ES2595453T3 - Método enzimático para producir L-metionina a partir de un precursor y metilmercaptano - Google Patents

Método enzimático para producir L-metionina a partir de un precursor y metilmercaptano Download PDF

Info

Publication number
ES2595453T3
ES2595453T3 ES13178074.4T ES13178074T ES2595453T3 ES 2595453 T3 ES2595453 T3 ES 2595453T3 ES 13178074 T ES13178074 T ES 13178074T ES 2595453 T3 ES2595453 T3 ES 2595453T3
Authority
ES
Spain
Prior art keywords
methionine
strain
precursor
gene
homoserine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES13178074.4T
Other languages
English (en)
Inventor
So-Young Kim
Kwang-Myung Cho
Yong-Uk Shin
Hye-Won Um
Kyung-Oh Choi
Jin-Sook Chang
Young-Wook Cho
Young-Hoon Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CJ CheilJedang Corp
Original Assignee
CJ CheilJedang Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CJ CheilJedang Corp filed Critical CJ CheilJedang Corp
Application granted granted Critical
Publication of ES2595453T3 publication Critical patent/ES2595453T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Un método para producir L-metionina que comprende: i) cultivar una cepa productora de precursor de L-metionina en una solución de fermentación, de tal forma que el precursor de L-metionina que es un compuesto de O-acilhomoserina de fórmula 1 se acumula en la solución de fermentación;**Fórmula** y ii) añadir una enzima convertidora y metilmercaptano o sus diferentes formas a la solución de fermentación para convertir el precursor de L-metionina en L-metionina; en donde R de la fórmula 1 es una sustancia que incluye C, H, O, N y otros compuestos con 15 átomos de carbono como máximo y en donde la cepa productora de precursor de L-metionina de la etapa i) se caracteriza por una expresión o actividad potenciada de homoserina O-succinil transferasa o de homoserina O-acetil transferasa.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
5
15
25
35
45
55
65
independientemente del contenido de metionina del medio y así la adición de metionina al medio facilita la síntesis de precursor de L-metionina y el crecimiento de las células.
Para aumentar la producción de O-acetilhomoserina a partir de cepa productora de O-succinilhomoserina, se puede eliminar el gen metA que codifica homoserina O-succinil transferasa que existe en el cromosoma. Cuando se inhibe la producción de O-succinilhomoserina por eliminación del gen metA y se produce O-acetilhomoserina por introducir adicionalmente gen metX, se puede producir O-acetilhomoserina con un rendimiento superior al obtenido en el caso de introducir el gen metX en presencia del gen metA.
También es posible aumentar la producción de O-succinilhomoserina en la cepa productora de O-acetilhomoserina eliminando el gen metX que codifica homoserina O-acetil transferasa que existe en el cromosoma de la cepa. Cuando se inhibe la producción de O-acetilhomoserina por eliminación del gen metX y se produce Osuccinilhomoserina introduciendo adicionalmente gen metA, se puede producir O-succinilhomoserina con un mayor rendimiento.
La O-succinilhomoserina o la O-acetilhomoserina, precursor de L-metionina, se pueden acumular en una cepa aprovechando una parte del proceso completo de las anteriores etapas 1 a 4.
La cepa productora de precursor de L-metionina se puede preparar a partir de la cepa que produce L-lisina, Ltreonina o L-isoleucina. Preferiblemente, se puede preparar usando la cepa productora de L-treonina. Con esta cepa, la síntesis de homoserina ya es mayor y, como resultado, la producción de precursor de metionina puede aumentar. Así, se puede acumular precursor de metionina eliminando o debilitando un gen implicado en la ruta de biosíntesis de treonina y a continuación el gen metA o metY o metZ, usando cepa productora de L-treonina. Es más preferible eliminar o debilitar el gen thrB primero y a continuación el metB, metY o metZ para sintetizar el precursor de metionina. Mientras tanto, el potenciamiento de la expresión génica de metA o metX da como resultado el incremento de precursor de metionina.
La “cepa productora de L-treonina” se refiere a una cepa de microorganismo procariótico o eucariótico que es capaz de producir L-treonina in vivo. Por ejemplo, la cepa puede incluir cepas de microorganismos que producen L-treonina que pertenecen a Escherichia sp., Erwinia sp., Serratia sp., Providencia sp., Corynebacterium sp. y Brevibacterium sp. Entre estos, los microorganismos Escherichia sp. son los preferidos, y más preferido es el Escherichia coli.
La cepa productora de L-treonina incluye no solo los microorganismos naturales sino también sus mutantes, representados por microorganismos que presenta un requerimiento de isoleucina y que son resistentes a análogos de L-lisina y ácido α-aminobutírico; y son mutados mediante la introducción adicional de al menos una copia extra de gen endógeno de fosfoenol piruvato carboxilasa (ppc); y son desactivados en el gen pckA implicado en el proceso de conversión de oxaloacetato (OAA) que es un intermedio de la síntesis de L-metionina en fosfoenol piruvato (PEP); y son desactivados en gen tyrR que inhibe la expresión de gen tyrB implicado en la biosíntesis de Lmetionina; y son desactivados en gen galR que inhibe la expresión de gen galP implicada en el transporte de glucosa. Los análogos de L-lisina en el presente documento pueden ser uno o más compuestos seleccionados del grupo que consiste en S-(2-aminoetil)-L-cisteína y δ-metil-L-lisina.
En una realización preferida de la presente invención, se usó CJM002, la cepa productora de L-treonina e independiente de L-metionina mutada a partir de TF4076 (KFCC 10718, Patente Coreana Nº 92-8365), la cepa mutante de E. coli productora de L-treonina. La TF4076 tiene un requerimiento para metionina, y es resistente a análogos de metionina (por ejemplo, ácido α-amino-β-hidroxi valérico, AHV), a análogos de lisina (por ejemplo, S-(2aminoetil)-L-cisteína, AEC), y a análogos de isoleucina (por ejemplo, ácido α-aminobutírico). La TF4076 no es capaz de sintetizar metionina in vivo debido a que es la cepa que presenta un requerimiento para metionina. Para usar esta cepa como cepa productora de metionina de la invención libre de un requerimiento para metionina, los inventores de la presente prepararon la cepa productora de L-treonina de E. coli CJM002 libre del requerimiento para metionina empleando una mutación artificial usando NTG. La CJM002 de E. coli fue denominada Escherichia coli MF001 y se depositó en el KCCM (Korean Culture Center of Microorganism, Edif. Eulim, Hongje-1-Dong, Seodaemun-Ku, Seúl, 361-221, Corea), el 9 de abril de 2004 (Nº de Acceso: KCCM-10568). También se depositó la CJM-BTJ (pMetA-CL) de Escherichia coli productora de O-succinilhomoserina, preparada por el método anterior, el 21 de julio de 2006 (Nº de Acceso: KCCM-10767) y la CJM-BTJ (pCJ-MetA-CL) de Escherichia coli se depositó el 5 de julio de 2007 (Nº de Acceso: KCCM-10872). La CJM-BTJA (pCJ-MetX-CL) de Escherichia coli productora de O-acetilhomoserina, preparada mediante el método anterior de la invención, también se depositó el 5 de julio de 2007 (Nº de Acceso: KCCM-10873).
El cultivo de la cepa productora de precursor de L-metionina preparado anteriormente se puede llevar a cabo mediante un medio apropiado usando las condiciones conocidas por los especialistas en la técnica. Los especialistas en la técnica entienden sobradamente que el método de cultivo se puede usar ajustando fácilmente según la cepa seleccionada. Por ejemplo, el método de cultivo que incluye, aunque sin limitación, el cultivo por cargas, continuo y por cargas alimentado. En la siguiente referencia se describe una variedad de métodos de cultivo: “Biochemical Engineering” por James M. Lee, Prentice-Hall International Editions, pág. 138-176.
