HUE028376T2 - Nagy molekulatömegû vegyületeket redox párként és féligáteresztõ membránt tartalmazó redox átfolyócella elektromos energia tárolására - Google Patents

Nagy molekulatömegû vegyületeket redox párként és féligáteresztõ membránt tartalmazó redox átfolyócella elektromos energia tárolására Download PDF

Info

Publication number
HUE028376T2
HUE028376T2 HUE13742160A HUE13742160A HUE028376T2 HU E028376 T2 HUE028376 T2 HU E028376T2 HU E13742160 A HUE13742160 A HU E13742160A HU E13742160 A HUE13742160 A HU E13742160A HU E028376 T2 HUE028376 T2 HU E028376T2
Authority
HU
Hungary
Prior art keywords
redox
polymers
radicals
membrane
molecular weight
Prior art date
Application number
HUE13742160A
Other languages
English (en)
Inventor
Ulrich Sigmar Schubert
Martin Hager
Tobias Janoschka
Original Assignee
Jenabatteries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenabatteries GmbH filed Critical Jenabatteries GmbH
Publication of HUE028376T2 publication Critical patent/HUE028376T2/hu

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Description

Description
REKlMf CE.I.I, COMPRISING HIGH MOLECULAR WEIGHT COMPOUNDS AS REDOX PAIR AND SBMiPBRMEABLB MEMBRANE FOR STORAGE OP ELECTRICAL
ENERGY iiwetakm relates to a redox flow eel!. m pneral language es« also referred to as redox flow battery, for storage of electric energy. The redox Bow cel! contains two polarity-speclEe chambers m each of which a redox-aeiimehendeareompound is present in dissolved form or a redpc-active compound ls: present I» dissolved form in both chambers and is connected to a Ifguid store, in this wav', two independent circuits for the redox-active componnds dissolve in, for example, water or an organic : solvent, which are separated by a membrane between the polarny-speciBe chambers, are formed, ion exchange between the two chambers occurs through this membrane.
Tire ceils am particularly suitable for stationary storage applications, for mraraple as buffor battery for wind power plants or as power and regulating reserves for low equalisation in power grids, and also as; mobile energy stores;, for example for foe operation of electric ears; and electronic appliances..
Existing redox Row batteries (RER) are electrochemical energy stores. The componnds required for establishing: foe potential at the electrodes are dissolved, redox-active species which are converted: info their other redox state in an eiectroehemieai reactor during the charging or discharging; process;. For this purpose, the electrolyte solutions (eatholyte, anolytefare taken from a taub and actively pumped to the electrodes. Anode space and cathode space are separated in the reactor by means of an ion-sefsetive membrane which usually has a high selectivity for protons, As long as electrolyte solution m pumped, power cun be raken off lire charging process is then simply the reverse of this process. The quantity of energy which can be stored in an RPB is therefore directly proportions! to foe size of the storage tank. T he power which can be taken off, on foe other hand, is a function bf foe six© of foe electrochemical reactor. RFRs have a complex system technology (BoP - Balance of Plant) which corresponds approximately to font of a foei cell. Customary eonstructlon sixes of the individual reactors are in foe range from about 2 to 50 kW. The reactors cun fee combined veto simply in a modular fehlen, and the tank size can likewise he adapted virtually at will. RFBs which operate using vanadium compounds as redox pair on both sides! VEM) cm of particular importance here. This system was described for foe Erst time in 19M (AD S2S24T B) and is at present the technical standard. Fttoher inorpnle, low molecular weight redox pairs have been studied, including ones based on cerium (B, Faág, S·. fwasa., .¥, % Aral, M. ÎCamagafe "A sfodÿ; thé €Y(03)/Ce(i V) redox couple: for redox flow battery application’', EleGrochithfoa, Acta 4¥* 21102, 39? 1-3976), ruthénium |M. Il Çhakrab&amp;rtk B,:1fotham, L> Roberta*. €· !aef M* '“IRuthenhmt based redox Bow bdiei^ fer solar energy storage",: Energy fleh Y Manag:·: f%. 2011, 2501-2508), chromtet* (C-R Bae,: E.R L, Roberta, R. L· W. Dryle: "Gbremium redox: couples for application to redox flow batteries”, BleeltOvhlnriea Adta 38, 3002, 2:79-17),, atanin® (T< Yamamora, Y. Shloitawa, Yamaha, M. Mofipmir "Bleetocbenneal Investigation of cranium S-díketonates for a!l-uranium redox flow· IxUfory", Bleefreckltoioa Acta, 48* :2092, 43-50), manganese (F. Xue, Y. Wang, W. long Wang, X. Wang: "Investigation on die eieettode process ofthe Mr<il.yMn(Ii) copie so redox Bow buttery" bíeeOoóOlsBfeá áelg SI, 2008, 0630-0043) am! iron: f¥, X«, Y, Wen, I, Cheng, CL Can, Y, Yang:: "A study of tar in $$ueoe$ solutions for redox Bow batfèrÿ application", Eieetrochmuda Aeta: 55, 2010, 715-720), Ifowever, theses systefoa are based oh mstoi-tonhtaming eleoO'olytes which are toxic or damaging to the environment.
VilFB reactors can at present be obtained so blocks of from f to 20 kW, Higher power outputs: are achieved by rssodntar connection of these. Each individual biock contains a: plurality of planar sells which are connected ist series to itch leve a higher voltage, This bipolar construction largely corresponds to the construction Of a REM fuel oelf :, A pori1uorls?ta|ed polymer having: sulfonic acid, groups, usually DuPotst Isfc^ 117, is: utilized as membrane, Other fmlymerg have been desérihed,: for ©xssUpfO polymers bused on ÉFEEK. (Q. Luo, H. XhebS* J> Gbe® Ö, You, C. Stiff, Y, Bhang: "XanofoSEBBIi. composite:Reparation and Of t%Eö)RSPEEK layered composite membrane stud its application ht vanadium redox Bow babervc. JEMbmb, Set, 325, 20!!* S53-SS8), FVDF (3, Qfo* 31 Bhang, j;€hen, |.%ηρ, L, XU, MEEhai, 3. Li, G, Wei; "Amphoteric ion exchange mombrape: synthesised hy styrene and dimedtykasBooefoyl pigtkaorylatg: into FYEfF ifm for vanadium redox flow battery applications", .1. Merab Set. 334, 2009, 9-15), QPPEK (S. Zhang, C. Yin, D. Xing, D. Yang, X, Jian: "foepatatipp of ehioromethylatedfi|oateritÍ2ed polyfpbtbalaz;ino5te ether ketone) anion exchange membrane materials for vanadium redox Bow battery applications", XMemb, Seh 363, 20 i 0, 243-249), Beorine-ire·;:· solfonatod poiyaryienc fD. Chen, S, Wang, M. Xiao, Y, Meng: "Synthesis nod properties of novel sultonated polyfarytens ether su Hone) ionoméra for vanadium redox Bow battery”, Energy Conv. Manag, 51, 20)0, 2816-2824) or inorganic-organic composite materials comprising SiCb (3, XI, 2,Wu}: TGQhg L,Cheo: "Naflon/StCÁ hybrid membrane for vanadium redox Bow battery”, |, Few. Sour, 166, 2007, S31-536), but, in contrast fo Nation membranes, are not yet practical: and commercially available. The same applies to nanofiltration membranes which allow the protons of the: acid electrolyte to pass through and: hold: bank the: vanadium salts ilongzhastg Xhang, HoanUn Xhtoig, XlaofongLi, Xhensheng Mai, Jlaniudähang: *1Naiî0Î%i$iloR -(ÍNF| thé mÊ: .générais©! separators; fer al vanadium redox îlots?:
Wwgÿ Μ&amp;ΡΦμWMÉ Science, 201:¾ 4 16fiS~.]4?i|,,:Re^a^.fe^.pfffeese, fife; sahfe disadvantages stich äs high cost and fefe1ronmeo.ts|' pollution is the esse of a ntafor accident and also short life ©f tie ceils would !H»$pty bere> I« fee: présent sfeie of the W*. É! use of ion-conducting mpmhmnes limit's. further çomnmreialfeatfon since standard Maiién® membrabés: aïe expensive, RuoBoe-eonmining, mechanically weak; ferthennore, these swell fe: a great degree and aft* sasôeptihte té « efeetrochetnies! short circuit due to inward diffusion of vanadi um fess.
Purely organic redox compounds have hitherto ten used very hitte in RFfes- Thns low molecular weight IJ:Jfe4etrafBefeylpiperidinyfexy (TBbdlfolJ and ifemefclphthallfnide have been used in an RFB having an ten-cosdneiiag feepbrane (2. Li, S. Li. S. Ft. tin. K. !... Huang, D. Fang, f, C. Wang, S. Peng: "Elemrpehemfesl properties of an all-organic redox: flow battery using; 2,2,0,hAeimmsfey 1-1 -piperidfoytexy «4 ^methyiphthgindde’f Bteeirochenn Solid State Lett. 14, 2011, A171-AI73). Furthermore, rubrene is ruled out because of high costs and very low solubility; despite good electrochemical properties (cf. H. Charkrabarfei, R. A. W. Dryfo, E, P. L. Roberts, Jour, Chetn. Soc, Fak. 20(17, W* 204-300 "Organic Elemrolyfes for Redox Flow Batteries"),
Batteries based on 2,3,6.4ritn;ethyiquinoxa1tne: also fethxe expensive ion-seieetive Malien® membranes (F, R. Brushed, l,T, Vaughey, A./hL lapsed;; "An Alf-Organte Mbfeppeeus Lhhium-fpn Redox Flow Battery", Adv. Bnergy Mater. 2012, 2,1300-1300).
Iferagine-based eyasroaxaearbenes (US 8,08002? Bl) ifeve been used bdfe ás ; fefelyte and as eafeolyle, with; fenfeonduefmg membranes:based: on eatioo exchangers and ánldft: exchangers feeing tssed for separating the electrode spaces,: These membranes are expensive and In each fetse permeable only to a particular dass of fens. This is reflected, in particular, in a dlskdvantageetis system constmedon which has to ntilixe an electrolyte reservoir between fee aodiyfe eifeuh and; tits: eatnOlyte cirenit. This is necessary in order to ensnte charge equal izatibttOnixmg of the anions which diffuse through the anion exchanger mehibrane into fee reservoir and fee cations which diffuse through fee cation exchanger membrane into fee reservoir.
Apart .(run) the organic redox compounds, low molecular weight metal-organic compounds are described pi E. Cltahrabaria, 1, A. W; Dryfo, I. P. L. Roberts; ”Evai nation of electrolytes for redox flow battery applioatiPhs", lieetroohimfea Acta, 52,2007,2109-2105). Mere, organic iigands wbieh complex inorganic metal salts are used. Such ligands are, for example, btpyridyi, terpyridyl, pbenaaihfoline or inddaXdles (US 20127OI7154Í A i), For these systems, too, expensive ion-condneting nfeOshmnes such as Nnfiion® or amine-fonetlonalteed polystyrene derivatives have to be issed. The same applies to redos flow batteries based on low molecular Weight tsphemum-bipyridiae complexes 'which, for example, utilixe the anion exchanger membranes Thmcepta®. Other membranes are, in contrast, permeable to these complexes and lead to alow efficiency of the battery in this case iY.Matsuda, IL Tanaka, M. Okada, ?.. "fakasu, ;M, Merits, lYMatstmtufa-bioum recharpahte redox battery utihfong oifoenimn complexes with non-apueous: organ# electrolyte“, i. Allied Electroebem. Í8, 1988,909-914).
It is an object of the invention to provide, by use of new materiális and membranes and with very little outlay* ah Inexpensive aud long-lived redox low cell which even in the event of a possible sebdna accident brings about little en vironmentd pollution by its redox-active eohtpounds.,
Ibis object is achieved: according to the invention by a redox; Sow cel for energy storage, containing a reaction cell; having two polarhy-speeifib chambers (¾.¾) for catholyte and astoiyts, which are each connected to ä store tor lapud and are separated by a membrane tor ion exchange, where the chambers (1, 2) are each filed with redox-active components present undiluted, in dissolved form or dispersed in an electrolyte solvent and also conducting salts dissolved therein and possibly further additives, as a resoM of die fact that high moteblar weight compounds are provided as redox-active componahfa and a sixe-excfosieo membrane p) is provided as membrane for sepmtlng the high moleedlar weight redox-active components present undiluted, in dissolved form: or in dispersed form.
Trefereoee Is given to redox ®ow: cells in which the chambers (!, 2} are each tilled with redox-active epptponenls which are :pressut undiluted: or as a solution: in water or an organic solvent
For foe purposes of foe present description, the tern* forxe-exctusion membrane;" refers to a membrane which has at least the following features o separation of anode sod cathode space o retention of the high molecular weight; tedoxmetive components •o permeability for the cohducting salts: of the electrolyte which serve for charge equalisation, he, for anions and -.rations of lise conducting salt.
The retention principle of the meaforane: used according to the invention is based on the principle of afoe exclusion, he,: the mbmbfsae distinguifoes between redoxfoetive eornpppefos and inns bf the conducting: salt on; the basis of Éelr sixe, which can be described, for exaoipie^ by thevnolar mass (number average), number of repeati n g units, ionic radius ahd/or inértlál radius.
Fdr the proposes pf the present description, adeem ity is the separation limit at which the molecules can no longer pass elficienth through the membrane. This means that at a given molecular weight of the molecule,, at: least 91% of the molecules are fofomofoby foe membrane.
Th« pcP^sed. Size-exclusion membr&amp;ise,: fei: «sample: à seióipeirrneabk memhtihe or a dialysis membrane, preferably separates these high molecular weight redox-actlve emnpooePts m fee two chambers with: a selectivity of at least $00 g/mol particularly preferably at least $50 g/mol. where organic ormeta I-orgarde materials, polymers or olipmem which accordingly have a molar miss greater than the seketfepy ef the Äe-axclesbp memfemue am usedashigb molecular weight components, ilo si^eselesfett metnfepne used according to the invention effects by means of a physical (mechanical) membrane sep«ton process, Hete, use is made of fee principle of size exclusion, ie. all particles m the polarity-specific chambers for catholyte and snolyte which « larger than fee pores of fee membrane are retamed by the membrane. 'life sixcyxcfepio« mefefewrse used acepfemg in the Invention can cousfst of a vmfefe of otaferiais m long m fed ahovementloned fenctimmlöfes are ensured. Th® materials of fee sige-«s.efesiott immhmm can, depending on the particular application, consist of plasties, ceramics, glasses, feefefs or sheet-dike textile structures. Exampfea of matetfels arc organic poltatters sack ascefefetse of modified cellulose, fef example cellulose eihefe or cellulose esters, pplyefeer stdfehe, phiyxnifene, polvcinyiidctfe luoride, polyesters, pnlyntpfeanes, polyamides, polypropylene, polyvinyl ehlPridecpfeysery^^ polystyrene, poipioyi alcohol, polyphenylene oxide, polyimides, polytetraguoroefeyleik and derivatives: thereof or else ceramics, glasses or felts, £lxe-#khrsion membranes consisting Of a plftrality of materials f composites) arc also possible.
The slze-excklskm membranes can be used in various forms offen filler elements, Examples feemof are fiat membmnes, bag Eiters and hollow Éber modulos. These embodiments are known to afeetspp Tkllfel in fee art. Prefete nee is given to using flat membranes.
The size-exclusion membrane used according to line invention can he supported to give better stability.
The femfmess of the size-exclusion membrane used aceorfesg to the invention can vary within a wide range. Typical thicknesses arc ip the range born I pm to Ô mm, prtkuiarly ptofefebly from 10 put to 200 pm.
The high molecular weight redox-active components used according to the invention can be any compounds which; gap; Ife présem: in at least two different stable oxidation states and have a molecular weight such that: they cannot;· pass ferodgb dm size-exclusion fnPfebfetfe PScd according to the invention.
Ilgh molecular weight redox-aetive components can be polymers or oligomers; herb, fee Ä oligomers refers to compounds having a molar mass of Irons 500 to 5000 g/mol (number average) ami the tens polymers refers ίο compounds having a molar mass of greater than 5000 g/moi (number average),
Typical redox-aeíív© ©opponents esed according;to She Invention are: Oligomers or polymers which have a polymer backbone eoomirviog one or mom aeii ve units. These active iröiís can be eoupleddo the polymer backbone in various Ways. Cfevaleoi bondfog of the active units to the polymer backbone ©an be present, Le, the: active mots ate covalently bound us skie groups to the polymer backbone, for example via €<C bonds or via bridging groups such as -0-, -S~, ÄL-, €CL, -COiNbL or -COO-,, liowever, the active «nits cap also form a constituent of the polymer backbone and are then ©ovaien% incorporated into the polymer backbone,: for example via CMC bonds or via bridging igfoöps such as --0-, -fof -NMy CO-v-'CCfolH- or -CQCfo Finally, the active units can also fee coordinated: to the polymer backbone or feetfod to the polymer feaekfeone via sppmmolecuiar intcraetlops,: for example via hydrogen bonds., ionic interactions, pi-pi interactions or as Lewis acid to group having Lmvis beae properties: which are in turn bound to the polymer backbone: or as Lewis base to groups Irayiag Lewis acid properties which are: in torn hoond to the polymer backfeoite,
Examples: Of eompoutsds which can form: the· polymer backbone: are: polymers derived from efoyleoisally tíuáaíhrated: Carboxylic acids or esters or «Ides thereof e.§. potyraethaory lates, polyacryiates or polyacrylamide, polymers derived from ethylemcaily pnsaturated aryl compounds, e.g. polystyrene, polymers derived from vinyl esters of saturated epdhosyiic acids or derivatives thereof. e,g, polyvinyl acetate or polyvinyl alcohol, polymem derived from ofofitw or bicyeik: or polycyetls oleins, e.g, poiymhylene, polypropylene: or polypotfeotpene, polyimicte derived ionts imide^fbrmlftg tetracarboxylic acids sod diamines, polymers derived from natural occurring polymers and their chemically modified derivatives, wg, cellulose or cellulose ethers, and also polyurethanes, piyvlnyl ethers, polyfoiophenes, plyaeatyiene, polyaikylene glycols, poly-ffokänothbfnehe, pelysiluianes, polyaikylene glyeof and derivatives tteesf 0¾. ethers foereof preferably polyethylene glycol and derivatives thereof. Pardculatly preferred classes of materials used which form the polymer backbone are polymÄaerylates, polyacryiates, polystyrene, polyaikylene giyeofe and poly vinyl etiwus.
Examples of compounds which can form the active unit are compounds winch form nitroxide radicals or 2,2foipimnyLI-picrylhydraryi radicals, Wurster salts, puinones, compounds which can form galvinoxyl radicals, pbenoxyi radicals, triaryimethyl radicals, polychioroiriphersylmethyl radieak pheoaienvi radicals, eycicgsenfodfonyl radicals, immoxyl radicals, verdavwl radlgais, nitronylnifroxide radicals or thiaxyi radicals, indigo, disulfides, thlafolvalenes, tbioethers, thiolanoSi thiophenes, viologen, tetmkelopíperagme,: qpmoxalme, friarylaorine, epybfjareoe.
amkmfumonyt ftaNiMtafc forrocene, emfeaxele, polyindole, polyprroL pólyán dine. poiyrhiophene, piiäyl'i.N'-du^tyi'^/iSpS^etraketopipeT^iHe.. 2,S-di-tert-büíyl·
Wukfomxypbenoxypropyl esters, poíy-2-pheuyfe I ,3-diîhiohme, poly|mâtiaïie^Py!tetrathIe-mmhykme}, paiy-2,4.j30î{^et3tatïyle«e, polyeifeette-iilj^teiraibbl poly-3,4mfoy!ene-·· dfoxyfoiôpherse, S,5-ysmeifejÄeN^2-Älo^(me, pel:y-l,2?4,S4éÂispKïpy!lbsobenxen&amp;, ply-S-aífí|no-l,4~díhydroPítxepi~Ír2-diblsiadiem-eo-aailfee, ply^*t-di%‘d«^iBjÄv2,l^f^tr8# thiamitece««, henxy! disulfide, pol>4etrathionaphihaler»e, polynaplhhon.8-cd]| 1,2]dithiol poly~2,S~dmmrcap0>· IJJ-lbiadlaxole, pplysuffîdm poiythioeyanögem polyasmtene, polyffiíorene, piyna.pMhakp» polyafobmeene, pmlyfomu, teíraíhiafoivakn©: or polyoxypheeaaine and lmm&amp; and derivaltyes-thereof.
The active units are preferably covalently bound to the polymer backbone. However, polymer adducts can also be used.
Tafosidarpmfomrsee Is given ffc ti&amp;ètg :plp8^.«piWl«îbg groups which form: Äoxide radicals, vefoaxyl mdicals or ïd^o»yÎiil^xi#:ig|kâ|% *áe$$pníf or qamm&amp; as redox-schve components,
Examples: Of groups: which form hitfoxide radicals are piperidines, in prilcnlar fbe 2,2,fe.fo· teiraaikylwufestitufod derivatives and particularly preferably the 2,2^iJ-tmrmtlkyM'aminOr substituted derivatives or the 2,2,iyi>-tetraalkyl-4-hydroxy-substituted derivatives. ixamplës of vldiegehs are blpyrjdyi derivatives, 1rs prtieular the 4yf'-hipyridyl derivatives which am, In particular sllytwsfefhnted in the deposition. It em also fee advantageous to use "extended” vfologedc Äese are oligomers made up of aryieoe, atfeyfeue, alkyiene ether or thiophene units which are incorporated between the pyridine units and are covalently bound to the latter.
Examples of cpmonea arc oxidation products of phenols, e.g. of hydnrqmnenev of snthragumon© or of l^-dlbydroxynaphthalepe, I j-Senxoquinone and Mmaphthoqumone ampreforreb. ¥ery particular preferehee-is; given to using polymers which have a polymer backbone selected from the group eousisdn| of polpnethacrylates, polyacryMesç poiysfyretses, polyalkylene glycols and polyvinyl ethers and have redox-active components sclented ffcm. the poop consisting of poups which form pitoxide radicals, : verdaxy I radicals: or infeonylnlroxlde radical, viologens and quinones covalently bound to this: polymer backbone.
Examples of polymers haying a. polpfeethacrylaie backbone or polyaerylate backbone bearing groups which form nitroxide radicals covalently bound thereto am: polymcnhaerylates or
' V polyacryla!«® bearing 2,I^6»jÉ«ömík>4§ub<»{ituUfd piperidines -whieli are :k»md vt$ a 4-pxygeu atom to the earfeoxy! groups of the poly methacrylate or polyncíyiam. á. |ü«fÂÎS%'' prA^ed example of such a polymer l:s poí><2.2,6,é^»mi#>dpiptóáí»^lt^^teryliat^^ imlÿpthytee giyeoi) m#$d ether ærntha». r> late).
Bxantg^s t>f polysuet's having a polyalhyfeae glycol feMkfeoaé bearlag copolpaériíhíi viologes radicals are polyethyieoe glyeob having copolymemed 4,4‘*bipyridy! radicals which are bound via. the pyridyi nitrogén atoms to carbon atoms of the ethylene gh col. A pabdètïferly preferred: example Of sech a polymer la poiy(4,d’d>lpyndine"C(>poly(eüiylc"tc glycol)).
The average molar Mass: |m»ber average) of the high molecular weight féte-ardve compotmntTs: typically at least S00 gÉoel, preimblv at least Sfb g/ttsoL particularly preferably at least: 100(1 g/nml, and Is particularly preferably from 1$Ö0 m 50Ö 0i)i) gdaol and In partietdnr from ÍCM® io 50 ödO g/moi.
Tile polymers containing; :mdox-aetlve components eau he present as linear polymers or m branched polymers:.. for example m eomh or star pdlyra«^* dendrimers, conductive polymers, Cyclic: plymcrs, polycafenimos or polyrnfexanes, iheferenee: is given to using branched polymers» in partfetdar comb or sfer polymers, dendrimers;, conductive polymers, cyclic polymers, polyeufennoes or polyrotaxanes. These types are eharseterfeed by increased solubility and the viscosity of the solutions obtained is generally lower titan in the ease of corresponding linear polymers,;
The viscosity of the eleefeolytes used according to the invention is tpleally in the ranprfem 1 mfas to Iff mfas. particularly preferably írom lb“ to 1-04 mIks fmeasured at 251¾ using a rotational v tscomeier plafe/plate), fi© solubility of the polymers containing redox-active components wfefeb are used according to the invention can also fee Improved, by copolymérisation or fenetionalfeatfen, mg- with polyethylene glycol, pplymetbaerylic acid, polyamylic acid, poly-2-methyloxaaoîln or polystyrene suifenate.
The: polymers: used according: to the invention and comprising redox-active components ean he prepared by the usual polymefmsiion processes:. Examples thereof are hslk pobmerigatlon, solution: polymefiration, precipitation polymerfeaiion or emulsion or suspension, pblytnerfeafíon, and also polyîUer-snalogonS Smetionalfeaiiouw These procedures am known to a person: skitied: in the art.
The redoy-seiive components eau be used as such, he. without solvent. If they are litpld at: the use temperature, However, the redoy-active compoaenmare preferahiy used together with a solvent. lile redox flow oeil, of Été irmention cas contain jft itrtber eim^pts. &amp;r components- which arc customary for such sella I». addition to öve above-described. components. Some of these· components are necessary, while other components cas he esed if appropiaie,
Bxampfes of components which are necessarily present are o electrodes such as electrodes made of graphite, graphite nonwoven, graphite paper, carbon nanotube carpels or graphene o power outlet leads sad; as leads made of graphite or of petals o electrolytes souialnipg conducting salts dissolved therein; these can be Ikpbd redox-active polymers or a solntion, emulsion or suspension epofosed of redox-active polymers and electrolyte solvents o examples of electrolyte sol vents arc water or organic solvents such as acetonitrile, organic carbonates,; alcohols, dimetbylfermamide, dimethyl saifox&amp;fet* dimethylacctamide. dichioromethace. nitromethane, tehahydroforan, preferably water, acetonitrile and organic carbonates o examples pi comlnetmg electrolyte salts are salts coûtai Ag anions selected fi» the: group consisting of PP6, Blfe SbP;;, Äsf’fe, CIO<, CfeSCk SO^CSFj, ÇrPrSOj, fOFjSD^bh, Of!, SO:r F, Cl, If and I and also dations selected tod) the group consisting of 11, alkali metal dations and alhaind eath metal cations and substituted or unsuhslituted ammonium cations o transport means soot as pumps and also tunis and pipes for the ifansport and siotap of redox-active components.
Examples of components which am optionally present are o electrolytes additionally containing electrolyte additives io addition to the conducting sails dissolved therein o examples of electrolyte additives are surfactants, viscosity nrndliers, pesticides, buffers, stabilizers, eutalysis, conductive additives, antifreezes, heat stabilizers.
Said high molecular weight redox-active components present undiluted, in dissolved form or in dispersed fenn in the two chambers and the separation of the How circuits thereof having the abovementioned selectivity have made it possible to create a redox flow ceil which does not contain any costly and toxic or hazardous electrolytes which in the case of damage could escape and pollute the environment.
Tib© separation membftmé between fop: two separat: flow circuits: can also be produced anti esed with a comparatively Spall pm las It advantageously consists of organic mdfkltl: asp Is advantageously configured: ax a polymer membrane:-
Studies up.jto: now on ip: redox How cell of the mvékldd, in; particular experiments Involving many repeated clwrgkgMfofmr|kg cycles, indicate a slgptfiesmly mere«! lie «net lower production costs during their appllcmbo compared tó ip systems described, at the Outset.
The redox flow cell of the invention can be used in a: variety of fields. These can In the widest sense be the storage of electric energy lor mobile and fodidhary applications. The Invention also provides for the use of the redox flow cell fen- these purposes,
Examples of applications are uses in til® field of electfomohlllty, e-g. as energy store k land, air and wafer vehicles, uses as stationary energy store for emergency power supply,: peak; toad equalisation and for the temporary storage of electric energy from mnewable energy sources, ín particular id the sector of phofovoilaks ark wind power.
Hie redox flow cell of the kvtmtiou Is preferably used as stationary store for electric energy.
The redox flow cells of foe invention: can he; connected to one another k series of k parallel la a manner known per so.
The invention will be illustrated: in more detail below with foe aid of a redox How cell depicted schematically in foe drawing as exemplary embodhnmi.
The redrsx How eel! consists of two stmciuraily Identical half cells (I t and (2) produced as hollow Teflon Ixxlies, where the half coll p facts as auolps: chamber and foe half cell (2) acts as cafoolyle chamber.
The two half cells <L 2} (shown in exploded view for reasons of clarity) are joked here via a skm exclusion membrane (3) baying an exclusion limit of lifo) g/mof
Each half cell (1,2} has an InEow pod (4 ) and an outflow port (5} via which the half ceils (1, 2.) are each joined by means of hoses to a respective storage vessel (store for liguidj: containing the anoiyte or eatholyfe for tire cormspondkg half cell (1} or p) (not shown k the dmwkgfor reasons of clarity),
Theatmiyk or cafoolyfc is (k each case as septate lk|t3ti«iedi ;^o«g^' eÁ£f> and (2) of tie redox How coll) pumped by means of a pump (likewise no! shown for masons of clarity) from the respective storage vessel through foeappopriate half cell (I) or (2) Ikdteated by arrows at the inflow and outflow ports (4, 5>) during the charging/discharging process hach half seif (f, 21 has m internal electrode mai® of gra^hte/f^íphiíe féli M which m elp&amp;öde j#etfoa kî» pr se takes place ín the respective hall'cell 0*. 2% These laterna! electrodes are ín each ease Conducted as peláríty-dépendent power outlet lead1 (f> fér electrical smwsêm «« hm·. the: half cells (! ,: 2). A sehttlon (ID mg/ml) of poly(2;í2ídJ^tranteu;ytp:|persiípylexy®etknerylíke-eö-'poÍy(e%!ese glycé!) nieihjd ether stethaeplMe} In propylene carfecnate .½ ötökéi as catholyte. à soltmen f!Ö nrghn!) o! glp«Íi) &amp;* propylene: carbonate: lé esed as andfytc. Tetrakutylerníponlunf Iteyafluorepltesphate ||,| mei/f) Is aided as conducting salt, tó both sekätsens- The cel! oiftainedip this way eordithe repeatedly charged and discharged at a eopstaat eeirspt of. 5öü g&amp; and had a discharge vokage of about i,l V.
List of#ferenee punverals. used 1.,2 - Half cell 3 ·· Síes<xclnsk)rin:teíhhrái-íe 4 Inflow port 5 - Outflow port 6 - Power optlet lead

Claims (7)

  1. KMAMI-Ä IGÉNYPONTOK
    1, Kodex elektromos energia tárolására, amely tartalmaz reakciócellái,, amely rendelkezik lát pokritls^eeiltea kamrával (!> 2) kátéiknál és armtitnak, amelyek mmdegyike lolyadéktáddásm csatlakoztatott és ionoserére szolgáló membránnal elválasztott, ahol a kamrák (L 2} mindegyike redox-akiiv ktÄgo«ÄekkeL amelyek hígitstlamb, oldott tormában vagy elékirolh oldószerben iiszpergálva vammk jeles* valamint: azokban oldott vézéiSaókka! és adott eseiben további adafék-anyagokkal töltött, Jeltemezve, hogy nagy moiekaiatömegü vegyületek redox-akírv komponem· sekként vannak biztosítva és egy méretkizarásos membrán (3) a nagy molekulatömeg« rédox-aktív komponensek, amelyek blgbatlannl, oldott tormában vagy diszperzéit tormában vannak jelenj elválasztására szolgáló membrlnként van biztosítva, ahol a máretkizárásos membrán legalább 5ÜÍ g/mol szelektivitással reudeilekik és a nagy molekulatömeg« redex-aktiv komponenst a megfelelő, 500 g/moi-náí nagyobb számátlag moláris tömeggel rendelkeznek.
  2. 2. Az I. igénypont szerinti redox átfoiyőcella, azzal Jellemezve, hogy a kamrák (I, 21 mindegyike redox-aktiv komponensekkel töltött, amelyek MgUarkmű vagy oldatként vízben vagy szerves oldó-szerben vannak jelen. % Az !. Igénypont szerinti redox átfclyéeeija, azzal jellemezve, hogy Sigáterésztő membrán méret-kizárásos membránként van biztosítva. 4 Az 1. igésipöt SzénM azzal Jellemezve.. hogy dialízis membrán métetkizárá- sos membránként van biztosítva. $. Az L igénypont: szerinti redox átíolyöcdla, azzal jdlemezvé, hogy a pagy molekulatömeg« redék-akíly koniponensek a megfelelő, 150 g/mol-nál nagrvbb szantátlag moláris tömeggel rendelkeznek. Ó, Az 1. igénypont szerinti redox áttöiyéceiis, azzal jeílsmézve, hogy a méretkázázásps membrán műanyagokból, kerámiákból, üvegekből temekből fcompöZitökbói vágy iapszern:teátli szerkezetekből vágy ezek kombinációiból előnyösen szerves: poilmetekbik Mlőnöse« eélinlözbb! vagy módosítóit cellulózból, ppliéier-sznitönból, pollszuífbnhok poliv|Ttili#b-t1:«bridböl: peliésztetekbüi, ppfipraíá-ndkbol, pohaatidokból, polipropilénből, poiiylmi-klorídkél. pollakril-niltílböi, dextÄMI* ligblhtedk polipropiién-oxldból, polieblén-irninböl. pliakrilsavből,, pallsztíroihöi, pohvinii-aiköbólbói, polifenilém-oxidbólv polilmidékbok poliietraduor-etilénböí vagy ezek sz|rmazékaiból áll. 7'. &amp;z I - igßfiypimt m&amp;mtî mkm á&amp;yőmMa, mami jeßpaiezve, hogy a rnerntkizarásM membrán szerves anyaghb! áll és* különösen, polimer mmbráöMatáfán kialakítva.
  3. 8, Az 1. igéapoft szerinti redős éllolyőeella, azzal j ellemezve hogy a mérerkMíásos membrán- vastagsága m: .1 pp-S mmy különösen előnyösen &amp; löAtm-200: gm -^om#|iÿba esik,
  4. 9. .Az 1. igénypont szét inti redos, ätAdyöedia, azzal jellemezve, hogy redoa-aktív szerves vagy fémorpioílos anyagok. oligomerek yagy: polimerek nagy moiekniatomegd komponensekként vannak felhasználva. Hk Az I. ígétffmnt szerinti redos átlblybcella, azzá! jellemezve, hogy polimerek, amelyek a következik afkottaosoportból válaszon vegyűleteket taspimeznak: vegyilelek, amelyek nlírökldgyököket vagy 2,2~di%niM -piknMhdrazlkgyököket képeznek,: Wursíer-sók, kinőnek, vegyülétek, amelyek gaivkosilgyekokei íenoxügyököket, trimtt-meáhgyöfcokeh polikiór-trilenikamtllvgydkökei mnalenllgydköket, dklopenmdienU-gyökökek ipttttoxllgyököket, verdazilgyőköket, ninmnlmitröklib gyököket vagy üazHgytthökeí képezhetnek, indigó, diszulftáok, tjafafvaJêaek» tioéierék, íídtánők, íieflnek, víolögén, tetrakeiopiperazm, hihökslm, iriaHimmm, imlix[4jarém antrakinohil-szuifid, IMazin, cinnolim íérrocén, karbazól* pöiimbbh poliplrrol, polianflfc, poiittofem peh-N^’-diaMl!-2JJ,hr|mraketöpiperazin, 2jS-di'fere-hdíi4<pmokkfeÍí<mi-propil^zferek, poli--2--leni!-i441iiolam pö!l[meíln-tetril”mmv4Íommflen'Í, polkSsd-dlílm^pmianilén, poll4én-í,l,2,2"tetraíioi, poH4,4-etiÍéh~ dmal-tloíén, S,5mssz-mehiio-2,2-hiÍdfén, pölld ,2,4,0-tetrakis^ poH~S-amittml,4~ dihMrolmnzold}· 1 ^’^iliadiémko-amiln, :píl*$:^íhyrQ-11í^WI,l>4l-tetratiaran.tracé«, pöH·* poilén-oligoszaiid, föi-d ,2-feisz-tÍ0fdr^3-il-mmÍmíszulilP, potiteíratío- haialést, polma&amp;aj l J>edjf 1 Jjditiol, potr44;4mmrka^ f oüszulftíi, píitioelanopm poiázmén, polilluozésg pdina&amp;alén, poliamraoén, póliftrán. tèlraÂfaîvaléa. wgF pl iox i«fenp$|p és ezek lzppmr|ei és azárnmzékíd, redöa-akfiv kempoaettsekkéní vannak felhasználva. fl, A lit Igénypikszerinti ζβφ,«||fólyécdl%hogy polimerek, anreiyek aikövolv kezók alkotta osoporíbo! választott pélhher vázzal rendelkeznek;: etilénesen telitetlesr kazhoiaévakbóf vagy ezek észtereiből vagy amidjaiból származó pohmerok, különösen pohraetakmáíok, poliakríiáfok vagy ppliakrilamldofc, vagy etiénesen íelheien aálvegyötefekhoí szármádé polimerek, különösen po-fisztttoi vagy telített karbonsavak vagy ezek származékaí ymikeszieteiből származó polimerek, kölS-nősett polivírnl-aemát vagy pliylttikalkohof, vagy o]eitrei.Mi vagy bieikteos vagy polieiklnsos öle-iaekfeö! származó pointerék, Mlönősett polietilén, polipropilén vagy polínorbomén,, yagyimidképzo telrakarbmtpvákhől: és diaatmokhdlszáimaző poliispidek, és természetben elötbídnlb póllmerekbSk valamint ezek: kémiailag módosított száratazekaihől szá^sgé polimerek, különösed eeilidoz vagy eeiloiöz-éterek, és polmretáraok, polivlnil-éterek, pofMöféttefc,. pôlaçetién» poilalkíién-ghkolok, pol-· 7-oxaaorbomén, pohsziloxáa, pollslkilén-gllkol és ezek származékai, rediox-aktiv komponensekként vsnaak felhasználva. i'2. Az 1. igénypont szerinti redox átfo-yéceShp azzá! jetaaezve, hogy polimerek, amelyek, tártál-maznak nitroxidgyőköket, veidazilgyökökat vagy nkrmdl-nftroxtd-gyökÄet képező csoportokat, viologéneket vagy iúnonokat, különösen tartalmaznak piperáJmeket, különösen eiőayöse® a 2,2,6,6-tetmlkü-vzubsztiîuàli származékokat es nagyo« küiöadse« előnyösen- a 2,2/k6-tetraaMM-ami»o-szohsziimáli származékokat vagy a 2;2,6,6-tetotaikil4..|ydf»xí»szafeszrituáÉ szánnazékokal, vagy tar» iáim aznak különösen öipiridil-szármaxékokaí, különösen előnyösen a ő^'-hipmdij-szárrn&amp;zékókaí és nagyon különösen előnyösen: a ^é^blprzídM-számíazékoksí, amelyek aikil-sznisxfiüsállak a 4,4 ! pozíciókban, vagy tartalmaznak kmonokat, amelyek a fenolok oxidációs termékek, különösen Mötokí-oont, anirakmont vagy l ,4-'őÍlrkirosknsftaliní jelentik, redox-sktiv komponensekként vannak felhasználva, 13, A 12, igénypont: szerinti redox átfolyóeella, azzal jellemezve, hogy polimerek, amelyek polimetakriiái vázzal vágy pólfekrilát vázzal rendelkeznek, amelyek azokhoz kovalensen kötött, nitroxidgyőköket képező csoportokkal rendelkeznek, különösen polimetakriiáiok vagy poliákrilátok, amelyek k^őíö-íetraaikll-sznhsztstuált plperidmekkel rendelkeznek, amelyek a 4~exi génatomon keresztül kapcsolódnak a poflmelskrtlát vagy pohaMlát karbakilesöpörtjaíhoz és nagyon különösén előnyösen poll{2!2Jő,ö-tePnnTetil'i5lperldi:ntl--oxí-metakriláPko-poll(erilén-gl:ikol}"metll--éter-metakri~ lát) redox-aktív komponensekként vannak jelen, vagy azzal jellemezve, hogy polimerek, amelyek kopolhnerizáií viologéngyökökkel rendelkező polialkilén-gükol vázzal rendelkeznek, különösen poll-etilén-glikolok, amelyek kopolimerizált 4-4' -bipiridü-gyökökkel rendelkeznek, amelyek a piridilcsoport nitrogénjein kérésziül kapcsolódnak az erüén-glikoi szénntonyaihoz és nagyon különösen előnyösen poliC4,4MMpirkim-ko~poli(etlfen--glikol}} redox-akt.lv komponensekként vannak jelen. 14, A 12, igénypont szerinti redox átfolydoella, azzal jellemezve, hogy polimerek, amelyek a következők alkotta csoportból választ polimer vázzal rendelkeznek: pofim etakri fátok, poliákrilátok, poil-szóróink, pofialkilén-glikolok és polivinil-éterek, és amelyek a következők alkotta csoportból választott redox-aktív komponensekkel rendelkeznek: csoportok, amelyek mtroxidgyököket, vertlazil.-gyököket vagy nárooil-nitroxid-gyököket képeznek, víologének és kln:onok, amelyek kovalensen kapcsokéinak ezen polimer vázhoz, redox-aktlv komponensekként vannak felhasználva.
  5. 15, Az 1, igénypont szerinti redox; áttblyócella, azzal jeiemezve, hogy polimerek, «melyek lineáris polimerekként vagy elágazó polimerekként, különösen fésűs vagy csillag polimerekként, déndriteerekként, vezetőképes pot ivetekként, ciklikus polimerekként. pollkatenanökkéíb vágj pollrotaxánokként vannak Jeten, redoxmktlv kaMpémtàêtMM. vannak Ifetkivaíoáiva, IC Az .¾; iipnypont szerinti redox átfolyó: öeln,; ázzál |iipi«*vC hop a felhasznált elektrolitok: viszki^Ää Í--10' íáítete különösen előnyösed Kp-Jö" mites taSemányha esik 05°£-on mérve roíá·· élés viszkozimétert felhasználva, lemezdentezi.
  6. 17. Az I. igénypon it szerinti redos átfolyöeeba, názaí jelesnezv«, hogy az eiekíroíit oldószer tartalmaz slwéiÉ# alkotta csoportból választott további adalékanyagokat: fdüleiaküv anyagok, viszkozitást módosító anyagok, rovarirtóazorek, pnfferek, stabilizáló szerek, katalizátorok, vezetőképes· sági adaláltenysgok,|agKásgátlók és bórnersékletstabilzáié szerek,
  7. 18, Az 1 >: igénypont sprínti redox átfólyóeella alkalmazása etektroteos energia tarolására: hordozható vágyfelyhez kötött felhasználásokra. !9. A |§. igénypont szerinti alkalmazás, azzal Jellemezve, hogy a redox átfolyőeella az éisktíomobilítás temieten, különösen energiatárolóként földi, légi és vizi járrnüvekben van felhasználva, vagy azzal Jélléptezvé, bogy a redox átfolyócella heh hez kötött energiatárolóként vészhelyzeti vlilpnösenergla-eilátásra, ósővsterlíelés-ktegyénlitésre és megújuló energiaforrásokból származó elektromos energia áterenötr támlására, ídMöhÖsen a fényelektnsmos és szélenergia szektorban van felhasználva.
HUE13742160A 2012-08-14 2013-07-25 Nagy molekulatömegû vegyületeket redox párként és féligáteresztõ membránt tartalmazó redox átfolyócella elektromos energia tárolására HUE028376T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012016317.7A DE102012016317A1 (de) 2012-08-14 2012-08-14 Redox-Flow-Zelle zur Speicherung elektrischer Energie

Publications (1)

Publication Number Publication Date
HUE028376T2 true HUE028376T2 (hu) 2016-12-28

Family

ID=48877195

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE13742160A HUE028376T2 (hu) 2012-08-14 2013-07-25 Nagy molekulatömegû vegyületeket redox párként és féligáteresztõ membránt tartalmazó redox átfolyócella elektromos energia tárolására

Country Status (27)

Country Link
US (1) US9905876B2 (hu)
EP (1) EP2785442B1 (hu)
JP (1) JP6302468B2 (hu)
KR (1) KR102091385B1 (hu)
CN (1) CN104582820B (hu)
AU (1) AU2013304341B2 (hu)
BR (1) BR112015002936B1 (hu)
CA (1) CA2880997C (hu)
CY (1) CY1117069T1 (hu)
DE (1) DE102012016317A1 (hu)
DK (1) DK2785442T3 (hu)
ES (1) ES2555475T3 (hu)
HK (1) HK1205043A1 (hu)
HR (1) HRP20160057T1 (hu)
HU (1) HUE028376T2 (hu)
IL (1) IL237059B (hu)
MX (1) MX354025B (hu)
MY (1) MY170328A (hu)
PL (1) PL2785442T3 (hu)
PT (1) PT2785442E (hu)
RS (1) RS54512B1 (hu)
RU (1) RU2653356C2 (hu)
SG (1) SG11201500701SA (hu)
SI (1) SI2785442T1 (hu)
SM (1) SMT201500324B (hu)
WO (1) WO2014026728A1 (hu)
ZA (1) ZA201500337B (hu)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO2751376T3 (hu) * 2014-02-13 2018-03-24
US10263308B2 (en) * 2014-03-24 2019-04-16 Cornell University Solar flow battery
US10239978B2 (en) 2015-01-16 2019-03-26 The Board Of Trustees Of The University Of Illinois Redox active colloidal particles for flow batteries
US9982068B2 (en) 2015-01-16 2018-05-29 The Board Of Trustees Of The University Of Illinois Redox active polymers and colloidal particles for flow batteries
CN104953132B (zh) * 2015-06-15 2017-04-05 湖南科技大学 一种液流型醇‑过氧化氢燃料电池及其制造方法
CN106329033B (zh) * 2015-06-30 2019-04-02 中国科学院大连化学物理研究所 一种基于水溶性快速反应动力学电对的光电化学储能电池
DE102015010083A1 (de) 2015-08-07 2017-02-09 Friedrich-Schiller-Universität Jena Redox-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung
JP7025765B2 (ja) 2015-10-27 2022-02-25 マサチューセッツ インスティテュート オブ テクノロジー ガス分離のための電気化学的プロセス
DE102015014828A1 (de) * 2015-11-18 2017-05-18 Friedrich-Schiller-Universität Jena Hybrid-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung
US10367222B2 (en) 2016-02-29 2019-07-30 Alliance For Sustainable Energy, Llc Materials for flow battery energy storage and methods of using
JP2017188574A (ja) * 2016-04-06 2017-10-12 積水化学工業株式会社 熱電変換デバイス
FR3050327B1 (fr) 2016-04-14 2018-05-11 IFP Energies Nouvelles Systeme et procede de stockage et de restitution d'energie electrochimique a flux de particules de polymeres redox
WO2017181275A1 (en) * 2016-04-18 2017-10-26 Zincnyx Energy Solutions, Inc. Energy storage device electrolyte additive
DE102016005680A1 (de) 2016-05-06 2016-12-15 Daimler Ag Anolyt und Katholyt für einen Redox-Fluss-Energiespeicher
US11329304B2 (en) * 2016-05-27 2022-05-10 The Regents Of The University Of California Redox-flow batteries employing oligomeric organic active materials and size-selective microporous polymer membranes
DE102016212390A1 (de) 2016-07-07 2018-01-11 Innogy Se Kavernen Batteriespeicher
US11923581B2 (en) 2016-08-12 2024-03-05 President And Fellows Of Harvard College Aqueous redox flow battery electrolytes with high chemical and electrochemical stability, high water solubility, low membrane permeability
CN107895808A (zh) * 2016-10-04 2018-04-10 松下知识产权经营株式会社 液流电池
KR102081767B1 (ko) * 2016-10-13 2020-02-26 주식회사 엘지화학 중공 실리카를 포함하는 바나듐 레독스 플로우 배터리용 전해액 및 이를 포함하는 바나듐 레독스 플로우 배터리
CN108232267A (zh) * 2016-12-15 2018-06-29 松下知识产权经营株式会社 液流电池
WO2018114012A1 (de) 2016-12-23 2018-06-28 Ewe Gasspeicher Gmbh Einrichtung und verfahren zum speichern von energie sowie verwendung einer kaverne
CN106635376B (zh) * 2016-12-26 2019-06-11 上海微谱化工技术服务有限公司 润滑油脱色处理方法
US10821395B2 (en) * 2018-02-07 2020-11-03 Palo Alto Research Center Incorporated Electrochemical desalination system
US11724980B2 (en) 2018-02-09 2023-08-15 President And Fellows Of Harvard College Quinones having high capacity retention for use as electrolytes in aqueous redox flow batteries
DE102018002746A1 (de) 2018-04-06 2019-10-10 Analytconsult Gbr Verfahren und Vorrichtung zur Speicherung von elektrischer Energie in chemischen Redox-Verbindungen - Effutuebte Redox-Flow-Batterie
CN108878933B (zh) * 2018-06-20 2021-01-22 湖南国昶能源科技有限公司 一种Nafion/lignin复合质子交换膜的制备方法
WO2020072406A2 (en) 2018-10-01 2020-04-09 President And Fellows Of Harvard College Extending the lifetime of organic flow batteries via redox state management
US11117090B2 (en) 2018-11-26 2021-09-14 Palo Alto Research Center Incorporated Electrodialytic liquid desiccant dehumidifying system
US11185823B2 (en) 2018-11-26 2021-11-30 Palo Alto Research Center Incorporated Electrodialytic system used to remove solvent from fluid and non-fluid flows
DE102018009393A1 (de) 2018-11-29 2020-06-04 Friedrich-Schiller-Universität Jena Wässriger Elektrolyt, Redox-Flow-Batterie und deren Verwendung
DE102018009363A1 (de) 2018-11-29 2020-06-04 Friedrich-Schiller-Universität Jena Redox-Flow-Batterie zur Speicherung von elektrischer Energie in Erdspeichern und deren Verwendung
DE102018131928A1 (de) * 2018-12-12 2020-06-18 Carl Freudenberg Kg Separator für elektrochemische Energiespeicher und Wandler
ES2972328T3 (es) * 2018-12-20 2024-06-12 Victoria Link Ltd Composiciones de electrolito
JP7258350B2 (ja) * 2019-04-03 2023-04-17 国立研究開発法人産業技術総合研究所 規則構造を有する高水溶性、高エネルギー密度化有機系活物質を用いた電気化学デバイス
US11015875B2 (en) 2019-04-17 2021-05-25 Palo Alto Research Center Incorporated Electrochemical heat pump
KR102187986B1 (ko) * 2019-05-13 2020-12-07 한국세라믹기술원 페로센 레독스 콜로이드를 포함하는 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
AU2020336453A1 (en) 2019-08-28 2022-03-10 Massachusetts Institute Of Technology Electrochemical capture of Lewis acid gases
US11598012B2 (en) 2019-08-28 2023-03-07 Massachusetts Institute Of Technology Electrochemically mediated gas capture, including from low concentration streams
JP7232155B2 (ja) * 2019-08-30 2023-03-02 株式会社デンソー レドックスフロー電池システム
DE102019125240A1 (de) * 2019-09-19 2021-03-25 Rwe Gas Storage West Gmbh Hybrider Kavernenspeicher
US20230150938A1 (en) 2020-04-01 2023-05-18 Basf Se A solution of tempo-derivatives for use as electrolyte in redox-flow cells
HUE066689T2 (hu) 2020-04-01 2024-09-28 Basf Se TEMPO-származékok oldata elektrolitként történõ alkalmazásra redox folyadékáramos cellákban
CN111613823B (zh) * 2020-06-18 2022-11-29 中盐金坛盐化有限责任公司 聚合物液流电池系统
CN112271314B (zh) * 2020-10-27 2021-11-30 福州大学 一种基于四硫代富瓦烯二羧酸乙酯的液流电池正极电解液及其制备方法
US11925903B2 (en) 2020-12-18 2024-03-12 Xerox Corporation Electrodialysis heat pump
US11715844B2 (en) 2021-03-04 2023-08-01 Uchicago Argonne, Llc Isatin derivative redoxmer for electrochemical device
US12085293B2 (en) 2021-03-17 2024-09-10 Mojave Energy Systems, Inc. Staged regenerated liquid desiccant dehumidification systems
DE102021001501A1 (de) 2021-03-23 2022-09-29 Karl Cammann Verfahren und Vorrichtung zur Regeneration von Anolyt und Katholyt bei Redox-Flow-Batterien
CN117121243A (zh) 2021-04-07 2023-11-24 巴斯夫欧洲公司 用于生产在氧化还原液流电池中用作电解液的tempo衍生物的提纯溶液的烷基化哌啶胺-和哌啶铵衍生物溶液
US11872528B2 (en) 2021-11-09 2024-01-16 Xerox Corporation System and method for separating solvent from a fluid
US11944934B2 (en) 2021-12-22 2024-04-02 Mojave Energy Systems, Inc. Electrochemically regenerated liquid desiccant dehumidification system using a secondary heat pump
WO2024120530A1 (zh) * 2022-12-09 2024-06-13 中国科学院大连化学物理研究所 一种萘型化合物及其制备方法和应用
WO2024129618A1 (en) 2022-12-12 2024-06-20 Mojave Energy Systems, Inc. Liquid desiccant air conditioning system and control methods
CN116371221B (zh) * 2023-04-06 2023-11-28 中山大学 一种聚酰胺纳滤膜及其制备方法和应用

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1212303B (it) * 1978-07-10 1989-11-22 Elche Ltd Accumulatore redox.
AU575247B2 (en) 1986-02-11 1988-07-21 Pinnacle Vrb Limited All vanadium redox battery
RU2105395C1 (ru) * 1995-04-26 1998-02-20 Общество с ограниченной ответственностью "Интергрин" Электрохимический преобразователь энергии
US5681357A (en) * 1996-09-23 1997-10-28 Motorola, Inc. Gel electrolyte bonded rechargeable electrochemical cell and method of making same
JP3729296B2 (ja) * 1996-12-10 2005-12-21 株式会社トクヤマ バナジウム系レドックスフロー電池用隔膜
CN1067412C (zh) 1998-07-20 2001-06-20 天津纺织工学院膜天膜技术工程公司 聚偏氟乙烯多孔复合膜的制法
JP3601581B2 (ja) 1999-06-11 2004-12-15 東洋紡績株式会社 バナジウム系レドックスフロー電池用炭素電極材
JP2001167788A (ja) 2000-10-19 2001-06-22 Tokuyama Corp レドックスフロー電池用隔膜の製造方法
JP2002329522A (ja) * 2001-05-01 2002-11-15 Sumitomo Electric Ind Ltd 二次電池およびその運転方法
WO2006051772A1 (ja) * 2004-11-09 2006-05-18 Ube Industries, Ltd. 液体電解質
JP5284560B2 (ja) * 2004-11-18 2013-09-11 住友電気工業株式会社 レドックスフロー電池システムの運転方法
JP5760262B2 (ja) 2005-06-20 2015-08-05 ニューサウス イノヴェーションズ ピーティーワイ リミテッド レドックスセルおよび電池の改良されたパーフルオロ膜および改良された電解質
CN1312788C (zh) 2005-09-30 2007-04-25 清华大学 全钒氧化还原液流电池用质子交换复合膜及其制备方法
US20070151447A1 (en) 2005-12-30 2007-07-05 Membrane Technology And Research, Inc. Gas separation membranes and processes for controlled environmental management
US8795565B2 (en) 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
FR2930076B1 (fr) * 2008-04-09 2011-06-03 Univ Joseph Fourier Biopile a rendement ameliore
EP3213956B1 (en) * 2008-06-12 2021-12-29 Massachusetts Institute Of Technology Energy storage device
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
JP2010086935A (ja) * 2008-09-03 2010-04-15 Sharp Corp レドックスフロー電池
CN102203984A (zh) * 2008-11-04 2011-09-28 加州理工学院 具有可溶性阳极的混合型电化学发生器
JP2010111639A (ja) * 2008-11-07 2010-05-20 Panasonic Corp ケトン化合物の製造方法および蓄電デバイスの製造方法
CN102005554B (zh) 2009-09-01 2013-03-20 比亚迪股份有限公司 全钒离子液流电池用隔膜及制备方法和包括该隔膜的电池
GB201006488D0 (en) 2010-04-19 2010-06-02 Univ Belfast Battery
CN101885840A (zh) * 2010-07-02 2010-11-17 中山大学 具有宏相分离结构的质子交换膜材料及其合成方法和应用
CN102412410B (zh) * 2010-09-23 2015-05-20 微宏动力系统(湖州)有限公司 液流电池
US8771856B2 (en) 2010-09-28 2014-07-08 Battelle Memorial Institute Fe-V redox flow batteries
JP2014503946A (ja) 2010-12-10 2014-02-13 中国科学院大▲連▼化学物理研究所 多孔質隔膜及びその複合膜のレドックスフロー電池における応用
ES2545094T3 (es) * 2010-12-14 2015-09-08 Acino Ag Sistema terapéutico transdérmico para la administración de un principio activo
KR101793205B1 (ko) * 2010-12-31 2017-11-03 삼성전자 주식회사 레독스 플로우 전지
KR101819036B1 (ko) * 2010-12-31 2018-01-17 삼성전자주식회사 레독스 플로우 전지
US8080327B1 (en) * 2011-06-27 2011-12-20 Vinazene, Inc. Electrical storage device utilizing pyrazine-based cyanoazacarbons and polymers derived therefrom
CN202308171U (zh) * 2011-11-04 2012-07-04 上海裕豪机电有限公司 平板配置型氧化还原液流电池

Also Published As

Publication number Publication date
CN104582820B (zh) 2019-01-11
RU2015109007A (ru) 2016-10-10
HRP20160057T1 (hr) 2016-02-12
CA2880997C (en) 2020-08-25
ES2555475T3 (es) 2016-01-04
SI2785442T1 (sl) 2016-01-29
EP2785442B1 (de) 2015-10-21
MY170328A (en) 2019-07-17
SMT201500324B (it) 2016-02-25
IL237059B (en) 2019-02-28
RU2653356C2 (ru) 2018-05-08
AU2013304341B2 (en) 2018-03-08
WO2014026728A1 (de) 2014-02-20
JP6302468B2 (ja) 2018-04-11
JP2015532764A (ja) 2015-11-12
CA2880997A1 (en) 2014-02-20
PT2785442E (pt) 2016-01-20
ZA201500337B (en) 2015-12-23
BR112015002936A2 (pt) 2017-08-08
US9905876B2 (en) 2018-02-27
KR20150044922A (ko) 2015-04-27
HK1205043A1 (en) 2015-12-11
DK2785442T3 (en) 2016-01-25
PL2785442T3 (pl) 2016-04-29
SG11201500701SA (en) 2015-04-29
EP2785442A1 (de) 2014-10-08
DE102012016317A1 (de) 2014-02-20
MX2015001996A (es) 2015-09-29
CY1117069T1 (el) 2017-04-05
RS54512B1 (en) 2016-06-30
CN104582820A (zh) 2015-04-29
KR102091385B1 (ko) 2020-03-20
BR112015002936B1 (pt) 2021-05-11
US20150207165A1 (en) 2015-07-23
AU2013304341A1 (en) 2015-02-26
MX354025B (es) 2018-02-07

Similar Documents

Publication Publication Date Title
HUE028376T2 (hu) Nagy molekulatömegû vegyületeket redox párként és féligáteresztõ membránt tartalmazó redox átfolyócella elektromos energia tárolására
Eftekhari et al. Synthesis and properties of polymerized ionic liquids
AU2016356485B2 (en) Hybrid flow battery for storing electrical energy and use thereof
AU2016305138B2 (en) Redox flow cell for storing electrical energy and use thereof
ES2657763T3 (es) Pila de flujo redox para el almacenaje de energía eléctrica y su empleo
EP3228644B1 (en) Polymer electrolyte membrane
Pan et al. A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability
Xu et al. Crown-ether block copolymer based poly (isatin terphenyl) anion exchange membranes for electrochemical energy conversion devices
CN111584915A (zh) 水性纳米聚合物液流电池系统
Bamgbopa et al. Towards eco-friendly redox flow batteries with all bio-sourced cell components
CN111564649B (zh) 一种有机聚合物液流电池系统
CN113261135A (zh) 水性电解液、氧化还原液流电池组及其用途
CN111613823B (zh) 聚合物液流电池系统
KR101785012B1 (ko) 이온 교환막
CN114824398B (zh) 聚丙烯酸接枝聚合物液流电池系统
Kumar et al. A neutral pH all-polymer redox flow battery employing organic and organometallic redox active polymers
Paidar et al. 14 Electromembrane processes for energy conversion