CN107541531B - 一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法 - Google Patents
一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法 Download PDFInfo
- Publication number
- CN107541531B CN107541531B CN201710887571.5A CN201710887571A CN107541531B CN 107541531 B CN107541531 B CN 107541531B CN 201710887571 A CN201710887571 A CN 201710887571A CN 107541531 B CN107541531 B CN 107541531B
- Authority
- CN
- China
- Prior art keywords
- culture medium
- strain
- wastewater
- glucose
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法,包括如下步骤:(1)菌种活化:从‑80℃冰箱中取出海洋真菌k21‑1菌种,菌种保存液融化至室温后,挑取菌种接种于PDA培养基(马铃薯葡萄糖琼脂培养基)平板中,于20‑25℃培养基箱中培养3‑5天,备用;(2)制备种子液:用接种环从步骤(1)平板上挑取菌株,转接至种子培养基中,20‑25℃摇床,150‑180转/分钟,培养3‑4天,备用;(3)硫化物的转化:向含硫(S2‑)废水中加入煮沸的土豆汁、葡萄糖、海水素后,将步骤(2)制备的种子液转接其中,于20‑25℃静置培养3‑4周,即可将含硫(S2‑)废水中的硫(S2‑)转化为蛋氨酸。
Description
技术领域
本发明属于石油化工污水处理领域,具体涉及一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法。
背景技术
石油炼制的主要生产过程包括:常压蒸馏、减压蒸馏、催化裂化、催化加氢、重油重整等,这些工艺是炼油污水形成的主要原因。炼油废水根据其产生来源和组成特点一般可分为:含油污水、含硫污水和含碱污水。
石油开采过程中往往会产生大量的含硫废水,不仅会引起管线与设备的腐蚀,还会导致受纳水体的水质恶化,对正常生产、水生生物以及人类健康造成威胁。因此,在该类废水排放之前,S2-的去除非常重要。废水中的硫化物可以通过物理、化学以及生物三种方法去除。目前石油化工行业普遍采用的是气提法,即通过高温蒸汽将污水中的硫化物吹脱至大气,以缓解其可能带来的腐蚀问题。然而,该方法不仅能耗高,吹脱至大气中的H2S也是重要的污染物,导致二次污染问题,因此,寻找一种高效、环保的除硫方法显得尤为重要。
石化炼油污水污染物成分复杂,主要含有石油类杂质、硫化物、氨氮、金属盐类化合物、氰化物、无机酸以及少量的芳香胺类化合物、多环芳经化合物、杂环化合物等物质,其中石油类、氰化物、硫醇以及重金属未、铅、铬、辐等污染危害严重,且难降解和可生化性差,如污染物中一些物质或本身难于被生物降解,电脱盐工段产生的具有一定温度的高含盐污水也难以被生物降解,一些物质的存在也会影响微生物的生长或抑制生物降解的进行,导致生物系统处理效果变差,或可抑制硝化菌的生长繁殖,从而影响生物处理工艺对氨氮的去除。
发明内容
本发明提供一种海洋真菌k21-1在含硫污水处理中的应用。所述含硫污水优选石油化工污水。
本发明的另一实施方案提供一种海洋真菌k21-1在含硫污水处理中的应用,其特征在于所述海洋真菌k21-1将污水中的硫化物(S2-)转化为蛋氨酸。
本发明的另一实施方案提供一种海洋真菌k21-1将硫化物(S2-)转化为蛋氨酸的方法,其特征在于包括如下步骤:
(1)菌种活化:从-80℃冰箱中取出海洋真菌k21-1菌种,菌种保存液融化至室温后,挑取菌种接种于PDA培养基(马铃薯葡萄糖琼脂培养基)平板中,于20-25℃培养基箱中培养3-5天,备用;
(2)制备种子液:用接种环从步骤(1)平板上挑取菌株,转接至种子培养基中,20-25℃摇床,150-180转/分钟,培养3-4天,备用;
(3)硫化物的转化:向含硫(S2-)废水中加入煮沸的土豆汁、葡萄糖、海水素后,将步骤(2)制备的种子液转接其中,于20-25℃静置培养3-4周,即可将含硫(S2-)废水中的硫(S2-)转化为蛋氨酸。
步骤(1)中所述PDA培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素、12g琼脂;步骤(2)所述的种子培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素;步骤(3)中废水、煮沸的土豆汁、葡萄糖、海水素的用量为每1000mL废水中加入200g煮沸的土豆汁、15g葡萄糖、30g海水素,含硫废水中S2-的浓度为30-40mg/L。
本发明所述的海洋真菌k21-1的菌种信息已在NCBI中公布GenBank:MF179020.1。
与现有技术相比,本发明的优点在于:本发明利用海洋真菌k21-1自身代谢摄取外界S2-,并将其转化为蛋氨酸的方法,能有效去除含硫污水(尤其是石油化工污水)中的S2-,本发明的技术方案利用了微生物的体内代谢的特点,不污染环境,具有环保和废物回收再利用等诸多优点。
附图说明
图1a:实施例1静置4周后的培养液的HPLC图;b:实施例1步骤(3)转接种子液后,立即进行HPLC分析图;c:L-蛋氨酸的HPLC图;d:实施例1静置4周后的培养液+L-蛋氨酸的HPLC图
具体实施方式
为了便于对本发明的进一步理解,下面提供的实施例对其做了更详细的说明。但是这些实施例仅供更好的理解发明而并非用来限定本发明的范围或实施原则,本发明的实施方式不限于以下内容。
根据取自中国石化某油田采油厂二级过滤器出口的废水中硫(S2-)的含量(约30mg/L),本发明实施例中采用蒸馏水和Na2S·9H2O(分析纯)分别配制30、40mg/L的含S2-废水。
