SK4972002A3 - Method for production of l-cysteine or l-cysteine derivatives by fermentation - Google Patents
Method for production of l-cysteine or l-cysteine derivatives by fermentation Download PDFInfo
- Publication number
- SK4972002A3 SK4972002A3 SK497-2002A SK4972002A SK4972002A3 SK 4972002 A3 SK4972002 A3 SK 4972002A3 SK 4972002 A SK4972002 A SK 4972002A SK 4972002 A3 SK4972002 A3 SK 4972002A3
- Authority
- SK
- Slovakia
- Prior art keywords
- cysb
- cysteine
- gene
- activity
- wild
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/12—Methionine; Cysteine; Cystine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
SPÔSOB VÝROBY L-CYSTEÍNU ALEBO DERIVÁTOV L-CYSTEÍNUMETHOD OF MANUFACTURE OF L-CYSTEIN OR DERIVATIVES OF L-CYSTEIN
Oblasť vynálezuField of the invention
Vynález sa týka spôsobu výroby L-cysteínu alebo derivátov L-cysteínu fermentáciou pomocou mikroorganizmov, ako aj vhodných mikroorganizmov pre tento spôsob.The invention relates to a process for the production of L-cysteine or L-cysteine derivatives by fermentation with microorganisms, as well as suitable microorganisms for this process.
Doterajší stav technikyBACKGROUND OF THE INVENTION
Aminokyselina L-cysteín má hospodársky význam. Používa sa napríklad ako prísada do potravín (obzvlášť pri výrobe pekárskych prípravkov), ako vsádzková surovina v kozmetike, taktiež ako východiskový produkt pri výrobe farmakologicky účinných látok (najmä N-acetyl-cysteínu a S-karboxy-metylcysteínu).The amino acid L-cysteine is of economic importance. It is used, for example, as a food additive (especially in the manufacture of bakery products), as a feedstock in cosmetics, as well as as a starting product in the production of pharmacologically active substances (especially N-acetyl-cysteine and S-carboxymethylcysteine).
Deriváty L-cysteínu sú všetky síru obsahujúce metabolity, ktoré sú pri ich syntéze odvodené od cysteínu, teda napríklad cystín, metionín, glutatión, biotín, tiazolidín, tiamín, kyselina liponová a koenzým A.L-cysteine derivatives are all sulfur-containing metabolites derived from cysteine in their synthesis, for example cystine, methionine, glutathione, biotin, thiazolidine, thiamine, liponic acid and coenzyme A.
Regulácia biosyntézy cysteínu v baktériách sa uskutočňuje na dvoch úrovniach, (obr. 1):Cysteine biosynthesis in bacteria is regulated at two levels (Fig. 1):
1. Na úrovni enzýmovej aktivity podlieha serín-acetyl-transferáza (cysEgénový produkt) inhibícii konečným produktom L-cysteínom. Toto znamená, že akumulácia L-cysteínu vedie priamo k inhibícii prvej špecifickej reakcie biosyntézy cysteínu čo zamedzí ďalšej syntéze.1. At the level of enzyme activity, serine acetyl transferase (a cysEgen product) is subject to inhibition by the end product L-cysteine. This means that the accumulation of L-cysteine leads directly to inhibition of the first specific cysteine biosynthesis reaction, which prevents further synthesis.
2. Na úrovni transkripcie pôsobí regulačný protein CysB (kódovaný cysBgénom) ako transkripčný aktivátor a stará sa o regulovanú prípravu (aktiváciu) redukovanej síry. Ako induktor potrebuje CysB N-acetyl-serín, ktorý v bunke vzniká z O-acetyl-serínu, ak je k dispozícii nedostatočne redukovaná síra pre reakciu O-acetyl-serín-sulfhydrylázy. Následne sú všetky gény, ktoré súvisia s prijatím, redukciou a zabudovaním síry, pod kontrolou CysB. Toto sú operóny: cysPTWAM, cysDNC, cysJIH, a cysK-gén. Zatiaľ čo acetyl-serín pôsobí pre2. At the transcriptional level, the regulatory protein CysB (cysBgene encoded) acts as a transcriptional activator and provides for the regulated preparation (activation) of reduced sulfur. As an inducer, CysB needs N-acetyl-serine, which is formed in the cell from O-acetyl-serine when insufficiently reduced sulfur is available for the O-acetyl-serine-sulfhydrylase reaction. Consequently, all genes related to sulfur uptake, reduction and incorporation are controlled by CysB. These are the operons: cysPTWAM, cysDNC, cysJIH, and the cysK gene. While acetylserine acts for
31917/T h cysB ako induktor, vykazuje sulfid a tiosíran negatívny efekt ako takzvaný „antiinduktoľ, pretože jeho existencia poukazuje na disponibilnosť SH-skupín.31917 / T h cysB as an inducer, sulphide and thiosulphate exhibit a negative effect as a so-called "anti-inducer, because its existence indicates the availability of SH-groups.
Stav techniky týkajúci sa získavania L-cysteínu a derivátov L-cysteínu sa obšírne diskutuje vo WO 97/15673 (zodpovedá US prihláške SN 09/065104). WO 97/15673 samotná opisuje fermentačný výrobný postup, pri ktorom sa využíva spätnoväzbová (feedback) rezistencia serín-acetyl-transferázy. Prihláška ďalej objasňuje, že je možné ďalšie zvyšovanie výťažkov cysteínu dodatočnou dereguláciou regulačného proteínu CysB na génovej úrovni v zmysle konštitutívnej expresie.The prior art regarding the recovery of L-cysteine and L-cysteine derivatives is discussed extensively in WO 97/15673 (corresponding to US application SN 09/065104). WO 97/15673 itself discloses a fermentation production process that utilizes the feedback resistance of serine acetyl transferase. The application further clarifies that it is possible to further increase cysteine yields by additional deregulation of the CysB regulatory protein at the gene level in terms of constitutive expression.
Patentová prihláška EP 885962 A1 (zodpovedá US prihláške SN 09/097759) zverejňuje mikroorganizmy, ktoré sú vhodné na fermentačnú výrobu L-cysteínu, L-cystínu, N-acetyl-serínu a derivátov tiazolidínu, charakteristické tým, že preexprimujú aspoň jeden gén, kódujúci proteín vhodný priamo na produkciu antibiotík alebo iných pre mikroorganizmy toxických látok z bunky.Patent application EP 885962 A1 (corresponding to US application SN 09/097759) discloses microorganisms which are suitable for the fermentative production of L-cysteine, L-cystine, N-acetylserine and thiazolidine derivatives, characterized in that they overexpress at least one gene encoding protein suitable for the production of antibiotics or other microorganisms of toxic substances from the cell.
CysB patrí do skupiny LysR-Typ-transkripčných regulátorov (LTTR), z ktorých je známych už viac ako 100 zástupcov (Schell M. A., 1993, Annu. Rev. Microbiol. 47: 597-626). Vyznačujú sa N-terminálnou DNA-väzbovou doménou s helix-turn-helix-motívom a C-terminálnou induktor-väzbovou doménou. O cysB boli predložené podrobné DNA-väzbové štúdie. K tomu je CysB prvý LTTR proteín, u ktorého je k dispozícii aj kryštálová štruktúra (Tyrell et al., 1997, Structure 5: 1017-1032). LTTR proteíny pôsobia spravidla ako pozitívne génové regulátory, ktoré sú závislé od existencie induktorovej molekuly. Už skôr sa zistilo, že len vysoko aktívne cysB-varianty, ktoré sú nezávislé od efektorových molekúl (takzvané konštitutívne aktívne varianty), pripúšťajú zvýšenie produkcie cysteínu, pretože takéto formy sa nemenia, vysoká génová aktivácia odpadá. (Nakamori S. et. al., 1998, Appl. Env. Microbiol. 64: 16071611).CysB belongs to the group of LysR-Type-Transcriptional Regulators (LTTRs), of which more than 100 representatives are known (Schell M.A., 1993, Annu. Rev. Microbiol. 47: 597-626). They are characterized by an N-terminal DNA-binding domain with a helix-turn-helix-motif and a C-terminal inducer-binding domain. Detailed DNA-binding studies were presented for cysB. In addition, CysB is the first LTTR protein in which a crystal structure is also available (Tyrell et al., 1997, Structure 5: 1017-1032). As a rule, LTTR proteins act as positive gene regulators that are dependent on the existence of an inducer molecule. It has previously been found that only highly active cysB variants that are independent of effector molecules (the so-called constitutively active variants) allow for an increase in cysteine production, since such forms remain unchanged, high gene activation is eliminated. (Nakamori S. et al., 1998, Appl. Env. Microbiol. 64: 16071611).
Príklady pre konštitutívne aktívne formy CysB sú opísané pre Salmonella typhimuríum. Tieto varianty vykazujú vysokú aktivitu, pričom táto aktivita jeExamples of constitutively active forms of CysB are described for Salmonella typhimurium. These variants exhibit a high activity, which activity is
31917/T h úplne nezávislá od induktora N-acetyl-serinu a negatívneho účinku tiosíranu a sulfidu. (ColyerT. E., Kredich N. M., 1994, Mol. Microbiol. 13: 797-805).31917 / T h completely independent of the inducer N-acetylserine and the negative effect of thiosulfate and sulfide. (ColyerT. E., Kredich N.M., 1994, Mol. Microbiol. 13: 797-805).
Podstata vynálezuSUMMARY OF THE INVENTION
Predložený vynález sa týka kmeňa mikroorganizmu, ktorý je vhodný na fermentačnú výrobu L-cysteínu a derivátov L-cysteínu a má deregulovanú cysteínovú látkovú výmenu, pričom táto deregulácia cysteínovej látkovej výmeny nespočíva na zmenenej cysB-aktivite, ale je charakteristická tým, že má dodatočne zvýšenú cysB-aktivitu, pričom táto cysB-aktivita je regulačným modelom typickým pre divoký typ cysB.The present invention relates to a microorganism strain which is suitable for the fermentative production of L-cysteine and L-cysteine derivatives and has a deregulated cysteine metabolism, wherein this deregulation of the cysteine metabolism is not based on altered cysB activity but is characterized by an additionally increased cysB activity, wherein the cysB activity is a regulatory model typical of wild type cysB.
Kmene mikroorganizmov s deregulovanou cysteínovou látkovou výmenou, pri ktorej táto deregulácia nespočíva na zmenenej cysB-aktivite sú známe. Ide o kmene s modifikovanými cysE-alelami ako sú opísané napríklad vo WO 97/15673 (tu zahrnutá ako odkaz) alebo Nakamori S. et. al., 1998, Appl. Env. Microbiol. 64: 1607-1611 (tu zahrnutá ako odkaz), alebo o kmene, pri ktorých sa použijú eflux-gény, ako sú opísané napríklad v EP 0885962 A1 (zodpovedá US prihláške SN 09/097759, tu zahrnutá ako odkaz), alebo o kmene ktoré sa získavajú s použitím nešpecifických metód mutagenézy kombinovaných so skríningovými metódami pre nadprodukciu cysteinu alebo znížené odbúravanie cysteinu, ako je opísané napríklad vo WO 97/15673 alebo v Nakamori S. et. al., 1998, Appl. Env. Microbiol. 64: 1607-1611.Strains of deregulated cysteine metabolism of microorganisms in which this deregulation is not based on altered cysB activity are known. These are strains with modified cysE alleles as described, for example, in WO 97/15673 (incorporated herein by reference) or Nakamori S. et. al., 1998, Appl. Env. Microbiol. 64: 1607-1611 (herein incorporated by reference), or strains in which efflux genes are used, as described, for example, in EP 0885962 A1 (corresponding to US application SN 09/097759, herein incorporated by reference), or strains which are obtained using non-specific mutagenesis methods combined with screening methods for cysteine overproduction or reduced cysteine degradation, as described, for example, in WO 97/15673 or in Nakamori S. et. al., 1998, Appl. Env. Microbiol. 64: 1607-1611.
V zmysle vynálezu ide o zvýšenú aktivitu, ak aktivita cysB je najmenej o 10 % zvýšená v porovnaní k cysB aktivite u kmeňa divokého typu.According to the invention, it is an increased activity if the activity of cysB is at least 10% increased compared to cysB activity in the wild-type strain.
Výhodné je, ak je cysB aktivita zvýšená o najmenej 25 %.Preferably, the cysB activity is increased by at least 25%.
Mimoriadne výhodné je ak je cysB aktivita zvýšená o najmenej 50 %.It is particularly preferred that the cysB activity is increased by at least 50%.
Kmeň Escherichia coli (MC4100: :λΚΖΙ_300), ktorý je vhodný na určenie cysB-aktivity, je opísaný v príklade 2. Bol uložený 23.6.1999 pod číslom DSM 12886 v DSMZ (Deutsche Sammlung fúr Mikroorganismen und Zellkulturen GmbH, D-38142 Braunschweig), podľa Budapeštianskej dohody. Terajší cysB31917/T h obsahujúci konštrukt bol do kmeňa vnesený MC4100: :XKZL300 známym spôsobom.The Escherichia coli strain (MC4100:: λΚΖΙ_300), which is suitable for the determination of cysB activity, is described in Example 2. It was deposited on June 23, 1999 under DSM 12886 at DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, D-38142 Braunschweig). , under the Budapest Agreement. The present cysB31917 / T h containing construct was introduced into the strain MC4100: XKZL300 in a known manner.
Regulačný model cysB-aktivity typický pre divoký typ cysB, závisí od zdroja síry, pričom cysB-aktivita buniek vyrastených s tiosíranom oproti bunkám vyrasteným so síranom predstavuje menej ako 75 % a cysB-aktivita buniek vyrastených s cystínom oproti bunkám vyrasteným so síranom predstavuje menej ako 20 % (pozri príklad 2).The regulatory model of cysB activity typical of wild type cysB depends on the sulfur source, with the cysB activity of thiosulfate-grown cells versus sulfate-grown cells less than 75% and the cysB activity of cystine-grown cells versus sulfate-grown cells less than 75%. 20% (see Example 2).
Kmene mikroorganizmov podľa vynálezu secernujú L-cysteín alebo derivát L-cysteínu v porovnaní ku kmeňu mikroorganizmu s deregulovanou cysteínovou látkovou výmenou bez zvýšenej cysB-aktivity vo zvýšenej miere.The microorganism strains of the invention secrete L-cysteine or an L-cysteine derivative compared to a microorganism strain with deregulated cysteine metabolism without increased cysB activity to an increased extent.
Kmeň mikroorganizmu podľa vynálezu je podľa toho kmeň mikroorganizmu s deregulovanou cysteínovou látkovou výmenou, pričom deregulácia cysteínovej látkovej výmeny nespočíva v zmenenej cysB-aktivite, ale v ktorom sa homológny alebo heterológny cysB-gén zosilnené exprimuje a ten kóduje cysB regulačným modelom typickým pre divoký typ cysB.Accordingly, the microorganism strain of the invention is a microorganism strain with a deregulated cysteine metabolism, wherein the deregulation of the cysteine metabolism does not consist in altered cysB activity but in which the homologous or heterologous cysB gene is expressed and encoded by the cysB regulatory model typical of the wild type .
Výhodne ide o kmene Escherichia coli s deregulovanou cysteínovou výmenou nespočívajúcou na zmenenej cysB-aktivite, v ktorom sa divoký typ cysB-génu preexprimuje.Preferably, they are Escherichia coli strains with a deregulated cysteine exchange not based on altered cysB activity in which the wild-type cysB gene is overexpressed.
Obzvlášť výhodne ide o kmene Escherichia coli s deregulovanou cysteínovou výmenou, pričom táto deregulácia cysteínovej latkovej výmeny nespočíva na zmenenej cysB-aktivite, v ktorom počet kópií divokého typu cysBgénov Escherichia coli\e zvýšený a tento gén sa preexprimuje.Particularly preferably, these are deregulated cysteine exchange strains of Escherichia coli, wherein the deregulation of the cysteine lath exchange does not rely on altered cysB activity in which the copy number of the wild-type cysB genes of Escherichia coli is increased and this gene is overexpressed.
Prekvapivo sa zistilo, že nie ako je v uvedenom stave techniky postulované, použitie cysB-alel, ktoré kódujú konštitutívne aktívne cysB regulačné proteíny, zvyšuje produkciu cysteínu, ale úplne opačne, produkciu cysteínu zvyšuje zosilnená expresia divokého typu cysB-génu.Surprisingly, it has been found that not as postulated in the prior art, the use of cysB-alleles that encode constitutively active cysB regulatory proteins increases cysteine production, but quite the contrary, enhanced expression of the wild-type cysB gene increases cysteine production.
Toto zistenie je tiež prekvapivé a nečakané preto, že doposiaľ nie je známy príklad, v ktorom by zvýšená expresia regulačného proteínu zo skupinyThis finding is also surprising and unexpected because there is no known example in which an overexpression of a regulatory protein of the
LysR-Typ-transkripčných regulátorov umožnila nadprodukciu metabolitov.LysR-Type-transcriptional regulators allowed overproduction of metabolites.
31917/T h31917 / T h
Vynález sa týka tiež použitia regulačných proteínov z rodiny LysR-Typtranskripčných regulátorov k nadprodukcii metabolitu, ako aj spôsobu nadprodukcie metabolitu, ktorý je charakteristický tým, že regulačný gén z rodiny LysR-Typ-transkripčných regulátorov sa v mikroorganizme preexprimuje a spôsobí zosilnenú produkciu metabolitu v mikroorganizme.The invention also relates to the use of regulatory proteins from the LysR-Typtranscriptional regulator family for metabolite overproduction, as well as to a method for metabolite overproduction characterized in that the regulatory gene from the LysR-Type-transcriptional regulator family is overexpressed in the microorganism and causes enhanced metabolite production in the microorganism. .
Zvýšenie cysB-aktivity v mikroorganizme pri súčasnom prijatí typického regulačného modelu sa môže dosiahnuť napríklad:An increase in cysB activity in a microorganism while adopting a typical regulatory model can be achieved, for example:
1. zvýšením počtu kópií cysB-génu, kódujúceho cysB regulačným modelom typickým pre divoký typ cysB, v mikroorganizme pod kontrolou promótora, alebo1. by increasing the copy number of the cysB gene coding for cysB by a regulatory model typical of wild type cysB in a microorganism under the control of a promoter, or
2. zosilnenou expresiou cysB-génu, kódujúceho cysB regulačným modelom typickým pre divoký typ cysB, výmenou promótora regulujúceho expresiu divokého typu cysB-génu za silnejší promótor.2. Enhanced expression of the cysB gene coding for cysB by a regulatory model typical of wild type cysB by exchanging a promoter regulating the expression of wild type cysB gene for a stronger promoter.
CysB-gény sú známe z Escherichia coli, Salmonella typhimurium, Klebsiella aerogenes, Haemophilus influenzae, Pseudomonas aeruginosa a Thiocapsa roseopersicina. Ako cysB-gény sú výhodne chápané také gény, ktorých génové produkty s cysB-proteínom z Escherichia coli vykazujú identitu najmenej 40 %. Hodnoty homológie sa vzťahujú na výsledky, ktoré sa dajú získať počítačovým programom „Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, Wisconsin“. Pritom sa uskutočňuje vyhľadávanie v banke dát s podprogramom „blast“ s použitím štandardných parametrov.The CysB genes are known from Escherichia coli, Salmonella typhimurium, Klebsiella aerogenes, Haemophilus influenzae, Pseudomonas aeruginosa and Thiocapsa roseopersicina. The cysB genes are preferably understood to be those whose gene products with the cysB protein from Escherichia coli exhibit an identity of at least 40%. The homology values refer to the results obtainable by the computer program "Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, Wisconsin". To do this, a data bank search is performed with the "blast" subroutine using standard parameters.
CysB-gény sú ďalej také alely divokého typu cysB-génov, ktorých génové produkty sú vo svojej sekvencií zmenené, bez toho, aby stratili pre divoký CysB-typ typický regulačný model. Príkladom sú cysB varianty s konzervatívnou aminokyselinovou výmenou.The CysB genes are further alleles of the wild-type cysB genes whose gene products are altered in their sequence without losing the typical CysB-type regulatory model. An example are cysB variants with a conservative amino acid exchange.
Mikroorganizmus podľa vynálezu sa dá vyrobiť napríklad takým spôsobom, že v kmeni mikroorganizmu s deregulovanou cysteínovou látkovou výmenou, pričom táto deregulácia cysteínovej látkovej výmeny nespočíva na zmenenej cysB-aktivite, sa pomocou známych metód zvyšuje počet kópií cysBThe microorganism according to the invention can be produced, for example, in such a way that in a microorganism strain with a deregulated cysteine metabolism, where the deregulation of the cysteine metabolism is not based on altered cysB activity, the number of cysB copies is increased by known methods.
31917/T h génov divokého typu alebo cysB-génov kódujúcich cysB regulačným modelom typickým pre divoký typ cysB-génov, alebo sa známymi metódami dosiahne zosilnená expresia cysB-génu divokého typu alebo cysB-génu kódujúceho cysB regulačným modelom typickým pre cysB divoký typ.31917 / T h wild-type or cysB-genes encoding cysB by a regulatory model typical of wild-type cysB genes, or enhanced expression of the cysB-wild-type gene or cysB-gene encoding cysB by a wild-type cysB regulatory model is known.
V nasledujúcom znamená výraz „cysB'·, nielen „divoký typ cysB“, ale aj „cysB variant s regulačným modelom typickým pre divoký typ cysB. Výraz „cysB-gén“ znamená v nasledujúcom „divoký typ cysB génu“ ako aj „ cysB-gén, kódujúci cysB regulačným modelom typickým pre divoký typ cysB“.In the following, the term "cysB" means not only "wild-type cysB" but also "cysB variant with a regulatory model typical of wild-type cysB". The term "cysB gene" means in the following the "wild type cysB gene" as well as the "cysB gene encoding cysB by a regulatory model typical of the wild type cysB".
Zvýšenie počtu kópií cysB-génov v mikroorganizme sa môže vykonávať metódami odborníkom v odbore známymi. Tak sa môže napríklad klonovať cysB-gén v plazmidových vektoroch s viacnásobným počtom kópií na bunku (napr. pUC19, pBR322, pA-CYC184) a vnesie sa do mikroorganizmu s deregulovanou cysteínovou výmenou. Alternatívne sa môže cysB-gén viackrát integrovať v chromozóme mikroorganizmu s deregulovanou cysteínovou látkovou výmenou. Ako integračné postupy sa môžu využiť známe systémy s miernymi bakteriofágmi, integratívnymi plazmidmi alebo integrácia cez homológnu rekombináciu. (Napríklad Hamilton et al., 1989, J. Bacteriol. 171: 4617- 4622).Increasing the copy number of cysB genes in a microorganism can be accomplished by methods known to those skilled in the art. For example, the cysB gene can be cloned in plasmid vectors with multiple copies per cell (e.g., pUC19, pBR322, pA-CYC184) and introduced into a microorganism with deregulated cysteine exchange. Alternatively, the cysB gene can be integrated multiple times in the chromosome of a microorganism with a deregulated cysteine metabolism. Known systems with mild bacteriophages, integrative plasmids or integration via homologous recombination can be used as integration procedures. (For example, Hamilton et al., 1989, J. Bacteriol. 171: 4617-4622).
Výhodné je zvýšenie počtu kópií klonovaním cysB-génu v plazmidovom vektore kontrolované promótorom. Obzvlášť výhodné je zvýšenie počtu kópií klonovaním cysB-génu v pACYC-deriváte, ako napr. pACYC184-LH (uložený podľa Budapeštianskej dohody v nemeckej zbierke mikroorganizmov a bunkových kultúr, Braunschweig, 18.8.1995 pod číslom DSM 10172.It is preferred to increase the copy number by cloning the cysB gene in a plasmid vector under the control of a promoter. It is particularly preferred to increase the copy number by cloning the cysB gene in a pACYC derivative, such as e.g. pACYC184-LH (deposited under the Budapest Agreement in the German Collection of Microorganisms and Cell Cultures, Braunschweig, 18.8.1995 under number DSM 10172).
Ako kontrolná oblasť pre expresiu plazmidu kódujúceho cysB-gén môže slúžiť prírodná promótorova a operačná oblasť génu.The natural promoter and operative regions of the gene can serve as a control region for expression of the plasmid encoding the cysB gene.
Zosilnená expresia cysB-génu sa môže uskutočniť tiež prostredníctvom iných promótorov. Zodpovedajúce promótorové systémy sú odborníkom v odbore známe (Makrides S. C., 1996, Microbiol. Rev. 60: 512-538). Takéto konštrukty je možné použiť známym spôsobom v plazmidoch alebo chromozomálne.Enhanced expression of the cysB gene can also be accomplished through other promoters. Corresponding promoter systems are known to those skilled in the art (Makrides S. C., 1996, Microbiol. Rev. 60: 512-538). Such constructs can be used in known manner in plasmids or chromosomal.
31917/T h31917 / T h
Klonovanie cysB-génu v plazmidovom vektore sa uskutočňuje napríklad špecifickou amplifikáciou pomocou polymerázovej reťazovej reakcie s použitím špecifických primérov, ktoré zachytávajú kompletný cysB-gén s promótorovou a operačnou sekvenciou a následnou ligáciou vektora s DNA fragmentárni.Cloning of the cysB gene in a plasmid vector is accomplished, for example, by specific amplification using a polymerase chain reaction using specific primers that capture a complete cysB gene with promoter and operative sequences and subsequent ligation of the vector with DNA fragmentary.
Ako výhodné vektory pre klonovanie cysB-génu sa použijú plazmidy, ktoré už obsahujú genetické prvky pre dereguláciu cysteínovej látkovej výmeny, napríklad cysEX-gén (WO 97/15673) a eflux-gén (EP 0885962 A1). Takéto vektory umožňujú produkciu kmeňa mikroorganizmu podľa vynálezu z ľubovoľného kmeňa mikroorganizmu, pretože takýto vektor tiež spôsobí dereguláciu cysteínovej látkovej výmeny v mikroorganizme.Preferred vectors for cloning the cysB gene are plasmids that already contain genetic elements for deregulating the cysteine metabolism, for example the cysEX gene (WO 97/15673) and the efflux gene (EP 0885962 A1). Such vectors allow the production of the microorganism strain of the invention from any microorganism strain, since such a vector also causes deregulation of the cysteine metabolism in the microorganism.
Vynález sa týka tiež plazmidu, ktorý má genetické prvky na dereguláciu cysteínovej látkovej výmeny, pričom tieto genetické prvky nevykazujú žiadnu zmenu cysB-aktivity a ďalej obsahuje cysB-gén kontrolovaný promótorom.The invention also relates to a plasmid having genetic elements for the deregulation of a cysteine metabolism, wherein the genetic elements show no change in cysB activity and further comprises a promoter-controlled cysB gene.
Bežnou transformačnou metódou (napríklad elektroporáciou) sa plazmidy obsahujúce cysB prenesú do baktérií a napríklad prostredníctvom rezistencie na antibiotiká sa selektujú na klone nesúcom plazmid.By a conventional transformation method (e.g., electroporation), plasmids containing cysB are transferred to bacteria and selected, for example, through a antibiotic resistance, on a clone carrying a plasmid.
Vynález sa týka i postupu výroby kmeňa mikroorganizmu, ktorý je charakteristický tým, že do kmeňa mikroorganizmu sa vnesie plazmid podľa vynálezu.The invention also relates to a process for the production of a microorganism strain characterized in that a plasmid according to the invention is introduced into the microorganism strain.
Výroba cysteínu alebo cysteínových derivátov pomocou kmeňa mikroorganizmu podľa vynálezu sa uskutočňuje vo fermentore známymi spôsobmi. Ako zdroj uhlíka sa môžu použiť napríklad glukóza, laktóza alebo iné cukry, ako zdroj dusíka amónium alebo hydrolyzát proteínu. Ako zdroj síry sa môže použiť napríklad sulfid, siričitan, síran alebo tiosíran. Počas fermentácie vytvorený L-cysteín môže oxidovať ťažko rozpustný cystín alebo kondenzovať s aldehydmi alebo ketónmi na tiazolidíny (napríklad s kyselinou pyrohroznovou na kyselinu 2-metyl-tiazolidín-2,4-dikarboxylovú).The production of cysteine or cysteine derivatives using the microorganism strain according to the invention is carried out in a fermenter by known methods. As the carbon source, for example, glucose, lactose or other sugars can be used, as the nitrogen source ammonium or protein hydrolyzate. As the sulfur source, for example, sulphide, sulphite, sulphate or thiosulphate can be used. During fermentation, the L-cysteine formed can oxidize sparingly soluble cystine or condense with aldehydes or ketones to thiazolidines (e.g. pyruvic acid to 2-methyl-thiazolidine-2,4-dicarboxylic acid).
Vynález sa týka i postupu výroby L-cysteínu alebo derivátov L-cysteínu, ktorý je charakteristický tým, že kmeň mikroorganizmu podľa vynálezu saThe invention also relates to a process for the production of L-cysteine or L-cysteine derivatives characterized in that the microorganism strain according to the invention is
31917/T h známym spôsobom vsádza do fermentora a L-cysteín alebo jeho deriváty sa z fermentačnej vsádzky oddelia.31917 / T h is introduced into the fermenter in a known manner and L-cysteine or its derivatives are separated from the fermentation batch.
Nasledujúce príklady slúžia ďalšiemu objasneniu vynálezu.The following examples serve to further illustrate the invention.
Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION
Príklad 1Example 1
Klonovanie divokého typu cysB-génu a cysB(T149M)-alelyCloning of the wild-type cysB gene and cysB (T149M) allele
Divoký typ cysB-génu z Escherichia coli sa klonuje s použitím polymerázovej reťazovej reakcie (PCR). So špecifickými oligonukleotidovými primérmi (20 pmol na vsádzku) cysBPI (SEQ.ID.NO. 1) a cysBP2 (SEQ.ID.NO: 2) sa amplifikuje genómový DNA-fragment dlhý 3107 párov báz, zahrňujúci divoký typ cysB-génu s korigovanými oblasťami a terminálne EcoRI- prípadne Sall-reštrikčné štiepne miesta.The wild-type cysB gene from Escherichia coli is cloned using a polymerase chain reaction (PCR). With the specific oligonucleotide primers (20 pmol per batch) of cysBPI (SEQ.ID.NO.1) and cysBP2 (SEQ.ID.NO: 2), a 3107 base pair genomic DNA fragment, including a wild-type, cysB-gene, was corrected. and terminal EcoRI- or SalI-restriction cleavage sites.
5'-GTT ACG AGA TCG AAG AGG-3' (fosforotioátová väzba na 3'-konci) (SEQ.ID.NO: 1)5'-GTT ACG AGA TCG AAG AGG-3 '(phosphorothioate linkage at the 3'-end) (SEQ.ID.NO: 1)
5'-GTC ACC GAG TGG TCA ATG-3' (fosforotioátová väzba na 3'-konci) (SEQ.ID.NO: 2)5'-GTC ACC GAG TGG TCA ATG-3 '(phosphorothioate linkage at the 3'-end) (SEQ.ID.NO: 2)
Uskutočnila sa polymerázová reťazová reakcia s Pwo-DNA-polymerázou firmy Boehringer (Mannheim, D) s 10 ng genómovej DNA ako matricou. Program zahrňoval 29 cyklov s anelingovou teplotou 56 °C (30 sekúnd na cyklus), extenznou teplotou 72 °C (60 sekúnd na cyklus) a denaturačnou teplotou 94 °C (30 sekúnd na cyklus). DNA-fragment sa reštrikčným enzýmom EcoRI a Sali dodatočne upravil a vyčistil gélovou elektroforézou a génovou čistiacou metódou (Genclean Kit BIO101, P.O.Box 2284, La Jolla, Califirnia, USA, 92038-2284). Tento fragment sa liguje v EcoRI-Sall-štiepenom aA polymerase chain reaction with a Pwo-DNA polymerase from Boehringer (Mannheim, D) was performed with 10 ng of genomic DNA as a matrix. The program included 29 cycles with an annealing temperature of 56 ° C (30 seconds per cycle), an extension temperature of 72 ° C (60 seconds per cycle), and a denaturation temperature of 94 ° C (30 seconds per cycle). The DNA fragment was additionally treated with EcoRI and SalI restriction enzyme and purified by gel electrophoresis and gene purification (Genclean Kit BIO101, P.O.Box 2284, La Jolla, Califirnia, USA, 92038-2284). This fragment was ligated in EcoRI-SalI-cleaved α
31917/T h fosfatázou upravenom fagemid-vektore pTZ19U firmy Bio-Rad Laboratories (Hercules, California, USA). Po transformácii sa pozitívne klony identifikujú reštrikčnou analýzou.31917 / T h phosphatase engineered phagemid vector pTZ19U from Bio-Rad Laboratories (Hercules, California, USA). After transformation, positive clones were identified by restriction analysis.
Na konštrukciu konštitutívne aktívnej cysB-alely sa uskutočnila mutácia (analogická k mutácii v divokom type cysB-génu zo Salmonella typhimuríum opísanej u Colyer T. E., Kredich N. M., 1994, Mol. Microbiol. 13: 797-805) kodónu 147 divokého typu cysB-génu ku kodónu metionínu s „Mutagene In Vitro Mutagenezis“ - kit firmy Bio-Rad Laboratories (Hercules, California, USA). Pritom sa použil oligonukleotid CysBMut4 (SEQ.ID.NO.3). Podčiarknuté bázy poukazujú na odchýlku od sekvencie divokého typu.A mutation (analogous to the mutation in the wild-type cysB gene from Salmonella typhimurium described by Colyer TE, Kredich NM, 1994, Mol. Microbiol. 13: 797-805) of the wild-type cysB gene codon 147 was made to construct a constitutively active cysB allele. to the methionine codon with "Mutagene In Vitro Mutagenezis" kit from Bio-Rad Laboratories (Hercules, California, USA). The oligonucleotide CysBMut4 (SEQ.ID.NO.3) was used. The underlined bases indicate a deviation from the wild-type sequence.
5'-TTC GCT ATC GCC ATG GAA GCG CTG CAT-3'(SEQ.ID.NO: 3)5'-TTC GCT ATC GCC ATG GAA GCG CTG CAT-3 '(SEQ.ID.NO: 3)
Na test aktivity (pozri príklad 2) sa klonovali obidve cysB-alely ako EcoRI-Sall-fragmenty podľa Klenowovej úpravy.v Ec/136ll štiepenom vektore pA-CYC184-LH upravenom fosfatázou.For the activity assay (see Example 2), both cysB alleles were cloned as EcoRI-SalI fragments according to Klenow treatment in an Ec / 136 µl phosphatase-treated pA-CYC184-LH vector.
Príklad 2Example 2
Stanovenie cysB-aktivity in vivoDetermination of cysB activity in vivo
Na meranie cysB-aktivity sa zvolila vsádzka reportérových génov. Tu sa fúzovala kontrolná oblasť cysK-génu s lacZ-génom, ktorý kóduje enzým βgalaktozidázu. Integráciou tejto fúzie v kmeni bez endogénnej β-galaktozidázy sa vytvoril tento enzým v závislosti od cysB-aktivity a sprostredkoval tak vo forme aktivity β-galaktozidázy nepriamo zmeranie cysB-aktivity. Na konštrukciu fúzie sa použil systém opísaný Simons et al. (Simons R. W. et al., 1987, Gene 53: 85-96). Najprv sa amplifikovala polymerázovou reťazovou reakciou promótorova oblasť cysK-génu vrátane prvých pätnásť kodónov s použitím oligonukleotidových primérov cysKPI (SEQ.ID.NO: 4) a cysKP3 (SEQ.ID.NO: 5) a 10 ng chromozomálnej DNA z Escheríchia coli a Pwo-polymerázy.A reporter gene batch was selected to measure cysB activity. Here, the control region of the cysK gene was fused with the lacZ gene, which encodes the enzyme βgalactosidase. By integrating this fusion in an endogenous β-galactosidase-free strain, this enzyme was dependent on cysB activity and mediated indirectly the measurement of cysB activity in the form of β-galactosidase activity. The system described by Simons et al. (Simons, R.W. et al., 1987, Gene 53: 85-96). First, the promoter region of the cysK gene, including the first fifteen codons, was amplified by the polymerase chain reaction using the oligonucleotide primers cysKPI (SEQ.ID.NO: 4) and cysKP3 (SEQ.ID.NO: 5) and 10 ng of chromosomal DNA from Escherichia coli and Pwo. polymerase.
319170 h319170 h
5'-CCG GAA TTC CCG TTG CCG TTT GTG GCG-3' (SEQ.ID.NO: 4) 5'-CGC GGA TCC GTG TGA CCG ATA GTC AGC-3' (SEQ.ID.NO: 5)5'-CCG GAA TTC CCG TTG CCG TTG GTG GCG-3 '(SEQ.ID.NO: 4) 5'-CGC GGA TCG GTG TGA CCG ATA GTC AGC-3' (SEQ.ID.NO: 5)
Podmienky zodpovedali tým, ktoré boli opísané v príklade 1. Výsledný produkt s 317 pármi báz sa štiepil reštrikčným enzýmom EcoRI a BamHI podľa údajov výrobcu a vyčistil sa pomocou preparatívnej gélovej elektroforézy a génovej čistiacej metódy. Napokon sa produkt taktiež EcoRI-BamHI štiepeným a fosfatázou upraveným vektorom pRS552 (uložený 14.9.1999 podľa Budapeštianskej dohody v nemeckej zbierke mikroorganizmov a bunkových kultúr, Braunschweig pod číslom DSM 13034) ligoval. Pomocou elektroporácie sa kmeň MC4100 (ATCC 35695) s ligačnou vsádzkou transformoval a pozitívne klony sa identifikovali reštrikčnou analýzou. Tieto obsahujú translačnú cysKlacZ-fúziu. Získaný plazmid sa následne rekombinoval podľa Simons et al. s bakteriofágom XRS45 (uložený podľa Budapeštianskej dohody v nemeckej zbierke mikroorganizmov a bunkových kultúr, v Braunschweigu 14.9.1999 pod číslom DSM 13035) a vyrobil sa homogénny lyzát rekombinantného fágu s označením λΚΖΙ_300. S týmto fágom sa infikoval Alac-kmeň MC4100 a kanamycínovou selekciou sa identifikoval lyzogénny kloň, (MC4100: :λΚΖΙ_300), ktorý sa teraz mohol použiť na meranie cysB aktivity.The conditions corresponded to those described in Example 1. The resulting 317 base pair product was digested with the restriction enzyme EcoRI and BamHI according to the manufacturer's data and purified by preparative gel electrophoresis and a gene purification method. Finally, the product was also ligated with EcoRI-BamHI digested and phosphatase-treated vector pRS552 (deposited September 14, 1999 under the Budapest Agreement in the German Collection of Microorganisms and Cell Cultures, Braunschweig under number DSM 13034). By electroporation, strain MC4100 (ATCC 35695) with ligation batch was transformed and positive clones were identified by restriction analysis. These contain a translational cysKlacZ-fusion. The plasmid obtained was subsequently recombined according to Simons et al. with bacteriophage XRS45 (deposited under the Budapest Agreement in the German Collection of Microorganisms and Cell Cultures, Braunschweig 14.9.1999 under DSM 13035) and a homogeneous lysate of recombinant phage designated λΚΖΙ_300 was produced. With this phage, the Alac-strain MC4100 was infected and a lysogenic clone was identified by kanamycin selection (MC4100: λΚΖΙ_300), which could now be used to measure cysB activity.
Na porovnanie účinnosti viacnásobnej kópie cysB-génu klonovanom v pACYC184-LH a cysB(T149M)-génu sa transformoval MC4100: :λΚΖΙ_300 so zodpovedajúcim plazmidom pACYC-cysB a pACYC-cysB(T149M).To compare the efficiency of the multiple copy of the cysB gene cloned in pACYC184-LH and the cysB (T149M) gene, the MC4100: λΚΖΙ_300 was transformed with the corresponding plasmids pACYC-cysB and pACYC-cysB (T149M).
Kmene sa vo VB-minimálnom médiu (3,5 g/l Na(NH4)HPO4; 10 g/l KH2PO4; 2 g/l citrát x H2O ; 0,078 g/l MgCI2; pH sa nastavilo na 6,5 s NaOH, 5 g/l glukózy; 5 mg/l vitamínu Bi) s rozličnými zdrojmi síry (vždy 1 mM síry) kultivovali, pričom sa pridalo 15 mg/l tetracyklínu. Určenie β-galaktozidázovej aktivity sa uskutočnilo podľa metódy opísanej Millerom (Miller J. H. 1972, Experiments in Molecular Genetics, Cold Spring Harbour, New York, 352-355).Strains in VB-minimal medium (3.5 g / L Na (NH 4 ) HPO 4 ; 10 g / L KH 2 PO 4 ; 2 g / L citrate x H 2 O; 0.078 g / L MgCl 2 ; pH was set at 6.5 with NaOH, 5 g / l glucose; 5 mg / l vitamin B 1) with various sources of sulfur (1 mM sulfur each) cultured, with 15 mg / l tetracycline added. Determination of β-galactosidase activity was performed according to the method described by Miller (Miller JH 1972, Experiments in Molecular Genetics, Cold Spring Harbor, New York, 352-355).
31917/T h31917 / T h
Výsledky sú uvedené na tabuľke 1. Pri kontrole sa ukázalo, (MC4100: :XKZL300/pACYC184-LH) pre cysB-divoký kmeň typický model regulácie cysBaktivity v závislosti od zdroja síry: cysB-aktivita buniek vyrastených s tiosíranom oproti síranu predstavovala menej ako 75 % a cysB aktivita buniek vyrastených s cystínom oproti síranu predstavovala menej ako 20 %. Tento model sa zachová pri existencii divokého typu cysB-génu vo viacerých kópiách na celkovo zvýšenej úrovni aktivity (podľa vynálezu napríklad MC4100: :λΚΖΙ_300 / pACYC-cysB). CysB(T149M)-alela vedie oproti tomu ku konštitutívne vysokej aktivite pri strate typického modelu regulácie.The results are shown in Table 1. The control showed (MC4100:: XKZL300 / pACYC184-LH) a typical model of cysBactivity-dependent regulation of cysBactivity for the cysB wild-type strain: cysB-activity of cells grown with thiosulfate over sulfate represented less than 75 % and cysB activity of cells grown with cystine versus sulfate was less than 20%. This model is maintained in the presence of the wild-type cysB gene in multiple copies at an overall elevated level of activity (for example, MC4100: λΚΖΙ_300 / pACYC-cysB according to the invention). In contrast, the CysB (T149M) -allel results in a constitutively high activity in the loss of a typical control model.
Tabuľka 1 - Stanovenie cysB-aktivity vo forme β-galaktozidázovej aktivity kmeňov s chromozomálnou cysK-lacZ-fúziouTable 1 - Determination of cysB-activity in the form of β-galactosidase activity of strains with chromosomal cysK-lacZ-fusion
Príklad 3Example 3
Konštrukcia plazmidu podľa vynálezuConstruction of the Plasmid of the Invention
Organizmy podľa vynálezu sú charakteristické deregulovanou cysteínovou látkovou výmenou a napríklad cysB-génom vo viacnásobnom počte kópií. Na produkciu takýchto mikroorganizmov sa zvolil plazmid (pACYC184-cysEX-GAPDH-ORF306) ako základný konštrukt. Tento plazmid obsahoval prvky cysE-alely rezistentnej na spätnú väzbu a eflux-gén na dereguláciu cysteínovej látkovej výmeny. Podrobne je opísaný v patentovejThe organisms of the invention are characterized by a deregulated cysteine metabolism and, for example, a multiple copy number of the cysB gene. For the production of such microorganisms, a plasmid (pACYC184-cysEX-GAPDH-ORF306) was chosen as the basic construct. This plasmid contained elements of the feedback-resistant cysE allele and an efflux gene for deregulation of the cysteine metabolism. It is described in detail in the patent
31917/T h prihláške EP 0885962 A1 (príklad 2D). V tomto konštrukte štiepenom reštrikčným enzýmom SnaBI, ako aj upravenom fosfatázou, sa medzi cysEXalelu a eflux-gén inzeroval cysB-fragment. Posledný sa získal reštrikciou s enzýmom EcoRI a BstXI a následným pripájaním zarovnaných DNA-koncov s Klenowovým enzýmom z plazmidu pTZ19U-cysB. Plazmid má označenie pHC34.31917 / T h application EP 0885962 A1 (Example 2D). In this construct, the digested SnaBI restriction enzyme as well as the phosphatase engineered, a cysB fragment was inserted between the cysEXallel and the efflux gene. The latter was obtained by restriction with EcoRI and BstXI and subsequent splicing of the blunted DNA-termini with Klenow enzyme from plasmid pTZ19U-cysB. The plasmid is designated pHC34.
Transformáciou kmeňa W3110 Escheríchia coli (ATCC 27325; Bachmann B. J., 1996, In: Neidhardt F. C: (ed.) Escheríchia coli and Salmonella: Cellular and Molecular Biology, American Society for Microbiology, Washington D.C., kap. 133) vznikol organizmus podľa vynálezu. Transformácia sa vykonala pomocou elektroporácie. Pritom sa zmiešala hustá suspenzia buniek v ľadovom 10 %-nom roztoku glycerínu s 0,1 pg plazmidu DNA a pri 2500 V, 200 Ohm a 12,5 pF sa vystavila elektrickému impulzu. Po transfere vsádzky do sterilného LB-média (1 % tryptónu, 0,5 % kvasnicového extraktu, 1 % NaCl) a inkubácii pri 30 °C počas 1 hodiny sa selektovali plazmid nesúce klony na LB-agarových platniach s 15 pg/ml tetracyklínu.Transformation of strain W3110 Escherichia coli (ATCC 27325; Bachmann BJ, 1996, In: Neidhardt F. C: (ed.) Escherichia coli and Salmonella: Cellular and Molecular Biology, American Society for Microbiology, Washington DC, Chapter 133) invention. Transformation was performed by electroporation. The thick cell suspension in an ice-cold 10% glycerin solution was mixed with 0.1 pg of plasmid DNA and subjected to an electrical pulse at 2500 V, 200 Ohm and 12.5 pF. After transfer of the batch to sterile LB-medium (1% tryptone, 0.5% yeast extract, 1% NaCl) and incubation at 30 ° C for 1 hour, a plasmid carrying clones was selected on LB-agar plates with 15 µg / ml tetracycline.
Na porovnanie účinnosti divokého typu cysB-génu oproti konštitutívnej cysB(T149M)-alele sa vytvoril analogický konštrukt (pHC30) a rovnako sa vniesol do kmeňa W3100. Na ďalšie použitie slúžil v EP 885962 A1 opísaný organizmus W3110, transformovaný s plazmidom pA-CYC184/cysEX-GAPDHorf306, ako základný konštrukt na porovnanie a súčasne na vymedzenie voči stavu techniky.To compare the efficacy of the wild-type cysB gene over the constitutive cysB (T149M) allele, an analogous construct (pHC30) was generated and also introduced into the W3100 strain. For further use, the organism W3110, transformed with plasmid pA-CYC184 / cysEX-GAPDHorf306, described in EP 885962 A1 served as a basic construct for comparison and at the same time to be defined against the prior art.
Pretože u W3110 ide o divoký typ kmeňa, vzťahujú sa všetky cysteínové produkčné efekty na plazmidom kódovaný gén.Since W3110 is a wild-type strain, all cysteine production effects relate to the plasmid-encoded gene.
Príklad 4Example 4
Produkcia cysteínu mikroorganizmami podľa vynálezuCysteine production by microorganisms according to the invention
Na dôkaz produkcie cysteínu sa kultivovali v príklade 3 opísané mikroorganizmy vo fermentoroch fed-batch spôsobom s kontinuálnymIn order to demonstrate the production of cysteine, the microorganisms described in Example 3 were cultivated in a fed-batch fermenter by a continuous process.
31917/T h pridávaním glukózy a tiosíranu. Ako zariadenie sa použil prístroj Biostat M firmy Braun Biotech (Melsungen, D) s maximálnym objemom kultúry 2 I.31917 / T h by addition of glucose and thiosulfate. A Biostat M from Braun Biotech (Melsungen, D) with a maximum culture volume of 2 I was used as the apparatus.
Ako štartovacia kultúra sa naočkovalo 20 ml LB-média (10 g/l tryptónu, 5 g/l kvasnicového extraktu, 10 g/l NaCl), ktoré navyše obsahovalo 15 mg/l tetracyklínu a inkubovalo sa na trepačke pri 30 °C a 150 rpm. Po siedmich hodinách sa celková vsádzka previedla do 100 ml SM1-média (12 g/l K2HPO4; 3 g/l KH2PO4; 5 g/l (NH4)2SO4; 0,3 g/l MgSO4 x 7 H2O; 0,015 g/l CaCI2 x 2 H2O; 0,002 g/l FeSO4 x 7 H2O; 1 g/l Nascitrát x 2 H2O; 0,1 g/l NaCl; 1 ml/l roztoku stopových prvkov pozostávajúceho z 0,15 g/l Na2MoO4 x 2 H2O; 2,5 g/l NaBO3; 0,7 g/l C0CI2 x 6 H2O; 0,25 g/l CuSO4 x 5 H2O; 1,6 g/l MnCI2 x 4 H2O; 0,3 g/l ZnSO4 x 7 H2O), ktoré sa suplementovalo s 5 g/l glukózy; 0,5 mg/l vitamínu Bi a 15 mg/l tetracyklínu. Ďalšia inkubácia sa uskutočnila pri 30 °C počas 17 hodín pri 150 rpm.20 ml of LB medium (10 g / l tryptone, 5 g / l yeast extract, 10 g / l NaCl), which additionally contained 15 mg / l tetracycline and incubated on a shaker at 30 ° C and 150, were inoculated as a starter culture. rpm. After seven hours the total batch was transferred to 100 ml SM1 medium (12 g / l K 2 HPO 4 ; 3 g / l KH 2 PO 4 ; 5 g / l (NH 4 ) 2 SO 4 ; 0.3 g / l MgSO 4 x 7 H 2 O; 0.015 g / l CaCl 2 x 2 H 2 O; 0.002 g / l FeSO 4 x 7 H 2 O; 1 g / l Nascitrate x 2 H 2 O; 0.1 g / l NaCl 1 ml / l trace element solution consisting of 0,15 g / l Na 2 MoO 4 x 2 H 2 O; 2,5 g / l NaBO 3 ; 0,7 g / l CO 2 x 6 H 2 O; 25 g / l CuSO 4 x 5 H 2 O; 1.6 g / l MnCl 2 x 4 H 2 O; 0.3 g / l ZnSO 4 x 7 H 2 O) supplemented with 5 g / l glucose ; 0.5 mg / l vitamin Bi and 15 mg / l tetracycline. Further incubation was performed at 30 ° C for 17 hours at 150 rpm.
S touto štartovacou kultúrou (optická hustota pri 600 nm cca 3) sa naočkoval fermentor s 900 ml fermentačného média (15 g/l glukózy, 10 g/l tryptónu, 5 g/l kvasnicového extraktu, 5 g/l (NH4)2SO4; 1,5 g/l KH2PO4; 0,5 g/l NaCl; 0,3 g/l MgSO4 x 7 H2O; 0,015 g/l CaCI2 x 2 H2O; 0,075 g/l FeSO4 x 7 H2O; 1 g/l Nascitrát x 2 H2O; a 1 ml/l roztoku stopových prvkov ako bol uvedený vyššie, 5 mg/l vitamínu Βί a 15 mg/l tetracyklínu, nastavené na pH 7,0 s 25 %ným amoniakom).With this starter culture (optical density at 600 nm ca. 3), a fermenter was seeded with 900 ml of fermentation medium (15 g / l glucose, 10 g / l tryptone, 5 g / l yeast extract, 5 g / l (NH 4 ) 2 SO 4 ; 1.5 g / l KH 2 PO 4 ; 0.5 g / l NaCl; 0.3 g / l MgSO 4 x 7 H 2 O; 0.015 g / l CaCl 2 x 2 H 2 O; 0.075 g / l FeSO 4 x 7 H 2 O; 1 g / l Nasitrate x 2 H 2 O; and 1 ml / l trace element solution as above, 5 mg / l vitamin Βί and 15 mg / l tetracycline, adjusted to pH 7.0 with 25% ammonia).
Počas fermentácie sa nastavila teplota 30 °C a pH hodnota sa udržiavala konštantná na hodnote 7,0, pridávaním 25 %-ného amoniaku. Kultúra sa zavzdušnila sterilizovaným stlačeným vzduchom pri 1,5 obj/obj/min a miešala sa v miešadle s počtom otáčok 200 rpm. Po poklese nasýtenia kyslíkom na hodnotu 50 % sa zvýšil počet otáčok kontrolného pristroja až na hodnotu 1200 rpm, aby sa udržalo nasýtenie kyslíkom na hodnote 50 %.During the fermentation, a temperature of 30 ° C was set and the pH was kept constant at 7.0 by adding 25% ammonia. The culture was aerated with sterilized compressed air at 1.5 vol / vol / min and stirred in a 200 rpm mixer. After the oxygen saturation dropped to 50%, the RPM of the control apparatus was increased up to 1200 rpm to maintain the oxygen saturation at 50%.
Po dvoch hodinách sa pridal 30 %-ný roztok tiosíranu sodného pri dávkovaní 3 ml/hod. Glukóza sa pridávala z 56 %-ného zásobného roztoku, kým obsah vo fermentore, ktorý bol spočiatku 15 g/l, klesol na 5-10g/l. Pridávanie glukózy sa vykonávalo pri prietoku 8-14 ml/hod, pričom sa pri pokuse dodržiavala konštantná koncentrácia 5-10g/l. Stanovenie glukózy saAfter two hours, a 30% sodium thiosulfate solution was added at a dosage of 3 ml / h. Glucose was added from a 56% stock solution while the content in the fermenter, which was initially 15 g / l, dropped to 5-10 g / l. Glucose addition was carried out at a flow rate of 8-14 ml / h, maintaining a constant concentration of 5-10g / l in the experiment. Determination of glucose
31917/T h uskutočnilo glukózovým analyzátorom firmy YSI (Yellow Springs, Ohio, USA).31917 / Th was performed with a glucose analyzer from YSI (Yellow Springs, Ohio, USA).
Produkcia L-cysteinu sa sledovala kolorimetricky testom podľa Gaitonde (Gaitonde, M. K. 1967, Biochem. J. 104, 627-633). Pri tom treba brať do úvahy, že, test nerozlišuje medzi L-cysteínom a v EP 0885962 A1 opísaným kondenzačným produktom L-cysteínu a pyruvátu (kyselina 2-metyltiazolidín-2,4dikarboxylová). Ťažko rozpustný cystín ktorý vzniká oxidáciou z L-cysteínu, sa po rozpustení v 8 %-nej kyseline chlorovodíkovej a následnej redukcii s ditiotreitolom (DTT) v zriedenom roztoku pri pH 8,0 dokázal rovnako ako Lcysteín.L-cysteine production was monitored by the Gaitonde colorimetric assay (Gaitonde, M.K. 1967, Biochem. J. 104, 627-633). It should be noted that the test does not distinguish between L-cysteine and the condensation product of L-cysteine and pyruvate (2-methylthiazolidine-2,4-dicarboxylic acid) described in EP 0885962 A1. The sparingly soluble cystine formed by oxidation from L-cysteine, after dissolution in 8% hydrochloric acid and subsequent reduction with dithiothreitol (DTT) in a dilute solution at pH 8.0, proved to be the same as Lcysteine.
Tabuľka 2 znázorňuje priebeh produkcie pri fermentácii organizmami so základným konštruktom pA-CYC184/cysEX-GAPDH-orf306 opísanom v EP 0885962 A1 v porovnaní s plazmidom pHC34 podľa vynálezu a zodpovedajúcim konštruktom s cysB(T149M)alelou, ktorý kóduje konštitutívne aktívny cysB-génový produkt. Je zrejmé, že vsádzka divokého typu cysB-génov podľa vynálezu má pozitívny vplyv na produkčný výkon, zatiaľ čo konštitutívna alela cysB(T149M) má negatívny účinok.Table 2 shows the production progress of fermentation with organisms having the basic construct pA-CYC184 / cysEX-GAPDH-orf306 described in EP 0885962 A1 compared to the plasmid pHC34 of the invention and the corresponding construct with the cysB (T149M) allele which encodes the constitutively active cysB gene product. . It is clear that the batch of wild type cysB genes of the invention has a positive effect on production performance, while the constitutive allele of cysB (T149M) has a negative effect.
Tabuľka 2 - Produkcia L-cysteínu s konštruktom pHC34 podľa vynálezu resp. kontrolným konštruktomTable 2 - L-Cysteine Production with pHC34 Construct of the Invention control construct
* hviezdičkou označené údaje znamenajú L-cysteín, ktorý sa predkladá v oxidovanej forme ako ťažko rozpustný cystín* Starred data indicate L-cysteine, which is presented in oxidized form as sparingly soluble cystine
31917/T h31917 / T h
SEKVENČNÝ PROTOKOL <110> Consortium fuer elektrochemische Industrie GmbH <120> Spôsob výroby L-cysteínu alebo derivátov L-cysteinu <130> Co9905 <140>SEQUENCE PROTOCOL <110> Consortium fuer elektrochemische Industrie GmbH <120> Method for producing L-cysteine or L-cysteine derivatives <130> Co9905 <140>
<141><141>
<160> 5 <170> Patentln Verš. 2.0 <210> 1 <211> 18 <212> DNA <213> Umelá sekvencia <220><160> 5 <170> Patentln Vers. 2.0 <210> 1 <211> 18 <212> DNA <213> Artificial sequence <220>
<223> Primér pre PCR <400> 1 gttacgagat cgaagagg<223> PCR primer <400> 1 gttacgagat cgaagagg
31917/T h <213> Umelá sekvencia <220>31917 / T h <213> Artificial sequence <220>
<223> Primér pre PCR <400> 2 gtcaccgagt ggtcaatg 18 <210> 3 <211> 27 <212> DNA <213> Umelá sekvencia <220><223> PCR primer <400> 2 gtcaccgagt ggtcaatg 18 <210> 3 <211> 27 <212> DNA <213> Artificial sequence <220>
<223> Oligonukleotid pre in vitro mutagenézu <400> 3 ttcgctatcg ccatggaagc gctgcat 27 <210> 4 <211> 27 <212> DNA <213> Umelá sekvencia <220><223> Oligonucleotide for in vitro mutagenesis <400> 3 ttcgctatcg ccatggaagc gctgcat 27 <210> 4 <211> 27 <212> DNA <213> Artificial sequence <220>
<223> Primér pre PCR <400> 4 ccggaattcc cgttgccgtt tgtggcg 27<223> PCR primer <400> 4 ccggaattcc cgttgccgtt tgtggcg 27
31917/T h <210> 5 <211> 27 <212> DNA <213> Umelá sekvencia <220>31917 / T h <210> 5 <211> 27 <212> DNA <213> Artificial sequence <220>
<223> Primér pre PCR <400> 5 cgcggatccg tgtgaccgat agtcagc 27<223> PCR primer <400> 5 cgcggatccg tgtgaccgat agtcagc 27
31917/T h31917 / T h
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19949579A DE19949579C1 (en) | 1999-10-14 | 1999-10-14 | Microorganism with deregulated cysteine metabolism, useful for high-level production of cysteine and its derivatives, has increased activity of the CysB transcription regulator |
PCT/EP2000/009720 WO2001027307A1 (en) | 1999-10-14 | 2000-10-05 | Method for production of l-cysteine or l-cysteine derivatives by fermentation |
Publications (1)
Publication Number | Publication Date |
---|---|
SK4972002A3 true SK4972002A3 (en) | 2002-09-10 |
Family
ID=7925659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK497-2002A SK4972002A3 (en) | 1999-10-14 | 2000-10-05 | Method for production of l-cysteine or l-cysteine derivatives by fermentation |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1220940B2 (en) |
JP (1) | JP2003511086A (en) |
KR (1) | KR100505336B1 (en) |
CN (1) | CN1262646C (en) |
AT (1) | ATE231918T1 (en) |
CA (1) | CA2386539C (en) |
DE (2) | DE19949579C1 (en) |
DK (1) | DK1220940T3 (en) |
SK (1) | SK4972002A3 (en) |
TW (1) | TWI249575B (en) |
WO (1) | WO2001027307A1 (en) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10046934A1 (en) * | 2000-09-21 | 2002-04-18 | Consortium Elektrochem Ind | Process for the fermentative production of non-proteinogenic L-amino acids |
ES2313555T3 (en) * | 2001-07-11 | 2009-03-01 | Evonik Degussa Gmbh | PROCESS FOR THE PREPARATION OF L-TREONINE THAT USES THE BODIES OF THE ENTEROBACTERIAL FAMILY. |
DE10237479A1 (en) * | 2002-08-16 | 2004-02-26 | Degussa Ag | Animal feed additive containing sulfur |
US7348037B2 (en) | 2002-08-16 | 2008-03-25 | Evonik Degussa Gmbh | Sulfur-containing animal-feed additives |
US20060270013A1 (en) | 2003-02-18 | 2006-11-30 | Michel Chateau | Method for the production of evolved microorganisms which permit the generation or modification of metabolic pathways |
WO2004113373A1 (en) * | 2003-06-21 | 2004-12-29 | University Of Sheffield | Overexpression of the cyddc transporter |
DE10331291A1 (en) | 2003-07-10 | 2005-02-17 | Consortium für elektrochemische Industrie GmbH | Variants of 3-phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes coding for it |
RU2275425C2 (en) * | 2003-11-03 | 2006-04-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) | Bacterium belonging to genus escherichia as producer of l-cysteine and method for preparing l-cysteine |
JP2009118740A (en) | 2006-03-03 | 2009-06-04 | Ajinomoto Co Inc | Method for producing l-amino acid |
EP2351830B1 (en) | 2006-03-23 | 2014-04-23 | Ajinomoto Co., Inc. | A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA |
JP2009165355A (en) | 2006-04-28 | 2009-07-30 | Ajinomoto Co Inc | L-amino acid-producing microorganism and method for producing l-amino acid |
WO2007136133A1 (en) | 2006-05-23 | 2007-11-29 | Ajinomoto Co., Inc. | A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family |
WO2008013187A1 (en) | 2006-07-25 | 2008-01-31 | Kyowa Hakko Bio Co., Ltd. | Method for production of amino acid |
RU2006143864A (en) | 2006-12-12 | 2008-06-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | METHOD FOR PRODUCING L-AMINO ACIDS USING THE BACTERIA OF THE ENTEROBACTERIACEAE FAMILY IN WHICH THE EXPRESSION OF GENES cynT, cynS, cynX, OR cynR, OR THEIR COMBINATION IS DECREASED |
JP2010041920A (en) | 2006-12-19 | 2010-02-25 | Ajinomoto Co Inc | Method for producing l-amino acid |
CN101627110B (en) | 2007-01-22 | 2014-08-13 | 味之素株式会社 | Microorganism capable of producing l-amino acid, and method for production of l-amino acid |
DE102007007333A1 (en) | 2007-02-14 | 2008-08-21 | Wacker Chemie Ag | Process for the purification of L-cysteine |
JP2010110216A (en) | 2007-02-20 | 2010-05-20 | Ajinomoto Co Inc | Method for producing l-amino acid or nucleic acid |
JP2010110217A (en) | 2007-02-22 | 2010-05-20 | Ajinomoto Co Inc | L-amino acid-producing microorganism and method for producing l-amino acid |
CN101715484B (en) | 2007-04-06 | 2014-02-19 | 协和发酵生化株式会社 | Method for producing dipeptide |
JP2011067095A (en) | 2008-01-10 | 2011-04-07 | Ajinomoto Co Inc | Method for producing target substance by fermentation process |
EP2248906A4 (en) | 2008-01-23 | 2012-07-11 | Ajinomoto Kk | Method of producing l-amino acid |
RU2008105793A (en) | 2008-02-19 | 2009-08-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | METHOD FOR DESIGNING OPERONS CONTAINING TRANSLATION-CONJUGATED GENES, BACTERIA CONTAINING SUCH OPERON, METHOD FOR PRODUCING USEFUL METABOLITIS AND METHOD FOR EXPRESS MONITORING |
WO2009104731A1 (en) | 2008-02-21 | 2009-08-27 | 味の素株式会社 | L-cysteine-producing bacterium, and method for production of l-cysteine |
EP2138585B1 (en) | 2008-03-06 | 2011-02-09 | Ajinomoto Co., Inc. | An L-cysteine producing bacterium and a method for producing L-cysteine |
JP5332237B2 (en) | 2008-03-06 | 2013-11-06 | 味の素株式会社 | L-cysteine producing bacterium and method for producing L-cysteine |
WO2009116566A1 (en) | 2008-03-18 | 2009-09-24 | 協和発酵キリン株式会社 | Industrially useful microorganism |
WO2010024267A1 (en) | 2008-09-01 | 2010-03-04 | 国立大学法人信州大学 | Process for producing useful substance |
PE20110369A1 (en) | 2008-09-08 | 2011-06-24 | Ajinomoto Kk | A MICRO-ORGANISM THAT PRODUCES L-AMINO ACID AND A METHOD TO PRODUCE AN L-AMINO ACID |
WO2010084995A2 (en) | 2009-01-23 | 2010-07-29 | Ajinomoto Co.,Inc. | A method for producing an l-amino acid |
US8623619B2 (en) | 2009-02-09 | 2014-01-07 | Kyowa Hakko Bio Co., Ltd. | Process for producing L-amino acid |
JP5698001B2 (en) | 2009-02-10 | 2015-04-08 | 協和発酵バイオ株式会社 | Amino acid production method |
US20120034669A1 (en) | 2009-02-18 | 2012-02-09 | Kyowa Hakko Bio Co., Ltd. | Process for producing useful substance |
JP5463528B2 (en) | 2009-02-25 | 2014-04-09 | 味の素株式会社 | L-cysteine producing bacterium and method for producing L-cysteine |
JP5359409B2 (en) | 2009-03-12 | 2013-12-04 | 味の素株式会社 | L-cysteine producing bacterium and method for producing L-cysteine |
CN102471790B (en) | 2009-07-29 | 2014-10-29 | 味之素株式会社 | Method for producing l-amino acid |
RU2009136544A (en) | 2009-10-05 | 2011-04-10 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) (RU) | METHOD FOR PRODUCING L-CISTEINE USING THE ENTEROBACTERIACEAE FAMILY BACTERIA |
BR112012012915B1 (en) | 2009-11-30 | 2020-12-01 | Ajinomoto Co., Inc. | method for producing l-cysteine, l-cystine, a derivative thereof, or a mixture thereof |
JP2013074795A (en) | 2010-02-08 | 2013-04-25 | Ajinomoto Co Inc | MUTANT rpsA GENE AND METHOD FOR PRODUCING L-AMINO ACID |
RU2471868C2 (en) | 2010-02-18 | 2013-01-10 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) | Mutant adenylate cyclase, dna coding it, bacteria of enterobacteriaceae family containing said dan and method for preparing l-amino acids |
RU2482188C2 (en) | 2010-07-21 | 2013-05-20 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) | METHOD FOR PREPARING L-ARGININE WITH USE OF BACTERIA OF GENUS Escherichia WHEREIN astCADBE OPERON IS INACTIVATED |
RU2501858C2 (en) | 2010-07-21 | 2013-12-20 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) | METHOD FOR OBTAINING L-AMINOACID USING BACTERIUM OF Enterobacteriaceae FAMILY |
BR112013006031A2 (en) | 2010-09-14 | 2016-06-07 | Ajinomoto Kk | bacteria, and method for producing a sulfur-containing amino acid, a related substance, or a mixture thereof. |
JP2014036576A (en) | 2010-12-10 | 2014-02-27 | Ajinomoto Co Inc | Method for producing l-amino acids |
EP2479279A1 (en) * | 2011-01-20 | 2012-07-25 | Evonik Degussa GmbH | Method for producing sulphuric amino acids by means of fermentation |
BR112013020216B1 (en) | 2011-02-09 | 2020-12-01 | Kyowa Hakko Bio Co., Ltd. | process to produce target substance through the fermentation process |
JP2014087259A (en) | 2011-02-22 | 2014-05-15 | Ajinomoto Co Inc | L-cysteine-producing bacterium, and production method of l-cysteine |
US9234223B2 (en) | 2011-04-01 | 2016-01-12 | Ajinomoto Co., Inc. | Method for producing L-cysteine |
BR112013023465B1 (en) * | 2011-04-01 | 2020-10-27 | Ajinomoto Co., Inc | method to produce l-cysteine |
JP2014131487A (en) | 2011-04-18 | 2014-07-17 | Ajinomoto Co Inc | Method for producing l-cysteine |
DE102011075656A1 (en) | 2011-05-11 | 2012-03-29 | Wacker Chemie Ag | Producing L-cystine useful as food additive, preferably in baking industry, as ingredient in cosmetics and as starting material for producing active pharmaceutical ingredient, comprises fermenting microorganism strain in fermentation medium |
DE102011078481A1 (en) | 2011-06-30 | 2013-01-03 | Wacker Chemie Ag | Process for the fermentative production of natural L-cysteine |
RU2011134436A (en) | 2011-08-18 | 2013-10-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | METHOD FOR PRODUCING L-AMINO ACID USING THE ENTEROBACTERIACEAE FAMILY POSSESSING AN INCREASED EXPRESSION OF GENES OF THE CASCADE OF THE FORMATION OF FLAGELLS AND CELL MOBILITY |
EP2628792A1 (en) | 2012-02-17 | 2013-08-21 | Evonik Industries AG | Cell with reduced ppGppase activity |
EP2837688A4 (en) | 2012-04-13 | 2016-06-29 | Kyowa Hakko Bio Co Ltd | Method for producing amino acid |
DE102012208359A1 (en) | 2012-05-18 | 2013-11-21 | Wacker Chemie Ag | Process for the fermentative production of L-cysteine and derivatives of this amino acid |
EP2700715B1 (en) | 2012-08-20 | 2018-07-25 | Evonik Degussa GmbH | Method for manufacturing L-amino acids using improved strains of the enterobacteriaceae family by means of fermentation |
DE102012216527A1 (en) | 2012-09-17 | 2014-03-20 | Wacker Chemie Ag | Process for the fermentative production of L-cysteine and derivatives of this amino acid |
US9611461B2 (en) | 2013-03-19 | 2017-04-04 | National University Corporation NARA Institute of Science and Technology | Enterobacteriaceae bacteria exhibiting increased L-cysteine producing ability |
RU2013118637A (en) | 2013-04-23 | 2014-10-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | METHOD FOR PRODUCING L-AMINO ACIDS USING THE BACTERIA OF THE ENTEROBACTERIACEAE FAMILY IN WHICH THE yjjK GENE IS ADJUSTABLE |
DE102013209274A1 (en) | 2013-05-17 | 2014-11-20 | Wacker Chemie Ag | Microorganism and method for fermentative overproduction of gamma-glutamylcysteine and derivatives of this dipeptide |
JP2016165225A (en) | 2013-07-09 | 2016-09-15 | 味の素株式会社 | Method for producing useful substance |
RU2013140115A (en) | 2013-08-30 | 2015-03-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | METHOD FOR PRODUCING L-AMINO ACIDS USING THE BACTERIA OF THE Enterobacteriaceae FAMILY IN WHICH THE EXPRESSION OF THE znuACB GENERAL CLUSTER IS DISORDERED |
RU2013144250A (en) | 2013-10-02 | 2015-04-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | METHOD FOR PRODUCING L-AMINO ACIDS USING THE BACTERIA OF THE Enterobacteriaceae FAMILY IN WHICH THE EXPRESSION OF A GENE CODING A PHOSPHATE TRANSPORTER IS DECREASED |
JP5958653B2 (en) | 2013-10-02 | 2016-08-02 | 味の素株式会社 | Ammonia control device and ammonia control method |
JP6459962B2 (en) | 2013-10-21 | 2019-01-30 | 味の素株式会社 | Method for producing L-amino acid |
RU2014105547A (en) | 2014-02-14 | 2015-08-20 | Адзиномото Ко., Инк. | METHOD FOR PRODUCING L-AMINO ACIDS USING THE ENTEROBACTERIACEAE FAMILY HAVING A SUPER EXPRESSED GENE yajL |
RU2015120052A (en) | 2015-05-28 | 2016-12-20 | Аджиномото Ко., Инк. | A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family in which gshA gene expression is weakened |
WO2017146195A1 (en) | 2016-02-25 | 2017-08-31 | Ajinomoto Co., Inc. | A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter |
JP7066977B2 (en) | 2017-04-03 | 2022-05-16 | 味の素株式会社 | Manufacturing method of L-amino acid |
WO2020071538A1 (en) | 2018-10-05 | 2020-04-09 | Ajinomoto Co., Inc. | Method for producing target substance by bacterial fermentation |
KR102112286B1 (en) * | 2018-12-05 | 2020-05-19 | 서울대학교산학협력단 | Gene related to acid resistance and methanotrophs comprising the same |
WO2020171227A1 (en) | 2019-02-22 | 2020-08-27 | Ajinomoto Co., Inc. | METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE |
JP7524909B2 (en) | 2019-04-05 | 2024-07-30 | 味の素株式会社 | Method for producing L-amino acids |
JP2022550084A (en) | 2019-09-25 | 2022-11-30 | 味の素株式会社 | Method for producing L-amino acid by bacterial fermentation |
CN115244183A (en) | 2020-04-03 | 2022-10-25 | 瓦克化学股份公司 | Biocatalysts as core components of enzymatic redox systems for the biocatalytic reduction of cystine |
US20230265473A1 (en) | 2020-06-26 | 2023-08-24 | Wacker Chemie Ag | Improved cysteine-producing strains |
WO2023165684A1 (en) | 2022-03-01 | 2023-09-07 | Wacker Chemie Ag | Improved cysteine-producing strains |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19539952A1 (en) * | 1995-10-26 | 1997-04-30 | Consortium Elektrochem Ind | Process for the preparation of O-acetylserine, L-cysteine and L-cysteine-related products |
DE19726083A1 (en) * | 1997-06-19 | 1998-12-24 | Consortium Elektrochem Ind | Microorganisms and processes for the fermentative production of L-cysteine, L-cystine, N-acetyl-serine or thiazolidine derivatives |
-
1999
- 1999-10-14 DE DE19949579A patent/DE19949579C1/en not_active Expired - Fee Related
-
2000
- 2000-10-05 CN CNB008142726A patent/CN1262646C/en not_active Expired - Fee Related
- 2000-10-05 WO PCT/EP2000/009720 patent/WO2001027307A1/en active IP Right Grant
- 2000-10-05 EP EP00969413A patent/EP1220940B2/en not_active Expired - Lifetime
- 2000-10-05 CA CA002386539A patent/CA2386539C/en not_active Expired - Fee Related
- 2000-10-05 DE DE50001193T patent/DE50001193D1/en not_active Expired - Lifetime
- 2000-10-05 SK SK497-2002A patent/SK4972002A3/en unknown
- 2000-10-05 JP JP2001530510A patent/JP2003511086A/en active Pending
- 2000-10-05 DK DK00969413T patent/DK1220940T3/en active
- 2000-10-05 AT AT00969413T patent/ATE231918T1/en active
- 2000-10-05 KR KR10-2002-7004742A patent/KR100505336B1/en not_active IP Right Cessation
- 2000-10-16 TW TW089121607A patent/TWI249575B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100505336B1 (en) | 2005-07-29 |
CN1379823A (en) | 2002-11-13 |
CA2386539C (en) | 2007-04-17 |
EP1220940A1 (en) | 2002-07-10 |
EP1220940B1 (en) | 2003-01-29 |
JP2003511086A (en) | 2003-03-25 |
CN1262646C (en) | 2006-07-05 |
ATE231918T1 (en) | 2003-02-15 |
DE19949579C1 (en) | 2000-11-16 |
DE50001193D1 (en) | 2003-03-06 |
CA2386539A1 (en) | 2001-04-19 |
WO2001027307A1 (en) | 2001-04-19 |
EP1220940B2 (en) | 2010-07-28 |
DK1220940T3 (en) | 2003-06-23 |
KR20020059620A (en) | 2002-07-13 |
TWI249575B (en) | 2006-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SK4972002A3 (en) | Method for production of l-cysteine or l-cysteine derivatives by fermentation | |
RU2346038C2 (en) | Fermentative method of producing amino acids and amino acid derivatives from phosphoglycerate family | |
CA2235752C (en) | Process for preparing o-acetylserine, l-cysteine and l-cysteine-related products | |
JP5805202B2 (en) | Microorganism producing O-phosphoserine and method for producing L-cysteine or a derivative thereof from O-phosphoserine using the same | |
PL195784B1 (en) | Microorganisms and fermentation processes used in production of l-cysteine, l-cystine, n-acetylserine or thiazolydine derivatives | |
WO2007012078A1 (en) | Methionine producing recombinant microorganisms | |
US7582460B2 (en) | 3-phosphoglycerate dehydrogenase variants whose inhibition by L-serine is reduced, and genes encoding them | |
RU2280687C2 (en) | Microorganism cell, plasmid vector, method for creature of microorganism cell and method for preparing l-methionine | |
EP3039153B1 (en) | Microorganism for methionine production with improved methionine synthase activity and methionine efflux | |
KR100464906B1 (en) | Process for preparing O-acetyl-L-serine by fermentation | |
KR20080052593A (en) | Method for producing amino acids using micro-organisms | |
JP2015528301A (en) | Method for fermentative production of L-cysteine and derivatives of said amino acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FD9A | Suspended procedure due to non-payment of fee |