HUE035731T2 - (S)-(2-(6-klór-7-metil-1H-benzo[d]imidazol-2-il)-2-metilpirrolidin-1-il)(5-metoxi-2- (2H-l,2,3-triazol-2-il)fenil)metanon kristályos formája és alkalmazása orexin receptor antagonistaként - Google Patents

(S)-(2-(6-klór-7-metil-1H-benzo[d]imidazol-2-il)-2-metilpirrolidin-1-il)(5-metoxi-2- (2H-l,2,3-triazol-2-il)fenil)metanon kristályos formája és alkalmazása orexin receptor antagonistaként Download PDF

Info

Publication number
HUE035731T2
HUE035731T2 HUE14824107A HUE14824107A HUE035731T2 HU E035731 T2 HUE035731 T2 HU E035731T2 HU E14824107 A HUE14824107 A HU E14824107A HU E14824107 A HUE14824107 A HU E14824107A HU E035731 T2 HUE035731 T2 HU E035731T2
Authority
HU
Hungary
Prior art keywords
methyl
disorders
chloro
benzo
crystalline form
Prior art date
Application number
HUE14824107A
Other languages
English (en)
Inventor
Christoph Boss
Christine Brotschi
Markus Gude
Bibia Heidmann
Thierry Sifferlen
Raumer Markus Von
Jodi Williams
Original Assignee
Idorsia Pharmaceuticals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idorsia Pharmaceuticals Ltd filed Critical Idorsia Pharmaceuticals Ltd
Publication of HUE035731T2 publication Critical patent/HUE035731T2/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Psychiatry (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Anesthesiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

