料のう
ち、磁心損失が1000kW/m3以下の優れた値が得られた
のは、Fe2O3 が44.0〜49.8 mol%で、かつCoO が0.1〜
3.0 mol%の本発明試料1−3、1−4、1−6、1−
8である。
【0025】実施例2 実施例1の試料1−6と同じ組成となるように各原料粉
末をボールミルにて混合した後、実施例1と同様の条件
で、外径18mm,内径10mm,高さ4mmのトロイダルコア
(成形体)を成形し、その後、この成形体を焼成炉に入
れ、窒素を流すことにより、前記(1) 式中の定数bを5.
5 〜15の範囲で種々に変化させて求められる酸素濃度
となるように雰囲気を調整し、1200℃で2時間焼成およ
び焼成後の冷却を行い、表2に示すような試料2−1〜
2−5を得た。そして、このようにして得た各試料2−
1〜2−5について、金属顕微鏡による観察を行って平
均結晶粒径を求めた。その結果、いずれの試料共、平均
結晶粒径はおよそ7μmとなっていた。さらに、各試料
2−1〜2−5について、比抵抗および2MHz‐25mTに
おける磁心損失を測定すると共に、滴定法によりMn2O3
量を分析した。それらの結果を表2に一括して示す。
【0026】
【表2】
【0027】表2に示す結果より、(1) 式中の定数bを
6〜12とした酸素濃度の雰囲気中で焼成を行った本発
明試料2−2〜2−4は、何れも磁心損失が小さくなっ
ている。しかし、定数bを5.5 とした酸素濃度の雰囲気
中で焼成を行った比較試料2−1は比抵抗が低いため、
逆に、定数bを15とした比較試料2−5はMn2O3 量が
1.2 mol%と多いため、いずれも磁心損失が1000kW/m3
を超える大きな値となっている。
【0028】実施例3 Fe2O3 が47.0 mol%、CoO が1.0 mol%、CuO が0〜7.0
mol%、残部が MnO、Mn2O3 およびZnO で、MnO とMn2O
3 とを全てMnO として換算したときのMnO とZnO とでモ
ル比が3:1となるように各原料粉末をボールミルにて
混合した後、実施例1と同様の製造条件で、外径18mm,
内径10mm,高さ4mmのトロイダルコア(成形体)を成形
し、その後、この成形体を焼成炉に入れ、窒素を流すこ
とにより、前記(1) 式中の定数bを8として求められる
酸素濃度となるように雰囲気を調整し、1100℃および12
00℃で2時間焼成および焼成後の冷却を行い、表3に示
すような試料3−1〜3−4を得た。そして、このよう
にして得た各試料3−1〜3−4について、金属顕微鏡
による観察を行って平均結晶粒径を求めた。その結果、
いずれの試料共、平均結晶粒径は5〜9μmの範囲に入
っていた。さらに、上記試料3−1〜3−4について、
蛍光X線分析によって最終的な成分組成を確認すると共
に、2MHz‐25mTにおける磁心損失を測定した。それら
の結果を表3に一括して示す。
【0029】
【表3】
【0030】表3に示す結果より、CuO を全く含まない
試料(本発明試料)3−1は、1000kW/m3 以下の低損
失を実現するのに、1200℃の焼成温度を選択しなければ
ならないが、CuO を適量含有させた本発明試料3−2、
3−3は、焼成温度1100℃と低く設定しても1000kW/m
3 以下の低損失を実現できた。しかし、適量を超えてCu
O を適量含有させた比較試料3−4は、いずれの焼成温
度を選択しても磁心損失が大きくなっている。
【0031】実施例4 実施例1の試料1−6あるいは実施例3の試料3−2と
同じ組成となるように各原料粉末をボールミルにて混合
した後、実施例1と同様の製造条件で、外径18mm,内径
10mm,高さ4mmのトロイダルコア(成形体)を成形し、
その後、この成形体を焼成炉に入れ、窒素を流すことに
より、前記(1) 式中の定数bを8として求められる酸素
濃度となるように雰囲気を調整し、1100〜1300℃で2時
間焼成および焼成後の冷却を行い、表4に示すような試
料4−1〜4−6を得た。そして、このようにして得た
各試料4−1〜4−6について、金属顕微鏡による観察
を行って平均結晶粒径を求め、さらに、2MHz‐25mTに
おける磁心損失を測定した。それらの結果を表4に一括
して示す。
【0032】
【表4】
【0033】表4に示す結果より、結晶粒径が10μm
未満の本発明試料4−1、4−2および4−4は、磁心
損失が1000kW/m3 を下回る低損失であるものの、結晶