imagen7
Para la reacción de conversión biológica, se clona un gen procedente de la secuencia génica obtenida, que a continuación es introducido en un vector de expresión. La enzima se expresa en forma activa a partir de una cepa recombinante. Tanto la cepa que expresa enzima como la enzima expresada pueden usarse directamente para la reacción.
5 Las enzimas expresadas a partir de los anteriores genes o las cepas microbianas que expresan dichas enzimas pueden mezclarse directamente, parcialmente o no, con el sobrenadante de fermentación o con el caldo de fermentación acumulado con precursor de L-metionina para iniciar la reacción. En una realización preferida de la invención, la O-succinil homoserina o la O-acetil homoserina acumuladas en la disolución de fermentación pueden
10 ser convertidas en metionina mediante cistationina gamma sintasa u O-acetilhomoserina sulfhidrilasa u Osuccinilhomoserina sulfhidrilasa derivadas de Pseudomonas sp., Chromobacterium sp., Leptospira sp. o Hyphomonas sp.
Más preferiblemente, la O-succinilhomoserina acumulada en la disolución de fermentación es convertida en 15 metionina mediante cistationina gamma sintasa u O-acetilhomoserina sulfhidrilasa u O-succinilhomoserina sulfhidrilasa derivadas de Pseudomonas aurogenosa, Pseudomonas putida o Chromobacterium violaceum.
Más preferiblemente, la O-succinil homoserina acumulada en la disolución de fermentación es convertida en metionina mediante cistationina gamma sintasa u O-acetilhomoserina sulfhidrilasa u O-succinilhomoserina 20 sulfhidrilasa derivadas de Pseudomonas aurogenosa, Pseudomonas putida o Chromobacterium violaceum.
La O-acetilhomoserina acumulada en la disolución de fermentación es convertida en metionina mediante cistationina gamma sintasa u O-acetilhomoserina sulfhidrilasa u O-succinilhomoserina sulfhidrilasa derivadas de Leptospira meyeri, Hyphomonas neptunium o Chromobacterium violaceum.
25 Se expresaron todos los genes en vector pCL-CJ1 (CJ, Corea), el vector de expresión para E. coli, y la proteína expresada se obtuvo a partir de la disolución enzimática preparada mediante lisis celular usando ultrasonidos. Se añadió la disolución enzimática a la disolución de fermentación acumulada en O-succinil homoserina u O-acetil homoserina, y también se añadió disolución de metilmercaptano para iniciar la reacción. La reacción fue confirmada
30 usando DTNB (ácido 5,5-ditiobis(2-nitro-benzonico), Sigma, EE.UU.) y el producto de reacción fue analizado mediante HPLC.
En el presente método, se pueden obtener adicionalmente subproductos tales como ácido succínico o ácido acético, sin un proceso de producción separado, mediante reacción de CH3SH con O-succinil homoserina y O-acetil 35 homoserina, respectivamente.
Breve Descripción de las Figuras
La aplicación de las realizaciones preferidas de la presente invención se entiende mejor haciendo referencia a las 40 figuras anexas, en las que:
Figura 1: es un diagrama que ilustra la manipulación genética de la cepa productora de precursor de metionina. Figura 2: es un diagrama que ilustra las estructuras químicas del proceso de 2 etapas para la producción de metionina.
45 Figura 3: es un diagrama esquemático de pMetA-CL para la expresión de gen metA. Figura 4: es un diagrama esquemático de pCJ-MetB-CL para la expresión de gen metB. Figura 5: es un gráfico que muestra las curvas de reacción que ilustran los consumos de O-succinil homoserina por varias enzimas.
50 El origen de cada disolución enzimática es como se indica a continuación. La disolución enzimática nº 21 es un extracto celular que no contiene un gen específico.
Cepa
Número de cepa (ATCC) Nombre del gen (KEGG) Especificidad de sustrato
OSH
OAH
Escherichia coli K 12
55151 MetB + +
Pseudomonas aurogenosa
17933 MetZ +++ +
MetY
++++ ++++
Pseudomonas putida
17390 MetZ ++++ +
Corynebacteria glutamicum
13032 MetB + +
MetY
+ +
Leptospira meyeri
43278 MetY + ++
Saccharomyces cerevisiae
2704 Met25 + +
Chromobacterium violaceum
12472 MetZ ++++ +++
Nocardia farcinica
3318 MetZ ++++ +
Bradyrhizobium japonicum
10324 MetZ + +
5
10
15
20
25
30
35
40
45
50
55
Cepa
Número de cepa (ATCC) Nombre del gen (KEGG) Especificidad de sustrato
OSH
OAH
Hyphomonas neptunium
49408 MetZ + ++++
Methylococcus capsulatus
19069D-5 MetZ + +
Methylobacillus flagellatus
51484D MetZ + +
Nitrosomonas europaea
19718D MetZ + +
Klesiella pneumoniae
25955 MetB + +
Bacillus subtilis
10783 MetB + +
Shigella flexneri 2457T
700930D-5 MetB + +
Figura 6: es un gráfico que muestra las curvas de reacción que ilustran los consumos de O-acetil homoserina para varias enzimas. Cada número es tal como se muestra en la Figura 5.
Figura 7: es un diagrama que ilustra la secuencia de aminoácidos de cada enzima usada para la reacción de conversión dispuesta mediante megalign de DNAstar.
Ejemplos:
Ejemplo 1: Construcción de una cepa productora de precursor de metionina
<1-1> Eliminación de gen metB
Para eliminar el gen metB que codifica cistationina sintasa en la cepa de E. coli, se llevó a cabo una eliminación por PCR FRT de una etapa (PNAS (2000) vol. 97: P6640-6645). Los cebadores de la SEQ. ID NO: 1 y NO: 2 fueron usados para PCR usando el vector pKD3 (PNAS (2000) vol. 97: P6640-6645) como plantilla, dando como resultado la construcción de la casete de eliminación. La PCR se llevó a cabo como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 1 minuto.
El producto de PCR fue sometido a electroforesis sobre gel de agarosa al 1,0%, seguido de la purificación de ADN obtenido a partir de la banda de 1,2 kpb. El fragmento de ADN recuperado fue sometido a electroporación en E. coli (K12) W3110 transformado con vector pKD46 (PNAS (2000) vol. 97: P6640-6645). Antes de la electroporación, el W3110 transformado con pKD46 fue cultivado a 30ºC en medio LB que contenía 100 µg/l de ampicilina y 5 mM de 1arabinosa hasta alcanzar una DO600 de 0,6. A continuación, la cepa cultivada se lavó dos veces con agua esterilizada destilada y una vez más con glicerol al 10%. La electroporación se llevó a cabo a 2500 V. La cepa recuperada se llevó a una placa de medio LB que contenía 25 µg/l de cloranfenicol, seguido de cultivo a 37ºC durante una noche. A continuación, se seleccionó una cepa que exhibía resistencia.
La PCR se llevó a cabo usando la cepa seleccionada como plantilla con los mismos cebadores indicados anteriormente y en las mismas condiciones. La eliminación del gen metB se identificó confirmando el gen de 1,2 kb de tamaño sobre el gel de agarosa al 1,0%. A continuación, la cepa fue transformada con vector pCP20 (PNAS (2000) vol. 97: P6640-6645) y se cultivó en medio LB. Se construyó una cepa final con metB bloqueado en la que el tamaño del gen metB se redujo hasta 150 pb sobre gel de agarosa al 1,0% mediante PCR en las mismas condiciones. Se confirmó que el marcador de cloranfenicol había sido eliminado. La cepa construida se denominó W3-B.
<1-2> Eliminación de gen thrB
Los inventores intentaron aumentar la síntesis de O-succinil homoserina a partir de homoserina por eliminación del gen thrB que codifica homoserina quinasa. Particularmente, cuando se usa una cepa productora de treonina, la eliminación de dicho gen fue bastante necesaria debido a que la actividad de uso de homoserina fue muy fuerte. Para la eliminación del gen thrB en la cepa W3-B construida antes, se llevó a cabo una eliminación con PCR de una etapa FRT del mismo modo descrito anteriormente para la eliminación de gen metB.
Para construir la casete de eliminación de thrB, se llevó a cabo una PCR usando un vector pKD4 (PNAS (2000) vol.
97: P6640-6645) como plantilla con cebadores de SEQ ID NO: 3 y NO: 4 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 1 minuto. El producto de PCR se sometió a electroforesis sobre gel de agarosa al 1,0%, seguido de purificación del ADN obtenido a partir de la banda de 1,6 kpb. El fragmento de ADN recuperado se sometió a electroporación en la cepa W3-B transformada con vector pKD46. La cepa recuperada se llevó a placa de medio LB que contenía 50 µg/l de kanamicina, seguido de cultivo a 37ºC durante una noche. A continuación, se seleccionó una cepa que exhibía resistencia.
La PCR se llevó a cabo usando la cepa seleccionada como plantilla con cebadores de SEQ ID NO: 3 y NO: 4 en las mismas condiciones indicadas anteriormente. La eliminación del gen ThrB fue identificada seleccionando la cepa
imagen8
5
10
15
20
25
30
35
40
45
50
55
60
Otro método para sobreexpresar el gen metX se realizó llevando a cabo una PCR que usa el cromosoma de Corynebacterium como plantilla con los cebadores de SEQ ID NO: 68 y NO: 69 como se indica a continuación; 25 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
El producto de PCR se sometió a electroforesis sobre gel de agarosa al 1,0%, seguido de purificación de ADN. El fragmento de ADN recuperado se ligó a vector pCL1920 usando promotor CJ1 y EcoRV. Se transformó E. coli con el vector ligado, que a continuación fue cultivado en medio LB que contenía 50 µg/l de espectinomicina, seguido de selección. El vector así construido se denominó pCJ-MetXcgl-CL. La cepa W3-BTj se transformó con dicho vector. La cepa construida se denominó W3-BTJ/pCJ-MetXcgl-CL y se observó un aumento del nivel de O-acetil homoserina.
<1-4-3> Eliminación de gen metA
Para aumentar la producción de O-acetil homoserina, se eliminó el gen metA que codifica homoserina O-succinil transferasa en la cepa W3-BTJ. En base al descubrimiento de que solo la introducción de gen metX dio como resultado la acumulación de O-succinil homoserina, se esperaba que la eliminación del gen metA diera como resultado la promoción de la acumulación de O-acetil homoserina (Tabla 3). Para eliminar el gen metA, se llevó a cabo una PCR de una etapa FRT.
Para construir la casete de eliminación de metA, se llevó a cabo una PCR con los cebadores de SEQ ID NO: 70 y NO: 71 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 1 minuto.
El producto de PCR se sometió a electroforesis sobre gel de agarosa al 1,0%, seguido de purificación de ADN aislado a partir de la banda de 1,2 kpb. El fragmento de ADN recuperado fue sometido a electroporación en la cepa de E. coli W3-BTJ transformada con el vector pKD46. La cepa recuperada fue llevada a placa de metido LB que contenía cloranfenicol, seguido de cultivo a 37ºC durante una noche. A continuación, se seleccionó una cepa que exhibía resistencia.
Se llevó a cabo una PCR usando la cepa seleccionada como plantilla con los cebadores de SEQ ID NO: 70 y NO: 71 en las mismas condiciones utilizadas antes. La eliminación del gen metA se identificó confirmando un gen de 1,1 kb de tamaño sobre gel de agarosa al 1,0%. A continuación, la cepa fue transformada con vector pCP20 y cultivada en medio LB. Se construyó una cepa final con metA bloqueado en la que el tamaño del gen metA se redujo hasta 100 kb sobre gel de agarosa al 1,0% mediante PCR en las mismas condiciones. Se confirmó que el marcador de cloranfenicol había sido eliminado. La cepa construida se denominó W3-BTJA. La cepa W3-BTJA fue transformada con el vector pCJ-MeTXlme-CL y la cepa resultante se denominó W3-BTJA/pCJ-MetX-CL. La cepa fue cultivada del mismo modo que se ha descrito anteriormente y como resultado no se observó acumulación de O-succinil homoserina, sino que la producción de O-acetil homoserina aumentó significativamente, aproximadamente en un 20%, en comparación con la W3-BTj.
<1-5> Conversión de cepa productora de L-treonina
Se construyeron cepas productoras de precursor de metionina del mismo modo que se describe en los Ejemplos <11> a <1-3> usando E. coli DJM002 (KCCM-10568), la cepa productora de L-treonina libre del requerimiento para metionina. Las cepas construidas fueron denominadas CJM-BTJ, CJM-BTJ/pMetA-CL y CJM-BTJ/pCJ-MetA-CL, respectivamente. También se construyó la cepa con gen metA bloqueado de la misma manera descrita en <1-4-3> usando la cepa CJM-BTJ y la cepa resultante se denominó CJM-BTJA.
Ejemplo 2: Fermentación para la producción de precursor de L-metionina
<2-1> Experimento de cultivo en matraz
Para investigar la capacidad de producción de precursor de metionina de la cepa construida en el Ejemplo 1, se llevó a cabo un cultivo en matraz Erlenmeyer. Se cultivaron W3-BTJ, CJM-BTJ y W3-BTJ transformados con vector de expresión de metA y metX en medio de placa LB que contenía espectinomicina a 31ºC durante una noche. Se inoculó una única colonia en 3 mL de medio LB que contenía espectinomicina, seguido del cultivo a 31ºC durante 5 horas. La disolución del cultivo se diluyó 1:200 en un matraz Erlenmeyer de 250 mL que contenía 25 mL de medio de producción de precursor de metionina, seguido de cultivo a 31ºC, 200 rpm durante 64 horas. Se llevó a cabo un análisis de HPLC para comparar con la capacidad de producción de precursor de metionina (Tabla 2 y Tabla 3). Como resultado, la capacidad de producción de metionina aumentó significativamente en la cepa productora de precursor de metionina preparada a partir de la cepa productora de L-treonina libre del requerimiento para metionina.
imagen9
[Tabla 4]
Composición de medio de fermentador para la producción de precursor de metionina
Composición
Medio de siembra Medio principal Medio alimentado
Glucosa (g/l)
10,1 40 600
MgSO4·7H2O (g/l)
0,5 4,2
Extracto de levadura (g/l)
10 3,2
KH2PO4
3 3 8
Sulfato de amonio (g/l)
6,3
NH4Cl (g/l)
1
NaCl (g/l)
0,5
Na2HPO4·12H2O (g/l)
5,07
DL-Metionina (g/l)
0,5 0,5
L-Isoleucina (g/l)
0,05 0,5 0,5
L-Treonina (g/l)
0,5 0,5
[Tabla 5]
Producción de precursor de metionina en un fermentador
O-succinil homoserina (g/l)
O-acetil homoserina (g/l)
CJM-BTJ/pCJ-MetA-CL
>80 0
CJM-BTJA/pCJ-MetXlme-CL
0 >55
5 Ejemplo 3: Producción de enzima convertidora de metionina
<3-1> Cistationina gamma sintasa derivada de E. coli
Se clonó el gen metB que codifica cistationina gamma sintasa derivada de E. coli, que se usaría para la conversión 10 de O-succinil homoserina u O-acetil homoserina, el precursor de metionina, en metionina.
Se llevó a cabo una PCR usando el cromosoma de E. coli como plantilla con los cebadores de SEQ ID NO: 13 y NO: 14 como se indica a continuación; 25 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
15 El fragmento de ADN obtenido fue digerido con NcoI/HindIII y clonado en vector pCL-CJ1 (CJ-Corea) digerido con las mismas enzimas. El vector resultante fue denominado pCJ-MetB-CL y en la Figura 4 se muestra el diagrama esquemático. Se transformó E. coli W3110 con el vector clonado y a continuación se cultivó en medio de placa LB que contenía 50 µg/l de espectinomicina, seguido de selección de colonia. La colonia seleccionada fue inoculada en
20 3 mL de medio LB que contenía 50 µg/l de espectinomicina, seguido de cultivo a 37ºC durante una noche. Las células de cultivo fueron recuperadas, lavadas con tampón de fosfato potásico 0,1 M (pH 7,5), suspendidas en 200 µL de tampón de fosfato potásico, y lisadas con ultrasonidos 5 veces a intervalos de 30 segundos. El lisato celular se centrifugó a 12.000 rpm durante 10 minutos y se obtuvo el sobrenadante para cuantificar el nivel total de proteína usando una disolución de cuantificación de proteínas de Bio-Rad (Bio-Rad, EE.UU.). La expresión de proteínas se
25 identificó mediante SDS-PAGE. El sobrenadante obtenido del extracto celular se usó para la reacción de conversión enzimática.
<3-2> O-succinil homoserina sulfhidrilasa derivada de Pseudomonas sp.
30 Se clonó el gen metZ que codifica O-succinil homoserina sulfhidrilasa derivada de Pseudomonas sp., que se usaría para la conversión de O-succinil homoserina o de O-acetil homoserina, el precursor de metionina, en metionina. Como microorganismos Pseudomonas sp., se usaron la Pseudomonas aeruginosa y la Pseudomonas putida.
Se llevó a cabo una PCR usando el cromosoma de cada cepa como plantilla con los cebadores de SEQ ID NO: 15 y
35 NO: 16 para la Pseudomonas aeruginosa y los cebadores de SEQ ID NO: 17 y NO: 18 para la Pseudomonas putida como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
El fragmento de ADN obtenido fue digerido con NdeI/PacI y clonado en vector pCL-CJ1 (CJ, Corea) digerido con las 40 mismas enzimas. Se obtuvo el sobrenadante del extracto celular usando el vector clonado del mismo modo que se ha descrito en el Ejemplo <1-1> y se usó para la reacción de conversión enzimática.
imagen10
5
15
25
35
45
55
65
<3-8> O-succinil homoserina sulfhidrilasa derivada de Chromobacterium sp.
Se clonó el gen metZ que codifica O-succinil homoserina sulfhidrilasa derivada de Chromobacterium violaceum, que se usaría para la conversión de O-succinil homoserina o de O-acetil homoserina, el precursor de metionina, en metionina.
Se llevó a cabo una PCR usando el cromosoma de Chromobacterium violaceum como plantilla y los cebadores de SEQ ID NO: 29 y NO: 30 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
El fragmento de ADN obtenido fue digerido con NdeI/AvrII y clonado en vector pCL-CJ1 (CJ, Corea) digerido con las mismas enzimas. Se obtuvo el sobrenadante del extracto celular usando el vector clonado del mismo modo que se ha descrito en el Ejemplo <3-1> y se usó para la reacción de conversión enzimática.
<3-9> O-succinil homoserina sulfhidrilasa derivada de Nocardia sp.
Se clonó el gen metZ que codifica O-succinil homoserina sulfhidrilasa derivada de Nocardia farcinica, que se usaría para la conversión de O-succinil homoserina o de O-acetil homoserina, el precursor de metionina, en metionina.
Se llevó a cabo una PCR usando el cromosoma de Nocardia farcinica como plantilla y los cebadores de SEQ ID NO: 31 y NO: 32 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
El fragmento de ADN obtenido fue digerido con NdeI/AvrII y clonado en vector pCL-CJ1 (CJ, Corea) digerido con las mismas enzimas. Se obtuvo el sobrenadante del extracto celular usando el vector clonado del mismo modo que se ha descrito en el Ejemplo <3-1> y se usó para la reacción de conversión enzimática.
<3-10> O-succinil homoserina sulfhidrilasa derivada de Bradyrhizobium sp.
Se clonó el gen metZ que codifica O-succinil homoserina sulfhidrilasa derivada de Bradyrhizobium japonicum, que se usaría para la conversión de O-succinil homoserina o de O-acetil homoserina, el precursor de metionina, en metionina.
Se llevó a cabo una PCR usando el cromosoma de Bradyrhizobium japonicum como plantilla y los cebadores de SEQ ID NO: 33 y NO: 34 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
El fragmento de ADN obtenido fue digerido con NdeI/AvrII y clonado en vector pCL-CJ1 (CJ, Corea) digerido con las mismas enzimas. Se obtuvo el sobrenadante del extracto celular usando el vector clonado del mismo modo que se ha descrito en el Ejemplo <3-1> y se usó para la reacción de conversión enzimática.
<3-11> O-succinil homoserina sulfhidrilasa derivada de Hyphomonas sp.
Se clonó el gen metZ que codifica O-succinil homoserina sulfhidrilasa derivada de Hyphomonas neptunium, que se usaría para la conversión de O-succinil homoserina o de O-acetil homoserina, el precursor de metionina, en metionina.
Se llevó a cabo una PCR usando el cromosoma de Hyphomonas neptunium como plantilla y los cebadores de SEQ ID NO: 35 y NO: 36 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
El fragmento de ADN obtenido fue digerido con BamHII/HindIII y clonado en vector pCL-CJ1 (CJ, Corea) digerido con las mismas enzimas. Se obtuvo el sobrenadante del extracto celular usando el vector clonado del mismo modo que se ha descrito en el Ejemplo <3-1> y se usó para la reacción de conversión enzimática.
<3-12> O-succinil homoserina sulfhidrilasa derivada de Methylococcus sp.
Se clonó el gen metZ que codifica O-succinil homoserina sulfhidrilasa derivada de Methylococcus capsulatus, que se usaría para la conversión de O-succinil homoserina o de O-acetil homoserina, el precursor de metionina, en metionina.
Se llevó a cabo una PCR usando el cromosoma de Methylococcus capstulatus como plantilla y los cebadores de SEQ ID NO: 37 y NO: 38 como se indica a continuación; 30 ciclos de desnaturalización a 94ºC durante 30 segundos, maduración a 55ºC durante 30 segundos, extensión a 72ºC durante 2 minutos.
imagen11
imagen12
actividades enzimáticas. Otras enzimas también mostraron algún grado de actividad, pero sus velocidades de reacción fueron relativamente bajas. En la Tabla 6 se presentan las reactividades de cada enzima con cada sustrato. Tras completar una hora de reacción, se aplicó análisis de HPLC para confirmar las producciones finales de metionina y ácido succínico. Los resultados se muestran en la Tabla 8.
[Tabla 6]
Reacción de conversión de O-succinil homoserina y O-acetil homoserina mediante enzimas derivadas de cada cepa
Cepa
Nº de cepa (ATCC) Gen (KEGG) Especificidad de sustrato
OSH
OAH
Escherichia coli K12
55151 MetB + +
Pseudomonas aurogenosa
17933 MetZ +++ +
MetY
++++ ++++
Pseudomonas putida
17390 MetZ ++++ +
Corynebacterium glutamicum
13032 MetB + +
MetY
+ +
Leptospira meyeri
43278 MetY + ++
Saccharomyces cerevisiae
2704 Met25 + +
Chormobacterium violaceum
12472 MetZ ++++ +++
Nocardia farcinica
3318 MetZ ++++ +
Bradyrhizobium japonicum
10324 MetZ + +
Hyphomonas neptunium
49408 MetZ + ++++
Methylococcus capsulatus
19069D-5 MetZ + +
Methylobacillus flagellatus
51484D MetZ + +
Nitrosomas europaea
19718D MetZ + +
Klesiella pneumoniae
25955 MetB + +
Bacillus subtilis
10783 MetB + +
Shigella flexneri 2475T
700930D-5 MetB + +
Cowwellia psychrerythraea
BAA-618D MetB + +
Salmonella entérica serovar paratyphi A
9150D MetB + +
[Tabla 7]
Capacidad de producción de metionina y ácido succínico a partir de O-succinil homoserina para cada enzima
Enzima, gen
Cantidad de metionina (g/l) Cantidad de ácido succínico (g/l)
Corynebacterium glutamicum, metB
0,05 0,03
Escherichia coli, metB
0,14 0,1
Nocardia farcinica, metZ
0,21 0,17
Pseudomonas putida, metZ
0,22 0,17
Pseudomonas aurogenosa, metZ
0,22 0,17
Chromobacterium violaceum
0,22 0,17
Pseudomonas aurogenosa, metY
0,21 0,17
10 [Tabla 8]
Producción de metionina y ácido acético a partir de O-acetil homoserina para cada enzima
Enzima, gen
Cantidad de metionina (g/l) Cantidad de ácido acético (g/l)
Pseudomonas aurogenosa, metY
0,22 0,081
Chromobacterium violaceum, metZ
0,18 0,068
Hyphomonas neptunium, metZ
0,22 0,082
Corynebacterium glutamicum, metY
0,05 0,015
Leptospira meyeri, metY
0,15 0,05
imagen13