实施例1
(1)菌种活化:从-80℃冰箱中取出海洋真菌k21-1菌种,菌种保存液融化至室温后,挑取菌种接种于PDA培养基(马铃薯葡萄糖琼脂培养基)平板中,于20℃培养基箱中培养5天,备用;所述PDA培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素、12g琼脂。
(2)制备种子液:用接种环从步骤(1)平板上挑取菌株,转接至种子培养基中,20℃摇床,180转/分钟,培养4天,备用;所述的种子培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素。
(3)硫化物的转化:向含硫(S2-)废水(200mL,S2-的浓度为30mg/L)中加入煮沸的土豆汁(40g)、葡萄糖(3g)、海水素(6g)后,将步骤(2)制备的种子液转接其中,于20℃静置培养4周后,检测液体中S2-浓度(采用X射线荧光光谱法)及蛋氨酸(HPLC法)的定性检测,结果表明S2-的浓度<1.0mg/L,确实产生了蛋氨酸(保留时间20.1min,图1)。
HPLC分析条件:流动相A:0.1%磷酸溶液(用三乙胺调至pH6.4),流动相B:甲醇;.A:60%,B:40%,流速1mL/min;检测波长260nm;柱温30℃;进样量10μL。
实施例2
(1)菌种活化:从-80℃冰箱中取出海洋真菌k21-1菌种,菌种保存液融化至室温后,挑取菌种接种于PDA培养基(马铃薯葡萄糖琼脂培养基)平板中,于25℃培养基箱中培养3天,备用;所述PDA培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素、12g琼脂。
(2)制备种子液:用接种环从步骤(1)平板上挑取菌株,转接至种子培养基中,25℃摇床,150转/分钟,培养3天,备用;所述的种子培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素。
(3)硫化物的转化:向含硫(S2-)废水(200mL,S2-的浓度为40mg/L)中加入煮沸的土豆汁(40g)、葡萄糖(3g)、海水素(6g)后,将步骤(2)制备的种子液转接其中,于25℃静置培养3周后,检测液体中S2-浓度(采用X射线荧光光谱法)及蛋氨酸(HPLC法)的定性检测,结果表明S2-的浓度<1.0mg/L,确实产生了蛋氨酸。
注:实施例1和实施例2在步骤(3)转接种子液后,立即进行HPLC分析,未检测到蛋氨酸(图1),足以说明本发明海洋真菌k21-1的确利用了外界环境中的S2-,经代谢产生了蛋氨酸(还可能包括其他含硫物质)。
Claims (1)
1.一种海洋真菌k21-1将S2-转化为蛋氨酸的方法,其特征在于包括如下步骤:
(1)菌种活化:从-80℃冰箱中取出海洋真菌k21-1菌种,菌种保存液融化至室温后,挑取菌种接种于PDA培养基平板中,于20-25℃培养基箱中培养3-5天,备用;
(2)制备种子液:用接种环从步骤(1)平板上挑取菌株,转接至种子培养基中,20-25℃摇床,150-180转/分钟,培养3-4天,备用;
(3)硫化物的转化:向含S2-废水中加入煮沸的土豆汁、葡萄糖、海水素后,将步骤(2)制备的种子液转接其中,于20-25℃静置培养3-4周,即可将含S2-废水中的S2-转化为蛋氨酸;
步骤(1)中所述PDA培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素、12g琼脂;
步骤(2)所述的种子培养基的配置方法为每1000mL水中,使用如下成分:200g土豆煮沸取汁、15g葡萄糖、30g海水素;
步骤(3)中废水、煮沸的土豆汁、葡萄糖、海水素的用量为每1000mL废水中加入200g煮沸的土豆汁、15g葡萄糖、30g海水素,含S2-废水中S2-的浓度为30-40mg/L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710887571.5A CN107541531B (zh) | 2017-09-26 | 2017-09-26 | 一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710887571.5A CN107541531B (zh) | 2017-09-26 | 2017-09-26 | 一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107541531A CN107541531A (zh) | 2018-01-05 |
CN107541531B true CN107541531B (zh) | 2020-07-17 |
Family
ID=60964553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710887571.5A Active CN107541531B (zh) | 2017-09-26 | 2017-09-26 | 一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107541531B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100905381B1 (ko) * | 2006-07-28 | 2009-06-30 | 씨제이제일제당 (주) | L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌전구체로부터의 l-메치오닌 및 유기산의 생산방법 |
CN102757951B (zh) * | 2012-04-23 | 2014-01-29 | 浙江大学 | 一种海洋双菌共固定化体系的构建和造纸废水处理的方法 |
CN103074233B (zh) * | 2012-12-25 | 2014-10-29 | 浙江工业大学 | 一株海洋真菌产黄青霉及其在制备抗肿瘤药物中的应用 |