Description [0001] The invention relates to a novel crystallineformsof(S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-meth-ylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone (hereinafter also referred to as "COMPOUND"), processes for the preparation thereof, pharmaceutical compositions comprising said crystalline forms, pharmaceutical compositions prepared from such crystalline forms, and said compositions for use as orexin receptor antagonists in the treatment or prevention of sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders.
[0002] Orexins (orexin A or OX-A and orexin B or OX-B) are neuropeptides found in 1998 by two research groups, orexin A is a 33 amino acid peptide and orexin B is a 28 amino acid peptide (Sakurai T. et al., Cell, 1998, 92, 573-585). Orexins are produced in discrete neurons of the lateral hypothalamus and bind to the G-protein-coupled receptors (OX1 and OX2 receptors). The orexin-1 receptor (OX^ is selective for OX-A, and the orexin-2 receptor (OX2) is capable to bind OX-A as well as OX-B. Orexin receptor antagonists are a novel type of nervous system or psychotropic drugs. Their mode of action in animals and humans involves either blockade of both orexin-1 and orexin-2 receptor (dual antagonists), or individual and selective blockade of either the orexin-1 or the orexin-2 receptor (selective antagonists) in the brain. Orexins were initially found to stimulate food consumption in rats suggesting a physiological role for these peptides as mediators in the central feedback mechanism that regulates feeding behaviour (Sakurai T. etal., Cell, 1998, 92, 573-585). [0003] On the other hand, orexin neuropeptides and orexin receptors play an essential and central role in regulating circadian vigilance states. In the brain, orexin neurons collect sensory input about internal and external states and send short intrahypothalamic axonal projections as well as long projections to many other brain regions. The particular distribution of orexin fibers and receptors in basal forebrain, limbic structures and brainstem regions - areas related to the regulation of waking, sleep and emotional reactivity- suggests that orexins exert essential functions as regulators of behavioral arousal; by activating wake-promoting cell firing, orexins contribute to orchestrate all brain arousal systems that regulate circadian activity, energy balance and emotional reactivity. This role opens large therapeutic opportunities for medically addressing numerous mental health disorders possibly relating to orexinergic dysfunctions [see for exam pie: Tsujino N and Sakurai T, "Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward systems.", Pharmacol Rev. 2009, 61:162-176; and Carter ME etal., "The brain hypocretins and their receptors: mediators of allostatic arousal.", Curr Op Pharmacol. 2009, 9: 39-45] that are described in the following sections. It was also observed that orexins regulate states of sleep and wakefulness opening potentially novel therapeutic approaches to insomnia and other sleep disorders (Chemelli R.M. et al., Cell, 1999, 98, 437-451).
[0004] Human memory is comprised of multiple systems that have different operating principles and different underlying neuronal substrates. The major distinction is between the capacity for conscious, declarative memory and a set of unconscious, non-declarative memory abilities. Declarative memory is further subdivided into semantic and episodic memory. Non-declariative memory is further subdivided into priming and perceptual learning, procedural memory for skills and habits, associative and non-associative learning, and some others. While semantic memory refers to the general knowledge about the world, episodic memory is autobiographical memory of events. Procedural memories refer to the ability to perform skill-based operations, as e.g. motor skills. Long-term memory is established during a multiple stage process through gradual changes involving diverse brain structures, beginning with learning, or memory acquisition, orformation. Subsequently, consolidation of what has been learned may stabilize memories. When long-term memories are retrieved, they may return to a labile state in which original content may be updated, modulated or disrupted. Subsequently, reconsolidation may again stabilize memories. At a late stage, long-term memory may be resistant to disruption. Long-term memory is conceptually and anatomically different from working memory, the latter of which is the capacity to maintain temporarily a limited amount of information in mind. Behavioural research has suggested that the human brain consolidates long-term memory at certain key time intervals. The initial phase of memory consolidation may occur in the first few minutes after we are exposed to a new idea or learning experience. The next, and possibly most important phase, may occur over a longer period of time, such as during sleep; in fact, certain consolidation processes have been suggested to be sleep-dependent [R. Stickgold et al., Sleep-dependent memory consolidation; Nature 2005,437, 1272-1278], Learning and memory processes are believed to be fundamentally affected in a variety of neurological and mental disorders, such as e.g. mental retardation, Alzheimer’s disease or depression. Indeed, memory loss or impairment of memory acquisition is a significant feature of such diseases, and no effective therapy to prevent this detrimental process has emerged yet.
[0005] In addition, both anatomical and functional evidence from in vitro and in vivo studies suggest an important positive interaction of the endogenous orexin system with reward pathways of the brain [Aston-Jones G et al., Brain Res 2010, 1314, 74-90; Sharf Retal., Brain Res2010, 1314, 130-138], Selective pharmacological OXR-1 blockade reduced cue- and stress-induced reinstatement of cocaine seeking [Boutrel B, et al., "Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior." Proc Natl Acad Sei 2005, 102(52), 19168-19173; Smith RJ et al., "Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking." Eur J Neurosci 2009, 30(3), 493-503; Smith RJ et al., "Orexin/hypocretin is necessary for context-driven cocaine-seeking." Neuropharmacology 2010, 58(1), 179-184], cue-induced reinstatement of alcohol seeking [Lawrence AJ étal., Br J Pharmacol 2006, 148(6), 752-759] and nicotine self-administration [Hollander JA et al., Proc Natl Acad Sei 2008, 105(49), 19480-19485; LeSage MG étal., Psychopharmacology 2010, 209(2), 203-212], Orexin-1 receptor antagonism also attenuated the expression of amphetamine- and cocaine-induced CPP [Gozzi A et al., PLoS One 2011,6(1), e16406; Hutcheson DM et al., Behav Pharmacol 2011,22(2), 173-181], and reduced the expression or development of locomotorsensitization to amphetamine and cocaine [Borgland SL et al., Neuron 2006, 49(4), 589-601; Quarta D et al., "The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization." Neurochem Int 2010, 56(1), 11-15], [0006] The effect of a drug to diminish addictions may be modelled in normal or particularly sensitive mammals used as animal models [seeforexample Spealman et al, Pharmacol. Biochem. Behav. 1999,64,327-336; orT.S. Shippenberg, G.F. Koob, "Recent advances in animal models of drug addiction" in Neuropsychopharmacology: The fifth generation of progress; K.L.Davis, D. Charney, J.T.Doyle, C. Nemeroff (eds.) 2002; chapter 97, pages 1381-1397], [0007] Several converging lines of evidence furthermore demonstrate a direct role of the orexin system as modulator of the acute stress response. For instance, stress (i.e. psychological stressor physical stress) is associated with increased arousal and vigilance which in turn is controlled by orexins [Sutcliffe, JG et ai., Nat Rev Neurosci 2002, 3(5), 339-349], Orexin neurons are likely to be involved in the coordinated regulation of behavioral and physiological responses in stressful environments [Y. Kayaba et ai., Am. J. Physiol. Regül. Integr. Comp. Physiol. 2003, 285:R581-593], Hypocre-tin/orexin contributes to the expression of some but not all forms of stress and arousal [Furlong T M et ai., Eur J Neurosci 2009, 30(8), 1603-1614], Stress response may lead to dramatic, usually time-limited physiological, psychological and behavioural changes that may affect appetite, metabolism and feeding behavior [Chrousos, GP et al., JAMA 1992, 267(9), 1244-1252], The acute stress response may include behavioural, autonomic and endocrinological changes, such as promoting heightened vigilance, decreased libido, increased heart rate and blood pressure, or a redirection of blood flow to fuel the muscles, heart and the brain [Majzoub, JA et ai., European Journal of Endocrinology 2006, 155 (suppl_1) S71-S76], [0008] As outlined above the orexin system regulates homeostaticfunctions such as sleep-wake cycle, energy balance, emotions and reward. Orexins are also involved in mediating the acute behavioral and autonomous nervous system response to stress [Zhang Wet al., "Multiple components of the defense response depend on orexin: evidence from orexin knockout mice and orexin neuron-ablated mice." Autón Neurosci 2006, 126-127, 139-145], Mood disorders including all types of depression and bipolar disorder are characterized by disturbed "mood" and feelings, as well as by sleeping problems (insomnia as well as hypersomnia), changes in appetite or weight and reduced pleasure and loss of interest in daily or once enjoyed activities [Liu X et al., Sleep 2007, 30(1): 83-90], Thus, there is a strong rationale that disturbances in the orexin system may contribute to the symptoms of mood disorders. Evidence in humans, for instance, exists that depressed patients show blunted diurnal variation in CSF orexin levels [Salomon RM et al., Biol Psychiatry 2003, 54(2), 96-104], In rodent models of depression, orexins were also shown to be involved. Pharmacological induction of a depressive behavioral state in rats, for instance, revealed an association with increased hypothalamic orexin levels [Feng P et ai., J Psychopharmacol 2008,22(7): 784-791], A chronic stress model of depression in mice also demonstrated an association of molecular orexin system disturbances with depressed behavioral states and a reversal of these molecular changes by antidepressant treatment [Nollet et al., NeuroPharm 2011,61(1-2):336-46].
[0009] The orexin system is also involved in stress-related appetitive/reward seeking behaviour (Berridge CW et al., Brain Res 2009, 1314, 91-102). In certain instances, a modulatory effect on stress may be complementary to an effect on appetitive/reward seeking behaviour as such. For instance, an OX1 selective orexin receptor antagonist was able to prevent footshock stress induced reinstatement of cocaine seeking behaviour [Boutrel, B et al., Proc Natl Acad Sei 2005, 102(52), 19168-19173], In addition, stress is also known to play an integral part in withdrawal which occurs during cessation of drug taking (Koob, GF et al., Curr Opin Investig Drugs 2010, 11(1), 63-71).
[0010] Orexins have been found to increase food intake and appetite [Tsujino, N, Sakurai, T, Pharmacol Rev 2009, 61(2) 162-176], As an additional environmental factor, stress can contribute to binge eating behaviour, and lead to obesity [Adam, TC et al. Physiol Behav 2007, 91(4) 449-458], Animal models that are clinically relevant models of binge eating in humans are described for example in W. Foulds Mathes et al.; Appetite 2009, 52, 545-553.
[0011] A number of recent studies report that orexins may play a role into several other important functions relating to arousal, especially when an organism must respond to unexpected stressors and challenges in the environment [Tsujino N and Sakurai T. Pharmacol Rev. 2009, 61:162-176; Carter ME, Borg JS and deLecea L., Curr Op Pharmacol. 2009, 9: 39-45; C Boss, C Brisbare-Roch, F Jenek, Journal of Medicinal Chemistry 2009, 52: 891-903], The orexin system interacts with neural networks that regulate emotion, reward and energy homeostasis to maintain propervigilance states. Dysfunctions in its function may thus relate to many mental health disorders in which vigilance, arousal, wakefulness or attention is disturbed.
[0012] The compound (2R)-2-{(1S)-6,7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-3,4-dihydro-1 H-isoquinolin-2-yl}-/V-methyl-2-phenyl-acetamide (W02005/118548), a dual orexin receptor antagonist, showed clinical efficacy in humans when tested forthe indication primary insomnia. In the rat, the compound has been shown to decrease alertness, characterized by decreases in both active wake and locomotion; and to dose-dependently increase the time spent in both REM and NREM sleep [Brisbare et al., Nature Medicine 2007, 13, 150-155], The compound further attenuated cardiovascular responses to conditioned fear and novelty exposure in rats [Furlong T M et al., Eur J Neurosci 2009, 30(8), 1603-1614], It is also active in an animal model of conditioned fear: the rat fear-potentiated startle paradigm (W02009/047723) which relates to emotional states of fear and anxiety diseases such as anxieties including phobias and post traumatic stress disorders (PTSDs). In addition, intact declarative and non-declarative learning and memory has been demonstrated in rats treated with this compound [W02007/105177, H Dietrich, F Jenek, Psychopharmacology 2010, 212, 145-154], Said compound furthermore decreased brain levels of amyloid-beta (Aß) as well as Aß plaque deposition after acute sleep restriction in amyloid precursor protein transgenic mice [JE Kang et al., "Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.", Science 2009, 326(5955): 1005-1007], The accumulation of the Aß in the brain extracellular space is hypothesized to be a critical event in the pathogenesis of Alzheimer’s disease. The so-called and generally known "amyloid cascade hypothesis" links Aß to Alzheimer’s disease and, thus, to the cognitive dysfunction, expressed as impairment of learning and memory. The compound has also been shown to induce antidepressant-like activity in a mouse model of depression, when administered chronically [Nollet et al., NeuroPharm 2011, 61(1-2):336-46]. Moreover, the compound has been shown to attenuate the natural activation induced by orexin A in fasted hungry rats exposed to food odors [MJ Prud’homme et al., Neuroscience 2009, 162(4), 1287-1298], The compound also displayed pharmacological activity in a rat model of nicotine self-administration [LeSage MG et al., Psychopharmacology 2010, 209(2), 203-212], Another dual orexin receptor antagonist, N-biphenyl-2-yl-1-{[(1-methyl-1 H-benzimidazol-2-yl)sulfanyl]acetyl}-L-prolinamide inhibited nicotine-reinstatement for a conditioned reinforcer and reduced behavioral (locomotor sensitization) and molecular (transcriptional responses) changes induced by repeated amphetamine administration in rodents [Winrow et al., Neuropharmacology 2009, 58(1),185-94].
[0013] Orexin receptor antagonists comprising a 2-substituted saturated cyclic amide derivatives (such as 2-substituted pyrrolidine-1-carboxamides) are known for example from W02008/020405, W02008/038251, W02008/081399, W02008/087611, W02008/117241, WO2008/139416, W02009/004584, W02009/016560, W02009/016564, W02009/040730, W02009/104155, WO2010/004507, WO2010/038200, W02001/096302, W02002/044172, W02002/089800, W02002/090355, W02003/002559, W02003/032991, W02003/041711, W02003/051368, W02003/051873, W02004/026866, W02004/041791, W02004/041807, W02004/041816, W02009/003993, W02009/003997, W02009/124956, WO2010/060470, WO2010/060471, WO2010/060472, WO2010/063662, WO2010/063663, WO2010/072722, WO2010/122151, and W02008/150364. A particular pyrrolidine derived compound is disclosed in Langmead et. al, Brit. J. Pharmacol. 2004, 141, 340-346 as being highly orexin-1 selective. W02003/002561 discloses certain N-aroyl cyclic amine derivatives, encompassing benzimidazol-2-yl-methyl substituted pyrrolidine derivatives, as orexin receptor antagonists. Despite the great number of prior art compounds and their high structural variability, all compounds share a common structural feature, i.e. in position 2 of the saturated cyclic amide a linker group such as at least a methylene group (or longer groups such as -CH2-NH-CO-, -CH2-NH-, -CH2-O-, -CH2-S-, etc.) link the cyclic amide to the respective aromatic ring system substituent. Despite the substantial conformational changes that may be expected from the removal of a linker between two rigid structural elements, the compound of the present crystalline forms, that has a benzimidazole ring directly attached to a pyrrolidine amide in position 2, is a dual antagonist of the orexin 1 receptor and of the orexin 2 receptor and, thus, is of potential use in the treatment of disorders relating to orexinergic dysfunctions, comprising especially sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders; and especially in the treatment of sleep disorders, anxiety disorders, and addiction disorders.
[0014] It has now been found that certain crystalline forms of COMPOUND may under certain conditions be found. Said crystalline forms of COMPOUND are novel and may have advantageous properties in view of the potential use of COMPOUND as active pharmaceutical ingeredient. Such advantages may include better flow properties; less hygroscopicity; better reproducibiliy in manufacturing (for example better filtration parameters, better reproducibility of formation, and/or better sedimentation); and/ordefined morphology. Such crystalline forms of COMPOUND may be particularly suitable in a process of manufacturing certain pharmaceutical compositions, especially lipid-based pharmaceutical compositions.
Description of the Figures [0015]
Figure 1 shows the X-ray powder diffraction diagram of COMPOUND in amorphous form as obtained from Reference Example 1. The X-ray diffraction diagram shows amorphous material.
Figure 2 shows the X-ray powder diffraction diagram of COMPOUND in a crystalline form 1 as obtained from Example 1. The X-ray diffraction diagram shows peaks having a relative intensity, as compared to the most intense peak in the diagram, of the following percentages (relative peak intensities given in parenthesis) at the indicated angles of refraction 2theta (selected peaks from the range 3-40° 2theta with relative intensity larger then 10% are reported): 8.6° (84%), 11.5° (45%), 13.4° (44%), 14.6° (43%), 15.2° (100%), 15.5° (72%), 17.1 (36%), 18.4° (22%), 19.3° (42%), 19.8° (27%), 21.3° (62%), 21.9° (14%), 22.4° (36%), 23.1 (13%), 23.5° (25%), 25.7° (27%), 26.4° (36%), 26.8° (22%), 27.9° (22%), and 29.7° (17%)
Figure 3 shows the X-ray powder diffraction diagram of COMPOUND in a crystalline form 2 as obtained from Example 2. The X-ray diffraction diagram measured with method 2 shows peaks having a relative intensity, as compared to the most intense peak in the diagram, of the following percentages (relative peak intensitites given in parenthesis) at the indicated angles of refraction 2theta (selected peaks from the range 3-40° 2theta with relative intensity larger then 10% are reported): 7.2° (38%), 10.9° (69%), 13.4° (83%), 14.3° (70%), 14.5° (70%), 14.9° (71%), 16.1° (14%), 17.2° (47%), 18.3° (82%), 19.8° (14%), 20.0° (11%), 20.6° (15%), 20.9° (85%), 21.1° (100%), 21.8° (44%), 22.3° (14%), 22.9° (27%), 24.0° (71%), 27.7° (13%), 25.0° (17%), 25.2° (30%), 27.0° (16%), 27.3° (32%), 28.9° (13%), 30.1° (45%), 30.4° (13%), 32.7° (11%), and 36.0° (16%)
For avoidance of any doubt, the above-listed peaks describe the experimental results of the X-ray powder diffraction shown in Figure 2, respectively Figure 3. It is understood that, in contrast to the above peak list, only a selection of characteristic peaks is required to fully and unambiguously characterize of the COMPOUND in the respective crystalline form of the present invention.
In the X-ray diffraction diagrams of Fig. 1 to Fig 3 the angle of refraction 2theta (2θ) is plotted on the horizontal axis and the counts on the vertical axis.
Figure 4 shows the gravimetric vapour sorption diagram of COMPOUND in amorphous free base form as obtained from Reference Example 1.
Figure 5 shows the gravimetric vapour sorption diagram of COMPOUND in a crystalline form 1 as obtained from Example 1.
Figure 6 shows the gravimetric vapour sorption diagram of COMPOUND in a crystalline form 2 as obtained from Example 2.
[0016] In the gravimetric vapour sorption diagrams of Figure 4 to Figure 6 the relative humidity (% RH) is plotted on the horizontal axis and the mass change (% dm) on the vertical axis.
Detailed Description of the Invention [0017] 1) A first embodiment of the invention relates to crystalline forms of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone; characterized by: a. the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3°; or b. the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0°.
It is understood, that the crystalline forms according to embodiment 1) comprise COMPOUND in a crystalline form of the free base (i.e. not in form of a salt). Furthermore, said crystalline forms may comprise non-coordinated and / or coordinated solvent. Coordinated solvent is used herein as term for a crystalline solvate. Likewise, non-coordi-nated solvent is used herein as term for physiosorbed or physically entrapped solvent (definitions according to Polymorphism in the Pharmaceutical Industry (Ed. R. Hilfiker, VCH, 2006), Chapter 8: U.J. Griesser: The Importance of Solvates). Crystalline form 1 in particular is a hemihydrate, i.e. it comprises about 0.5 equivalents of coordinated water, and may comprise additional non-coordinated solvent such as isopropanol, ethanol and / or water, especially water. Cystalline form 2 in particular comprises no coordinated water, but may comprise non-coordinated solvent such as isopropanol, ethanol and / or water. 2) Another embodiment relates to a crystalline form of COMPOUND according to embodiment 1), characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3°. 3) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to embodiment 2), characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 11.5°, 13.4°, 14.6°, 15.2°, 15.5°, 19.3°, 21.3°, 22.4°, and 26.4°. 4) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to embodiment 2) or 3), which essentially shows the X-ray powder diffraction pattern as depicted in Figure 2. 5) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to anyone of embodiments 2) to 4), which has a broad endothermal event in the range of about 50 to 160°C as determined by differential scanning calorimetry using the method as described herein. 6) In another embodiment the present invention relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to any one of embodiments 2) to 5), wherein said form is obtainable by: a) mixing 2 g of COMPOUND as amorphous material with 8 mL of an ethanol/water mixture with volume/volume ratio of 1/4; b) adding about 0.05 g seed crystals of COMPOUND in crystalline form 1 (obtainable for example by using the procedure of example 1 below); c) shaking at 300 rpm for about 16 hours at room temperature; d) filtering and washing the cake with 2 mL ethanol/water 1/4 (v/v) and drying the product at room temperature and reduced pressure of about 10 mbar for 4 hours; and e) open equilibration at room temperature and about 60% relative humidity for 2 hours. 7) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to any one of embodiments 2) to 6), wherein said crystalline form is a hemi-hydrate (i.e. it contains about 0.5 equivalents of coordinated water per equivalent of COMPOUND; wherein it is understood that said about 0.5 equivalents of coordinated water correspond to a crystalline form having a water content of about 1.96 %.) 8) Another embodiment relates to a crystalline form of COMPOUND according to embodiment 1, characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0°. 9) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to embodiment 8), characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 10.9°, 13.4°, 14.3°, 14.9°, 18.3°, 20.9°, 21.1°, 21.8°, 24.0°, and 30.1 °. 10) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to embodiment 8) or 9), which essentially shows the X-ray powder diffraction pattern as depicted in Figure 3. 11) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to any one of embodiments 8) to 10), which has a melting point of about 152°C as determined by differential scanning calorimetry using the method as described herein. 12) In another embodiment the present invention relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to anyone of embodiments 8) to 11), wherein said form is obtainable by: a) mixing 10 mg of COMPOUND in crystalline form 1 in 0.05 mL acetonitrile; b) stirring in a closed 4 mL vial for up to three days; c) isolating; and drying at reduced pressure (2 mbar) and room temperature for 2 hours. 13) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to any one of embodiments 8) to 12), wherein said crystalline form is an anhydrate (i.e. it contains no coordinated water).
[0018] For avoidance of any doubt, whenever one of the above embodiments refers to "peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ", said X-ray powder diffraction diagram is obtained by using combined Cu Kod and Ka2 radiation, without Ka2 stripping; and it should be understood that the accuracy of the 2θ values as provided herein is in the range of +/- 0.1-0.2°. Notably, when specifying an angle of refraction 2theta (2θ) for a peak in the invention embodiments and the claims, the 2θ value given is to be understood as an interval from said value minus 0.2° to said value plus 0.2° (20 +/- 0.2°); and preferably from said value minus 0.1 to said value plus 0.1° (29 +/-0.1°).
[0019] Where the plural form is used for compounds, solid, pharmaceutical compositions, diseases and the like, this is intended to mean also a single compound, solid, or the like.
[0020] The term "enantiomerically enriched" is understood in the context of the present invention to mean especially that at least 90, preferably at least 95, and most preferably at least 99 per cent by weight of the COMPOUND are present in form of one enantiomer of the COMPOUND. It is understood that COMPOUND is present in enantiomerically enriched absolute (S)-configuration.
[0021] The term "essentially pure" is understood in the context of the present invention to mean especially that at least 90, preferably at least 95, and most preferably at least 99 per cent by weight of the crystals of a COMPOUND are present in a crystalline form according to the present invention, especially in a single crystalline form of the present invention. [0022] When defining the presence of peak in e.g. an X-ray powder diffraction diagram, a common approach is to do this in terms of the S/N ratio (S = signal, N = noise). According to this definition, when stating that a peak has to be present in an X-ray powder diffraction diagram, it is understood that the peak in the X-ray powder diffraction diagram is defined by having an S/N ratio (S = signal, N = noise) of greater than x (x being a numerical value greater than 1), usually greater than 2, especially greater than 3.
[0023] In the context with stating that the crystalline form essentially shows an X-ray powder diffraction pattern as depicted in Fig. 2 or Fig. 3, respectively, the term "essentially" means that at least the major peaks of the diagram depicted in said figures, i.e. those having a relative intensity of more than 10%, especially more than 20%, as compared to the most intense peak in the diagram, have to be present. However, the person skilled in the art of X-ray powder diffraction will recognize that relative intensities in X-ray powder diffraction diagrams may be subject to strong intensity variations due to preferred orientation effects.
[0024] Unless used regarding temperatures, the term "about" placed before a numerical value "X" refers in the current application to an interval extending from X minus 10% of X to X plus 10% of X, and preferably to an interval extending from X minus 5% of X to X plus 5% of X. In the particular case of temperatures, the term "about" placed before a temperature "Y" refers in the current application to an interval extending from the temperature Y minus 10 °C to Y plus 10 °C, preferably to an interval extending from Y minus 5 °C to Y plus 5 °C, notably to an interval extending from Y minus 3 °C to Y plus 3 °C. Room temperature means a temperature of about 25 °C. When in the current application the term n equivalent(s) is used wherein n is a number, it is meant and within the scope of the current application that n is referring to about the number n, preferably n is referring to the exact number n.
[0025] Whenever the word "between" or "to" is used to describe a numerical range, it is to be understood that the end points of the indicated range are explicitly included in the range. For example: if a temperature range is described to be between 40°C and 80°C (or 40°C to 80°C), this means that the end points 40°C and 80°C are included in the range; or if a variable is defined as being an integer between 1 and 4 (or 1 to 4), this means that the variable is the integer 1,2,3, or 4. [0026] The expression % w/w refers to a percentage by weight compared to the total weight of the composition considered. Likewise, the expression v/v refers to a ratio by volume of the two components considered. The expression "vol" signifies volumes (in L, e.g. of solvent) per weight (in kg, e.g. of reactant). For example 7 vol signifies 7 liters (of solvent) per kg (of reactant).
[0027] The crystalline forms, especially the essentially pure crystalline forms, of COMPOUND according to any one of embodiments 1) to 13) can be used as medicaments, e.g. in the form of pharmaceutical compositions for enteral or parenteral administration. 12) Another embodiment thus relates to a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]im-idazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13) for use as a medicament.
The crystalline solid, especially the essentially pure crystalline solid, of COMPOUND according to any one of embodiments 1 ) to 13) may be used as single component or as mixtures with other crystalline forms or the amorphous form of COMPOUND.
The production of the pharmaceutical compositions can be effected in a manner which will be familiar to any person skilled in the art (see for example Remington, The Science and Practice of Pharmacy, 21st Edition (2005), Part 5, "Pharmaceutical Manufacturing" [published by Lippincott Williams & Wilkins]) by bringing the crystalline forms of the present invention, optionally in combination with other therapeutically valuable substances, into a galenical administration form together with suitable, non-toxic, inert, pharmaceutically acceptable solid or liquid carrier materials and, if desired, usual pharmaceutical adjuvants. 14) A further embodiment of the invention relates to pharmaceutical compositions comprising as active ingredient a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13), and at least one pharmaceutically acceptable carrier material.
Such pharmaceutical compositions according to embodiment 14) are especially usefulforthe prevention ortreatment of diseases ordisorders related to theorexin system, such as especially sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders. 15) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 14), wherein said pharmaceutical composition is in form of a tablet. 16) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 14), wherein said pharmaceutical composition is in form of a capsule. 17) A further embodiment of the invention relates to a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1 ) to 13) [especially the crystalline form according to any one of embodiments 2) to 7)], for use in the manufacture of a pharmaceutical composition, wherein said pharmaceutical composition comprises as active ingredient the COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone, and at least one pharmaceutically acceptable carrier material.
For avoidance of any doubt, embodiment 17) refers to the crystalline form according to any one of embodiments 1) to 13) [especially the crystalline form according to any one of embodiments 2) to 7)] which is suitable / which is used as final isolation step of COMPOUND (e.g. in order to meet the purity requirements of pharmaceutical production), whereas the final pharmaceutical composition according to embodiment 17) may or may not contain said crystalline form (e.g. because the originally crystalline form of COMPOUND is further transformed during the manufacturing process and / or is dissolved in the pharmaceutically acceptable carrier material(s); thus, in the final pharmaceutical composition, COMPOUND may be present in non-crystalline form, in another crystalline form, or in dissolved form, or the like). 18) A further embodiment of the invention thus relates to a pharmaceutical composition comprising as active ingredient the COMPOUND (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(214-1,2,3-triazol-2-yl)phenyl)methanone, wherein said pharmaceutical composition is manufactured using a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-meth-oxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1 ) to 13) [especially the crystalline form according to any one of embodiments 2) to 7)] and at least one pharmaceutically acceptable carrier material. 19) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 18), wherein said pharmaceutical composition is in form of a capsule. 20) A further embodiment of the invention relates to a pharmaceutical composition according to embodiments 18) or 19), wherein such pharmaceutical composition is a lipid-based formulation (for reference see for example C.W. Pouton, C.J.H. Porter, Advanced Drug Delivery Reviews 60 (2008) 625-637, the disclosure of which is fully incorporated). 21) A further embodiment of the invention relates to a pharmaceutical composition according to embodiments 18), wherein such pharmaceutical composition is a solid amorphous dispersion. 22) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 21), wherein said pharmaceutical composition is in form of a tablet, or in form of a capsule.
Such pharmaceutical compositions according to embodiments 18) to 22) are especially useful for the prevention or treatment of diseases or disorders related to the orexin system, such as sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders; especially for the prevention or treatment of diseases or disorders above where a short onset of action is required (as especially sleep disorders or anxiety disorders). 23) A further embodiment of the invention relates to a crystalline form of COMPOUND (S)-(2 -(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1 ) to 13), for use in the prevention or treatment of diseases or disorders related to the orexin system, notably mental health diseases or disorders relating to orexinergic dysfunctions. 24) A further embodiment of the invention relates to a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1 ) to 13), for use in the preparation of a medicament for the prevention or treatment of diseases or disorders related to the orexin system, notably mental health diseases or disorders relating to orexinergic dysfunctions. 25) A further embodiment of the invention relates to pharmaceutical compositions according to any one of embodiments 14) to 16), or 18) to 22), for the prevention or treatment of diseases or disorders related to the orexin system, notably mental health diseases or disorders relating to orexinergic dysfunctions. 26) A further embodiment of the invention relates to any one of embodiments 23) to 25), wherein said diseases or disorders related to the orexin system are mental health diseases or disorders relating to orexinergic dysfunctions selected from the group consisting of sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, and appetite disorders (especially sleep disorders, anxiety disorders, and addiction disorders). 25) A further embodiment of the invention relates to any one of embodiments 22) to 25), wherein said diseases or disorders related to the orexin system are mental health diseases or disorders relating to orexinergic dysfunctions selected from the group consisting of sleep disorders selected from the group consisting of dyssomnias, parasomnias, sleep disorders associated with a general medical condition and substance-induced sleep disorders; anxiety disorders; and addiction disorders.
[0028] Such disorders relating to orexinergic dysfunctions are diseases or disorders where an antagonist of a human orexin receptor is required, notably mental health disorders relating to orexinergic dysfunctions. The above mentioned disorders may in particular be defined as comprising sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders. In one sub-embodiment, the above mentioned disorders comprise especially anxiety disorders, addiction disorders and mood disorders, notably anxiety disorders and addiction disorders. In another sub-embodiment, the above mentioned disorders comprise especially sleep disorders.
[0029] In addition, further disorders relating to orexinergic dysfunctions are selected from treating, controlling, ameliorating or reducing the risk of epilepsy, including absence epilepsy; treating or controlling pain, including neuropathic pain; treating or controlling Parkinson’s disease; treating or controlling psychosis including acute mania and bipolar disorder; treating or controlling stroke, particularly ischemic or haemorrhagic stroke; blocking an emetic response i.e. nausea and vomiting; and treating or controlling agitation, in isolation or co-morbid with another medical condition. [0030] Anxiety disorders can be distinguished by the primary object or specificity of threat, ranging from rather diffuse as in generalized anxiety disorder, to circumscribed as encountered in phobic anxieties (PHOBs) or post-traumatic stress disorders (PTSDs). Anxiety disorders may, thus, be defined as comprising generalized anxiety disorders (GAD), obses sive compulsive disorders (OCDs), acute stress disorders, posttraumatic stress disorders (PTSDs), panic anxiety disorders (PADs) including panic attacks, phobic anxieties (PHOBs), specific phobia, social phobia (social anxiety disorder), avoidance, somatoform disorders including hypochondriasis, separation anxiety disorder, anxiety disorders due to a general medical condition, and substance induced anxiety disorders. In a sub-embodiment, particular examples of circumscribed threat induced anxiety disorders are phobic anxieties or post-traumatic stress disorders. Anxiety disorders especially include post-traumatic stress disorders, obsessive compulsive disorders, panic attacks, phobic anxieties, and avoidance.
[0031] Addiction disorders may be defined as addictions to one or more rewarding stimuli, notably to one rewarding stimulus. Such rewarding stimuli may be of either natural or synthetic origin. Examples of such rewarding stimuli are substances/drugs {of either natural or synthetic origin; such as cocaine, amphetamines, opiates [of natural or(semi-)syn-thetic origin such as morphine or heroin], cannabis, ethanol, mescaline, nicotine, and the like}, which substances / drugs may be consumed alone or in combination; or other rewarding stimuli {of either natural origin (such as food, sweet, fat, or sex, and the like), or synthetic origin [such as gambling, or internet/IT (such as immoderate gaming, or inappropriate involvement in online social networking sites or blogging), and the like]}. In a sub-embodiment, addiction disorders relating to psychoactive substance use, abuse, seeking and reinstatement are defined as all types of psychological or physical addictions and their related tolerance and dependence components. Substance-related addiction disorders especially include substance use disorders such as substance dependence, substance craving and substance abuse; substance-induced disorders such as substance intoxication, substance withdrawal, and substance-induced delirium. The expression "prevention or treatment of addictions" (i.e. preventive or curative treatment of patients who have been diagnosed as having an addiction, or as being at risk of developing addictions) refers to diminishing addictions, notably diminishing the onset of addictions, to weakening their maintenance, to facilitating withdrawal, to facilitating abstinence, or to attenuating, decreasing or preventing the occurrence of reinstatement of addiction (especially to diminishing the onset of addictions, to facilitating withdrawal, or to attenuating, decreasing or preventing the occurrence of reinstatement of addiction).
[0032] Mood disorders include major depressive episode, manic episode, mixed episode and hypomanie episode; depressive disorders including major depressive disorder, dysthymic disorders; bipolar disorders including bipolar I disorder, bipolar II disorder (recurrent major depressive episodes with hypomanie episodes), cyclothymic disorder; mood disorders including mood disorder due to a general medical condition (including the subtypes with depressive features, with major depressive-like episode, with manic features, and with mixed features), substance-induced mood disorder (including the subtypes with depressive features, with manic features, and with mixed features). Such mood disorders are especially major depressive episode, major depressive disorder, mood disorder due to a general medical condition; and substance-induced mood disorder.
[0033] Appetite disorders comprise eating disorders and drinking disorders. Eating disorders may be defined as comprising eating disorders associated with excessive food intake and complications associated therewith; anorexias; compulsiveeating disorders; obesity (due to any cause, whether genetic or environ mental); obesity-related disorders including overeating and obesity observed in Type 2 (non-insulin-dependent) diabetes patients; bulimias including bulimia nervosa; cachexia; and binge eating disorder. Particular eating disorders comprise metabolic dysfunction; dysregulated appetite control; compulsive obesities; bulimia or anorexia nervosa. In a sub-embodiment, eating disorders may be defined as especially comprising anorexia nervosa, bulimia, cachexia, binge eating disorder, or compulsive obesities. Drinking disorders include polydipsias in psychiatric disorders and all other types of excessive fluid intake. Pathologically modified food intake may result from disturbed appetite (attraction or aversion for food); altered energy balance (intake vs. expenditure); disturbed perception of food quality (high fat or carbohydrates, high palatability); disturbed food availability (unrestricted diet or deprivation) or disrupted water balance.
[0034] Cognitive dysfunctions include deficits in attention, learning and especially memory functions occurring transiently or chronically in psychiatric, neurologic, neurodegenerative, cardiovascular and immune disorders, and also occurring transiently or chronically in the normal, healthy, young, adult, or especially aging population. Cognitive dysfunctions especially relate to the enhancement or maintenance of memory in patients who have been diagnosed as having, or being at risk of developing, diseases or disorders in which diminished memory (notably declarative or procedural) is a symptom [in particular dementias such as frontotemporal dementia, or dementia with Lewy bodies, or (especially) Alzheimer’s disease]. Especially, the term "prevention or treatment of cognitive dysfunctions" relates to the enhancement or maintenance of memory in patients who have a clinical manifestation of a cognitive dysfunction, especially expressed as a deficit of declarative memory, linked to dementias such as frontotemporal dementia, or dementia with Lewy bodies, or (especially) Alzheimer’s disease. Furthermore, the term "prevention or treatment of cognitive dysfunctions" also relates to improving memory consolidation in any of the above mentioned patient populations.
[0035] Sleep disorders comprise dyssomnias, parasomnias, sleep disorders associated with a general medical condition and substance-induced sleep disorders. In particular, dyssomnias include intrinsic sleep disorders (especially insomnias, breathing-related sleep disorders, periodic limb movement disorder, and restless leg syndrome), extrinsic sleep disorders, and circadian-rythm sleep disorders. Dyssomnias notably include insomnia, primary insomnia, idiopathic insomnia, insomnias associated with depression, emotional/mood disorders, aging, Alzheimer’s disease or cognitive impairment; REM sleep interruptions; breathing-related sleep disorders; sleep apnea; periodic limb movement disorder (nocturnal myoclonus), restless leg syndrome, circadian rhythm sleep disorder; shift work sleep disorder; and jet-lag syndrome. Parasomnias include arousal disorders and sleep-wake transition disorders; notably parasomnias include nightmare disorder, sleep terror disorder, and sleepwalking disorder. Sleep disorders associated with a general medical condition are in particular sleep disorders associated with diseases such as mental disorders, neurological disorders, neuropathic pain, and heart and lung diseases. Substance-induced sleep disorders include especially the subtypes insomnia type, parasomnia type and mixed type, and notably include conditions due to drugs which cause reductions in REM sleep as a side effect. Sleep disorders especially include all types of insomnias, sleep-related dystonias; restless leg syndrome; sleep apneas; jet-lag syndrome; shift work sleep disorder, delayed or advanced sleep phase syndrome, or insomnias related to psychiatric disorders. In addition, sleep disorders further include sleep disorders associated with aging; intermittent treatment of chronic insomnia; situational transient insomnia (new environment, noise) or short-term insomnia due to stress; grief; pain or illness.
[0036] In the context of the present invention, it is to be understood that, in case certain environmental conditions such as stress or fear (wherein stress may be of social origin (e.g. social stress) or of physical origin (e.g. physical stress), including stress caused by fear) facilitate or precipitate any of the disorders or diseases as defined before, the present compounds may be particularly useful for the treatment of such environmentally conditioned disorder or disease. [0037] The present invention also relates to a process for the preparation of COMPOUND in enantiomerically enriched form, and to processes for the preparation and characterization of the crystalline forms of COMPOUND (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13). Said processes are described in embodiments 6) and 12), as well as in the procedures of the experimental part below.
Experimental Procedures:
Abbreviations (as used hereinbefore or hereinafter): [0038]
Ac Acetyl (such as in OAc = acetate, AcOH = acetic acid)
AcOH Acetic acid anh. Anhydrous aq. aqueous atm Atmosphere tBME tert-Butylmethylether
Boc ferf-Butoxycarbonyl
Boc2O di-ferf-Butyl dicarbonate BSA Bovine serum albumine
Bu Butyl such as in tBu = ferf-butyl = tertiary butyl CC Column Chromatography on silica gel CHO Chinese Hamster Ovary cone. Concentrated DCE 1,2-Dichloroethane DCM Dichloromethane DEA Diethylamine DIPEA Diisopropylethylamine DMF /\/,/\/-Dimethylformamide DMSO Dimethyl sulfoxide EDC ELSD Evaporative Light-Scattering Detection eq Equivalent(s) ES Electron spray
Et Ethyl
Et2O Diethyl ether
EtOAc Ethyl acetate
EtOH Ethanol
Ex. Example FC Flash Chromatography on silica gel FCS Foatal calf serum
Fig Figure FLIPR Fluorescent imaging plate reader h Hour(s) HATU 1-[Bis(dimethylamino)methylene]-1 /-/-1,2,3-triazolo[4,5-fo]pyridinium 3-oxid hexafluorophosphate HBSS Hank’s balanced salt solution HBTU /\/,/\/,/\/’,/\/-Tetramethyl-O-(1/-/-benzotriazol-1-yl)uronium hexafluorophosphate HEPES 4-(2-Hydroxyethyl)-piperazine-1-ethanesulfonic acid 1H-NMR Nuclear magnetic resonance of the proton HPLC High performance liquid chromatography LC-MS Liquid chromatography - Mass Spectroscopy
Lit. Literature M Exact mass (as used for LC-MS)
Me Methyl
MeCN Acetonitrile
MeOH Methanol
Mel Methyl iodide MHz Megahertz μΙ microliter min Minute(s) MS Mass spectroscopy N Normality
Pd(OAc)2 Palladium diacetate
Pd(PPh3)4 Tetrakis(triphenylphosphine)palladium(0) PL-HCO3 Polymer supported hydrogen carbonate
Ph Phenyl PPh3 Triphenylphosphine prep. Preparative RH relative humidity RT Room temperature sat. Saturated TBTU O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate TEA Triethylamine TFA trifluoroacetic acid
Tf Trifluoromethansulfonyl THF Tetrahydrofuran tR Retention time UV Ultraviolet l-Chemistry [0039] All temperatures are stated in °C. The commercially available starting materials were used as received without further purification. Compounds are purified by flash column chromatography on silica gel (FC) or by preparative HPLC. Compounds described in the invention are characterized by LC-MS (retention time tR is given in min.; molecular weight obtained from the mass spectrum is given in g/mol, using the conditions listed below). If the mass is not detectable the compounds are also characterized by 1H-NMR (400 MHz: Bruker; chemical shifts are given in ppm relative to the solvent used; multiplicities: s = singlet, d = doublet, t = triplet; p = pentuplet, hex = hexet, hept = heptet, m = multiplet, br= broad, coupling constants are given in Hz).
Preparative HPLC for purification of compounds (conditions C) [0040] Column: Waters XBridge (10 μίτι, 75 x 30 mm). Conditions: MeCN [eluent A]; water + 0.5% NH4OH (25% aq.) [eluent B]; Gradient: 90% B -> 5% B over 6.5 min. (flow: 75 ml/min.). Detection: UV + ELSD.
Preparative HPLC for purification of compounds (conditions D) [0041] Column: Waters Atlantis T3 OBD (10 μίτι, 75 x 30 mm). Conditions: MeCN [eluent A]; water + 0.5% HCOOH [eluent B]; Gradient: 90% B -> 5% B over 6.4 min. (flow: 75 ml/min.). Detection: UV + ELSD.
LC-MS with acidic conditions [0042] Apparatus: Agilent 1100 series with mass spectroscopy detection (MS: Finnigan single quadrupole). Column: Agilent Zorbax SB-Aq, (3.5 urn, 4.6 x 50mm). Conditions: MeCN [eluent A]; water + 0.04% TFA [eluent B], Gradient: 95% B -> 5% B over 1.5 min. (flow: 4.5 ml/min.). Detection: UV + MS. X-ray powder diffraction analysis (XRPD) [0043] X-ray powder diffraction patterns were collected on a Bruker D8 Advance X-ray diffractometer equipped with a Lynxeye detector operated with CuKa-radiation in reflection mode (coupled two Theta/Theta). Typically, the X-ray tube was run at of 40kV/40mA. A step size of 0.02° (2θ) and a step time of 76.8 sec over a scanning range of 3 - 50° in 2θ were applied. The divergence slit was set to fixed 0.3. Powders were slightly pressed into a silicon single crystal sample holder with depth of 0.5 mm and samples were rotated in their own plane during the measurement. Diffraction data are reported using combined Cu Kod and Ka2 radiation, without Ka2 stripping. The accuracy of the 2θ values as provided herein is in the range of+/- 0.1-0.2° asit is generally the case for conventionally recorded X-ray powder diffraction patterns.
Gravimetric vapour sorption (GVS) analysis [0044] Measurements were performed simoultaneously for the COMPOUND amorphous free base and the COMPOUND crystalline form 1 and crystalline form 2 on a multi sample instrument SPS-IOOn (Projekt Messtechnik, Ulm, Germany) operated in stepping mode at 25°C. The sample was allowed to equilibrate at 40% RH before starting a predefined humidity program (40-0-95-0-95-40% RH, steps of 5% ARH and with a maximal equilibration time of 24 hours per step were applied. About 20 to 30 mg of each sample was used. The hygroscopic classification is done according to the European Pharmacopeia Technical Guide (1999, page 86), e.g., slightly hygroscopic: increase in mass is less than 2% and equal to or greater than 0.2% mass/mass; hygroscopic: increase in mass is less than 15% and equal to or greater than 2% mass/mass. The mass change between 40% relative humidity and 80% relative humidity in the first adsorption scan is considered.
Differential scanning calorimetry (DSC) [0045] DSC data were collected on a Mettler Toledo STARe System (DSC822e module, measuring cell with ceramic sensor and STAR software version 9.20) equipped with a 34 position auto-sampler. The instrument was calibrated for energy and temperature using certified indium. Typically 1-5 mg of each sample, in an automatically pierced aluminium pan, was heated at 10°C min-1, unless stated otherwise, from -20°C to 280°C. A nitrogen purge at 20 ml min-1 was maintained over the sample. Peak temperatures are reported for melting points.
Thermogravimetric analysis (TGA) [0046] TGA data were collected on a Mettler Toledo STARe System (TGA851e module and STAR software version 9.20) equipped with a 34 position auto-sampler. Typically about 5 mg of a sample, in an automatically pierced aluminium pan, was heated at 10°C min-1, unless stated otherwise, from 30°C to 250°C. A nitrogen purge at 10 ml min-1 was maintained over the sample.
Reference Example 1 1) Synthesis of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid [0047]
[0048] 2-lodo-5-methoxy benzoic acid (15.0 g; 53.9 mmol) is dissolved in anhydrous DMF (45 ml) followed by the
addition of 1H-1,2,3-triazole (7.452 g; 108 mmol) and cesium carbonate (35.155 g; 108 mmol). By the addition of cesium carbonate the temperature of the reaction mixture increases to 40°C and gas evolved from the reaction mixture. Cop-per(l)iodide (514 mg; 2.7 mmol) is added. This triggers a strongly exothermic reaction and the temperature of the reaction mixture reaches 70°C within a few seconds. Stirring is continued for 30 minutes. Then the DMF is evaporated under reduced pressure followed by the addition of water (170 ml) and EtOAc (90 ml). The mixture is vigorously stirred and by the addition of citric acid monohydrate the pH is adjusted to 3-4. The precipitate is filtered off and washed with water and EtOAc and discarded. The filtrate is poured into a separation funnel and the phases are separated. The water phase is extracted again with EtOAc. The combined organic layers are dried over MgSO4, filtered and the solvent is evaporated to give 7.1 g of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid as a white powder of 94% purity (6 % impurity is the regioisomerically N1-linked triazolo-derivative); tR [min] = 0.60; [M+H]+ = 220.21 2) Synthesis of (S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid [0049]
[0050] 2-Methyl-L-proline hydrochloride (99.7 g; 602 mmol) is dissolved in a 1/1-mixture of MeCN and water (800 ml) and triethylamine (254 ml; 1810 mmol) is added. The temperature of the reaction mixture slightly rises. The reaction mixture is cooled to 10°C to 15°C followed by careful addition of a solution of Boc2O (145 g; 662 mmol) in MeCN (200 ml) over 10 minutes. Stirring at RT is continued for 2 hours. The MeCN is evaporated under reduced pressure and aq. NaOH solution (2M; 250 ml) is added to the residual aq. part of the reaction mixture. The water layer is washed with Et2O (2x 300 ml) then cooled to 0°C followed by slow and careful addition of aq. HCI (25%) to adjust the pH to 2. During this procedure a suspension forms. The precipitate is filtered off and dried at HV to give 110.9 g of the title compound as a beige powder; tR [min] = 0.68; [M+H]+ = 230.14 3) Synthesis of (S)-tert-butyl 2-((2-amino-4-chloro-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-carboxy-late [0051]
[0052] (S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylicacid (60 g; 262 mmol) and HATU (100 g ; 264 mmol) is suspended in DCM (600 ml) followed by the addition of DIPEA (84.6 g; 654 mmol) and 6-chloro-2,3-diaminotoluene (41 g; 262 mmol). The reaction mixture is stirred at rt for 14 hours then concentrated under reduced pressure and to the residue is added water followed by the extraction of the product with EtOAc (3x). The combined organic layers are washed with brine, dried over MgSO4, filtered and the solvent is evaporated under reduced pressure to give 185 g of the title compound as a dark brownish oil, which is used in the next step without further purification; tR [min] = 0.89; [M+H]+ = 368.01
4) Synthesis of (S)-tert-butyl 2-(5-chloro-4-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate [0053]
[0054] (S)-tert-butyl 2-((2-amino-4-chloro-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate (185 g; 427 mmol) are dissolved in AcOH (100%; 611 ml), heated to 100°C and stirring continued for 90 minutes. The AcOH is evaporated under reduced pressure and the residue is dissolved in DCM followed by careful addition of saturated sodium bicarbonate solution. The phases are separated, the aq. phase is extracted once more with DCM, the combined aq. phases are dried over MgSO4, filtered and the solvent is evaporated under reduced pressure to give 142.92 g of the title compound as adark brown oil which is used in the next step without further purification ; tR [min] = 0.69; [M+H]+ = 350.04 5) Synthesis of (S)-5-chloro-4-methyl-2-(2-methylpyrrolidin-2-yl)-1H-benzo[d]imidazole hydrochloride [0055]
[0056] (S)-tert-butyl 2-(5-chloro-4-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate (355.53 g; 1.02 mol) are dissolved in dioxane (750 ml) followed by careful addition of HCI solution in dioxane (4M; 750 ml; 3.05 mol). The reaction mixture is stirred for 3 hours followed by the addition of Et2O (800 ml) which triggered precipitation of the product. The solid is filtered off and dried at high vacuum to give 298.84 g of the title compound as a redish powder; tR [min] = 0.59; [M+H]+ = 250.23 6) Synthesis of [(S)-2-(5-chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-(5-methoxy-2-[1,2,3]triazol-2-yl-phenyl)-methanone [0057]
[0058] (S)-5-chloro-4-methyl-2-(2-methylpyrrolidin-2-yl)-1 H-benzo[d]imidazole hydrochloride (62.8 g; 121 mmol) is dissolved in DCM (750 ml) followed by the addition of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid (62.8 g; 121 mmol) and DIPEA (103 ml; 603 mmol). Stirring is continued for 10 minutes followed by the addition of HATU (47 g; 124 mmol). The reaction mixture is stirred for 16 hours at RT. The solvents are evaporated under reduced pressure and the residue is dissolved in EtOAc (1000 ml) and washed with water (3x 750 ml). The organic phase is dried over MgSO4, filtered and the solvent is evaporated under reduced pressure. The residue is purified by CC with EtOAc / hexane = 2 / 1to give 36.68 g of the title compound as an amorphous white powder. tR [min] = 0.73; [M+H]+ = 450.96
Table 1: Characterisation data for COMPOUND as free base in amorphous form
II. Preparation of crystalline forms of COMPOUND
Example 1: Preparation and characterization of COMPOUND in crystalline form 1 a) Preparation of seeding material of COMPOUND in crystalline Form 1 [0059] 0.2 g of COMPOUND as amorphous material was dissolved in 2 mL of MeOH in a 7 mL vial. The sample was left open at ambient and evaporated over weekend. An amorphous mass with some few crystals was obtained as observed under crossed polars. 0.05 mL MeOH was added, the vial was closed and the sample was sonicated for 1 minute and heated to 40°C. Repeating such procedure 3 to 4 times lead to further crystallization and after about 15 min the sample was further shaken at 25°C for 1h. Thereafter the solid was isolated, dried at reduced pressure (2 mbar, room temperature) for 4 hours and allowed to equilibrate open at room temperature and 58% relative humidity for 2 hours. An off white powder was obtained which is COMPOUND in crystalline form 1. It might be necessary to repeat such procedure several times to obtain sufficient material to be used for seeding.
[0060] Alternatively, 0.4 mL of an ethanol/water mixture with volume/volume ratio of 1/4 can be added to 0.1 g of COMPOUND as amorphous material. Such mixture is allowed to stand closed for up to three days. Isolation, drying and equilibration as described above results in COMPOUND in crystalline form 1 b) Preparation of COMPOUND in crystalline Form 1 [0061] 2 g of COMPOUND is mixed with 8 mL of an ethanol/water mixture with volume/volume ratio of 1/4 and about 0.05 g of seeds obtained with a procedure as described above. The sample is shaken overnight at room temperature and the solid was isolated, dried at reduced pressure (2 mbar, room temperature) for4hours and allowed to equilibrate open at room temperature and 58% relative humidity for 2 hours. An off white powder was obtained which is COMPOUND in crystalline form 1.
Table 2: Characterisation data for COMPOUND in crystalline form 1
Example 2: Preparation and characterization of COMPOUND in crystalline form 2 [0062] 0.05 mL of acetonitrile and 0.01 g of COMPOUND in crystalline form 1 are mixed with a magnetic stirrer in a 4 mL glass at room temperature for up to 3 days. The solid is isolated and dried under reduced pressure (30 min at 2mbar) and the solid is COMPOUND is crystalline form 2.
[0063] Alternatively 0.1 mL of methyl-isobutylketone and 0.015 g of COMPOUND in crystalline form 1 are mixed with a magnetic stirrer in a 4 mL glass at room temperature for up to 3 days. The solid is isolated and dried under reduced pressure (2 hours at 2mbar) and the solid is COMPOUND is crystalline form 2.
Table 3: Characterisation data for COMPOUND in crystalline form 2
III. Biological assays [0064] To further characterize the biological activity of COMPOUND, antagonistic activities on both orexin receptors have been measured using the following procedure:
In v/fro assay: Intracellular calcium measurements: [0065] Chinese hamster ovary (CHO) cells expressing the human orexin-1 receptor and the human orexin-2 receptor, respectively, are grown in culture medium (Ham F-12 with L-Glutamine) containing 300 μg/ml G418, 100 U/ml penicillin, 100 μg/ml streptomycin and 10 % heat inactivated fetal calf serum (FCS). The cells are seeded at 20Ό00 cells / well into 384-well black clear bottom sterile plates (Greiner). The seeded plates are incubated overnight at 37°C in 5% CO2. [0066] Human orexin-A as an agonist is prepared as 1 mM stock solution in MeOH: water (1:1), diluted in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO3: 0.375g/l and 20 mM HEPES for use in the assay at a final concentration of 3 nM.
[0067] Antagonists are prepared as 10 mM stock solution in DMSO, then diluted in 384-well plates using DMSO followed by a transfer of the dilutions into in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO3: 0.375g/l and 20 mM HEPES. On the day of the assay, 50 μΙ of staining buffer (HBSS containing 1% FCS, 20 mM HEPES, NaHCO3: 0.375g/l, 5 mM probenecid (Sigma) and 3 μΜ of the fluorescent calcium indicator fluo-4 AM (1 mM stock solution in DMSO, containing 10% pluronic) is added to each well. The 384-well cell-plates are incubated for 50 min at 37° C in 5% CO2 followed by equilibration at RT for 30 min before measurement.
[0068] Within the Fluorescent Imaging Plate Reader (FLIPR Tetra, Molecular Devices), antagonists are added to the plate in a volume of 10 μΙ/well, incubated for 120 min and finally 10 μΙ/well of agonist is added. Fluorescence is measured for each well at 1 second intervals, and the height of each fluorescence peak is compared to the height of the fluorescence peak induced by an approximate EC70 (for example 5 nM) of orexin-A with vehicle in place of antagonist. The IC50 value (the concentration of compound needed to inhibit 50 % of the agonistic response) is determined and may be normalized using the obtained IC50 value of a on-plate reference compound. Optimized conditions are achieved by adjustment of pipetting speed and cell splitting regime. The calculated IC50 values may fluctuate depending on the daily cellular assay performance. Fluctuations of this kind are known to those skilled in the art. Average IC50 values from several measurements are given as mean values.
[0069] COMPOUND has been measured on the orexin-1 receptor with an IC50 value of 2 nM.
[0070] COMPOUND has been measured on the orexin-2 receptor with an IC50 value of 3 nM.
Measurement of brain and systemic concentration after oral administration: [0071] In order to assess brain penetration, the concentration of the compound is measured in plasma ([P]), and brain ([B]), sampled 3 h (or at different time points) following oral administration (e.g. 100 mg/kg) to male wistar rats. The compound is formulated e.g. in 100% PEG 400. Samples are collected in the same animal at the same time point (+/-5 min). Blood is sampled from the vena cava caudalis into containers with EDTA as anticoagulant and centrifuged to yield plasma. Brain is sampled after cardiac perfusion of 10 mL NaCI 0.9% and homogenized into one volume of cold phosphate buffer (pH 7.4). All samples are extracted with MeOH and analyzed by LC-MS/MS. Concentrations are determined with the help of calibration curves.
[0072] Results obtained for COMPOUND: 3 h after oral administration (100 mg/kg), n = 3): [P] = 1280 ng / ml; [B] = 1808 ng / g.
Sedative effects: EEG, EMG and behavioural indices of alertness recorded by radiotelemetry in vivo in Wistar rats.
[0073] Electroencephalography (EEG) and Electromyography (EMG) signals were measured by telemetry using TL11M2-F20-EET miniature radiotelemetric implants (Data Science Int.) with two pairs of differential leads.
[0074] Surgical implantation was performed under general anesthesia with Ketamin/Xylazin, for cranial placement of one differential pair of EEG electrodes and one pair of EMG leads inserted in either side of the muscles of the neck. After surgery, rats recovered in a thermoregulated chamber and received analgesic treatment with subcutaneous buprenorphine twice a day for 2 d. They were then housed individually and allowed to recover for a minimum of 2 weeks. Thereafter, rats-in their home cage-were placed in a ventilated sound-attenuating box, on a 12-h light / 12-h dark cycle, for acclimatization before continuous EEG / EMG recordings started. The telemetric technology that we used in this study allows accurate and stress-free acquisition of biosignals in rats placed in their familiar home cage environment, with no recording leads restricting their movements. Variables analyzed included four different stages of vigilance and sleep, spontaneous activity in the home cage and body temperature. Sleep and wake stages were evaluated using a rodent scoring software (Somnologica Science) directly processing electrical biosignals on 10 s contiguous epochs. The scoring is based on frequency estimation for EEG and amplitude discrimination for EMG and locomotor activity. Using these measurements, the software determines the probability that all components within each epoch best represent active waking (AW), quiet waking (QW), non-REM-sleep (NREM) or REM-sleep (REM). The percentage of total time spent in AW, QW, NREM- and REM-sleep was calculated per 12 h light or dark period. The latency to the onset of the first significant NREM- and REM-sleep episodes and the frequency and duration of those episodes were also calculated. AW, QW, NREM- and REM-sleep, home cage activity and body temperature were measured at baseline for at least one total circadian cycle (12 h-night, 12 h-day) before a test compound was administered. If baseline measurements indicated that animals were stable, test compound or vehicle was given in the evening by oral gavage at the end of the baseline 12-h day period, immediately before the nocturnal rise in orexin and activity in rats. All variables were subsequently recorded for 12 h following administration of the orexin receptor antagonist.
[0075] COMPOUND has been tested in this assay (oral dosage: 30 mg/kg po; effects analyzed over 6 hours): Results are: -24% on active wake, -31% on home cage activity, +27% on NREM sleep, +53% on REM sleep; when compared to vehicle controls.
Claims 1. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone; characterized by: • the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3°; or • the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0°. 2. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5- methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 8.6°, 15.2°, and 21.3°.; wherein said X-ray powder diffraction diagram is obtained by using combined Cu Ka1 and Ka2 radiation, without Ka2 stripping; and the accuracy of the 2θ values is in the range of 2θ +/- 0.2°. 3. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: θ: 8.6°, 11.5°, 13.4°, 14.6°, 15.2°, 15.5°, 19.3°, 21.3°, 22.4°, and 26.4°.; wherein said X-ray powder diffraction diagram is obtained by using combined Cu Kod and Ka2 radiation, without Ka2 stripping; and the accuracy of the 2θ values is in the range of 2θ +/- 0.2°. 4. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claims 2 or 3, which essentially shows the X-ray powder diffraction pattern as depicted in Figure 2. 5. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 2 to 4, wherein said crystalline form is a hemi-hydrate. 6. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 2 to 5, obtainable by: a) mixing 2 g of COMPOUND as amorphous material with 8 mL of an ethanol/water mixture with volume/volume ratio of 1/4; b) adding about 0.05 g seed crystals of COMPOUND in crystalline form 1 ; c) shaking at 300 rpm for about 16 hours at room temperature; d) filtering and washing the cake with 2 mL ethanol/water 1/4 (v/v) and drying the product at room temperature and reduced pressure of about 10 mbar for 4 hours; and e) open equilibration at room temperature and about 60% relative humidity for 2 hours. 7. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 13.4°, 18.3°, and 24.0°.; wherein said X-ray powder diffraction diagram is obtained by using combined Cu Ka1 and Ka2 radiation, without Ka2 stripping; and the accuracy of the 2θ values is in the range of 2θ +/- 0.2°. 8. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ: 10.9°, 13.4°, 14.3°, 14.9°, 18.3°, 20.9°, 21.1°, 21.8°, 24.0°, and 30.1°; wherein said X-ray powder diffraction diagram is obtained by using combined Cu Kod and Ka2 radiation, without Ka2 stripping; and the accuracy of the 2θ values is in the range of 2θ +/- 0.2°. 9. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claims 7 or 8, which essentially shows the X-ray powder diffraction pattern as depicted in Figure 3. 10. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 7 to 9, wherein said crystalline form is an anhydrate. 11. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 7 to 10, obtainable by: a) mixing 10 mg of COMPOUND in crystalline form 1 in 0.05 mL acetonitrile; b) stirring in a closed 4 mL vial for up to three days; c) isolating; and drying at reduced pressure and room temperature for 2 hours. 12. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5- methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to anyone of claims 1 to 11, for use as a medicament. 13. A pharmaceutical composition comprising as active ingredient a crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, and at least one pharmaceutically acceptable carrier. 14. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, for use in the manufacture of a pharmaceutical composition, wherein said pharmaceutical composition comprises as active ingredient the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-tri-azol-2-yl)phenyl)methanone, and at least one pharmaceutically acceptable carrier material. 15. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, or a pharmaceutical composition according to claim 13 for use in the treatment or prevention of a disease or disorder selected from the group consisting of sleep disorders selected from the group consisting of dyssomnias, parasomnias, sleep disorders associated with a general medical condition and substance-induced sleep disorders; anxiety disorders; and addiction disorders. 16. Use of a crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to anyone of claims 1 to 11 forthe preparation of a medicament forthe treatment or prevention of a disease or disorder selected from the group consisting of sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, and appetite disorders.
Patentansprüche 1. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon; gekennzeichnet durch: • die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 2θ: 8,6°, 15,2° und 21,3°; oder • die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 2θ: 13,4°, 18,3° und 24,0°. 2. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 1, gekennzeichnet durch die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 2θ: 8,6°, 15,2° und 21,3°; wobei dasgenannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu Ka1- und Ka2-Strahlung, ohne Ka2-Stripping, erhalten wird; und die Genauigkeit der 20-Werte im Bereich von 2θ +/- 0,2° liegt. 3. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 1, gekennzeichnet durch die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 2θ: 8,6°, 11,5°, 13,4°, 14,6°, 15,2°, 15,5°, 19,3°, 21,3°, 22,4° und 26,4°; wobei das genannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu Kod- und Ka2-Strahlung, ohne Ka2-Stripping, erhalten wird; und die Genauigkeit der20-Werte im Bereich von 2θ +/- 0,2° liegt. 4. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 2 oder 3, die im Wesentlichen das in Figur2 gezeigte Röntgenpulverbeugungsmuster aufweist. 5. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 2 bis 4, wobei die genannte kristalline Form ein Halbhydrat ist. 6. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 2 bis 5, erhältlich durch: a) Mischen von 2 g der VERBINDUNG als amorphes Material mit 8 ml eines Ethanol/Wasser-Gemischs mit einem Volumen/Volumen-Verhältnis von 1/4; b) Zugeben von etwa 0,05 g Impfkristallen der VERBINDUNG in kristalliner Form 1 ; c) Schütteln mit 300 rpm für etwa 16 Stunden bei Raumtemperatur; d) Filtrieren und Waschen des Kuchens mit 2 ml Ethanol/Wasser 1/4 (v/v) und Trocknen des Produkts bei Raumtemperatur und reduziertem Druck von etwa 10 mbar für 4 Stunden; und e) offene Äquilibrierung bei Raumtemperatur und etwa 60 % relative Feuchte für 2 Stunden. 7. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 1, gekennzeichnet durch die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 2θ: 13,4°, 18,3° und 24,0°; wobei dasgenannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu Ka1- und Ka2-Strahlung, ohne Ka2-Stripping, erhalten wird; und die Genauigkeit der 20-Werte im Bereich von 2θ +/- 0,2° liegt. 8. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 1, gekennzeichnet durch die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 2θ: 10,9°, 13,4°, 14,3°, 14,9°, 18,3°, 20,9°, 21,1°, 21,8°, 24,0° und 30,1°; wobei dasgenannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu Kod- und Ka2-Strahlung, ohne Ka2-Stripping, erhalten wird; und die Genauigkeit der20-Werte im Bereich von 2θ +/- 0,2° liegt. 9. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 7 oder 8, die im Wesentlichen das in Figur 3 gezeigte Röntgenpulverbeugungsmuster aufweist. 10. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 7 bis 9, wobei die genannte kristalline Form ein Anhydrat ist. 11. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 7 bis 10, erhältlich durch: a) Mischen von 10 mg der VERBINDUNG in kristalliner Form 1 in 0,05 ml Acetonitril; b) Rühren in einer geschlossenen 4-ml-Phiole für bis zu drei Tage; c) Isolieren; und Trocknen bei reduziertem Druck und Raumtemperatur für 2 Stunden. 12. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 zur Verwendung als Medikament. 13. Pharmazeutische Zusammensetzung, die als Wirkstoff eine kristalline Form der Verbindung (S)-(2-(6-Chlor-7-me-thyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 und wenigstens einen pharmazeutisch akzeptablen Träger beinhaltet. 14. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 zur Verwendung bei der Herstellung einer pharmazeutischen Zusammensetzung, wobei die genannte pharmazeutische Zusammensetzung als Wirkstoff die Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon und wenigstens ein pharmazeutisch akzeptables Trägermaterial beinhaltet. 15. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-me-thoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 oder pharmazeutische Zusammensetzung nach Anspruch 13 zur Verwendung bei der Behandlung oder Verhütung einer Krankheit oder Störung, ausgewählt aus der Gruppe bestehend aus Schlafstörungen, ausgewählt aus der Gruppe bestehend aus Dyssom-nien, Parasomnien, Schlafstörungen in Verbindung mit einem allgemeinen medizinischen Zustand und substanzinduzierten Schlafstörungen; Angststörungen; und Suchtstörungen. 16. Verwendung einer kristallinen Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1 H-benzo[d]imidazol-2-yl)-2-methyl-pyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 zur Herstellung eines Medikaments zur Behandlung oder Verhütung einer Krankheit oder Störung, ausgewählt aus der Gruppe bestehend aus Schlafstörungen, Angststörungen, Suchtstörungen, kognitiven Dysfunktionen, Gemütszustandsstörungen und Appetitstörungen.
Revendications 1. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone ; caractérisée par : • la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 8,6°, 15,2° et 21,3°; ou • la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 13,4°, 18,3° et 24,0°. 2. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, caractérisée par la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 8,6°, 15,2° et 21,3° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuKal etCuKa2 combinés sans soustraction des raies de diffraction dues au rayonnement CuKa2 ; et où l’exactitude des valeurs de 2θ est dans la plage de 2θ +/- 0,2°. 3. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, caractérisée par la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 8,6°, 11,5°, 13,4°, 14,6°, 15,2°, 15,5°, 19,3°, 21,3°, 22,4° et 26,4° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuKal et CuKa2 combinés sans soustraction des raies de diffraction dues au rayonnement CuKa2 ; et où l’exactitude des valeurs de 2θ est dans la plage de 2θ +/- 0,2°. 4. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon les revendications 2 ou 3, qui présente essentiellement le profil de diffraction des rayons X sur poudre illustré à la Figure 2. 5. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 2 à 4, où ladite forme cristalline est un hémihydrate. 6. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 2 à 5, qui peut être obtenue par : a) mélange de 2 g du COMPOSÉ en tant que matériau amorphe dans 8 ml d’un mélange éthanol/eau dans un rapport de 1/4 en volume/volume ; b) addition d’environ 0,05 g de germes cristallins du COMPOSÉ sous la forme cristalline 1 ; c) secouement à 300 tr/min pendant environ 16 heures à température ambiante ; d) filtration et lavage du gâteau avec 2 ml d’un mélange éthanol/eau à 1/4 (v/v) et séchage du produit à température ambiante et sous pression réduite d’environ 10 mbars pendant 4 heures ; et e) équilibration en ouvert à température ambiante et à une humidité relative de 60 % environ pendant 2 heures. 7. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, caractérisée par la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 13,4°, 18,3° et 24,0° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuKal etCuKa2 combinés sans soustraction des raies de diffraction dues au rayonnement CuKa2 ; et où l’exactitude des valeurs de 2θ est dans la plage de 2θ +/- 0,2°. 8. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, caractérisée par la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 10,9°, 13,4°, 14,3°, 14,9°, 18,3°, 20,9°, 21,1°, 21,8°, 24,0° et 30,1° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuKod et CuKa2 combinés sans soustraction des raies de diffraction dues au rayonnement CuKa2 ; et où l’exactitude des valeurs de 2θ est dans la plage de 2θ +/- 0,2°. 9. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon les revendications 7 ou 8, qui présente essentiellement le profil de diffraction des rayons X sur poudre illustré à la Figure 3. 10. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 7 à 9, où ladite forme cristalline est un anhydrate. 11. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 7 à 10, qui peut être obtenue par : a) mélange de 10 mg du COMPOSÉ sous la forme cristalline 1 dans 0,05 ml d’acétonitrile ; b) agitation dans une fiole de 4 ml bouchée pendant jusqu’à trois jours ; c) isolation ; et séchage sous pression réduite et à température ambiante pendant 2 heures. 12. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 1 à 11 pour une utilisation en tant que médicament. 13. Composition pharmaceutique comprenant, comme ingrédient actif, une forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 1 à 11 et au moins un véhicule pharmaceutiquement acceptable. 14. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 1 à 11 pour une utilisation dans la fabrication d’une composition pharmaceutique, où ladite composition pharmaceutique comprend, comme ingrédient actif, le composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthyl-pyrrolidin-1 -yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone et au moins un matériau véhicule pharmaceutiquement acceptable. 15. Forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 1 à 11 ou composition pharmaceutique selon la revendication 13 pour une utilisation dans le traitement ou la prévention d’une maladie ou affection sélectionnée dans le groupe consistant en les suivantes : troubles du sommeil sélectionnés dans le groupe consistant en des dyssomnies, parasomnies, troubles du sommeil liés à une affection médicale générale et troubles du sommeil induits par des substances ; troubles anxieux ; et troubles addictifs. 16. Utilisation d’une forme cristalline du composé qu’est la (S)-(2-(6-chloro-7-méthyl-1/-/-benzo[d]imidazol-2-yl)-2-mé-thylpyrrolidin-1-yl)(5-méthoxy-2-(2/-/-1,2,3-triazol-2-yl)phényl)méthanone selon l’une quelconque des revendications 1 à 11 dans la préparation d’un médicament pour le traitement ou la prévention d’une maladie ou affection sélectionnée dans le groupe consistant en des troubles du sommeil, troubles anxieux, troubles addictifs, dysfonctionnements cognitifs, troubles de l’humeur et troubles de l’appétit.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2005118548 A [0012] • WO 2009047723 A [0012] • WO 2007105177 A [0012] • WO 2008020405 A [0013] • WO 2008038251 A [0013] • WO 2008081399 A [0013] • WO 2008087611 A [0013] • WO 2008117241 A [0013] • WO 2008139416 A [0013] • WO 2009004584 A [0013] • WO 2009016560 A [0013] • WO 2009016564 A [0013] • WO 2009040730 A [0013] • WO 2009104155 A [0013] • WO 2010004507 A [0013] • WO 2010038200 A [0013] • WO 2001096302 A [0013] • WO 2002044172 A [0013] • WO 2002089800 A [0013] • WO 2002090355 A [0013] • WO 2003002559 A [0013] • WO 2003032991 A [0013] • WO 2003041711 A [0013] • WO 2003051368 A [0013] • WO 2003051873 A [0013] • WO 2004026866 A [0013] • WO 2004041791 A [0013] • WO 2004041807 A [0013] • WO 2004041816 A [0013] • WO 2009003993 A [0013] • WO 2009003997 A [0013] • WO 2009124956 A [0013] • WO 2010060470 A [0013] • WO 2010060471 A [0013] • WO 2010060472 A [0013] • WO 2010063662 A [0013] • WO 2010063663 A [0013] • WO 2010072722 A [0013] • WO 2010122151 A [0013] • WO 2008150364 A [0013] • WO 2003002561 A [0013]
Non-patent literature cited in the description • SAKURAI T. et al. Cell, 1998, vol. 92, 573-585 [0002] • TSUJINO N ; SAKURAI T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward systems. Pharmacol Rev., 2009, vol. 61, 162-176 [0003] • CARTER ME et al. The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Op Pharmacol., 2009, vol. 9, 39-45 [0003] • CHEMELLI R.M. et al. Cell, 1999, vol. 98, 437-451 [0003] • R. STICKGOLD et al. Sleep-dependent memory consolidation. Nature, 2005, vol. 437, 1272-1278 [0004] • ASTON-JONES Getal. Brain Res, 2010, vol. 1314, 74-90 [0005] • SHARFRetal. Brain Res, 2010, vol. 1314, 130-138 [0005] • BOUTREL B et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sei, 2005, vol. 102 (52), 19168-19173 [0005] • SMITH RJ et al. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J Neurosci, 2009, vol. 30 (3), 493-503 [0005] • SMITH RJ et al. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology, 2010, vol. 58 (1), 179-184 [0005] • LAWRENCE AJ et al. Br J Pharmacol, 2006, vol. 148 (6), 752-759 [0005] • HOLLANDER JA et al. Proc Natl Acad Sei, 2008, vol. 105 (49), 19480-19485 [0005] • LESAGE MG et al. Psychopharmacology, 2010, vol. 209 (2), 203-212 [0005] [0012] • GOZZI A étal. PLoS One, 2011, vol. 6 (1), e16406 [0005] • HUTCHESON DM étal. BehavPharmacol, 2011, vol. 22 (2), 173-181 [0005] • BORGLAND SL et al. Neuron, 2006, vol. 49 (4), 589-601 [0005] • QUARTA D et al. The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus ac-cumbens and decreases the expression of amphetamine sensitization. Neurochem Int, 2010, vol. 56 (1), 11-15 [0005] • SPEALMAN et al. Pharmacol. Biochem. Behav., 1999, vol. 64, 327-336 [0006] • Recent advances in animal models of drug addiction. T.S. SHIPPENBERG ; G.F. KOOB. Neuropsychopharmacology: The fifth generation of progress. 2002, vol. 97, 1381-1397 [0006] • SUTCLIFFE, JG et al. Nat Rev Neurosci, 2002, vol. 3 (5), 339-349 [0007] • Y. KAYABA et al. Am. J. Physiol. Regül. Integr. Comp. Physiol., 2003, vol. 285, R581-593 [0007] • FURLONG T M et al. Eur J Neurosci, 2009, vol. 30 (8), 1603-1614 [0007] [0012] • CHROUSOS, GP et al. JAMA, 1992, vol. 267 (9), 1244-1252 [0007] • MAJZOUB, JA et al. European Journal of Endocrinology, 2006, vol. 155 (1), S71-S76 [0007] • ZHANG WET. Multiple components of the defense response depend on orexin: evidence from orexin knockout mice and orexin neuron-ablated mice. Autón Neurosci, 2006, vol. 126-127, 139-145 [0008] • LIU X et al. Sleep, 2007, vol. 30 (1 ), 83-90 [0008] • SALOMON RM et al. Biol Psychiatry, 2003, vol. 54 (2), 96-104 [0008] • FENG P étal. JPsychopharmacol, 2008, vol. 22 (7), 784-791 [0008] • NOLLET et al. NeuroPharm, 2011, vol. 61 (1-2), 336-46 [0008] [0012] • BERRIDGE CW et al. Brain Res, 2009, vol. 1314, 91-102 [0009] • BOUTREL, B et al. Proc Natl Acad Sei, 2005, vol. 102 (52), 19168-19173 [0009] • KOOB.GFetal. CurrOpin Investig Drugs, 2010, vol. 11 (1), 63-71 [0009] • TSUJINO, N ; SAKURAI, T. Pharmacol Rev, 2009, vol. 61 (2), 162-176 [0010] • ADAM, TC et al. Physiol Behav, 2007, vol. 91 (4), 449-458 [0010] • W. FOULDS MATHES et al. Appetite, 2009, vol. 52, 545-553 [0010] • TSUJINO N ; SAKURAI T. Pharmacol Rev., 2009, vol. 61, 162-176 [0011] • CARTER ME ; BORG JS ; DELECEA L. Curr Op Pharmacol, 2009, vol. 9, 39-45 [0011] • C BOSS ; C BRISBARE-ROCH ; F JENCK. Journal of Medicinal Chemistry, 2009, vol. 52,891 -903 [0011] • BRISBARE et al. Nature Medicine, 2007, vol. 13, 150-155 [0012] • H DIETRICH ; F JENCK. Psychopharmacology, 2010, vol. 212, 145-154 [0012] • JE KANG et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science, 2009, vol. 326 (5955), 1005-1007 [0012] • MJ PRUD’HOMME et al. Neuroscience, 2009, vol. 162 (4), 1287-1298 [0012] • WINROW et al. Neuropharmacology, 2009, vol. 58 (1), 185-94 [0012] • LANGMEAD. Brit. J. Pharmacol., 2004, vol. 141, 340-346 [0013] • Pharmaceutical Industry. U.J. GRIESSER. The Importance of Solvates. VCH, 2006 [0017] • Pharmaceutical Manufacturing. REMINGTON. The Science and Practice of Pharmacy. Lippincott Williams & Wilkins, 2005 [0027] • C.W. POUTON ; C.J.H. PORTER. Advanced Drug Delivery Reviews, 2008, vol. 60, 625-637 [0027] • the European Pharmacopeia Technical Guide, 1999, 86 [0044]

Claims (5)

  1. S?gbadzhn» s; va a pawvA L Az (k)-(2-(g-klöa-i-tavdi-1 l1''gvaaa(dildktl8Zö1-2-11¥2-aiatdg1Kadsdlö:-i:-d)(g-tavtt(xi-2-(2K-i ,2,2~tnasíd-2-gll-iaaliltavlaassg. vvgyklvi krissglyv» isvasdst: gazai jsiWszvv, kngy: ·* g pgfAásagsPdlká'sköíds alkigsaariás sstsasvk tslgihsidk à Ôgi% 12(2* 2s 21,2*20 idnkb szágökavi; vagy * a göa-i¥aigsadi(Kaksiös dsggäwggi· vsásaak dildlhatdk s 13,4% s 2,3* ás 24,δ* 21) adási szágekaái. 2 As iS)-l2-· v4dás-7-stvdl-H i-asa?->b(iiasistaö!-.%k)-2-a!gs;:pkt<shdis- ï-dk 3- iaalvs;-2-í2íM .ggl-ii'a-asl-li -h)-iaadkavtaavd v-é^öW 1 > igáayaödt szakad ksssiályös ftg3fiáós stí jsUvasssva, hngy a iwn'íadgstiddiyakgsás dtSig'-sdáilki ggávgök találkáták g 3,d% 15,3*' ás 21,5* 20 dkàst szSgvkagi; kiad :ï- |S>g-4k4£®í«Mí?HkSí4s álsgnágdi kraaibísdh Cu Knl ás iaasz sagáms slkgiaagzásgval kanjuk a fe(2 Sdggt'sâs okozta ddlzakslAs vsávsök lavatiása aáikhl üdikOl; ás a20 envkvk pnaiossaga a2Ö 44 02% tarttadattybaa vas.
  2. 3. Az (¥)-(2-id-kliÁ-7-íSvt1blikbaazö(t1jÍ!SiikgK)i'2-ii)'2-íavtilplAnÍkitit-1-1i)t5-íávláiki-2-(214'l:,2,3Ai'lgzol-2-li)' láö11)atalssa<ss vsgyOiat !.. Igagyptast azvdati ksiiádiyzs tatAsdig, vzäO jvOgtaazssy lasgy a pös--adatgi5aák'0-gkgiás dlagnidiiga esdasisk adgiássdk a dA\ i 22% 13,4% 14,6% 15,2% 15,5% O>\ 22 ,3% 22,4" ás 26,-4' 20 tOfási szagakaVk -aW a pas-sotiiggtiddlkgkaias diiagdáktt kas-blaak Cg Ka ; ás kn2 sagid'zds zlkakaazásdvsí kgpjkk a K;.<2 saggtzás öknzás tdiál-akakls ásásnak lavavásd aálkbl avlkOk ás a 20 betakes giaaassdgd g 20 a-A 0,2-kaáiaagaybíát vas.
  3. 4, Az (kH2--(b-kÍöí'-í--aí®iíi-'ll-l--baazól4ksa1dááós-2-ily'2-A?gó1jíkröikk?í--í--i()(5-?ggios!-2--(2H-g-2!3-a)agők2-lÍ)-- ikadkssvigsasa sngydlvá 2.. vagy 3. igbtiy(ziaí szvnnd ksisidiyas gtdvly íbtsyagábaa váva a 2, gbtàn dvastagtak gesa-skgigaadsikgkaids k bgpál n?adglkgz1k, 5 Az (2i)-(2'(b-k1ks-'2-tas(s1'-lâi-'bvaza(2käaHaâvi-2-iik2-«tvk0ik?i>bââv-i--ik(S-iaaiös1-'2'(31kl,2,3'triasif(-2-'äi)·-óalikavtaaaa vagyaivá 2-1. igvayavaiak kikaíglylkv ssauatl iadsiglyas fernSja, ahöl a knsidiyas (Ontsa avaáikklak,
  4. 6, As {k )-(2 -( 6-1,15s - 7 - sätvdl-1 ll"bvazo(d) iasidszvl -3 -11) -2 -s avk Ijkátgllála -1 -a y( 5 - sa el v s ; -2 - (211 -1.2.,3 -inasak -2-2 í) -ivakkavtssva wgyídgá 2-3. Iggayiaiaiak. Ogitaelyika szárshii keisiglyg-s hvsagka ssavly vidal iltbatv ágy, bogy; a) 2 g Vß$¥öLBTöi. savs-f aayaAkvat eikdwOak 2 tál 174 tártbgasAán'kggd gegayd vaasabviz vlagayak is) sakaagy 0,02 g-oi aktiak knaak az 1 -gs kristályvs ksnaáisáO Iává ¥223 V12222' altákKstályáiisék a) 220 dsrdsskiOgvn: svbvssVggsl rázailak tsiísivgy 16 Orda ái szökakdasársáklviati; d) szári Ók, ás a szikdiapáayt 2 ad atsavkviz iái (yty) g lággyal asassak, bs a tanabkat szakakOtaviaVkigtzts va adaîegÿ KI sava-at asökkgotyti ayataásad szá?is·tik 4 ára a át; ás g) szOháhOiSbniéklvizíi ás abhtegy 60% izkiilv aaávvsságiangiasa tavikat 2 Oráa dá hdgyluk aykahaa klvgyanl Kádak
    2, Az (k)--(2-(á'kÍvr-2'-aigtÍi-ÍÍ3-bgaza(a{íia1ílazoi-2-il)-2aavtslpÍ!'?'öHtká- 1-sÍX5-Otvidai-2-(2ii- 1 ,3,3-4ágz:a43--i1)·-Oatiiatataaap vvgyidsá i. igáaypata: ssytasa kdassiysss iartssdjg, azzal jgbv>AöZVSs, hagy a paz-'táiaizeadsKrakeíós dkigsaagda asáesvk saláikaták a laak) 13,3* vs '2-40* 2(1 (kaáal aakgvkiiál; ahol a pva-tdaigvadiKkakvIda diagnasai ktakfeiaákKlv K.;.-d ás Ky.2 ssa.srsgt glkaijöaaásávgs l-aggak g Ka2 saggasd» ssktssig ddagkvi-A ssdssak iavatigsti aáiktii avlkhl; ás a 2(1 gKdbak p«a5assgga a 20 -K- (1,20 didnatásykgts vgta ü. As: rÁ}-'(7-'rk''k.iko7''iSseiiÍ'idkéessao[üjisSí:iÜaei?iKÁi}-2,-!ss:ekÍgirissÍiiÍiSS' LsidK:sseaixL2MKk7Mäss»<?oLMK fo;:isi);ssegississs vogyéise L igéüy^te díefoki krisidiyssy forissgp!, áásoi jédgsegxye, hogy ü poe,ródi:gépái>KskS:ioé diagrassiáo eskesod ddafoefok: d MM M-K MÁK idMk KM ML MM MM ÁM M 3dX M forés? sadgekséi; shöí a poi-röfogeíssddrakeség üiggrasíröi kosískdadi: C« KM és KMi sugárzós sidáisoüzasüvái kapjak a KM sogáéras okossá dkïrakofos csúcsok ievopésa iséikái rfoidük és a 70 értékek póPfoéééga a Μ -M OK sarfofoáoyüari M fo As (kfoMifokÜó'MísfoÜk MMaMöMkMM24MKMMpMMMMMM«oAMM{kMÍ,*.;MMsM'Mj)'' iesdikssefossoss ssegyöier 7. vagy X igéaypíte szerété kéisiáiyés ksssre'sjs. ífosesy kfoyegéisea véve s X éisráfi beanítakíö por'rO'argeaüsi'iradasós képpéiérérsiáasiéd resaieikefok. W. Az (MCMMkMMineiMkR'MaM^jMäMMM-MMoMtipkiOkiHsp M;s{5o:sdo\rKKkiK2KiMzoM··· dsfoaiídoefoassri vegyfoeí KO, igédypoaied Mnsklyik« szorissé krssíáiyas fotreéfo, akei a késfofoos fosssia aohüirái, H, Á:z {MíMÁMAMMetXnMMKöfMMkMMMMMsMkpéaokdMéKMMíMMMMHXMMMökM d}iv:eii)foekáfoü vegyáiet 7 íö. igéísypösüok ktealyite sesrdié ki'iskdyos formája, ameiy efoéiiákefo ágy, kegy: as Ki mg L-es krkfoiyps iMsáfo VEéiYUiXíeteikevorártk 8,85 rai aeéfoaíkifoéá; d) ágy 4 siker zto éoigisais fogkájekh kérőét sápig temjük ; aj. eidüfoofoük; és esükdeetétt styofoáfoe és sgispaifonfozsékieiee 7 foka ét szárkgfo- IX Az (M{kkkM:for-'7'eistk''kH'áseogo|ájk5sfoéakiM<di'-2'i!á«éápÍM>k<kis.>KkX5AnofoxíMMH-l ,2,MdaM-2-ÁjfoMkisetaos vegyük?; KÍL foéáygógfok késoMyfoe szeried kristéiyos fortéé? seek: gyógyszeíkéét fozkéfo fokeüttiatéses, JÁ. KyégyseeMîiieis készsooéay. ssoeiy katMs'iysgkésrt es: (SX346-k1ÓM-mfoíS'kHMssaa[üjtef4sia<íkl<í1>^;' ieétdpOdékifoMdgKméfofoMMkkKMtdazökXéifosdjasstsaets vegyük?? i-H, iséstypoeiok itéeassïyske szeréé? kzisddyos forasátái és iegaiéhb egy gyógyszerészedfokeifogaétssté ifotrfoifokforfoüaaz:,
  5. 14, Az: (SHMfoKl8r-7-’ns??KkíHMptóáÍéÍnmü8g8ÍMíI)~2epaaííi|>iiTéHdSfot4í}fMfoüfoxtM(2kkl,s2,34Kaaok3' Mfoikifoieissöp vegyidet Kik igéisypootok üátfoelyike szeiéét kzKtáiyos formáéi gykgyszos'észed keszdmériy ekséiütásábari törtéaö aiksltti&amp;zásrá, sieti a gyogyszéiészóK készésoMy -h&amp;föanyagtent az {dKzgA-kiór-7-aïeÜé· 1Kfoeeao[üjk8Ída?£oi'd'-dkS'?nei:ílpímik<kS'?Kk}fo'0>éioxí'Kx(2kk i,7,5-'irkiacíkd'iídeod)iseíiíeos·! vegyöieiot teámra, és fogaiáiét egy gyógysMészekieg eifogarikaíó üoiéozo anyagid ks-esimaz. Id. As? iKk(*Á8,kÍüí-K!SieiK:-Ü'k-ÜMroIüjkískKMkdd1>2áiséi:ÜpMiskdiü''ldsX5^ieióXi-áÁ*K''K2J4í’iaeol-d·· üKéisddkeiaüM yggyösét ML igéeyjfotifod ksfopesyfoe szerbié krssüéyoz formája, vagy egy ?>. sgégypoai széristsi gyógyszeré szeli készkméay, a kdveisezAk ifozü? választok befogség vagy tetüieiierissség kezelésébeti vagy ősege ikzdséixm fortéaé sikskisezästa? áfotaéóosági zéétáitifoiL ákasüarss orvosi idizpiSiiai ésszoétggü sisváseaváősk és seer adassa aivészavazek ifozdi véisvzéfo: afoaszsvgrak; szotetigáaos zavarok:: és ikggikfogi szavasok, ié. A:z (d}MAki'Kiói''7'íaei:ü:Ai-iKseiSdaKipaiLMí>iM'SÍ)d'-'ís:ieü:spüaoSidik'i-'dX5'-ioeiexMMH-ÁÁvéAKisMÍM' si)fo?sii)isseia;:iöss vtigyséei Ki K sgéevpossíek áárttioiyidé szeresé kédfoiyós fortoéíádák alkalmazása aivészavarok, \ OS ' < \,> \ '! \} < í »u'x ,t uK"i)|\ , *· S \s s ?k J, \ 'sÄ^xxCt' i<s ÍVÓ >\ \e i X li is , S, feefogségok vagy eessiiedeaesséaek: MsM-M-re vagy soogeikzesére seaigéio gyógyszer eíőéíitesáid.
HUE14824107A 2013-12-03 2014-12-02 (S)-(2-(6-klór-7-metil-1H-benzo[d]imidazol-2-il)-2-metilpirrolidin-1-il)(5-metoxi-2- (2H-l,2,3-triazol-2-il)fenil)metanon kristályos formája és alkalmazása orexin receptor antagonistaként HUE035731T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IB2013060596 2013-12-03

Publications (1)

Publication Number Publication Date
HUE035731T2 true HUE035731T2 (hu) 2018-05-28

Family

ID=52282786

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE14824107A HUE035731T2 (hu) 2013-12-03 2014-12-02 (S)-(2-(6-klór-7-metil-1H-benzo[d]imidazol-2-il)-2-metilpirrolidin-1-il)(5-metoxi-2- (2H-l,2,3-triazol-2-il)fenil)metanon kristályos formája és alkalmazása orexin receptor antagonistaként

Country Status (31)

Country Link
US (1) US9914720B2 (hu)
EP (1) EP3077389B1 (hu)
JP (1) JP6496733B2 (hu)
KR (1) KR102361418B1 (hu)
CN (1) CN105793257B (hu)
AU (1) AU2014358742B2 (hu)
CA (1) CA2929423C (hu)
CL (1) CL2016001342A1 (hu)
CY (1) CY1119695T1 (hu)
DK (1) DK3077389T3 (hu)
EA (1) EA030137B1 (hu)
ES (1) ES2651475T3 (hu)
HK (1) HK1225731B (hu)
HR (1) HRP20171773T1 (hu)
HU (1) HUE035731T2 (hu)
IL (1) IL245923B (hu)
LT (1) LT3077389T (hu)
MA (1) MA39163B1 (hu)
MX (1) MX364208B (hu)
MY (1) MY179862A (hu)
NO (1) NO3077389T3 (hu)
NZ (1) NZ721438A (hu)
PH (1) PH12016500988B1 (hu)
PL (1) PL3077389T3 (hu)
PT (1) PT3077389T (hu)
SA (1) SA516371231B1 (hu)
SI (1) SI3077389T1 (hu)
TW (1) TWI664177B (hu)
UA (1) UA119549C2 (hu)
WO (1) WO2015083070A1 (hu)
ZA (1) ZA201604499B (hu)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570120B (zh) 2012-06-04 2017-02-11 艾克泰聯製藥有限公司 苯并咪唑脯胺酸衍生物
UA119151C2 (uk) 2013-12-03 2019-05-10 Ідорсія Фармасьютікалз Лтд КРИСТАЛІЧНА СОЛЬОВА ФОРМА (S)-(2-(6-ХЛОР-7-МЕТИЛ-1H-БЕНЗО[d]ІМІДАЗОЛ-2-ІЛ)-2-МЕТИЛПІРОЛІДИН-1-ІЛ)(5-МЕТОКСИ-2-(2H-1,2,3-ТРИАЗОЛ-2-ІЛ)ФЕНІЛ)МЕТАНОНУ ЯК АНТАГОНІСТ ОРЕКСИНОВОГО РЕЦЕПТОРА
CN105873921B (zh) 2013-12-04 2019-03-15 爱杜西亚药品有限公司 苯并咪唑-脯氨酸衍生物的用途
PL3619199T3 (pl) 2017-05-03 2021-12-20 Idorsia Pharmaceuticals Ltd Wytwarzanie pochodnych kwasu 2-([1,2,3]triazol-2-ilo)­-benzoesowego
IL297234A (en) 2020-04-19 2022-12-01 Idorsia Pharmaceuticals Ltd Medical use of deridorxant
KR20230142554A (ko) * 2021-02-02 2023-10-11 메드샤인 디스커버리 아이엔씨. 테트라하이드로피롤로사이클릭 화합물 및 이의 용도
CN115925699B (zh) * 2022-02-25 2023-10-03 南京知和医药科技有限公司 具有镇痛活性的稠环化合物及其制备方法与用途

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282927A (en) 1964-05-21 1966-11-01 Bristol Myers Co 5-phenyl-4-thiazolylpenicillins
AU2001272476A1 (en) 2000-06-16 2001-12-24 Smithkline Beecham Plc Piperidines for use as orexin receptor antagonists
MXPA03003039A (es) 2000-10-06 2003-10-15 Neurogen Corp Derivados de indola y bencimidazola como moduladores del receptor crf.
ATE286897T1 (de) 2000-11-28 2005-01-15 Smithkline Beecham Plc Morpholinderivate als antagonisten an orexinrezeptoren
KR20030096348A (ko) 2001-05-05 2003-12-24 스미스클라인비이참피이엘시이 N-아로일 시클릭 아민
EP1435955A2 (en) 2001-05-05 2004-07-14 SmithKline Beecham P.L.C. N-aroyl cyclic amine derivatives as orexin receptor antagonists
JP4399256B2 (ja) * 2001-06-28 2010-01-13 スミスクライン ビーチャム ピー エル シー オレキシン受容体アンタゴニストとしてのn−アロイル環状アミン誘導体
GB0115862D0 (en) 2001-06-28 2001-08-22 Smithkline Beecham Plc Compounds
GB0124463D0 (en) 2001-10-11 2001-12-05 Smithkline Beecham Plc Compounds
GB0127145D0 (en) 2001-11-10 2002-01-02 Smithkline Beecham Compounds
GB0130393D0 (en) 2001-12-19 2002-02-06 Smithkline Beecham Plc Compounds
GB0130335D0 (en) 2001-12-19 2002-02-06 Smithkline Beecham Plc Compounds
AU2003262516A1 (en) 2002-09-18 2004-04-08 Glaxo Group Limited N-aroyl cyclic amines as orexin receptor antagonists
GB0225944D0 (en) 2002-11-06 2002-12-11 Glaxo Group Ltd Novel compounds
GB0225884D0 (en) 2002-11-06 2002-12-11 Glaxo Group Ltd Novel compounds
GB0225938D0 (en) 2002-11-06 2002-12-11 Glaxo Group Ltd Novel compounds
PT1751111E (pt) 2004-03-01 2015-04-01 Actelion Pharmaceuticals Ltd Derivados de 1,2,3,4-tetrahidroisoquinolina substituída
BRPI0708913A2 (pt) 2006-03-15 2011-06-14 Actelion Pharmaceuticals Ltd uso de compostos derivados de tetraidroisoquinolina para aumentar a funÇço da memària
WO2007135527A2 (en) * 2006-05-23 2007-11-29 Pfizer Products Inc. Benzimidazolyl compounds
RU2447070C2 (ru) 2006-08-15 2012-04-10 Актелион Фармасьютиклз Лтд Соединения азетидина в качестве антагонистов рецептора орексина
EP2079690B1 (en) 2006-09-29 2010-09-15 Actelion Pharmaceuticals Ltd. 3-aza-bicyclo[3.1.0]hexane derivatives
PE20081229A1 (es) 2006-12-01 2008-08-28 Merck & Co Inc Antagonistas de receptor de orexina de diazepam sustituido
CL2007003827A1 (es) 2006-12-28 2008-09-26 Actelion Pharmaceuticals Ltd Compuestos derivados de n-(2-aza-biciclo(3.1.0)hex-3-ilmetil)amida; y su uso para prevenir o tratar la depresion, neurosis, esquizofrenia, ansiedad, adicciones, epilepsia, dolor, enfermedades cardiacas, entre otras.
WO2008087611A2 (en) 2007-01-19 2008-07-24 Actelion Pharmaceuticals Ltd Pyrrolidine- and piperidine- bis-amide derivatives
CL2008000836A1 (es) 2007-03-26 2008-11-07 Actelion Pharmaceuticals Ltd Compuestos derivados de tiazolidina, antagonistas del receptor de orexina; composicion farmaceutica que los comprende; y su uso en el tratamiento de neurosis emocional, depresion grave, trastornos psicoticos, alzheimer, parkinson, dolor, entre otras.
CN101711247A (zh) 2007-05-14 2010-05-19 埃科特莱茵药品有限公司 2-环丙基-噻唑衍生物
EP2150115B1 (en) 2007-05-23 2013-09-18 Merck Sharp & Dohme Corp. Cyclopropyl pyrrolidine orexin receptor antagonists
GB0712888D0 (en) 2007-07-03 2007-08-15 Glaxo Group Ltd Novel compounds
US20090022670A1 (en) 2007-07-03 2009-01-22 Giuseppe Alvaro Novel compounds
CA2691373A1 (en) 2007-07-03 2009-01-08 Actelion Pharmaceuticals Ltd 3-aza-bicyclo[3.3.0]octane compounds
ATE493386T1 (de) 2007-07-27 2011-01-15 Actelion Pharmaceuticals Ltd Trans-3-aza-bicyclo-ä3.1.0ü-hexan-derivate
CA2693820A1 (en) 2007-07-27 2009-02-05 Actelion Pharmaceuticals Ltd 2-aza-bicyclo[3.3.0]octane derivatives
WO2009040730A2 (en) 2007-09-24 2009-04-02 Actelion Pharmaceuticals Ltd Pyrrolidines and piperidines as orexin receptor antagonists
PE20091010A1 (es) 2007-10-10 2009-08-08 Actelion Pharmaceuticals Ltd Derivados de tetrahidroquinolina
US8236801B2 (en) 2008-02-21 2012-08-07 Actelion Pharmaceuticals Ltd. 2-aza-bicyclo[2.2.1]heptane derivatives
GB0806536D0 (en) 2008-04-10 2008-05-14 Glaxo Group Ltd Novel compounds
CN102083827A (zh) 2008-07-07 2011-06-01 埃科特莱茵药品有限公司 作为食欲素受体拮抗剂的噻唑烷化合物
WO2010038200A1 (en) 2008-10-01 2010-04-08 Actelion Pharmaceuticals Ltd Oxazolidine compounds as orexin receptor antagonists
JP2012509912A (ja) 2008-11-26 2012-04-26 グラクソ グループ リミテッド 新規の化合物
WO2010060470A1 (en) 2008-11-26 2010-06-03 Glaxo Group Limited Piperidine derivatives useful as orexin receptor antagonists
EP2358712A1 (en) 2008-11-26 2011-08-24 Glaxo Group Limited Piperidine derivatives useful as orexin receptor antagonists
US20100144760A1 (en) 2008-12-02 2010-06-10 Giuseppe Alvaro Novel compounds
MX2011005799A (es) 2008-12-02 2011-06-20 Glaxo Group Ltd Derivados de n{[(1r,4s,6r)-3-(2-piridinilcarbonil)-3-azabiciclo[4. 1.0]hept-4-il]metil}-2-heteroarilamina y sus usos.
GB0823467D0 (en) * 2008-12-23 2009-01-28 Glaxo Group Ltd Novel Compounds
SG175026A1 (en) 2009-04-24 2011-11-28 Glaxo Group Ltd 3 -azabicyclo [4.1.0] heptanes used as orexin antagonists
TW201209037A (en) 2010-08-24 2012-03-01 Actelion Pharmaceuticals Ltd Proline sulfonamide derivatives as orexin receptor antagonists
CN103201261A (zh) 2010-11-10 2013-07-10 埃科特莱茵药品有限公司 用作为食欲素受体拮抗剂的内酰胺衍生物
ES2541531T3 (es) 2011-02-18 2015-07-21 Actelion Pharmaceuticals Ltd. Nuevos derivados de pirazol e imidazol útiles como antagonistas de orexina
WO2013068935A1 (en) 2011-11-08 2013-05-16 Actelion Pharmaceuticals Ltd 2-(1,2,3-triazol-2-yl)benzamide and 3-(1,2,3-triazol-2-yl)picolinamide derivatives as orexin receptor antagonists
TWI570120B (zh) * 2012-06-04 2017-02-11 艾克泰聯製藥有限公司 苯并咪唑脯胺酸衍生物
CA2885180C (en) 2012-10-10 2021-03-02 Actelion Pharmaceuticals Ltd Orexin receptor antagonists which are [ortho bi-(hetero-)aryl]-[2-(meta bi-(hetero-)aryl)-pyrrolidin-1-yl]-methanone derivatives
CN105051040A (zh) 2013-03-12 2015-11-11 埃科特莱茵药品有限公司 作为食欲素受体拮抗剂的氮杂环丁烷酰胺衍生物
UA119151C2 (uk) * 2013-12-03 2019-05-10 Ідорсія Фармасьютікалз Лтд КРИСТАЛІЧНА СОЛЬОВА ФОРМА (S)-(2-(6-ХЛОР-7-МЕТИЛ-1H-БЕНЗО[d]ІМІДАЗОЛ-2-ІЛ)-2-МЕТИЛПІРОЛІДИН-1-ІЛ)(5-МЕТОКСИ-2-(2H-1,2,3-ТРИАЗОЛ-2-ІЛ)ФЕНІЛ)МЕТАНОНУ ЯК АНТАГОНІСТ ОРЕКСИНОВОГО РЕЦЕПТОРА
CN105873921B (zh) 2013-12-04 2019-03-15 爱杜西亚药品有限公司 苯并咪唑-脯氨酸衍生物的用途

Also Published As

Publication number Publication date
IL245923A0 (en) 2016-08-02
NZ721438A (en) 2021-12-24
CY1119695T1 (el) 2018-04-04
CA2929423C (en) 2021-12-07
AU2014358742B2 (en) 2019-02-07
HRP20171773T1 (hr) 2017-12-29
CL2016001342A1 (es) 2016-11-18
US9914720B2 (en) 2018-03-13
KR102361418B1 (ko) 2022-02-09
EP3077389B1 (en) 2017-09-13
CN105793257B (zh) 2018-11-13
NO3077389T3 (hu) 2018-02-10
EP3077389A1 (en) 2016-10-12
MX2016007215A (es) 2016-09-07
MA39163A1 (fr) 2017-11-30
JP2016539136A (ja) 2016-12-15
PT3077389T (pt) 2017-12-15
HK1225731B (zh) 2017-09-15
PH12016500988A1 (en) 2016-06-20
WO2015083070A1 (en) 2015-06-11
MY179862A (en) 2020-11-18
PH12016500988B1 (en) 2016-06-20
DK3077389T3 (da) 2017-11-13
EA201600435A1 (ru) 2016-11-30
EA030137B1 (ru) 2018-06-29
ZA201604499B (en) 2019-04-24
TW201605838A (zh) 2016-02-16
JP6496733B2 (ja) 2019-04-03
IL245923B (en) 2019-09-26
SI3077389T1 (en) 2018-01-31
MA39163B1 (fr) 2018-09-28
BR112016012628A2 (hu) 2017-08-22
MX364208B (es) 2019-04-16
ES2651475T3 (es) 2018-01-26
KR20160092015A (ko) 2016-08-03
SA516371231B1 (ar) 2018-02-20
LT3077389T (lt) 2017-12-11
CA2929423A1 (en) 2015-06-11
BR112016012628A8 (pt) 2017-12-26
UA119549C2 (uk) 2019-07-10
US20160368901A1 (en) 2016-12-22
AU2014358742A1 (en) 2016-07-07
PL3077389T3 (pl) 2018-03-30
CN105793257A (zh) 2016-07-20
TWI664177B (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
US10023560B2 (en) Crystalline salt form of (S)-(2-(6 chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone as orexin receptor antagonist
AU2014358742B2 (en) Crystalline form of (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1 -yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone and its use as orexin receptor antagonists
DK3077391T3 (en) USE OF BENZIMIDAZOLE PROLINE DERIVATIVES
WO2020007977A1 (en) 7-trifluoromethyl-[1,4]diazepan derivatives
WO2020007964A1 (en) 2-(2-azabicyclo[3.1.0]hexan-1-yl)-1h-benzimidazole derivatives
BR112016012628B1 (pt) Forma cristalina de hemi-hidrato do composto (s)-(2-(6-cloro-7-metil- 1h-benzo[d]imidazol-2-il)-2- metilpirrolidin-1-il)(5-metóxi-2-(2h-1,2,3-triazol-2-il) fenil)metanona, seu uso como antagonistas dos receptores da orexina, e, composição farmacêutica
WO2020099511A1 (en) Benzimidazole-2-methyl-morpholine derivatives
BR112016012625B1 (pt) Forma cristalina de cloridrato ou hidrocloreto do composto (s)-(2-(6- cloro-7-metil-1 h-benzo[d]imidazol-2-il)-2-metilpirrolidin-1-il)(5-metoxi-2-(2h-1,2,3- triazol-2-il)fenil)metanona, composição farmacêutica, e, uso da forma cristalina de hidrocloreto de (s)-(2-(6-cloro-7- metil-1h-benzo[d]imidazol-2-il)-2- metilpirrolidin-1-il)(5-metoxi-2-(2h-1 ,2,3-triazol-2-il)fenil)metanona