Claims (1)

  1. imagen1
    imagen2
    imagen3
ES13178074.4T 2006-07-28 2007-07-30 Método enzimático para producir L-metionina a partir de un precursor y metilmercaptano Active ES2595453T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20060071581 2006-07-28
KR20060071581 2006-07-28
KR1020070076045A KR100905381B1 (ko) 2006-07-28 2007-07-27 L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌전구체로부터의 l-메치오닌 및 유기산의 생산방법
KR20070076045 2007-07-27

Publications (1)

Publication Number Publication Date
ES2595453T3 true ES2595453T3 (es) 2016-12-30

Family

ID=39222930

Family Applications (2)

Application Number Title Priority Date Filing Date
ES07793305T Active ES2430274T3 (es) 2006-07-28 2007-07-30 Microorganismo productor de precursor de L-metionina y método para producir L-metionina y ácido orgánico a partir de precursor de L-metionina
ES13178074.4T Active ES2595453T3 (es) 2006-07-28 2007-07-30 Método enzimático para producir L-metionina a partir de un precursor y metilmercaptano

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES07793305T Active ES2430274T3 (es) 2006-07-28 2007-07-30 Microorganismo productor de precursor de L-metionina y método para producir L-metionina y ácido orgánico a partir de precursor de L-metionina

Country Status (10)

Country Link
US (3) US8426171B2 (es)
EP (2) EP2657345B1 (es)
JP (2) JP5078101B2 (es)
KR (2) KR100905381B1 (es)
CN (3) CN101356281B (es)
BR (1) BRPI0712399B1 (es)
DK (1) DK2657345T3 (es)
ES (2) ES2430274T3 (es)
PL (2) PL2046968T3 (es)
WO (1) WO2008013432A1 (es)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905381B1 (ko) 2006-07-28 2009-06-30 씨제이제일제당 (주) L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌전구체로부터의 l-메치오닌 및 유기산의 생산방법
US7851180B2 (en) * 2008-04-04 2010-12-14 Cj Cheiljedang Corporation Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism
US9005952B2 (en) * 2008-04-04 2015-04-14 Cj Cheiljedang Corporation Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism
KR101048593B1 (ko) * 2009-02-27 2011-07-12 씨제이제일제당 (주) 메칠머캅탄과 디메칠설파이드의 혼합물을 사용하여 메치오닌 생산능을 증가시키는 방법
KR101164711B1 (ko) 2009-02-27 2012-07-11 씨제이제일제당 (주) 미네랄 첨가와 산처리를 이용하여 메치오닌의 용해도를 증가시키는 방법
US8283152B2 (en) * 2009-08-28 2012-10-09 Cj Cheiljedang Corporation Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism
US8609396B2 (en) 2009-08-28 2013-12-17 Cj Cheiljedang Corporation Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism
IN2012DN06442A (es) * 2009-12-30 2015-10-09 Metabolic Explorer Sa
KR101381048B1 (ko) * 2010-10-20 2014-04-14 씨제이제일제당 (주) O-포스포세린 생산 균주 및 이로부터 생산된 o-포스포세린으로부터 l-시스테인 또는 이의 유도체의 생산방법
KR101250651B1 (ko) * 2010-12-21 2013-04-03 씨제이제일제당 (주) 신규 o-아세틸호모세린 설피드릴라제 또는 변이체 및 이를 이용한 메치오닌 전환 방법
WO2012091479A2 (en) 2010-12-29 2012-07-05 Cj Cheiljedang Corporation Methods for production of l-methionine and related products
US9365877B2 (en) 2011-09-02 2016-06-14 Cj Cheiljedang Corporation Preparation of process of L-methionine
US9834491B2 (en) * 2013-03-20 2017-12-05 Cj Cheiljedang Corporation Method for producing bio-based homoserine lactone and bio-based organic acid from O-acyl homoserine produced by microorganisms
KR101555750B1 (ko) * 2013-10-23 2015-09-25 씨제이제일제당 (주) O-숙시닐호모세린 생산 미생물 및 이를 이용한 o-숙시닐호모세린의 생산방법
KR101555749B1 (ko) 2013-10-23 2015-09-25 씨제이제일제당 (주) O-숙시닐호모세린 생산 미생물 및 이를 이용한 o-숙시닐호모세린의 생산방법
KR101565213B1 (ko) 2013-10-23 2015-11-03 씨제이제일제당 (주) O-숙시닐호모세린 생산 미생물 및 이를 이용한 o-숙시닐호모세린의 생산방법
US20170130211A1 (en) * 2014-01-02 2017-05-11 Trelys, Inc. Compositions and methods for biological production of amino acids in hydrogenotrophic microorganisms
EP3150710B1 (en) * 2014-03-20 2022-05-11 Cj Cheiljedang Corporation Method for preparing homoserine lactone and organic acid from microorganism-derived o-acyl homoserine
KR101580785B1 (ko) 2014-04-10 2015-12-29 씨제이제일제당 주식회사 O-숙시닐호모세린 생산 미생물 및 이를 이용한 o-숙시닐호모세린의 생산방법
KR101547651B1 (ko) * 2014-06-03 2015-08-26 씨제이제일제당 주식회사 O-숙시닐호모세린 또는 숙신산의 생산능을 갖는 미생물 및 이를 이용한 숙신산 또는 o-숙시닐호모세린의 생산 방법
KR101825777B1 (ko) * 2014-06-05 2018-02-07 씨제이제일제당 (주) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
KR101641770B1 (ko) * 2014-06-23 2016-07-22 씨제이제일제당 (주) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
KR20160111285A (ko) 2015-03-16 2016-09-26 씨제이제일제당 (주) 사료 첨가제용 조성물 및 이를 포함하는 동물 사료 조성물
JP2018516552A (ja) 2015-05-06 2018-06-28 トレリス, インコーポレイテッド メチオニンの生物学的産生のための組成物及び方法
WO2016195439A1 (ko) 2015-06-04 2016-12-08 씨제이제일제당 (주) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2017009047A1 (en) * 2015-07-13 2017-01-19 Evonik Degussa Gmbh Method for producing l-methionine
WO2017025766A1 (en) 2015-08-07 2017-02-16 Metabolic Explorer Protein thiocarboxylate-dependent l-methionine production by fermentation
FR3041659B1 (fr) * 2015-09-30 2017-10-20 Arkema France Procede de production de l-methionine
FR3041658B1 (fr) * 2015-09-30 2017-10-20 Arkema France Procede de production de l-methionine
PL3363908T3 (pl) * 2015-10-13 2021-05-31 Cj Cheiljedang Corporation Wariant sulfhydrylazy o-acetylohomoserynowej oraz wykorzystujący go sposób wytwarzania l-metioniny
KR101821050B1 (ko) * 2015-10-14 2018-03-09 씨제이제일제당 (주) 바이오-기반 n-아세틸-l-메티오닌 및 이의 용도
WO2017065567A1 (en) * 2015-10-14 2017-04-20 Cj Cheiljedang Corporation Bio-based n-acetyl-l-methionine and use thereof
BR112018010747A8 (pt) * 2015-11-27 2019-02-26 Evonik Degussa Gmbh método para a produção de l-metionina
KR101851452B1 (ko) 2016-07-18 2018-04-24 씨제이제일제당 (주) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
CN106065411B (zh) * 2016-08-10 2021-12-07 洛阳华荣生物技术有限公司 发酵法生产肌酸
EP3330380A1 (en) 2016-12-05 2018-06-06 Evonik Degussa GmbH Process for producing l-methionine from methional
FR3061494B1 (fr) 2016-12-29 2020-07-03 Arkema France Procede de synthese de dithiocarbamates cycliques fonctionnalises
FR3061493B1 (fr) 2016-12-29 2020-07-03 Arkema France Procede de synthese de polysulfures fonctionnalises
JP6946479B2 (ja) 2017-06-30 2021-10-06 シージェイ チェイルジェダング コーポレイション 新規なo−スクシニルホモセリントランスフェラーゼ変異体及びこれを用いたo−スクシニルホモセリンの製造方法
EP3647416A4 (en) * 2017-06-30 2021-03-03 CJ Cheiljedang Corporation NEW O-SUCCINYLHOMOSERIN TRANSFERASE MUTANT AND O-SUCCINYLHOMOSERIN PRODUCTION PROCESS USING THE LATTER
CN107541531B (zh) * 2017-09-26 2020-07-17 扬州工业职业技术学院 一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法
KR101866884B1 (ko) 2018-01-29 2018-06-14 씨제이제일제당(주) 사료 첨가제용 조성물 및 이를 포함하는 동물 사료 조성물
KR102377500B1 (ko) * 2019-10-28 2022-03-23 씨제이제일제당 주식회사 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법
KR102182497B1 (ko) 2019-12-20 2020-11-24 씨제이제일제당 주식회사 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
TW202205966A (zh) 2020-06-26 2022-02-16 南韓商Cj第一製糖股份有限公司 由發酵液製備胺基酸顆粒之方法
FR3112549A1 (fr) 2020-07-20 2022-01-21 Arkema France Procede ameliore de synthese de mercaptans fonctionnalises
FR3117115B1 (fr) 2020-12-04 2023-05-05 Arkema France Procede de synthese de mercaptans fonctionnalises sous pression d’h2s
KR102525074B1 (ko) 2021-03-10 2023-04-24 씨제이제일제당 주식회사 신규한 시트레이트 신타아제 변이체 및 이를 이용한 o-아세틸-l-호모세린 또는 l-메티오닌 생산 방법
AU2022250692B2 (en) 2021-04-01 2024-01-04 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
CN113088503B (zh) * 2021-04-27 2023-01-10 浙江工业大学 一种o-琥珀酰巯基转移酶突变体及其在l-甲硫氨酸合成中的应用
KR102377745B1 (ko) 2021-05-12 2022-03-23 씨제이제일제당 주식회사 신규 프로모터 및 이의 용도
KR20220157144A (ko) 2021-05-20 2022-11-29 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
TW202333581A (zh) 2021-12-24 2023-09-01 南韓商Cj第一製糖股份有限公司 由發酵液製備含胺基酸製品之方法
KR20230139597A (ko) * 2022-03-28 2023-10-05 씨제이제일제당 (주) O-아세틸 호모세린 생산 미생물 및 이를 이용한 o-아세틸 호모세린 또는 l-메치오닌 생산 방법
WO2024061455A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2024061456A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920008365Y1 (ko) 1990-01-31 1992-11-20 주식회사 기아기공 Nc 연삭기 오버트래블(over travel) 해제회로
KR920009598B1 (ko) 1990-10-11 1992-10-21 주식회사삼성전자 풀림방지용 체결기구
KR920008365B1 (ko) 1990-12-31 1992-09-26 제일제당 주식회사 L-스레오닌 제조방법
WO1993017112A1 (en) * 1992-02-20 1993-09-02 Genencor International, Inc. Biosynthesis of methionine using a reduced source of sulfur
JP4110641B2 (ja) * 1998-11-17 2008-07-02 味の素株式会社 発酵法によるl−メチオニンの製造法
DK1253195T3 (da) 2000-01-21 2009-01-12 Ajinomoto Kk Fremgangsmåde til fremstilling af L-lysin
US20020049305A1 (en) 2000-08-02 2002-04-25 Degussa Ag Nucleotide sequences which code for the metF gene
DE10107002A1 (de) 2001-02-15 2002-08-29 Consortium Elektrochem Ind Verfahren zur fermentativen Herstellung von O-Acetyl-L-Serin
US6579705B2 (en) 2001-04-04 2003-06-17 Consortium Fur Elektrochemische Industrie Gmbh Process for preparing non-proteinogenic L-amino acids
DE10126164A1 (de) 2001-05-30 2002-12-05 Degussa Für das metD-gen kodierende Nukleotidsequenzen
US7160711B2 (en) 2001-08-06 2007-01-09 Degussa Ag Coryneform bacteria which produce chemical compounds I
DE10239073A1 (de) * 2002-08-26 2004-03-11 Basf Ag Verfahren zur fermentativen Herstellung schwefelhaltiger Feinchemikalien
DE10247437A1 (de) 2002-10-11 2004-04-29 Consortium für elektrochemische Industrie GmbH Feedback-resistente Homoserin-Transsuccinylasen
DE10249642A1 (de) 2002-10-24 2004-05-13 Consortium für elektrochemische Industrie GmbH Feedback-resistente Homoserin-Transsuccinylasen mit modifiziertem C-Terminus
FR2851256A1 (fr) * 2003-02-18 2004-08-20 Metabolic Explorer Sa Procede de criblage et d'evolution dirigee de souches produisant de la methionine par nouvelle voie metabolique
US20060270013A1 (en) * 2003-02-18 2006-11-30 Michel Chateau Method for the production of evolved microorganisms which permit the generation or modification of metabolic pathways
US20040199941A1 (en) 2003-03-24 2004-10-07 Rice University Increased bacterial CoA and acetyl-CoA pools
DE10316109A1 (de) 2003-04-09 2004-10-21 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von Stämmen der Familie Enterobacteriaceae
EP1709058A4 (en) 2003-11-24 2008-01-02 Pgxhealth Llc NTRK1 GENETIC MARKERS ASSOCIATED WITH EVOLUTION OF ALZHEIMER'S DISEASE
KR100576342B1 (ko) 2004-02-05 2006-05-03 씨제이 주식회사 galR 유전자가 불활성화된 L-쓰레오닌 생성 미생물,그를 제조하는 방법 및 상기 미생물을 이용한L-쓰레오닌의 제조방법
ATE329941T1 (de) 2004-04-29 2006-07-15 Borealis Tech Oy Verfahren zur herstellung von polyethylen
WO2005111202A1 (en) 2004-05-12 2005-11-24 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
KR100651220B1 (ko) * 2004-06-29 2006-11-29 씨제이 주식회사 L-메씨오닌 생산 균주 및 상기 균주를 이용한l-메씨오닌의 생산방법
WO2006082252A2 (en) 2005-02-07 2006-08-10 Metabolic Explorer Method for the enzymatic production of alpha-ketobutyrate
BRPI0611909A2 (pt) 2005-06-17 2009-01-20 Microbia Inc biossÍntese aperfeiÇoada de aminoÁcido e metabàlito
KR20080036608A (ko) 2005-07-18 2008-04-28 바스프 에스이 메티오닌 생산 재조합 미생물
DK2314710T3 (en) 2006-01-04 2016-06-13 Metabolic Explorer Sa A process for the production of methionine by culturing a microorganism modified to enhance the production of cysteine
JP2009060791A (ja) 2006-03-30 2009-03-26 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
KR100905381B1 (ko) 2006-07-28 2009-06-30 씨제이제일제당 (주) L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌전구체로부터의 l-메치오닌 및 유기산의 생산방법
WO2008033001A1 (en) 2006-09-15 2008-03-20 Cj Cheiljedang Corporation A corynebacteria having enhanced l-lysine productivity and a method of producing l-lysine using the same
US8143035B2 (en) 2006-09-22 2012-03-27 Rice University Pantothenate kinase overexpression and pantothenic acid supplementation in actinomycetes
PL2808382T3 (pl) 2007-04-11 2016-09-30 Kompozycje i sposoby wytwarzania metioniny
US9005952B2 (en) 2008-04-04 2015-04-14 Cj Cheiljedang Corporation Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism
US7851180B2 (en) * 2008-04-04 2010-12-14 Cj Cheiljedang Corporation Microorganism producing L-methionine precursor and the method of producing L-methionine precursor using the microorganism
US8283152B2 (en) 2009-08-28 2012-10-09 Cj Cheiljedang Corporation Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism

Also Published As

Publication number Publication date
KR100905381B1 (ko) 2009-06-30
EP2046968B1 (en) 2013-09-11
US9029105B2 (en) 2015-05-12
CN102943096B (zh) 2014-08-27
JP5371073B2 (ja) 2013-12-18
BRPI0712399B1 (pt) 2017-06-06
PL2657345T3 (pl) 2017-01-31
CN101356281A (zh) 2009-01-28
PL2046968T3 (pl) 2013-12-31
CN101356281B (zh) 2015-08-19
US20150211034A1 (en) 2015-07-30
JP2009544309A (ja) 2009-12-17
ES2430274T3 (es) 2013-11-19
KR20080011132A (ko) 2008-01-31
EP2046968A1 (en) 2009-04-15
WO2008013432A1 (en) 2008-01-31
DK2657345T3 (en) 2016-10-24
CN103397057B (zh) 2016-03-23
US20130231503A1 (en) 2013-09-05
EP2657345A1 (en) 2013-10-30
EP2046968A4 (en) 2011-04-27
EP2657345B1 (en) 2016-09-07
KR100951766B1 (ko) 2010-04-08
CN103397057A (zh) 2013-11-20
US20100184164A1 (en) 2010-07-22
KR20080102123A (ko) 2008-11-24
US8426171B2 (en) 2013-04-23
JP5078101B2 (ja) 2012-11-21
BRPI0712399A2 (pt) 2012-10-16
CN102943096A (zh) 2013-02-27
JP2012213401A (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
ES2595453T3 (es) Método enzimático para producir L-metionina a partir de un precursor y metilmercaptano
JP5339996B2 (ja) L−メチオニン前駆体生産菌株およびこれを用いたl−メチオニン前駆体の生産方法
JP5525746B2 (ja) L−メチオニン前駆体生産菌株およびこれを用いたl−メチオニン前駆体の生産方法
US8283152B2 (en) Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism
KR100651220B1 (ko) L-메씨오닌 생산 균주 및 상기 균주를 이용한l-메씨오닌의 생산방법
KR101136248B1 (ko) L-메치오닌 전구체 생산 균주 및 이를 이용한 l-메치오닌 전구체의 생산 방법
KR101136289B1 (ko) L-메치오닌 전구체 생산 균주 및 이를 이용한 l-메치오닌 전구체의 생산 방법