粒径が10μm以上の比較試料4−3、4−5および4
−6は1000kW/m3を超える大きな磁心損失となってい
る。
【0034】実施例5 実施例1の試料1−6あるいは実施例3の試料3−2と
同じ組成となるように各原料粉末をボールミルにて混合
した後、空気中、850 ℃で2時間仮焼し、さらにボール
ミルにて20時間粉砕して、混合粉末を得た。次に、この
混合粉末を先の組成となるように成分調整すると共に、
副成分としてCaO 、SiO2、ZrO2 、Ta2O5、HfO2 あるい
はNb2O5 を加え、さらにボールミルにて1時間混合し
た。次に、この混合粉末にポリビニルアルコールを加え
て造粒し、80MPa の圧力で外径18mm,内径10mm,高さ4
mmのトロイダルコア(成形体)を成形した。その後、こ
の成形体を焼成炉に入れ、窒素を流すことにより、前記
(1) 式中の定数bを8として求められる酸素濃度となる
ように雰囲気を調整し、1100℃または1200℃で2時間焼
成および焼成後の冷却を行い、表5に示すような試料5
−1〜5−8を得た。そして、このようにして得た各試
料5−1〜5−8について、金属顕微鏡による観察を行
って平均結晶粒径を求め、さらに、2MHz‐25mTにおけ
る磁心損失を測定した。それらの結果を表5に一括して
示す。
【0035】
【表5】
【0036】表5に示す結果より、副成分を添加してい
ない試料(本発明試料)1−6、3−2に対し、副成分
を適量添加した本発明試料5−1〜5−7は、何れも結
晶粒成長が抑制され、磁心損失がより改善されている。
ただし、副成分を適量超えて添加した比較試料5−8で
は、異常粒成長が起こり、磁心損失が著しく悪化してい
る。
【0037】
【発明の効果】以上、説明したように、本発明に係るM
n −Zn フェライトによれば、Fe2O3を化学量論組成よ
りも少ない44.0〜49.8 mol%の範囲内で含有させると共
に、CoO を 0.1〜3.0 mol%、Mn2O3 を0.02〜1.00 mol
%の範囲内でそれぞれ含有させ、さらに平均結晶粒径を
10μm未満とすることにより、1Ωmのオーダーを超え
る大きな比抵抗を有するばかりか、1MHz を超える高周
波数帯域においても低い磁心損失を有するものとなり、
しかも、磁気的特性も優れたものとなって、その利用価
値は著しく向上する。また、基本成分としてCuO を0.1
〜6.0 mol%含有させた場合は、低温焼成が可能にな
り、エネルギー消費の可及的削減を達成できる。また、
副成分として、CaO 、SiO2、ZrO2 、Ta2O5 、HfO2 ある
いはNb2O5 等を適量含有させた場合は、高周波数帯域に
おける磁心損失がより一層改善される。さらに、本発明
に係るMn −Zn フェライトの製造方法によれば、焼成
および焼成後の酸素濃度を厳密に制御する必要がないの
で、Mn −Zn フェライトの製造の安定化並びに低コス
ト化に大きく寄与するものとなる。
【手続補正書】
【提出日】平成12年4月17日(2000.4.1
7)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正内容】
【0006】また、例えば、CaO、SiO2、SnO2 、TiO2
添加して高抵抗化を図ったMn −Zn フェライトが開発
され、特開平9−180925号公報に明らかにされて
いる。しかし、その比抵抗は 0.3〜2.0 Ωmと低く、高
周波数帯域において使用するには不十分である。同じく
SnO2 等を加えたMn -Zn フェライトがEPC 1,304,237
に明らかにされている。この特許に記載のMn -Zn フ
ェライトは、Fe2+ を3〜7mol%も含有している。上
述したように比抵抗はFe2+ 量に依存し、この特許に記
載のMn -Zn フェライトでは、従来一般のMn−Zn
フェライトの比抵抗を上回ることはできない。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 清 静岡県磐田郡浅羽町浅名1743番地1 ミネ ベア株式会社浜松製作所内 Fターム(参考) 4G002 AA07 AA08 AB01 AE02 4G018 AA01 AA02 AA08 AA16 AA19 AA21 AA22 AA24 AA25 AA31 AB08 AC14 AC22 5E041 AB02 AB19 CA03 HB03 HB05 NN02