CN106340337B (zh) * | 2016-09-23 | 2017-09-01 | 南华大学 | 一种以兼性海洋真菌为基体以植酸为功能单体所制备的印迹材料修复铀污染水体的方法 |
-
2017
- 2017-09-26 CN CN201710887571.5A patent/CN107541531B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107541531A (zh) | 2018-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bakthavatsalam | A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant | |
Liu et al. | Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test | |
CN103981119A (zh) | 含油污泥中石油高效降解菌及菌组的应用 | |
Marques et al. | Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor | |
Qu et al. | Bioaugmentation with a novel alkali-tolerant Pseudomonas strain for alkaline phenol wastewater treatment in sequencing batch reactor | |
CN110669700A (zh) | 一株高效石油烃降解菌pa16_9及其筛选方法与应用 | |
Som et al. | Kinetics and performance study of ultrasonic-assisted membrane anaerobic system using Monod Model for Palm Oil Mill Effluent (POME) treatment | |
Lim et al. | Upstream bioprocessing of Spirulina platensis microalgae using rainwater and recycle medium from post-cultivation for C-phycocyanin production | |
Gnida | What do we know about the influence of vacuum on bacterial biocenosis used in environmental biotechnologies? | |
CN107541531B (zh) | 一种利用微生物代谢处理石油化工污水生产蛋氨酸的方法 | |
CN107475144B (zh) | 一种潘多拉菌及其使用方法 | |
CN107572663B (zh) | 一种海洋真菌在石油化工污水中硫化物处理中的应用 | |
CN113388553A (zh) | 一种耐氨氮复合菌剂及其应用和制备方法 | |
Farjadfard et al. | Efficient biodegradation of naphthalene by a newly characterized indigenous Achromobacter sp. FBHYA2 isolated from Tehran Oil Refinery Complex | |
Liu et al. | Fungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock | |
Li et al. | Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste | |
JPWO2016103949A1 (ja) | 油脂含有排水の処理方法及び処理装置 | |
RU2661679C9 (ru) | Способ очистки сточных вод нефтеперерабатывающих и нефтехимических производств от фенола | |
AU2015293773B2 (en) | Method for extracting molecules produced by anaerobic fermentation from fermentable biomass | |
JP2013179897A (ja) | 環状エーテル化合物分解微生物及び環状エーテル化合物分解方法 | |
Whangchenchom et al. | Wastewater from instant noodle factory as the whole nutrients source for the microalga Scenedesmus sp. cultivation | |
Bhange et al. | Effect of lipase from different source on high fat content wastewater of dairy industry | |
JP6245697B2 (ja) | 高濃度油含有廃水の生物処理方法 | |
CN100513551C (zh) | 可耐受硫酸盐的红串红球菌及其应用 | |
WO2009082801A3 (en) | A method for increasing the concentration of colonies of micro organisms in a process for removing contaminants by anaerobic digestion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |