WO1993017112A1 - Biosynthesis of methionine using a reduced source of sulfur - Google Patents
Biosynthesis of methionine using a reduced source of sulfur Download PDFInfo
- Publication number
- WO1993017112A1 WO1993017112A1 PCT/US1993/001351 US9301351W WO9317112A1 WO 1993017112 A1 WO1993017112 A1 WO 1993017112A1 US 9301351 W US9301351 W US 9301351W WO 9317112 A1 WO9317112 A1 WO 9317112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sulfur
- homoserine
- enzyme
- methionine
- cell
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/12—Methionine; Cysteine; Cystine
Definitions
- Methionine is an essential amino acid in the diet of animals and is used widely as a food and feed supplement. It is conventionally produced by various multi-step chemical syntheses which generally employ acrolein, methyl mercaptan, and cyanide as starting materials. (H.H. Szmant, "Organic Building Blocks of the Chemical Industry," page 182, John Wiley & Sons, New York, 1989.) There are two resulting product forms: D,L-methionine and its hydroxy analog. Unlike all other amino acids, D-methionine is converted to the required L-form in vivo. As a result, chemical syntheses, which typically result in the D,L mixture, are feasible and cost-effective in this case.
- fermentation methods for methionine synthesis comprising the use of reduced sulfur compounds instead of sulfate as the fermentation sulfur source and/ ⁇ r comprising re-designing and thereby simplifying the biochemical pathway.
- fermentation methods for homocysteine synthesis comprising the vise of reduced sulfur compounds instead of sulfate as the fermentation sulfur source and/or comprising redesigning and thereby simplifying the biochemical pathway.
- the reduced sulfur source is hydrogen sulfide, methyl mercaptan or salts thereof.
- Figure la is the ccranon biosynthetic pathway to Lysine, Methionine and
- Figure 1b is the Threonine biosynthetic pathway in Esdherichia coli.
- Figure 1c is the Lysine biosynthetic pathway in Esdherichia coli.
- Figure 1d is the Methionine biosynthetic pathway in Esdherichia coli.
- the present invention relates to methods for the fermentation synthesis of methionine and homocysteine. To understand why a cost-effective
- methionine that serves as the sulfur donor in the biosynthesis of methionine (Fig. 1).
- methionine biosynthesis uniquely requires the incorporation of a methyl group (Fig. 1, Table I). This is derived as 5-methyl-tetrahydrofolate (CH3-THF) from the conversion of serine to glycine.
- CH3-THF 5-methyl-tetrahydrofolate
- Neidhardt Chapter 27 in Escherichia coli and Salmonella typhimurium.
- homoserine is first activated either by succinyl-CoA (EU. coli and S. typhimurium) or acetyl-CoA (fungi, yeast, and bacteria such as Brevibacterium and
- succinyltransferase (EC 2.3.1.46) and homoserine acetyltransferase (EC 2.3.1.31), respectively.
- O-phosphohomoserine is the branchpoint between the methionine and threonine pathways, whereas in microbes the brandhpoint is homoserine.
- cystathionine ⁇ -lyase (thiol)-lyase (EC 4.2.99.9) and cystathionine ⁇ -lyase (EC 4.4.1.8), accepts reduced sulfur frcm cysteine to give homocysteine.
- O- Succinylhomoserine (thiol)-lyase is also known as cystathionine ⁇ - synthase.
- O-succinylhomoserioe thiol-lyase or O-acetylhomoserine (thiol)-lyase (EC 4.2.99.10).
- O- acetylhomoserine (thiol)-lyase is also known as homocysteine synthase and methionine synthase.
- methionine is produced directly from acylhomoserine and methyl mercaptan by O- succinylhomoserine (thiol)-lyase or O-acetylhomoserine (thiol)-lyase.
- cystathionine ⁇ -sy ⁇ thase catalyzed by cystathionine ⁇ -sy ⁇ thase.
- the plant enzyme cystathionine ⁇ -synthase is distinct from EC 4.2.99.9 and is unique in vising O phosphchomoserine as a substrate.
- Homoserine is a poor substrate of O-acetylhosnoserine (thiol)-lyase, except in the case of the enzyme from Schizosaccharomyoes pombe (S. Yamagata, supra).
- the methionine biosynthetic enzymes above belong to the group of pyrid ⁇ xal phosphate-containing enzymes. These are flexible catalysts kncwn to carry out various elimination and replacement reactions. (C. Walsh, Chapter 24 in “Enzymatic Reaction Mechanisms," W.H. Freeman & Co., San Francisco (1979). Another of this group, tryptophan synthase converts serine and sulfide at a very high rate to cysteine (K. Ishiwata, T. Nakamura, M. Shimada, and N. Makigudhi, "Enzymatic Production of L-cysteine with Tryptophan Synthase of Esdherichia coli," J. Fermentation and Bioengineering 67: 169-172, 1989). This reaction is analogous with the reaction of homoserine and sulfide.
- sulfide or methyl mercaptan instead of sulfate reduces the metabolic cost of methionine synthesis to the levels of lysine and threonine.
- two ATP and three NADPH are required since the active transport of sulfate, reduction of sulfate, arri synthesis of cysteine are all eliminated.
- sulfide or methyl mercaptan also reduces the metabolic complexity of methionine biosynthesis since the biosynthesis of cysteine and, in the case of methyl mercaptan, CH3-THF are eliminated. Further simplification is possible and may be desirable by adapting the plant biosynthetic pathway to microbes by methods known to those skilled in the art. Since homoserine kinase is already present as an enzyme functioning in the microbial threonine pathway, this modification requires only introduction of plant cystathionine ⁇ -lyase activity.
- This cculd be accomplished by structurally .modifying microbial O-acylhomoserine (thiol)-lyase or by expressing plant cystathionine ⁇ -lyase in the producing microbe. Alternatively, structural modifications could be made in these enzymes or other candidate pyridoxal phosphate enzymes such as tryptophan synthase in order to effectively vise homoserine directly as a substrate in sulfur inc ⁇ rp ⁇ rati ⁇ n. Or the O-acetylhomoserine (thiol)-lyase from S. pombe could be used without
- oxidized forms such as sulfate, sulfite, and thiosulfate may be provided as sulfur sources and biochemically reduced to sulfide.
- thiosulfate also diminish the need for biochemical energy relative to sulfate since they are more reduced forms, although the energy requirement is greater than for sulfide or methyl mercaptan.
- metabolism for example, any effect on microbial self-regulation by feed-back inhibition or repression.
- de-regulation can be achieved through methods known to those skilled in the art such as for example, classical mutagenesis and selection or genetic engineering.
- E. coli, C. qlutamicum. and B. flavum are de-regulated far homoserine over-production by classical or genetic engineering methods.
- the sulfhydrylation route to methionine is introduced into these microbes by transfarming them with plasmid(s) encoding homoserine acetyltransferase, O-a ⁇ etylhomoserine (thiol)-lyase, and homocysteine methylase.
- the parent and transformed microbes are cultivated individually in a fermentation medium containing glucose, soy hydrolysate, and inorganic nutrients.
- the medium is
- Table I indicates the relative amount of methionine that is produced by each strain.
- microbes are then transformed with plasmid(s) encoding homoserine
- Table II indicates the relative amcu ⁇ t of homocysteine that is produced by each strain.
- methylmercaptan is supplied as the supplemental sulfur source.
- Table III indicates the relative amount of methionine that is produced by each strain.
- the parent strains of Exanple 1 are transformed with plasmid(s) encoding homoserine kinase, plant cystathionine 7-synthase and homocysteine methylase.
- Table IV indicates the relative amount of methionine that is produced by each strain.
- Exanple 2 The deleted parent strains of Exanple 2 are transformed with plasmid(s) encodi homoserine kinase and plant cystathionine 7-synthase.
- the parent and transfar microbes are cultivated as in Exanple 3.
- Table V indicates the relative amoun of methionine that is produced by each strain.
- microbes are then transformed with
- Table VI indicates the relative amount of methionine that is produced by each strain.
- Example 6 The deleted parent strains of Example 6 are transformed with a plasmid encoding O-acetylhomoserine (thiol)-lyase frcm S. pombe.
- the parent and transformed microbes are cultivated as in Example 3.
- Table VII indicates the relative amount of methionine that is produced by each strain.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5514915A JPH07503855A (en) | 1992-02-20 | 1993-02-16 | Methionine biosynthesis using a sulfur reducing source |
EP93905966A EP0630406A1 (en) | 1992-02-20 | 1993-02-16 | Biosynthesis of methionine using a reduced source of sulfur |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83951892A | 1992-02-20 | 1992-02-20 | |
US07/839,518 | 1992-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993017112A1 true WO1993017112A1 (en) | 1993-09-02 |
Family
ID=25279945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/001351 WO1993017112A1 (en) | 1992-02-20 | 1993-02-16 | Biosynthesis of methionine using a reduced source of sulfur |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0630406A1 (en) |
JP (1) | JPH07503855A (en) |
CA (1) | CA2130347A1 (en) |
WO (1) | WO1993017112A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010208A1 (en) * | 2000-08-02 | 2002-02-07 | Degussa Ag | Nucleotide sequences which code for the mete gene |
WO2002010209A1 (en) * | 2000-08-02 | 2002-02-07 | Degussa Ag | Nucleotide sequences which code for the meth gene |
WO2002010206A2 (en) * | 2000-08-02 | 2002-02-07 | Degussa Ag | Nucleotide sequences which code for the metf gene |
WO2002018613A1 (en) * | 2000-09-02 | 2002-03-07 | Degussa Ag | NUCLEOTIDE SEQUENCES WHICH CODE FOR THE metY GENE |
WO2004024933A2 (en) * | 2002-08-26 | 2004-03-25 | Basf Aktiengesellschaft | Method for zymotic production of fine chemicals (mety) containing sulphur |
WO2004024931A2 (en) * | 2002-08-27 | 2004-03-25 | Basf Aktiengesellschaft | Method for the production by fermentation of sulphur-containing fine chemicals (metf) |
FR2851256A1 (en) * | 2003-02-18 | 2004-08-20 | Metabolic Explorer Sa | Preparing genetically modified bacteria, useful for preparation of L-methionine from alkyl mercaptan, by modifying an enzyme to improve methionine synthase activity |
FR2851255A1 (en) * | 2003-02-18 | 2004-08-20 | Metabolic Explorer Sa | New strains of microorganisms that produce 2-amino-4-alkylthio-butyric acid, useful for preparing L-methionine, from simple carbon source and a mercaptan or its salt, have modified methionine synthase activity |
WO2004076659A2 (en) | 2003-02-18 | 2004-09-10 | Metabolic Explorer | Method for the production of evolved microorganisms which permit the generation or modification of metabolic pathways |
US6812016B2 (en) | 2000-09-02 | 2004-11-02 | Degussa Ag | Nucleotide sequences which code for the metY gene |
FR2862067A1 (en) * | 2003-11-06 | 2005-05-13 | Metabolic Explorer Sa | New evolved microorganisms with altered metabolic pathways, useful e.g. for production of amino acids, are selected as mutants able to grow on defined media |
US6958228B2 (en) | 2000-08-02 | 2005-10-25 | Degussa Ag | Nucleotide sequence which code for the metH gene |
WO2006082254A2 (en) * | 2005-02-07 | 2006-08-10 | Metabolic Explorer | Microorganisms comprising enzymes expressed with low gamma-elimination activity |
WO2007011845A2 (en) * | 2005-07-18 | 2007-01-25 | Basf Ag | Use of a bacillus meti gene to improve methionine production in microorganisms |
US20090281353A1 (en) * | 2005-07-18 | 2009-11-12 | Basf Ag | Use of dimethyl disulfide for methionine production in microoragnisms |
WO2013029690A1 (en) * | 2011-09-02 | 2013-03-07 | Arkema France | Preparation process of l-methionine |
US20130231503A1 (en) * | 2006-07-28 | 2013-09-05 | Cj Cheiljedang Corporation | Microorganism producing L-methionine precursor and method of producing L-methionine and organic acid from the L-methionine precursor |
WO2014064244A3 (en) * | 2012-10-26 | 2014-08-14 | Adisseo France S.A.S. | Process for producing l-methionine from o-phospho-l-homoserine and methanethiol employing a mutated cystathionine gamma-synthase |
US10563235B2 (en) | 2015-09-30 | 2020-02-18 | Arkema France | Method for producing L-methionine |
US11034985B2 (en) | 2015-11-27 | 2021-06-15 | Evonik Operations Gmbh | Method for producing L-methionine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3041659B1 (en) * | 2015-09-30 | 2017-10-20 | Arkema France | PROCESS FOR PRODUCING L-METHIONINE |
-
1993
- 1993-02-16 EP EP93905966A patent/EP0630406A1/en not_active Withdrawn
- 1993-02-16 CA CA002130347A patent/CA2130347A1/en not_active Abandoned
- 1993-02-16 JP JP5514915A patent/JPH07503855A/en active Pending
- 1993-02-16 WO PCT/US1993/001351 patent/WO1993017112A1/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
CHEMICAL ABSTRACTS, vol. 98, no. 11, 14 March 1983, Columbus, Ohio, US; abstract no. 85955m, SIMON, MARCIA ET AL 'Direct homocysteine biosynthesis from O-succinylhomoserine in Escherichia coli : An alternate pathway that bypasses cystathionine.' page 275 ;column R ; * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002010209A1 (en) * | 2000-08-02 | 2002-02-07 | Degussa Ag | Nucleotide sequences which code for the meth gene |
WO2002010206A2 (en) * | 2000-08-02 | 2002-02-07 | Degussa Ag | Nucleotide sequences which code for the metf gene |
WO2002010206A3 (en) * | 2000-08-02 | 2002-05-02 | Degussa | Nucleotide sequences which code for the metf gene |
WO2002010208A1 (en) * | 2000-08-02 | 2002-02-07 | Degussa Ag | Nucleotide sequences which code for the mete gene |
US6958228B2 (en) | 2000-08-02 | 2005-10-25 | Degussa Ag | Nucleotide sequence which code for the metH gene |
US6812016B2 (en) | 2000-09-02 | 2004-11-02 | Degussa Ag | Nucleotide sequences which code for the metY gene |
WO2002018613A1 (en) * | 2000-09-02 | 2002-03-07 | Degussa Ag | NUCLEOTIDE SEQUENCES WHICH CODE FOR THE metY GENE |
EP2085482A1 (en) * | 2000-09-02 | 2009-08-05 | Evonik Degussa GmbH | Nucleotide sequences which code for the metY gene |
WO2004024933A2 (en) * | 2002-08-26 | 2004-03-25 | Basf Aktiengesellschaft | Method for zymotic production of fine chemicals (mety) containing sulphur |
WO2004024933A3 (en) * | 2002-08-26 | 2004-04-22 | Basf Ag | Method for zymotic production of fine chemicals (mety) containing sulphur |
US7381549B2 (en) | 2002-08-26 | 2008-06-03 | Basf Aktiengesellschaft | Method for zymotic production of fine chemicals (mety) containing sulphur |
WO2004024931A3 (en) * | 2002-08-27 | 2004-04-22 | Basf Ag | Method for the production by fermentation of sulphur-containing fine chemicals (metf) |
WO2004024931A2 (en) * | 2002-08-27 | 2004-03-25 | Basf Aktiengesellschaft | Method for the production by fermentation of sulphur-containing fine chemicals (metf) |
US7282357B2 (en) | 2002-08-27 | 2007-10-16 | Basf Aktiengesellschaft | Method for the production by fermentation of sulphur-containing fine chemicals (metF) |
FR2851256A1 (en) * | 2003-02-18 | 2004-08-20 | Metabolic Explorer Sa | Preparing genetically modified bacteria, useful for preparation of L-methionine from alkyl mercaptan, by modifying an enzyme to improve methionine synthase activity |
WO2004076659A3 (en) * | 2003-02-18 | 2004-12-16 | Metabolic Explorer Sa | Method for the production of evolved microorganisms which permit the generation or modification of metabolic pathways |
WO2004076659A2 (en) | 2003-02-18 | 2004-09-10 | Metabolic Explorer | Method for the production of evolved microorganisms which permit the generation or modification of metabolic pathways |
EP2348107A2 (en) | 2003-02-18 | 2011-07-27 | Metabolic Explorer | Method for preparing evolved micro-organisms, enabling the creation or modification of metabolic pathways |
FR2851255A1 (en) * | 2003-02-18 | 2004-08-20 | Metabolic Explorer Sa | New strains of microorganisms that produce 2-amino-4-alkylthio-butyric acid, useful for preparing L-methionine, from simple carbon source and a mercaptan or its salt, have modified methionine synthase activity |
US7745195B2 (en) * | 2003-02-18 | 2010-06-29 | Metabolic Explorer | Method for the preparation of an evolved microorganism for the creation or the modification of metabolic pathways |
FR2862067A1 (en) * | 2003-11-06 | 2005-05-13 | Metabolic Explorer Sa | New evolved microorganisms with altered metabolic pathways, useful e.g. for production of amino acids, are selected as mutants able to grow on defined media |
WO2006082254A2 (en) * | 2005-02-07 | 2006-08-10 | Metabolic Explorer | Microorganisms comprising enzymes expressed with low gamma-elimination activity |
WO2006082254A3 (en) * | 2005-02-07 | 2007-04-19 | Metabolic Explorer Sa | Microorganisms comprising enzymes expressed with low gamma-elimination activity |
WO2007011845A3 (en) * | 2005-07-18 | 2007-04-12 | Basf Ag | Use of a bacillus meti gene to improve methionine production in microorganisms |
US8399214B2 (en) * | 2005-07-18 | 2013-03-19 | Evonik Degussa Gmbh | Use of dimethyl disulfide for methionine production in microoraganisms |
WO2007011845A2 (en) * | 2005-07-18 | 2007-01-25 | Basf Ag | Use of a bacillus meti gene to improve methionine production in microorganisms |
US20090281353A1 (en) * | 2005-07-18 | 2009-11-12 | Basf Ag | Use of dimethyl disulfide for methionine production in microoragnisms |
US9029105B2 (en) * | 2006-07-28 | 2015-05-12 | Cj Cheiljedang Corporation | Microorganism producing L-methionine precursor and method of producing L-methionine and organic acid from the L-methionine precursor |
US20130231503A1 (en) * | 2006-07-28 | 2013-09-05 | Cj Cheiljedang Corporation | Microorganism producing L-methionine precursor and method of producing L-methionine and organic acid from the L-methionine precursor |
WO2013029690A1 (en) * | 2011-09-02 | 2013-03-07 | Arkema France | Preparation process of l-methionine |
US9365877B2 (en) | 2011-09-02 | 2016-06-14 | Cj Cheiljedang Corporation | Preparation of process of L-methionine |
WO2014064244A3 (en) * | 2012-10-26 | 2014-08-14 | Adisseo France S.A.S. | Process for producing l-methionine from o-phospho-l-homoserine and methanethiol employing a mutated cystathionine gamma-synthase |
CN104755625A (en) * | 2012-10-26 | 2015-07-01 | 安迪苏法国联合股份有限公司 | Process for producing L-methionine from O-phospho-L-homoserine and methanethiol employing a mutated cystathionine gamma-synthase |
US9803225B2 (en) | 2012-10-26 | 2017-10-31 | Adisseo France S.A.S. | Means and methods for the enzymatic production of L-methionine from O-phospho-L-homoserine and methanethiol |
RU2650859C2 (en) * | 2012-10-26 | 2018-04-17 | Адиссео Франс С.А.С. | Method for enzymatic production of l-methionine from o-phospho-l-homoserine and methanethiol |
US10563235B2 (en) | 2015-09-30 | 2020-02-18 | Arkema France | Method for producing L-methionine |
US11034985B2 (en) | 2015-11-27 | 2021-06-15 | Evonik Operations Gmbh | Method for producing L-methionine |
Also Published As
Publication number | Publication date |
---|---|
EP0630406A1 (en) | 1994-12-28 |
CA2130347A1 (en) | 1993-09-02 |
JPH07503855A (en) | 1995-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1993017112A1 (en) | Biosynthesis of methionine using a reduced source of sulfur | |
FI104836B (en) | Process for the preparation of amino acids by fermentation | |
RU2346038C2 (en) | Fermentative method of producing amino acids and amino acid derivatives from phosphoglycerate family | |
US20170073715A1 (en) | Microorganism producing o-phosphoserine and method of producing l-cysteine or derivatives thereof from o-phosphoserine using the same | |
Shanmugam et al. | Microbial production of ammonium ion from nitrogen. | |
US8609396B2 (en) | Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism | |
EP2657345A1 (en) | Enzymatic method of producing L-methionine from a precursor and methylmercaptan | |
Schäfer et al. | Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus | |
SK4972002A3 (en) | Method for production of l-cysteine or l-cysteine derivatives by fermentation | |
EP2444481A1 (en) | Microorganism producing O-phosphoserine and method of producing L-cysteine or derivatives thereof from O-phosphoserine using the same | |
Vriezen et al. | Fluxes and enzyme activities in central metabolism of myeloma cells grown in chemostat culture | |
JP2004236660A (en) | Microbe strain, plasmid for fermentative production of l-methionine, method for preparing microbe strain, and method for producing l-methionine | |
US6620598B2 (en) | Process for preparing O-acetyl-L serine by fermentation | |
Goel et al. | Suppressed acid formation by cofeeding of glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site | |
Hua et al. | Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification | |
Kisumi | Studies on the isoleucine fermentation I. Screening of organisms and investigation of cultural conditions | |
Morinaga et al. | Production of metabolites by methylotrophs | |
Yang et al. | Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis | |
Shimizu et al. | Production of coenzyme A by a mutant of Brevibacterium ammoniagenes resistant to oxypantetheine | |
Sharma et al. | Effect of dissolved oxygen on continuous production of methionine | |
Shvinka et al. | Yield regulation of lysine biosynthesis in Brevibacterium flavum | |
EP0140503A1 (en) | An efficient process for preparing L-amino acids in bacteria | |
RU2732227C1 (en) | Microorganism of escherichia genus producing o-phosphoserine and method of producing o-phosphoserine or l-cysteine using said microorganism | |
Harutyunyan et al. | Influence of glycine, succinate, levulinic acid and glutamate concentrations on growth of purple non-sulfur photosynthetic bacteria and 5-aminolevulinic acid production | |
Shah et al. | Nutritional and mutational aspects of lysine production by Corynebacterium glutamicum auxotrophs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2130347 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993905966 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1993905966 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993905966 Country of ref document: EP |