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 基本成分組成が、Fe2O3 44.0 〜49.8 mo
    l%、 ZnO 6.0 〜15.0 mol%(ただし、15.0 mol%は除
    く)、CoO 0.1〜3.0 mol%、Mn2O3 0.02〜1.20 mol%、
    残部MnO からなり、平均結晶粒径が10μm未満である
    ことを特徴とするMn −Zn フェライト。
  2. 【請求項2】 基本成分組成が、Fe2O3 44.0 〜49.8 mo
    l%、 ZnO 6.0 〜15.0 mol%(ただし、15.0 mol%は除
    く)、CoO 0.1〜3.0 mol%、CuO 0.1〜6.0 mol%、Mn2O
    3 0.02〜1.20 mol%、残部MnO からなり、平均結晶粒径
    が10μm未満であることを特徴とするMn −Zn フェ
    ライト。
  3. 【請求項3】 副成分として、CaO 0.005〜0.200 mass
    %、 SiO2 0.005〜0.050 mass%、ZrO2 0.010〜0.200 m
    ass%、Ta2O5 0.010〜0.200 mass%、HfO2 0.010〜0.20
    0 mass%およびNb2O5 0.010〜0.200 mass%のうちの1
    種または2種以上を含有することを特徴とする請求項1
    または2に記載のMn −Zn フェライト。
  4. 【請求項4】 請求項1〜3の何れか1項に記載のMn
    −Zn フェライトの組成となるように成分調整した混合
    粉末を用いて成形を行った後、下記の式で規定される酸
    素濃度の雰囲気中で焼成および少なくとも 500℃までの
    焼成後の冷却を行うことを特徴とするMn −Zn フェラ
    イトの製造方法。 log Po2=−14540 /(T+273 )+b ただし、T:温度(℃)、Po2:酸素濃度(%)、b:
    6〜12の範囲から選択した定数
JP2000072265A 2000-03-15 2000-03-15 Mn−Znフェライトおよびその製造方法 Expired - Fee Related JP3418827B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000072265A JP3418827B2 (ja) 2000-03-15 2000-03-15 Mn−Znフェライトおよびその製造方法
US09/795,133 US6468441B1 (en) 2000-03-15 2001-03-01 Mn-Zn ferrite and production process thereof
EP01105327A EP1134202A1 (en) 2000-03-15 2001-03-07 Mn-Zn ferrite and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072265A JP3418827B2 (ja) 2000-03-15 2000-03-15 Mn−Znフェライトおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2001261344A true JP2001261344A (ja) 2001-09-26
JP3418827B2 JP3418827B2 (ja) 2003-06-23

Family

ID=18590710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072265A Expired - Fee Related JP3418827B2 (ja) 2000-03-15 2000-03-15 Mn−Znフェライトおよびその製造方法

Country Status (3)

Country Link
US (1) US6468441B1 (ja)
EP (1) EP1134202A1 (ja)
JP (1) JP3418827B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257724A (ja) * 2002-03-04 2003-09-12 Hitachi Metals Ltd Mn−Zn系フェライト
JP2004315312A (ja) * 2003-04-17 2004-11-11 Jfe Steel Kk Mn−Zn系フェライト
JP2007331980A (ja) * 2006-06-15 2007-12-27 Jfe Ferrite Corp MnCoZnフェライトおよびトランス用磁心
CN111116191A (zh) * 2019-12-31 2020-05-08 天长市中德电子有限公司 一种高磁导率低损耗锰锌软磁铁氧体材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167272A (ja) * 2000-11-28 2002-06-11 Minebea Co Ltd Mn−Znフェライトの製造方法
JP2004140006A (ja) * 2002-10-15 2004-05-13 Minebea Co Ltd コモンモードチョークコイル及びラインフィルタ
JP2004247371A (ja) * 2003-02-12 2004-09-02 Minebea Co Ltd MnZnフェライト
JP2004247370A (ja) * 2003-02-12 2004-09-02 Minebea Co Ltd MnZnフェライト
CN101723655B (zh) * 2008-10-21 2012-07-18 兰州大学 一种锰锌铁氧体掺杂钴纳米材料的制备方法
CN107032778A (zh) * 2017-05-12 2017-08-11 天长市中德电子有限公司 一种尖晶石型吸波铁氧体的制备方法
FR3090439B1 (fr) * 2018-12-21 2020-12-18 Renault Georges Ets outil électroportatif équipé d’un transformateur tournant doté de supports de bobine en plasto-ferrite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1771921B2 (de) 1968-07-31 1972-12-07 CRL Electronic Bauelemente GmbH, 8500 Nürnberg, Rosenthal Stemag Tech nische Keramik GmbH, 8672 Selb Ferrite hoher temperaturempfindlichkeit
GB1304237A (ja) 1970-09-02 1973-01-24
JPS524753A (en) 1975-06-30 1977-01-14 Fujitsu Ltd Mic circulator
JP3454316B2 (ja) 1994-02-18 2003-10-06 Tdk株式会社 マンガン亜鉛系フェライトコア及びその製造方法
JP3247930B2 (ja) 1995-12-27 2002-01-21 川崎製鉄株式会社 Mn−Zn系ソフトフェライト
JPH10208926A (ja) 1997-01-21 1998-08-07 Fuji Elelctrochem Co Ltd フェライト材料並びにその製造方法及びその材料を用いた偏向ヨークコア
JPH11199235A (ja) 1998-01-16 1999-07-27 Fuji Elelctrochem Co Ltd フェライト材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257724A (ja) * 2002-03-04 2003-09-12 Hitachi Metals Ltd Mn−Zn系フェライト
JP2004315312A (ja) * 2003-04-17 2004-11-11 Jfe Steel Kk Mn−Zn系フェライト
JP2007331980A (ja) * 2006-06-15 2007-12-27 Jfe Ferrite Corp MnCoZnフェライトおよびトランス用磁心
CN111116191A (zh) * 2019-12-31 2020-05-08 天长市中德电子有限公司 一种高磁导率低损耗锰锌软磁铁氧体材料及其制备方法
CN111116191B (zh) * 2019-12-31 2022-02-15 天长市中德电子有限公司 一种高磁导率低损耗锰锌软磁铁氧体材料及其制备方法

Also Published As

Publication number Publication date
US20020171064A1 (en) 2002-11-21
US6468441B1 (en) 2002-10-22
EP1134202A1 (en) 2001-09-19
JP3418827B2 (ja) 2003-06-23

Similar Documents

Publication Publication Date Title
JP3108803B2 (ja) Mn−Znフェライト
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
JP3584439B2 (ja) Mn−Znフェライトおよびその製造方法
JP2003068515A (ja) Mn−Znフェライトおよび巻き線部品
JP2017075085A (ja) MnZnLi系フェライト、磁心およびトランス
WO2004028997A1 (ja) フェライト材料
JP3588693B2 (ja) Mn−Zn系フェライトおよびその製造方法
JP3418827B2 (ja) Mn−Znフェライトおよびその製造方法
JP2007238339A (ja) Mn−Zn系フェライト材料
JP3108804B2 (ja) Mn−Znフェライト
JP2004247370A (ja) MnZnフェライト
JP2004161593A (ja) フェライト材料
JP2005330126A (ja) MnZnフェライト及びその製造方法
JP2002167272A (ja) Mn−Znフェライトの製造方法
JPH113813A (ja) フェライト材料
JP3446082B2 (ja) Mn−Znフェライトおよびその製造方法
JP2004247371A (ja) MnZnフェライト
JP4303443B2 (ja) フェライト材料の製造方法
JP3584437B2 (ja) Mn−Znフェライトの製造方法
JPH10270231A (ja) Mn−Niフェライト材料
JPH10270229A (ja) Mn−Niフェライト材料
JPH10326706A (ja) Mn−Ni系フェライト材料
JP2004196658A (ja) Mn−Znフェライトおよびその製造方法
JP3499283B2 (ja) 高透磁率酸化物磁性材料
JP3617070B2 (ja) 低損失フェライトの製造方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees