KR102112286B1 - Gene related to acid resistance and methanotrophs comprising the same - Google Patents

Gene related to acid resistance and methanotrophs comprising the same Download PDF

Info

Publication number
KR102112286B1
KR102112286B1 KR1020180155169A KR20180155169A KR102112286B1 KR 102112286 B1 KR102112286 B1 KR 102112286B1 KR 1020180155169 A KR1020180155169 A KR 1020180155169A KR 20180155169 A KR20180155169 A KR 20180155169A KR 102112286 B1 KR102112286 B1 KR 102112286B1
Authority
KR
South Korea
Prior art keywords
lactic acid
strain
recombinant strain
gene
nucleotide sequence
Prior art date
Application number
KR1020180155169A
Other languages
Korean (ko)
Inventor
한지숙
이은열
김수진
이종관
김원식
Original Assignee
서울대학교산학협력단
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 경희대학교 산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020180155169A priority Critical patent/KR102112286B1/en
Application granted granted Critical
Publication of KR102112286B1 publication Critical patent/KR102112286B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)

Abstract

The present invention relates to a gene related to acid resistance and a methanotroph strain having increased resistance against lactic acid containing the same. A recombinant strain of the present invention is to increase resistance against lactic acid of a methanotroph strain using methane as the only carbon source, in which expression of an AYM39_21120 gene by making some bases of promoters of AYM39_21120 gene, that is a gene contributing to the resistance against lactic acid, deficient. In addition, the recombinant strain of the present invention exhibits a high growth rate in a medium containing a high concentration of lactic acid. Therefore, the recombinant strain of the present invention can be usefully used for production of lactic acid using methane.

Description

내산성 관련 유전자 및 이를 포함하는 메탄자화균{GENE RELATED TO ACID RESISTANCE AND METHANOTROPHS COMPRISING THE SAME}Gene-related genes and methane magnetizing bacteria containing them {GENE RELATED TO ACID RESISTANCE AND METHANOTROPHS COMPRISING THE SAME}

본 발명은 내산성 관련 유전자 및 이를 포함하는 젖산에 대한 내성이 증가한 메탄자화균에 관한 것이다.The present invention relates to an acid resistance-related gene and methane magnetizing bacteria having increased resistance to lactic acid containing the same.

젖산(lactic acid)은 일반적으로 식품첨가제로 사용되고 있을 뿐만 아니라 화장품, 화학, 금속, 직물, 염색, 의약품 등의 산업에서 폭넓게 이용되고 있는 유기산의 일종이다. 최근 유가상승, 원유의 고갈, 플라스틱 제품으로 인한 환경오염 문제로 인해 환경친화적인 대체 고분자 물질에 대한 관심이 증가되고 있어 생분해성 플라스틱의 일종인 폴리락틱애시드(PLA)의 원료물질로 사용되는 젖산의 수요가 크게 증가하고 있다. Lactic acid is a type of organic acid that is widely used in industries such as cosmetics, chemicals, metals, textiles, dyeing, and pharmaceuticals, as well as being used as a food additive in general. Recently, due to rising oil prices, depletion of crude oil, and environmental pollution problems caused by plastic products, interest in environmentally friendly alternative polymer materials has increased, and lactic acid used as a raw material for polylactic acid (PLA), a kind of biodegradable plastic. Demand is increasing significantly.

기존에는 주로 당류와 효모를 이용하여 젖산을 생산하였고, 이와 같은 방법을 이용해 순도 높은 젖산을 생산하는 방법에 대한 연구가 진행되었다. 이때, 효모는 젖산의 생산에 사용할 탄소원으로 당류를 사용한다. 최근에는 당류 대신 저렴한 탄소원을 활용하여 경제성이 확보될 수 있는 젖산 생산방법에 대해 관심이 높아지고 있다. In the past, lactic acid was mainly produced using sugars and yeast, and research on a method of producing lactic acid having high purity using these methods has been conducted. At this time, yeast uses sugar as a carbon source to be used for the production of lactic acid. Recently, there has been increasing interest in lactic acid production methods that can secure economic efficiency by using cheap carbon sources instead of sugars.

이와 관련하여, 메탄은 천연가스와 바이오 가스의 주성분으로 매우 풍부하고 가장 값싼 탄소원이다. 최근 메탄을 유일한 탄소원 및 에너지원으로 사용할 수 있는 메탄자화균주를 이용한 젖산 생산방법에 대한 연구가 활발히 진행되고 있다. 하지만, 메탄자화균주는 젖산에 대한 저항성이 낮아, 메탄자화균주가 젖산을 생산하여 젖산의 농도가 높아질수록 메탄자화균주의 성장속도가 감소한다는 문제점이 있다. 메탄자화균주는 0.5 g/L의 젖산이 첨가된 배지에서 거의 성장하지 못할 정도로 젖산에 대한 저항성이 낮다. 최근 M. buryatense 5GB1S를 사용하여 메탄으로부터 젖산염(lactate)을 생산한 연구결과가 보고된 바 있으며, 0.8 g/L의 최대 농도 및 0.008 g/L/h의 최대 생산성을 나타내었다(C. A. Henard et al., Sci. Rep., 6(2185):1-9, 2016). 하지만, 메탄자화균의 느린 성장속도 등으로 인해 젖산 생산 증대에 한계를 보이고 있다.In this regard, methane is the main component of natural gas and biogas, and is a very rich and cheapest carbon source. Recently, research on a method for producing lactic acid using a methane magnetization strain that can use methane as the only carbon source and energy source has been actively conducted. However, the methane magnetization strain has a low resistance to lactic acid, and the methane magnetization strain produces lactic acid, and thus, as the concentration of lactic acid increases, the growth rate of the methane magnetization strain decreases. The methane magnetized strain has low resistance to lactic acid to such an extent that it hardly grows in a medium containing 0.5 g / L of lactic acid. Recently, a study result of producing lactate from methane using M. buryatense 5GB1S has been reported, showing a maximum concentration of 0.8 g / L and a maximum productivity of 0.008 g / L / h (CA Henard et al. ., Sci. Rep. , 6 (2185): 1-9, 2016). However, due to the slow growth rate of methane magnetization bacteria, it is showing limitations in increasing lactic acid production.

따라서, 높은 농도의 젖산을 포함하는 배지에서도 빠른 성장속도를 나타내기 위해, 젖산에 대한 저항성이 향상된 메탄자화균주에 대한 지속적인 연구가 필요한 상황이다.Therefore, in order to show a rapid growth rate even in a medium containing a high concentration of lactic acid, there is a need for continuous research on methane magnetization strains with improved resistance to lactic acid.

C. A. Henard et al., Sci. Rep., 6(2185):1-9, 2016 C. A. Henard et al., Sci. Rep., 6 (2185): 1-9, 2016

이에 본 발명자들은 젖산에 대한 저항성이 향상된 메탄자화균주를 개발하기 위해 연구한 결과, 적응진화를 통해 젖산에 대한 저항성이 크게 향상된 메탄자화균주를 개발하였다. 또한, 상기 메탄자화균주의 유전체를 분석하여 AYM39_21120 유전자의 프로모터 중 456번째 및 457번째 염기(TT)가 결실된 것을 확인하였으며, 상기 유전자 결손에 의해 발현이 증가된 AYM39_21120 유전자가 메탄자화균주의 내산성에 기여하는 것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors have developed a methane magnetization strain with improved resistance to lactic acid, and as a result of research to develop a methane magnetization strain with improved resistance to lactic acid, through adaptive evolution. In addition, by analyzing the genome of the methane magnetization strain, it was confirmed that the 456th and 457th bases (TT) of the promoters of the AYM39_21120 gene were deleted, and the AYM39_21120 gene whose expression was increased by the gene deficiency was affected by the acid resistance of the methane magnetization strain. The present invention was completed by confirming the contribution.

상기 과제를 해결하기 위하여, 본 발명의 일 측면은, LysR family transcriptional regulator가 과발현 되도록 형질전환된 재조합 균주를 제공한다.In order to solve the above problems, an aspect of the present invention provides a recombinant strain transformed such that the LysR family transcriptional regulator is overexpressed.

본 발명의 다른 측면은, 상기 재조합 균주에 젖산 탈수소효소 유전자가 도입된 젖산 생산능을 갖는 재조합 균주를 제공한다. Another aspect of the present invention provides a recombinant strain having the ability to produce lactic acid in which the lactic acid dehydrogenase gene is introduced into the recombinant strain.

본 발명의 또 다른 측면은, 젖산 생산능을 갖는 상기 재조합 균주를 메탄을 포함하는 조건하에서 배양하는 단계를 포함하는 젖산을 생산하는 방법을 제공한다. Another aspect of the present invention provides a method for producing lactic acid, comprising culturing the recombinant strain having lactic acid production capacity under conditions containing methane.

본 발명의 또 다른 측면은, 서열번호 4의 염기서열로 구성되는 프로모터를 제공한다. Another aspect of the present invention provides a promoter consisting of the nucleotide sequence of SEQ ID NO: 4.

본 발명의 또 다른 측면은, 상기 프로모터 및 목적 단백질을 코딩하는 염기서열을 포함하는 발현벡터를 제공한다.Another aspect of the present invention provides an expression vector comprising the promoter and a base sequence encoding a target protein.

본 발명의 재조합 균주는 메탄을 유일한 탄소원으로 사용하는 메탄자화균주의 젖산에 대한 저항성을 증가시킨 것으로서, 젖산의 저항성에 기여하는 유전자인 AYM39_21120 유전자의 프로모터 중 일부 염기를 결실시켜 AYM39_21120 유전자의 발현을 증가시켰다. 또한, 본 발명의 재조합 균주는 고농도의 젖산이 포함된 배지에서 높은 성장속도를 나타내었다. 따라서, 본 발명의 재조합 균주는 메탄을 이용한 젖산의 생산에 유용하게 사용될 수 있다.The recombinant strain of the present invention is to increase the resistance to lactic acid of a methane magnetization strain using methane as the sole carbon source, and increases the expression of the AYM39_21120 gene by deleting some of the promoters of the AYM39_21120 gene, a gene that contributes to the resistance of lactic acid. Ordered. In addition, the recombinant strain of the present invention showed a high growth rate in a medium containing a high concentration of lactic acid. Therefore, the recombinant strain of the present invention can be usefully used for the production of lactic acid using methane.

도 1은 야생형 DH-1 균주와 적응진화를 통해 젖산에 저항성이 증가된 DH-1 균주(JHM5110)를 NMS 배지 또는 8.0 g/L 농도의 젖산을 포함하는 배지에서 배양하였을 때의 성장속도를 나타낸 도면이다.
도 2는 JHM5110 균주의 유전체 중 돌연변이가 일어난 부위를 도식화한 도면이다.
도 3은 야생형 DH-1 균주와 JHM5110 균주의 AYM39_21110, AYM39_21115, AYM39_21120, AYM39_21125 및 AYM39_21130 유전자 발현을 비교한 도면이다.
도 4는 야생형 DH-1 균주, AYM39_21120 유전자가 도입된 DH-1 균주(JHM5101), AYM39_21125 및 AYM39_21130 유전자가 도입된 DH-1 균주(JHM5102) 및 AYM39_21120, AYM39_21125 및 AYM39_21130 유전자가 도입된 DH-1 균주(JHM5103)를 각각 NMS 배지 또는 0.6 g/L 농도의 젖산을 포함하는 배지에서 배양하였을 때의 성장속도를 나타낸 도면이다.
도 5는 JHM5110 균주, AYM39_21125 및 AYM39_21130 유전자가 결손된 DH-1 균주(JHM5111) 및 AYM39_21120, AYM39_21125 및 AYM39_21130 유전자가 결손된 DH-1 균주(JHM5112) 균주를 각각 NMS 배지 또는 8.0 g/L 농도의 젖산을 포함하는 배지에서 배양하였을 때의 성장속도를 나타낸 도면이다.
도 6은 메탄자화균에서의 D형 젖산 생산 경로를 나타낸 도면이다.
도 7은 JHM5110 균주에 젖산 탈수소효소 유전자를 도입한 균주(JHM5120)의 젖산 생산량을 나타낸 도면이다.
Figure 1 shows the growth rate when culturing the wild type DH-1 strain and DH-1 strain (JHM5110) with increased resistance to lactic acid through adaptive evolution in NMS medium or a medium containing 8.0 g / L lactic acid It is a drawing.
2 is a diagram showing a region in which mutation occurs in the genome of the JHM5110 strain.
3 is a diagram comparing the expression of the wild type DH-1 and AHM39_21110, AYM39_21115, AYM39_21120, AYM39_21125 and AYM39_21130 genes of the JHM5110 strain.
Figure 4 is a wild type DH-1 strain, AHM39_21120 gene introduced DH-1 strain (JHM5101), AYM39_21125 and AYM39_21130 gene introduced DH-1 strain (JHM5102) and AYM39_21120, AYM39_21125 and AYM39_21130 gene introduced DH-1 strain It is a diagram showing the growth rate when (JHM5103) was cultured in NMS medium or medium containing lactic acid at a concentration of 0.6 g / L, respectively.
Figure 5 shows the DH-1 strains (JHM5111) and AYM39_21120, AYM39_21125 and AYM39_21130 (JHM5112) strains lacking the JHM5110 strain, AYM39_21125 and AYM39_21130 genes, respectively. It is a view showing the growth rate when cultured in a medium containing a.
6 is a view showing a D-type lactic acid production pathway in methane magnetizing bacteria.
7 is a view showing the lactic acid production of the strain (JHM5120) in which the lactic acid dehydrogenase gene was introduced into the JHM5110 strain.

이하, 본 발명에 대하여 상세히 설명하도록 한다. Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은 LysR family transcriptional regulator가 과발현 되도록 형질전환된 재조합 균주를 제공한다. One aspect of the present invention provides a recombinant strain transformed such that the LysR family transcriptional regulator is overexpressed.

상기 균주는 메탄자화균(methanotrophs)일 수 있다. 상기 메탄자화균은 Methylomonas sp., Methylovulum sp., Methylocaldum sp., Methylomicrobium sp. 또는 Methylococcus sp. 속 균주인 것일 수 있다. 바람직하게는, 상기 메탄자화균은 Methylomonas sp. DH-1, Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum 또는 Methylococcus capsulatus일 수 있으나, 이에 제한되는 것은 아니다. The strain may be methanotrophs. The methane magnetization bacteria are Methylomonas sp., Methylovulum sp., Methylocaldum sp., Methylomicrobium sp. Or Methylococcus sp. It may be a genus strain. Preferably, the methane magnetization bacteria Methylomonas sp . DH-1 , Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum or Methylococcus capsulatus , but are not limited thereto.

본 발명에서 사용하는 용어 "메탄자화균(methanotrophs)"이란, 메탄산화세균이라고도 호칭되며, 메탄을 유일한 탄소원으로 이용하여 생육하는 원핵생물을 의미한다. 대부분의 메탄자화균은 대기중의 메탄을 탄소원으로서 사용하는데, 대체로 메탄을 메탄올의 형태로 전환시킨 후, 생체내 대사에 사용한다.The term "methanotrophs" used in the present invention is also referred to as methane oxidizing bacteria, and refers to prokaryotes that grow using methane as the only carbon source. Most methane magnetization bacteria use methane in the atmosphere as a carbon source, and usually convert methane to methanol and then use it for metabolism in vivo.

본 발명에서 사용되는 용어 "메틸로모나스 속(Methylomonas sp.) DH-1 균주"란, 하수슬러지로부터 유래되고, 종래에 보고되지 않았던 메틸로모나스 속(Methylomonas sp.)에 속하는 균주를 의미한다. 상기 DH-1 균주는 2016년 4월 8일자로 한국생명공학연구원 생물자원센터에 기탁하고, 기탁번호 KCTC13004BP를 부여받은 균주를 의미한다. 상기 균주는 2015년 8월 27일자로 한국생명공학연구원 생물자원센터에 기탁하고, 기탁번호 KCTC18400P를 부여받은 균주를 부다페스트 조약하의 기탁으로 전환한 것으로서, 기탁번호 KCTC13004BP의 균주와 기탁번호 KCTC18400P의 균주가 동일한 것임은 자명하다.The term " Methylomonas sp. DH-1 strain" used in the present invention means a strain derived from sewage sludge and belonging to the genus Methylomonas sp., Which has not been previously reported. The DH-1 strain refers to a strain that has been deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center on April 8, 2016, and has been assigned a deposit number KCTC13004BP. As of August 27, 2015, the strain was deposited at the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center, and the strain given the accession number KCTC18400P was converted to the deposit under the Budapest Treaty.The strain of the accession number KCTC13004BP and the strain of the accession number KCTC18400P It is obvious that it is the same thing.

상기 재조합 균주는 LysR family transcriptional regulator를 코딩하는 염기서열을 포함하는 발현벡터가 도입된 것일 수 있다. The recombinant strain may be an expression vector containing a nucleotide sequence encoding a LysR family transcriptional regulator.

본 발명에서 사용하는 용어 "LysR family transcriptional regulator"란, AYM39_21120 유전자에 의해 코딩되는 단백질로 LysR 계열의 전사제어인자(transcriptional regulator)를 의미한다. 상기 LysR family transcriptional regulator는 서열번호 1로 표시되는 아미노산 서열을 갖는 단백질일 수 있다. 또한, 상기 LysR family transcriptional regulator를 코딩하는 염기서열은 서열번호 2로 표시되는 염기서열일 수 있다. The term "LysR family transcriptional regulator" used in the present invention is a protein encoded by the AYM39_21120 gene and refers to a LysR family transcriptional regulator. The LysR family transcriptional regulator may be a protein having an amino acid sequence represented by SEQ ID NO: 1. In addition, the nucleotide sequence encoding the LysR family transcriptional regulator may be a nucleotide sequence represented by SEQ ID NO: 2.

본 명세서에서 사용된 용어 "발현벡터"란, 숙주세포에서 목적 단백질을 발현할 수 있는 재조합 벡터로서, 삽입된 유전자가 발현되도록 작동 가능하게 연결된 필수적 조절 요소를 포함하는 유전자 작제물을 의미한다. 상기 발현벡터는 개시코돈, 종결코돈, 프로모터, 오퍼레이터 등의 발현조절 요소들을 포함하는데, 상기 개시 코돈 및 종결 코돈은 일반적으로 단백질을 코딩하는 염기서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. As used herein, the term "expression vector" means a recombinant construct capable of expressing a target protein in a host cell, and means a gene construct comprising essential regulatory elements operably linked to express the inserted gene. The expression vector includes expression control elements such as an initiation codon, a termination codon, a promoter, an operator, etc., the initiation codon and the termination codon are generally regarded as a part of a nucleotide sequence encoding a protein, and when a gene construct is administered, in an individual It must be functional and must be in frame with the coding sequence.

본 발명의 용어 "작동가능하게 연결(operably linked)"이란, 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 상태를 의미한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용 할 수 있다.The term "operably linked (operably linked)" of the present invention refers to a state in which a nucleic acid sequence encoding a desired protein or RNA and a nucleic acid expression control sequence are functionally linked to perform a general function. . For example, a promoter and a nucleic acid sequence encoding a protein or RNA can be operably linked to affect the expression of the coding sequence. Operational linkage with an expression vector can be made using genetic recombination techniques well known in the art, and site-specific DNA cleavage and linkage can use enzymes and the like generally known in the art.

상기 발현벡터는 플라스미드 벡터 또는 코스미드 벡터로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The expression vector may be any one selected from the group consisting of plasmid vectors or cosmid vectors.

상기 플라스미드 벡터는 상업적으로 개발된 pUC18 플라스미드, pBAD 플라스미드, pIDTSAMRT-AMP 플라스미드, pJK001 플라스미드 등일 수 있으나, 이에 제한되는 것은 아니다.The plasmid vector may be a commercially developed pUC18 plasmid, pBAD plasmid, pIDTSAMRT-AMP plasmid, pJK001 plasmid, etc., but is not limited thereto.

상기 발현벡터를 도입하는 방법은 발현벡터를 포함하는 리포좀을 이용하는 방법, PEG를 이용하여 재조합 발현벡터를 도입하는 방법, 상기 재조합 발현벡터의 직접주입법, 미세입자충격법, 유전자총, 전기천공법(electroporation), 바이러스를 이용한 형질전환법, 진공을 이용한 형질전환법(vacuum infiltration method), 화아침지법(floral meristem dipping method) 등을 사용할 수 있다. 바람직하게는, 상기 발현벡터를 도입하는 방법은 전기천공법일 수 있다. The method of introducing the expression vector is a method using a liposome containing the expression vector, a method of introducing a recombinant expression vector using PEG, a direct injection method of the recombinant expression vector, a microparticle impact method, a gene gun, an electroporation method ( electroporation), a transformation method using a virus, a vacuum infiltration method, a floral meristem dipping method, and the like. Preferably, the method of introducing the expression vector may be an electroporation method.

상기 발현벡터는 episomal DNA 형태 또는 균주의 유전체 내 삽입을 통해 유전자를 발현할 수 있지만, 바람직하게는 메탄자화균주의 유전체 내에 삽입을 통한 유전자 발현일 수 있다. The expression vector may express a gene through insertion into the genome of an episomal DNA form or strain, but may preferably be gene expression through insertion into a genome of a methane magnetization strain.

상기 발현벡터는 서열번호 4의 염기서열로 구성되는 프로모터를 LysR family transcriptional regulator를 코딩하는 염기서열의 업스트림(upstream) 위치에 포함할 수 있다. The expression vector may include a promoter consisting of the nucleotide sequence of SEQ ID NO: 4 upstream of the nucleotide sequence encoding the LysR family transcriptional regulator.

또한, 상기 재조합 균주는 서열번호 4의 염기서열로 구성되는 프로모터를 포함하는 발현벡터가 도입된 것일 수 있다. In addition, the recombinant strain may be introduced an expression vector containing a promoter consisting of the nucleotide sequence of SEQ ID NO: 4.

상기 재조합 균주는 서열번호 2 및 서열번호 4의 염기서열을 포함하는 발현벡터가 도입되어 내산성이 증가된 균주일 수 있다. The recombinant strain may be a strain having increased acid resistance by introducing an expression vector comprising the nucleotide sequence of SEQ ID NO: 2 and SEQ ID NO: 4.

본 발명자들은 젖산에 대한 저항성이 향상된 메탄자화균주를 개발하기 위해 연구한 결과, 높은 농도의 젖산을 포함하는 배지에서 적응진화를 통해 젖산에 대한 저항성이 크게 향상된 메탄자화균주를 선별하였다(도 1). 상기 메탄자화균주의 유전체를 염기서열 분석하여 서열번호 3의 염기서열로 표시되는 AYM39_21120 유전자의 프로모터 중 456번째 및 457번째 염기(TT)가 결실된 것을 확인하였다(도 2). 상기 염기의 결손에 의해 AYM39_21120 유전자의 발현이 증가되는 것을 확인하였다(도 3). 또한, 상기 AYM39_21120 유전자가 메탄자화균주의 내산성에 기여하는 것을 확인하였다(도 4 및 도 5). 따라서, 본 발명의 재조합 균주는 젖산에 대한 저항성이 높으므로, 메탄을 이용한 젖산의 생산에 유용하게 사용될 수 있다. The present inventors have researched to develop a methane magnetization strain with improved resistance to lactic acid, and selected methane magnetization strain with significantly improved resistance to lactic acid through adaptive evolution in a medium containing high concentration of lactic acid (FIG. 1). . Base sequence analysis of the genome of the methane magnetization strain confirmed that the 456th and 457th bases (TT) of the promoters of the AYM39_21120 gene represented by the nucleotide sequence of SEQ ID NO: 3 were deleted (FIG. 2). It was confirmed that the expression of the AYM39_21120 gene is increased by the deletion of the base (FIG. 3). In addition, it was confirmed that the AYM39_21120 gene contributes to the acid resistance of the methane magnetization strain (FIGS. 4 and 5). Therefore, the recombinant strain of the present invention has high resistance to lactic acid, and thus can be usefully used for the production of lactic acid using methane.

본 발명의 다른 측면은, 상기 재조합 균주에 젖산 탈수소효소(lactate dehydrogenase) 유전자가 도입된 젖산 생산능을 갖는 재조합 균주를 제공한다. Another aspect of the present invention provides a recombinant strain having the ability to produce lactic acid in which the lactate dehydrogenase gene is introduced into the recombinant strain.

상기 재조합 균주는 상술한 바와 같다. The recombinant strain is as described above.

본 발명에서 사용하는 용어 "젖산 탈수소효소"란, 일반적으로 NAD+를 이용하여 L-젖산 혹은 D-젖산에서 수소를 이탈시켜 피루브산으로 만드는 효소로, 이와는 역반응인 해당의 최종단계를 촉매할 때에는 NADH를 이용하여 피루브산을 환원하여 L-젖산 혹은 D-젖산을 생성하는 효소이다. 즉, 본 발명의 젖산 탈수소효소는 L-젖산 탈수소효소 또는 D-젖산 탈수소효소일 수 있으며, 구체적으로는 D-젖산 탈수소효소일 수 있다.The term "lactic acid dehydrogenase" used in the present invention generally refers to an enzyme that releases hydrogen from L-lactic acid or D-lactic acid to make pyruvic acid by using NAD +, and NADH is used to catalyze the corresponding final step, which is a reverse reaction. It is an enzyme that reduces pyruvate to produce L-lactic acid or D-lactic acid. That is, the lactic acid dehydrogenase of the present invention may be L-lactic acid dehydrogenase or D-lactic acid dehydrogenase, and specifically, it may be D-lactic acid dehydrogenase.

상기 젖산 탈수소효소 유전자는 야생형 젖산 탈수소효소뿐 아니라, 이와 최소한 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 의 상동성을 가지는 동일한 활성을 갖는 효소의 유전자를 포함할 수 있다. 상기 젖산 탈수소효소 유전자는 NCBI의 GenBank 등을 통해 확인할 수 있으며, Leuconostoc mesentoroides subsp. mesenteroides ATCC 8293 유래의 젖산 탈수소효소를 코딩하는 유전자일 수 있다. 구체적으로, 상기 젖산 탈수소효소 유전자는 GenBank: ABJ62843.1의 아미노산 서열을 코딩하는 염기서열일 수 있다. 바람직하게는, 상기 젖산 탈수소효소 유전자는 서열번호 5의 염기서열일 수 있다. The lactic acid dehydrogenase gene has the same activity as wild type lactic acid dehydrogenase, as well as at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology. It may contain the gene of the enzyme. The lactic acid dehydrogenase gene can be identified through NCBI GenBank, etc., Leuconostoc mesentoroides subsp. It may be a gene encoding lactic acid dehydrogenase from mesenteroides ATCC 8293. Specifically, the lactic acid dehydrogenase gene may be a nucleotide sequence encoding the amino acid sequence of GenBank: ABJ62843.1. Preferably, the lactic acid dehydrogenase gene may be a nucleotide sequence of SEQ ID NO: 5.

이때, 상기 젖산 생산능을 갖는 재조합 균주는 glgA(glycogen synthase) 유전자가 결실된 균주일 수 있다. 구체적으로, 상기 젖산 생산능을 갖는 재조합 균주는 AYM39_03770(glgA) 유전자 위치에 유전자 위치에 Leuconostoc mesentoroides subsp. mesenteroides ATCC 8293 유래의 서열번호 5로 표시되는 염기서열을 포함하는 젖산 탈수소효소 유전자가 도입된 균주일 수 있다. At this time, the recombinant strain having the lactic acid-producing ability may be a strain in which the glgA (glycogen synthase) gene is deleted. Specifically, the recombinant strain having the lactic acid-producing ability is Leuconostoc mesentoroides subsp. At the gene location at the AYM39_03770 ( glgA ) gene location. It may be a strain introduced with a lactic acid dehydrogenase gene comprising the nucleotide sequence represented by SEQ ID NO: 5 derived from mesenteroides ATCC 8293.

상기 젖산 탈수소효소 유전자가 도입된 재조합 균주는 젖산 탈수소효소 유전자가 도입되어 젖산 생산이 가능한 균주일 수 있다.The recombinant strain into which the lactic acid dehydrogenase gene has been introduced may be a strain capable of producing lactic acid by introducing the lactic acid dehydrogenase gene.

본 발명의 또 다른 측면은, 상기 젖산 생산능을 갖는 재조합 균주를 메탄을 포함하는 조건하에서 배양하는 단계를 포함하는 젖산을 생산하는 방법을 제공한다.Another aspect of the present invention provides a method for producing lactic acid, comprising culturing the recombinant strain having the lactic acid production capacity under conditions containing methane.

이때, 상기 젖산 생산능을 갖는 재조합 균주는 상술한 바와 같다.  At this time, the recombinant strain having the lactic acid production capacity is as described above.

상기 젖산 생산능을 갖는 재조합 균주를 배양하는 방법은 특별히 제한되지 않으나, 메탄을 포함하는 대기조건 하에서, 배지에 접종하여 배양함으로써 수행될 수 있다. The method for culturing the recombinant strain having the lactic acid-producing ability is not particularly limited, but can be performed by inoculating the medium and incubating under atmospheric conditions including methane.

상기 대기중 메탄의 농도는 0.01 내지 50%(v/v)일 수 있으며, 구체적으로 상기 메탄의 농도는 10 내지 40%(v/v) 또는 20%(v/v)일 수 있다. The concentration of methane in the atmosphere may be 0.01 to 50% (v / v), specifically, the concentration of methane may be 10 to 40% (v / v) or 20% (v / v).

배양온도는 특별히 제한되지 않으나, 20℃ 내지 40℃일 수 있다. 바람직하게는, 25℃ 내지 35℃ 일 수 있다. 배양온도의 일 구체예로는 30℃일 수 있다. 상기 배양은 교반조건에서 수행될 수 있다. 구체적으로, 상기 교반조건은 100 rpm 내지 300 rpm일 수 있으며, 바람직하게는 150 rpm 내지 250 rpm 또는 175 rpm일 수 있다. 배양시간은 30시간 내지 200시간 동안 배양할 수 있으며, 구체적으로, 60시간 내지 140시간 동안 배양할 수 있다. 구체적으로는, 120시간 동안 배양할 수 있다. The culture temperature is not particularly limited, but may be 20 ° C to 40 ° C. Preferably, it may be 25 ° C to 35 ° C. As a specific example of the culture temperature, it may be 30 ℃. The culture may be performed under stirring conditions. Specifically, the stirring conditions may be 100 rpm to 300 rpm, preferably 150 rpm to 250 rpm or 175 rpm. Incubation time can be cultured for 30 to 200 hours, specifically, for 60 to 140 hours. Specifically, it can be cultured for 120 hours.

본 발명에 있어서, 상기 젖산 생산능을 갖는 재조합 균주를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 상기 재조합 균주로부터 젖산을 생산할 수 있는 한 특별히 이에 제한되지 않는다. 또한, 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.In the present invention, the method of culturing the recombinant strain having the lactic acid-producing ability can be performed using a method well known in the art. Specifically, the culture is not particularly limited as long as it can produce lactic acid from the recombinant strain. In addition, the culture may be continuously cultured in a batch process or an injection batch or repeated fed batch process.

배양에 사용되는 배지는 메탄자화균의 배양에 사용되는 것으로 알려진 NMS(nitrate mineral salts) 배지를 사용할 수 있다. 메탄자화균에 따라 상기 배지에 포함된 성분 또는 이의 함량을 조절한 배지를 사용할 수 있다(http://methanotroph.org/wiki/culturing-tips/). 특히, 배지에 NaCl, KCl 등의 염류를 포함할 경우, DH-1 균주 또는 그의 형질전환체의 증식 또는 젖산의 생산성을 향상시킬 수 있다. 이때, 배지에 포함되는 염류의 농도는 0.1%(w/w) 내지 3.0%(w/w)일 수 있으며, 바람직하게는 1.0%(w/w) 내지 2.0%(w/w) 또는 1.5%(w/w)일 수 있다. As the medium used for cultivation, NMS (nitrate mineral salts) medium known to be used for cultivation of methane magnetization bacteria may be used. Depending on the methanogenic bacteria, a medium in which the components contained in the medium or the content thereof is adjusted can be used (http://methanotroph.org/wiki/culturing-tips/). In particular, when salts such as NaCl and KCl are included in the medium, the DH-1 strain or its transformant can be proliferated or the productivity of lactic acid can be improved. At this time, the concentration of the salt contained in the medium may be 0.1% (w / w) to 3.0% (w / w), preferably 1.0% (w / w) to 2.0% (w / w) or 1.5% (w / w).

또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 염기 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양 물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. In addition, precursors suitable for the culture medium may be used. The above-mentioned raw materials may be added in a batchwise, fed-batch, or continuous manner in an appropriate manner to the culture in the culture process, but are not particularly limited thereto. The pH of the culture can be adjusted by using a basic compound such as sodium hydroxide, potassium hydroxide or ammonia or an acid compound such as phosphoric acid or sulfuric acid in an appropriate manner. In addition, anti-foaming agents such as fatty acid polyglycol esters can be used to suppress the formation of bubbles.

젖산을 회수하는 단계는 투석, 원심분리, 여과, 용매추출, 크로마토그래피, 결정화 등의 당업계에 공지된 방법에 의해 수행될 수 있다. 예를 들면, 상기 형질전환체의 배양물을 원심분리하여 상기 재조합 균주를 제거하고 얻어진 상등액을, 용매추출법에 적용하여 젖산을 회수하는 방법을 사용할 수 있다. 이외에도 상기 젖산의 특성에 맞추어 공지된 실험방법을 조합하여 상기 젖산을 회수할 수 있는 방법이라면 특별히 제한되지 않고 사용될 수 있다.The step of recovering lactic acid may be performed by methods known in the art, such as dialysis, centrifugation, filtration, solvent extraction, chromatography, crystallization, and the like. For example, a method of recovering lactic acid may be used by centrifuging the culture of the transformant to remove the recombinant strain and applying the obtained supernatant to a solvent extraction method. In addition, any method that can recover the lactic acid by combining a known experimental method according to the characteristics of the lactic acid can be used without particular limitation.

본 발명의 또 다른 측면은, 서열번호 4의 염기서열로 구성되는 프로모터를 제공한다. 구체적으로, 상기 프로모터는 메틸로모나스 속(Methylomonas sp.) DH-1 균주로부터 유래되고 서열번호 4의 염기서열로 구성되는 프모모터를 의미한다.Another aspect of the present invention provides a promoter consisting of the nucleotide sequence of SEQ ID NO: 4. Specifically, the promoter refers to a promoter derived from the Methylomonas sp. DH-1 strain and consisting of the nucleotide sequence of SEQ ID NO: 4.

본 발명에서 사용하는 용어 "프로모터"란, 전사조절인자들이 결합할 수 있는 DNA 염기서열을 의미하는데, 상기 프로모터는 전사조절인자를 매개로 하여 RNA 중합효소와 결합함으로써, 그의 하류에 위치한 유전자의 전사를 유도할 수 있다. The term "promoter" used in the present invention means a DNA sequencing to which transcription regulators can bind, and the promoter binds to an RNA polymerase via a transcription regulator, thereby transcribing genes located downstream thereof. Can induce

본 발명의 일실시예에 의하면, 적응진화를 통해 젖산에 대한 저항성이 증가된 메틸로모나스 속 DH-1 균주로부터 유래된 유전체를 분석하여, 유전자 발현을 증가시키는 특성을 갖는 522 bp의 프로모터(서열번호 4)를 발굴하였다. 나아가, 상기 프로모터의 유전자 발현활성을 종래의 야생형 프로모터와 비교한 결과, 종래의 야생형 프로모터(서열번호 3)에 비해, 약 4배 내지 10배 우수한 발현 활성을 나타냄을 확인하였다(도 3). According to an embodiment of the present invention, by analyzing the genome derived from the strain DH-1 of the genus Methylmonas having increased resistance to lactic acid through adaptive evolution, a promoter of 522 bp having the property of increasing gene expression (sequence No. 4) was excavated. Furthermore, as a result of comparing the gene expression activity of the promoter with a conventional wild-type promoter, it was confirmed that it exhibits about 4 to 10 times better expression activity than a conventional wild-type promoter (SEQ ID NO: 3) (FIG. 3).

본 발명의 또 다른 측면은, 상기 프로모터 및 목적 단백질을 코딩하는 염기서열을 포함하는 발현벡터를 제공한다. 이때, 상기 발현벡터는 상술한 바와 동일하다. Another aspect of the present invention provides an expression vector comprising the promoter and a base sequence encoding a target protein. At this time, the expression vector is the same as described above.

상술한 바와 같이, 본 발명에서 제공하는 신규한 프로모터는 종래의 프로모터에 비하여 유전자의 발현수준을 향상시킬 수 있으므로, 상기 프로모터를 포함하는 발현벡터 또는 상기 발현벡터가 도입된 형질전환체를 이용하면, 목적 단백질을 높은 수율로 생산할 수 있다.As described above, since the novel promoter provided in the present invention can improve the expression level of a gene compared to a conventional promoter, when using an expression vector containing the promoter or a transformant introduced with the expression vector, The desired protein can be produced in high yield.

본 발명에서 사용하는 용어 "목적 단백질"이란, 상기 신규한 프로모터에 작동가능하게 연결된 형태로 발현벡터에 도입된 유전자로부터 발현되는 단백질을 의미한다. 상기 목적 단백질은 본 발명에서 제공하는 신규한 프로모터에 의해 발현될 수 있는 한, 특별히 이에 제한되지 않으나, 일구체예로서, 균주의 내산성에 기여하는 LysR family transcriptional regulator와 같은 단백질일 수 있다. The term "target protein" used in the present invention means a protein expressed from a gene introduced into an expression vector in a form operably linked to the novel promoter. The target protein is not particularly limited as long as it can be expressed by the novel promoter provided by the present invention, but as a specific example, it may be a protein such as LysR family transcriptional regulator that contributes to acid resistance of the strain.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are provided to help understanding of the present invention. However, the following examples are only provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.

실시예 1. 적응진화를 통한 젖산에 대한 저항성이 증가된 균주 선별 Example 1. Selection of strains with increased resistance to lactic acid through adaptive evolution

높은 농도의 젖산에서 성장할 수 있는 균주를 제작하기 위하여, 실험실 규모의 적응 진화를 진행하였다. 메틸로모나스 속(Metyhlomonas sp.) DH-1 균주는 경희대에서 분양받았다. In order to produce a strain capable of growing in a high concentration of lactic acid, a laboratory-scale adaptive evolution was performed. The genus Methyllomonas ( Metyhlomonas sp. ) The DH-1 strain was purchased from Kyunghee University.

DH-1 균주의 젖산에 대한 적응진화를 유도하기 위해, DH-1 균주를 0.5 g/L 농도의 젖산이 첨가된 배지를 시작으로 0.2 g/L씩 젖산의 농도를 증가시켜 8 g/L의 젖산이 첨가된 배지로 계대배양 하였다. 총 35번의 연속적인 계대배양을 통해, 8 g/L 농도의 젖산이 처리된 배지에서 성장할 수 있는 DH-1 균주를 선별하였다. 야생형 균주와 더불어 선별된 균주를 젖산이 첨가된 배지에서 성장을 비교하여, 젖산에 대한 저항성이 향상된 것을 확인하였다(도 1). 상기 선별된 균주를 "JHM5110"으로 명명하였다. In order to induce adaptive evolution of the DH-1 strain to lactic acid, the DH-1 strain was increased to a concentration of 8 g / L by increasing the concentration of lactic acid by 0.2 g / L, starting with a medium containing 0.5 g / L lactic acid Cultured with lactic acid added medium. Through a total of 35 successive passages, DH-1 strains capable of growing in a medium treated with 8 g / L lactic acid were selected. It was confirmed that the strains selected with the wild-type strain were grown in a medium to which lactic acid was added, thereby improving resistance to lactic acid (FIG. 1). The selected strain was named "JHM5110".

실시예 2. JHM5110 균주의 유전체 분석 Example 2. Genomic analysis of JHM5110 strain

실시예 1에서 선별한 JHM5110 균주의 젖산에 대한 저항성 향상에 기여하는 유전자를 찾기 위해, JHM5110 균주의 유전체 염기서열 분석(whole genome sequencing)을 마크로젠에 의뢰하였다. In order to find the gene contributing to the improvement of resistance to lactic acid of the JHM5110 strain selected in Example 1, whole genome sequencing of the JHM5110 strain was commissioned to Macrogen.

그 결과, JHM5110 균주에서 AYM39_21115 유전자와 AYM39_21120 유전자 사이의 프로모터에서 2개의 염기서열(TT)이 결손된 돌연변이를 확인하였다(도 2). As a result, in the JHM5110 strain, mutations in which two base sequences (TT) were deleted were identified in the promoter between the AYM39_21115 gene and the AYM39_21120 gene (FIG. 2).

실시예 3. JHM5110 균주의 유전자 발현 확인 Example 3. Confirmation of gene expression of JHM5110 strain

JHM5110 균주에서 AYM39_21115 유전자와 AYM39_21120 유전자 사이의 위치한 프로모터에서 2개의 염기(TT)가 결실됨에 따라, 유전자의 발현이 변화하는지 확인하기 위해 RT-qPCR(Real time qPCR)을 진행하였다.As two bases (TT) were deleted from the promoter located between the AYM39_21115 gene and the AYM39_21120 gene in the JHM5110 strain, RT-qPCR (Real time qPCR) was performed to confirm that the expression of the gene was changed.

구체적으로, 야생형 균주와 JHY5110 균주에 대하여 OD600 값이 1 내지 1.5가 되는 시점에서 균주를 수득하여 RNeasy Mini Kit(Qiagen)을 사용하여 제조사의 매뉴얼에 따라 mRNA를 추출하였다. 추출한 mRNA는 random hexamer(cosmogene tech)를 사용하여 cDNA 합성에 이용하였다.Specifically, for the wild-type strain and the JHY5110 strain, a strain was obtained at a time when the OD 600 value was 1 to 1.5, and mRNA was extracted according to the manufacturer's manual using the RNeasy Mini Kit (Qiagen). The extracted mRNA was used for cDNA synthesis using random hexamer (cosmogene tech).

상기 합성한 동일한 양의 cDNA에 대하여 AYM39_21110, AYM39_21115, AYM39_21120, AYM39_21125 또는 AYM39_21130 유전자에 특이적인 프라이머 쌍을 이용하여 RT-qPCR을 진행하였다. RT-qPCR은 LightCycler® 480 SYBR®GreenI Master(Roche)를 이용하여 LightCycler® 480 Instrument II(Roche) 장비에서 수행하였다.RT-qPCR was performed using primer pairs specific to the AYM39_21110, AYM39_21115, AYM39_21120, AYM39_21125 or AYM39_21130 genes for the synthesized same amount of cDNA. RT-qPCR was performed on a LightCycler ® 480 Instrument II (Roche) instrument using a LightCycler ® 480 SYBR ® GreenI Master (Roche).

프라이머primer 염기 서열Base sequence 서열번호Sequence number RT 21110 FRT 21110 F TCCGCATTTATTGGTGGTGCTCCGCATTTATTGGTGGTGC 서열번호 6SEQ ID NO: 6 RT 21110 RRT 21110 R TGCTGGAAACTTCGCCTTCCTGCTGGAAACTTCGCCTTCC 서열번호 7SEQ ID NO: 7 RT 21115 FRT 21115 F AGCAGCGCAAACAACAGTCGAGCAGCGCAAACAACAGTCG 서열번호 8SEQ ID NO: 8 RT 21115 RRT 21115 R CTAGTTCCTGGTGCGCCAACCTAGTTCCTGGTGCGCCAAC 서열번호 9SEQ ID NO: 9 RT 21120 FRT 21120 F TATCTGGAACGCTGCCAGCATATCTGGAACGCTGCCAGCA 서열번호 10SEQ ID NO: 10 RT 21120 RRT 21120 R TGACCGCCTTTCAGCACCATTGACCGCCTTTCAGCACCAT 서열번호 11SEQ ID NO: 11 RT 21125 FRT 21125 F GGCTAAGCCTGAGCGTCAACGGCTAAGCCTGAGCGTCAAC 서열번호 12SEQ ID NO: 12 RT 21125 RRT 21125 R GGGCCGTGTTGGTCAAGCTTGGGCCGTGTTGGTCAAGCTT 서열번호 13SEQ ID NO: 13 RT 21130 FRT 21130 F AATCCCAACGCCGTGCTGATAATCCCAACGCCGTGCTGAT 서열번호 14SEQ ID NO: 14 RT 21130 RRT 21130 R ACAGAACGTTGTCCGCTGCGACAGAACGTTGTCCGCTGCG 서열번호 15SEQ ID NO: 15

그 결과, JHM5110 균주에서 AYM39_21120 유전자와 AYM39_21125 유전자의 발현이 크게 증가한 것을 확인하였다(도 3).As a result, it was confirmed that the expression of the AYM39_21120 gene and the AYM39_21125 gene significantly increased in the JHM5110 strain (FIG. 3).

실시예 4. AYM39_21120 유전자 발현 증가에 따른 DH-1 균주의 젖산에 대한 저항성 증가 확인Example 4. Confirmation of increase in resistance to lactic acid of DH-1 strain according to AYM39_21120 gene expression increase

JHM5110 균주에서 발현이 증가된 AYM39_21120 및 AYM39_21125 유전자가 내산성에 미치는 영향을 확인하기 위하여, 해당 유전자들을 과발현 할 수 있는 변이주들을 상동 재조합 시스템을 이용하여 제작하였다. In order to confirm the effect of the AYM39_21120 and AYM39_21125 genes with increased expression in the JHM5110 strain on acid resistance, mutant strains capable of overexpressing the genes were prepared using a homologous recombination system.

실시예 2에서 확인한 돌연변이 유전자를 포함하는 유전체 삽입용 플라스미드를 제작하기 위해, JHM5110 균주의 genomic DNA를 주형으로 사용하여 Overlap PCR을 통해 AYM39_21120 유전자의 프로모터에서 2개의 염기가 결실된 프로모터(P△tt)와 각각의 AYM39_21120, AYM39_21125 또는 AYM39_21130 유전자들을 획득한 후, SpeI과 KpnI 제한효소를 이용하여 pJK001 벡터에 클로닝하였다. 이에 따라 얻어진 벡터는 각각 pJK002, pJK003, pJK004로 명명하였다.Embodiments to produce the dielectric insert plasmid comprising the mutated gene, the two bases in the promoter of AYM39_21120 gene through Overlap PCR using the genomic DNA of JHM5110 strain as a template, deletion promoter identified in 2 (P △ tt) And AYM39_21120, AYM39_21125 or AYM39_21130 genes, respectively, were obtained and cloned into pJK001 vector using SpeI and KpnI restriction enzymes. The vectors thus obtained were named pJK002, pJK003, and pJK004, respectively.

또한, 메탄자화균주에서 AYM39_21120 유전자를 결손하기 위해서, 실시예 1에서 선별한 균주의 genomic DNA를 주형으로 사용하여 PCR을 통해 유전자의 upstream 1 kb, downstream 1 kb를 획득한 후, pJK001 벡터에 클로닝하였다. 이에 따라 얻어진 벡터는 각각 pJK005, pJK006으로 명명하였다.In addition, in order to delete the AYM39_21120 gene from the methane magnetization strain, upstream 1 kb and downstream 1 kb of the gene were obtained through PCR using the genomic DNA of the strain selected in Example 1 as a template, and then cloned into a pJK001 vector. . The vectors thus obtained were named pJK005 and pJK006, respectively.

본 실험에서 사용된 균주 및 플라스미드를 하기 표 2 및 표 3에 나타내었다.The strains and plasmids used in this experiment are shown in Tables 2 and 3 below.

균주명Strain name 유전자형genotype 출처source DH-1DH-1 KCTC18400PKCTC18400P JHM5101JHM5101 DH-1 containing P ΔTT -21120-T rrnB DH-1 containing P ΔTT -21120 -T rrnB -- JHM5102JHM5102 DH-1 containing P ΔTT -21125,21130-T rrnB DH-1 containing P ΔTT -21125,21130 -T rrnB -- JHM5103JHM5103 DH-1 containing P ΔTT -21120,21125,21130-T rrnB DH-1 containing P ΔTT -21120,21125,21130 -T rrnB -- JHM5110JHM5110 Evolved strain from DH-1Evolved strain from DH-1 -- JHM5111JHM5111 JHM5110 Δ21125,21130::KanR JHM5110 Δ21125,21130 :: KanR -- JHM5112JHM5112 JHM5110 Δ21120,21125,21130::KanR JHM5110 Δ21120,21125,21130 :: KanR --

플라스미드Plasmid 특징Characteristic pJK001pJK001 Plasmid providing genomic integration sitePlasmid providing genomic integration site pJK002pJK002 Plasmid providing genomic integration site with P ΔTT -21120-T rrnB Plasmid providing genomic integration site with P ΔTT - 21120 -T rrnB pJK003pJK003 Plasmid providing genomic integration site with P ΔTT -21125, 21130-T rrnB Plasmid providing genomic integration site with P ΔTT - 21125, 21130 -T rrnB pJK004pJK004 Plasmid providing genomic integration site with P ΔTT -21120,21125,21130-T rrnB Plasmid providing genomic integration site with P ΔTT - 21120, 21125,21130 -T rrnB pJK005pJK005 Plasmid containing 21125,21130 deletion cassette Plasmid containing 21125,21130 deletion cassette pJK006pJK006 Plasmid containing 21120,21125,21130 deletion cassettePlasmid containing 21120, 21125,21130 deletion cassette

DH-1 균주의 형질전환을 위해, MicropulserTM Electroportor(Biorad)를 이용하여 pJK002, pJK003, pJK004, pJK005 또는 pJK006 플라스미드 벡터를 DH-1 균주로 전기천공법을 통해 형질전환하였다. pJK002 플라스미드 벡터로 형질전환시킨 DH-1 균주를 "JHM5101"로 명명하였고, pJK003 플라스미드 벡터로 형질전환시킨 DH-1 균주를 "JHM5102"로 명명하였으며, pJK004 플라스미드 벡터로 형질전환시킨 DH-1 균주를 "JHM5103"으로 명명하였다. 또한, pJK005 플라스미드 벡터로 형질전환시킨 DH-1 균주를 "JHM5111"로 명명하였고, pJK006 플라스미드 벡터로 형질전환시킨 DH-1 균주를 "JHM5112"로 명명하였다.For transformation of the DH-1 strain, the plasmid vectors pJK002, pJK003, pJK004, pJK005 or pJK006 were transformed with DH-1 strain by electroporation using Micropulser TM Electroportor (Biorad). The DH-1 strain transformed with the pJK002 plasmid vector was named "JHM5101", the DH-1 strain transformed with the pJK003 plasmid vector was named "JHM5102", and the DH-1 strain transformed with the pJK004 plasmid vector. It was named "JHM5103". In addition, the DH-1 strain transformed with the pJK005 plasmid vector was named “JHM5111”, and the DH-1 strain transformed with the pJK006 plasmid vector was named “JHM5112”.

DH-1 균주와 형질전환시킨 JHM5101, JHM5102, JHM5103, JHM5111 및 JHM5112 균주를 NMS(0.488 g/L MgSO4, 1 g/L KNO3, 0.228 g/L CaCl2-2H2O, 3.8% Fe-EDTA, 0.1% Na2MoO4-2H2O, Trace element solution)에 인산용액, 비타민, 10 μM 농도의 CuSO4가 첨가된 배지에서 배양하였다. JHM5101, JHM5102, JHM5103, JHM5111 and JHM5112 strains transformed with DH-1 strain were NMS (0.488 g / L MgSO 4 , 1 g / L KNO 3 , 0.228 g / L CaCl 2 -2H 2 O, 3.8% Fe- EDTA, 0.1% Na 2 MoO 4 -2H 2 O, Trace element solution) was cultured in a medium in which phosphoric acid solution, vitamin, and CuSO 4 at a concentration of 10 μM were added.

이때, Trace element solution은 500 ㎎/L FeSO4-7H2O, 400 mg/L ZnSO4-7H2O, 15.71 ㎎/L MnCl2-4H2O, 50 ㎎/L CoCl2-6H2O, 10 ㎎/L Nicl2-6H2O, 15 ㎎/L H3BO3, 250 ㎎/L EDTA로 구성되어 있다. 또한, 인산용액은 26 g/L KH2PO4, 32.83 g/L Na2HPO4로 구성되어 있으며, 비타민은 2.0 ㎎/L biotin, 2.0 ㎎/L folic acid, 5.0 ㎎/L Thiamine HCl, 5.0 ㎎/L Ca pantothenate, 0.1 ㎎/L Vitamin B12, 5.0 ㎎/L Riboflavin, 5.0 ㎎/L Nicotinamide로 구성되어 있다. At this time, the trace element solution is 500 mg / L FeSO 4 -7H 2 O, 400 mg / L ZnSO 4 -7H 2 O, 15.71 mg / L MnCl 2 -4H 2 O, 50 mg / L CoCl 2 -6H 2 O, 10 ㎎ / L Nicl 2 -6H consists of 2 O, 15 ㎎ / LH 3 BO 3, 250 ㎎ / L EDTA. In addition, the phosphoric acid solution is composed of 26 g / L KH 2 PO 4 , 32.83 g / L Na 2 HPO 4 , and vitamins are 2.0 mg / L biotin, 2.0 mg / L folic acid, 5.0 mg / L Thiamine HCl, 5.0 It consists of ㎎ / L Ca pantothenate, 0.1 ㎎ / L Vitamin B12, 5.0 ㎎ / L Riboflavin, and 5.0 ㎎ / L Nicotinamide.

균주 배양은 진탕배양기를 이용하여 30℃ 온도에서 170 rpm 조건에서 진행하였다. 배양조건으로 초기접종 세포농도는 OD600 값이 0.1이 되도록 고정하였고, 125 ㎖ 진탕 플라스크에서 12.5 ㎖ 배지로 진행하였고, 가스 시린지(Agilent 50 ㎖ gas tight syringe 5190-1547)를 사용하여 20%의 메탄을 공급하였다. The strain culture was performed at 170 ° C. at a temperature of 30 ° C. using a shake incubator. As a culture condition, the initial inoculation cell concentration is OD 600. It was fixed to 0.1, proceeded to 12.5 ml medium in a 125 ml shake flask, and supplied with 20% of methane using a gas syringe (Agilent 50 ml gas tight syringe 5190-1547).

야생형 DH-1 균주와 더불어 0.6 g/L 농도의 젖산이 처리된 배지에서 JHM5101, JHM5102, 내지 JHM5103 균주의 성장을 확인한 결과, AYM39_21120이 과발현되는 JHM5101과 JHM5103 균주의 젖산에 대한 저항성이 증가한 것을 확인할 수 있었다(도 4). 또한, DH-1 균주의 AYM39_21120 유전자가 결손된 JHM5112 균주의 성장을 확인한 결과, 8 g/L 농도의 젖산이 처리된 배지에서 성장하지 못한 것을 확인하였다(도 5). As a result of confirming the growth of JHM5101, JHM5102, and JHM5103 strains in the medium treated with lactic acid at a concentration of 0.6 g / L in addition to the wild-type DH-1 strain, it was confirmed that the resistance to lactic acid of JHM5101 and JHM5103 strains overexpressing AYM39_21120 was increased. There was (Fig. 4). In addition, as a result of confirming the growth of the JHM5112 strain in which the AYM39_21120 gene of the DH-1 strain was deleted, it was confirmed that lactic acid at a concentration of 8 g / L did not grow in the treated medium (FIG. 5).

실시예 5. Example 5. MethylomonasMethylomonas sp. DH-1 균주와 AYM39_21120 유전자의 상동성이 있는 메탄자화균 확인 sp. Identification of methane magnetizing bacteria with homology of DH-1 strain and AYM39_21120 gene

Methylomonas sp. DH-1 균주에서 AYM39_21120 유전자가 젖산에 대한 저항성에 기여하는 중요한 유전자이므로, BLAST(Basic Local Alignment Search Tool) 기법을 이용하여 AYM39_21120 유전자의 유전적인 보존 정도를 확인하였다. 그 결과, 표 4에 나타난 바와 같이, 총 7종의 메탄자화균에 보존 되어 있는 것을 확인할 수 있었다. Methylomonas sp . In the DH-1 strain, since the AYM39_21120 gene is an important gene that contributes to resistance to lactic acid, the degree of genetic preservation of the AYM39_21120 gene was confirmed using the BLAST (Basic Local Alignment Search Tool) technique. As a result, as shown in Table 4, it was confirmed that it was preserved in a total of 7 types of methane magnetization bacteria.

균주명Strain name E-valueE-value Methylomonas koyamae LM6 Methylomonas koyamae LM6 00 Methylomonas denitrificans FJG1 Methylomonas denitrificans FJG1 00 Methylomonas methanica MC09 Methylomonas methanica MC09 00 Methylovulum psychrotolerans HV10_M2 Methylovulum psychrotolerans HV10_M2 2.00E-113 2.00E -113 Methylocaldum marinum S8 Methylocaldum marinum S8 1.00E-60 1.00E -60 Methylomicrobium alcaliphilum 20Z Methylomicrobium alcaliphilum 20Z 9.00E-49 9.00E -49 Methylococcus capsulatus Bath Methylococcus capsulatus bath 4.00E-34 4.00E -34

실시예 6. 젖산 탈수소효소 도입을 통한 젖산 생산 확인Example 6. Confirmation of lactic acid production through introduction of lactic acid dehydrogenase

실시예 1에서 선별한 젖산에 대한 저항성이 향상된 JHM5110 균주의 AYM39_03770(glgA) 유전자 위치에 Leuconostoc mesentoroides subsp. mesenteroides ATCC 8293 유래의 서열번호 5로 표시되는 염기서열을 포함하는 젖산 탈수소효소 유전자를 도입하여 D형 젖산을 생산할 수 있는 메탄자화균주(JHM5120)를 제작하였다. 본 실험에서 사용된 균주 및 플라스미드를 하기 표 5 및 표 6에 나타내었다. Leuconostoc mesentoroides subsp. In the AYM39_03770 ( glgA ) gene location of the JHM5110 strain with improved resistance to lactic acid selected in Example 1. A methane magnetization strain (JHM5120) capable of producing D-type lactic acid was prepared by introducing a lactic acid dehydrogenase gene containing the nucleotide sequence represented by SEQ ID NO: 5 from mesenteroides ATCC 8293. The strains and plasmids used in this experiment are shown in Tables 5 and 6 below.

균주명Strain name 유전자형genotype 출처source DH-1DH-1 KCTC18400PKCTC18400P JHM5110JHM5110 Evolved strain from DH-1Evolved strain from DH-1 -- JHM5120JHM5120 JHM5110 △glgA::Lm.ldhA-T rrnB -KanR JHM5110 △ glgA :: Lm.ldhA- T rrnB -KanR --

플라스미드Plasmid 특징Characteristic pJK010pJK010 Plasmid providing Lm.ldhA with glgA deletion sitePlasmid providing Lm.ldhA with glgA deletion site

JHM5120 균주의 젖산 생산능을 확인하기 위하여, 초기 접종은 OD600 값이 0.2가 되도록 하였으며, 10 ㎍/㎖ 농도의 카나마이신(kanamycin)이 처리된 NMS 배지에 20%(v/v)의 메탄가스를 공급하면서 48시간 동안 배양하였다. 그 후, 배지의 젖산 농도를 측정하였다. In order to confirm the lactic acid production capacity of the JHM5120 strain, the initial inoculation was such that the OD 600 value was 0.2, and 20% (v / v) of methane gas was added to NMS medium treated with kanamycin at a concentration of 10 µg / ml. Incubated for 48 hours while feeding. Thereafter, the concentration of lactic acid in the medium was measured.

그 결과, 0.19 g/L 농도의 젖산이 생산되었음을 확인하였다.As a result, it was confirmed that lactic acid at a concentration of 0.19 g / L was produced.

<110> Seoul National University R&DB Foundation University-Industry Cooperation Group of Kyung Hee University <120> GENE RELATED TO ACID RESISTANCE AND METHANOTROPHS COMPRISING THE SAME <130> FPD/201809-0035 <160> 15 <170> KoPatentIn 3.0 <210> 1 <211> 300 <212> PRT <213> Artificial Sequence <220> <223> amino acid sequence of LysR family transcriptional regulator (Methylomonas sp. DH-1) <400> 1 Met Asp Lys Leu Thr Ser Met Asn Val Phe Val Arg Val Ala Lys Ala 1 5 10 15 Gly Ser Phe Ala Gly Ala Ala Lys Asp Leu Asp Ile Ser Arg Ala Met 20 25 30 Ala Thr Lys His Ile Met Gln Leu Glu Ser Glu Leu Asn Thr Arg Leu 35 40 45 Phe Asn Arg Thr Thr Arg Ser Leu Ser Leu Thr Glu Ala Gly Glu Ala 50 55 60 Tyr Leu Glu Arg Cys Gln Gln Val Leu Leu Asp Val Ala Glu Met Glu 65 70 75 80 Ser Ala Ile Thr His Leu Gln Thr Glu Pro Arg Gly Thr Leu Lys Ile 85 90 95 Leu Ala Pro Pro Val Ile Gly Ala Ser His Ile Ser Pro Gly Leu Thr 100 105 110 Glu Tyr Leu Lys Asn Tyr Pro Asp Leu Ser Val Glu Met Val Leu Lys 115 120 125 Gly Gly Gln Val Asp Leu Ile Asp Glu Gly Val Asp Leu Ala Ile Tyr 130 135 140 Leu Gly Gln Leu Asn Asp Thr Ser Leu Val Ala Arg Lys Leu Ala Ser 145 150 155 160 Ser Ser Leu Val Val Cys Ala Ser Pro Glu Tyr Leu Lys Asn His Gly 165 170 175 Ile Pro Gln Asp Pro Glu Asp Leu Glu Asp His Ser Cys Leu Ile Asn 180 185 190 Trp Ala Ile Pro Pro Arg Asn Lys Trp Arg Phe Lys Gly Ile Leu Gly 195 200 205 Glu Arg Thr Val Thr Val Thr Gly Arg Met Gln Ala Asn Met Ala Asp 210 215 220 Pro Ile Arg Asn Ala Ala Val Asn Gly Leu Gly Leu Ile Met Leu Pro 225 230 235 240 Arg Tyr Ile Val Gly Arg Asp Ile Glu Gln Gly Arg Leu Gln Val Val 245 250 255 Met Glu Gln Tyr Gly Ile Ala Pro Leu Glu Ile Tyr Ala Val Tyr Pro 260 265 270 His Arg Lys Tyr Leu Ser Ala Lys Val Arg Ser Phe Leu Glu Phe Ile 275 280 285 Gln Ala Trp Leu Pro His Arg Ile Gly Met Asn Pro 290 295 300 <210> 2 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of LysR family transcriptional regulator (Methylomonas sp. DH-1) <400> 2 atggacaaac taaccagcat gaacgttttt gtccgcgtcg ccaaggccgg cagcttcgcc 60 ggggccgcca aggatttgga tatctctcga gctatggcca ccaagcacat catgcaattg 120 gagagcgagc tgaatacccg cctgttcaac cgtacgaccc gcagcttaag cctgactgaa 180 gccggcgagg cttatctgga acgctgccag caggtgttgc tggacgtcgc ggaaatggaa 240 tcggccatca cccatctgca aaccgaaccg cgcggcactt taaaaattct ggcaccaccg 300 gtaatcggcg ccagccacat ctcgcccggc ctgaccgagt atctgaaaaa ctacccggat 360 ctttcggtgg agatggtgct gaaaggcggt caggtggatt tgatcgacga aggcgtcgac 420 ttagcgattt atctcggcca gctcaacgac accagcctgg tcgcccgcaa actggccagc 480 tcctcgctgg tagtctgcgc gtcgccggaa tacctgaaaa accacggcat cccgcaagac 540 ccggaagact tggaagacca tagctgcctg attaactggg ccatcccgcc gcgcaacaaa 600 tggcgcttca aaggcatcct cggcgaacgc accgtcactg tgaccggcag gatgcaagcc 660 aacatggccg acccgatccg caatgcggcc gttaacggcc taggcttgat tatgttgccg 720 cgctacatcg tcggccgtga catcgaacaa ggccgtctgc aagtggtgat ggaacaatac 780 ggcatcgccc cgttggagat ttacgcggtt tacccacacc gcaagtatct ttccgctaaa 840 gtccgttcct ttctggaatt tatccaagcc tggctaccgc accggatcgg catgaaccca 900 tga 903 <210> 3 <211> 524 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of promoter (Methylomonas sp. DH-1) <400> 3 gactattaat ctcgatttcg aacgggctga atcatagcat gacgcccaaa ctgccggaaa 60 aactgcgggc aaaaaaaacc tcccaatgct cgcgcagagg gaggcaagaa aaccagcgga 120 gtgcttggaa ggaggttacc gctcgttaat tacaacacca ggaggtagtt acaaattctg 180 gggatcagcg gctcgcttgg gtattgagcg agatattgct gaacattgag gtcgctgcaa 240 acaggacagt ggaaattacg aacaggccgg aaagaaaatt caaaatgccg gcaataaaca 300 aagtaccgac cagtacatct tttttaaatt cattcattgt gctcaaatcc tctgtttaat 360 cttgcatttg gcaagatttt ctgtgctttc tcgttaagtt gccgcacact ataccggaga 420 taaaaaagtt tacaattagg cgtttattaa ataaattgta tgaaattaag aaacaataaa 480 aatgtcaacg ttttttagca acttccaacg ccaccggagg caga 524 <210> 4 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of mutated promoter (Methylomonas sp. DH-1) <400> 4 gactattaat ctcgatttcg aacgggctga atcatagcat gacgcccaaa ctgccggaaa 60 aactgcgggc aaaaaaaacc tcccaatgct cgcgcagagg gaggcaagaa aaccagcgga 120 gtgcttggaa ggaggttacc gctcgttaat tacaacacca ggaggtagtt acaaattctg 180 gggatcagcg gctcgcttgg gtattgagcg agatattgct gaacattgag gtcgctgcaa 240 acaggacagt ggaaattacg aacaggccgg aaagaaaatt caaaatgccg gcaataaaca 300 aagtaccgac cagtacatct tttttaaatt cattcattgt gctcaaatcc tctgtttaat 360 cttgcatttg gcaagatttt ctgtgctttc tcgttaagtt gccgcacact ataccggaga 420 taaaaaagtt tacaattagg cgtttattaa ataaagtatg aaattaagaa acaataaaaa 480 tgtcaacgtt ttttagcaac ttccaacgcc accggaggca ga 522 <210> 5 <211> 996 <212> DNA <213> Leuconostoc mesenteroides <400> 5 atgaagattt ttgcttacgg cattcgtgat gatgaaaagc catcacttga agaatggaaa 60 gcggctaacc cagagattga agtggactac acacaagaat tattgacacc tgaaacagct 120 aagttggctg agggatcaga ttcagctgtt gtttatcaac aattggacta tacacgtgaa 180 acattgacag ctttagctaa cgttggtgtt actaacttgt cattgcgtaa cgttggtaca 240 gataacattg attttgatgc agcacgtgaa tttaacttta acatttcaaa tgttcctgtt 300 tattcaccaa atgctattgc agaacactca atgattcaat tatctcgttt gctacgtcgc 360 acgaaagcat tggatgccaa aattgctaag cacgacttgc gttgggcacc aacaattgga 420 cgtgaaatgc gtatgcaaac agttggtgtt attggtacag gtcatattgg ccgtgttgct 480 attaacattt tgaaaggctt tggggccaag gttattgctt atgacaagta cccaaatgct 540 gaattacaag cagaaggttt gtacgttgac acattagacg aattatatgc acaagctgat 600 gcaatttcat tgtatgttcc tggtgtacct gaaaaccatc atctaatcaa tgcagatgct 660 attgctaaga tgaaggatgg tgtggttatc atgaacgctg cgcgtggtaa tttgatggac 720 attgacgcta ttattgatgg tttgaattct ggtaagattt cagacttcgg tatggacgtt 780 tatgaaaatg aagttggctt gttcaatgaa gattggtctg gtaaagaatt cccagatgct 840 aagattgctg acttgattgc acgcgaaaat gtattggtta cgccacacac ggctttctat 900 acaactaaag ctgttctaga aatggttcac caatcatttg atgcagcagt tgctttcgcc 960 aagggtgaga agccagctat tgctgttgaa tattaa 996 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21110 <400> 6 tccgcattta ttggtggtgc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21110 <400> 7 tgctggaaac ttcgccttcc 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21115 <400> 8 agcagcgcaa acaacagtcg 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21115 <400> 9 ctagttcctg gtgcgccaac 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21120 <400> 10 tatctggaac gctgccagca 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21120 <400> 11 tgaccgcctt tcagcaccat 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21125 <400> 12 ggctaagcct gagcgtcaac 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21125 <400> 13 gggccgtgtt ggtcaagctt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21130 <400> 14 aatcccaacg ccgtgctgat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21130 <400> 15 acagaacgtt gtccgctgcg 20 <110> Seoul National University R & DB Foundation          University-Industry Cooperation Group of Kyung Hee University <120> GENE RELATED TO ACID RESISTANCE AND METHANOTROPHS COMPRISING THE          SAME <130> FPD / 201809-0035 <160> 15 <170> KoPatentIn 3.0 <210> 1 <211> 300 <212> PRT <213> Artificial Sequence <220> <223> amino acid sequence of LysR family transcriptional regulator          (Methylomonas sp.DH-1) <400> 1 Met Asp Lys Leu Thr Ser Met Asn Val Phe Val Arg Val Ala Lys Ala   1 5 10 15 Gly Ser Phe Ala Gly Ala Ala Lys Asp Leu Asp Ile Ser Arg Ala Met              20 25 30 Ala Thr Lys His Ile Met Gln Leu Glu Ser Glu Leu Asn Thr Arg Leu          35 40 45 Phe Asn Arg Thr Thr Arg Ser Leu Ser Leu Thr Glu Ala Gly Glu Ala      50 55 60 Tyr Leu Glu Arg Cys Gln Gln Val Leu Leu Asp Val Ala Glu Met Glu  65 70 75 80 Ser Ala Ile Thr His Leu Gln Thr Glu Pro Arg Gly Thr Leu Lys Ile                  85 90 95 Leu Ala Pro Pro Val Ile Gly Ala Ser His Ile Ser Pro Gly Leu Thr             100 105 110 Glu Tyr Leu Lys Asn Tyr Pro Asp Leu Ser Val Glu Met Val Leu Lys         115 120 125 Gly Gly Gln Val Asp Leu Ile Asp Glu Gly Val Asp Leu Ala Ile Tyr     130 135 140 Leu Gly Gln Leu Asn Asp Thr Ser Leu Val Ala Arg Lys Leu Ala Ser 145 150 155 160 Ser Ser Leu Val Val Cys Ala Ser Pro Glu Tyr Leu Lys Asn His Gly                 165 170 175 Ile Pro Gln Asp Pro Glu Asp Leu Glu Asp His Ser Cys Leu Ile Asn             180 185 190 Trp Ala Ile Pro Pro Arg Asn Lys Trp Arg Phe Lys Gly Ile Leu Gly         195 200 205 Glu Arg Thr Val Thr Val Thr Gly Arg Met Gln Ala Asn Met Ala Asp     210 215 220 Pro Ile Arg Asn Ala Ala Val Asn Gly Leu Gly Leu Ile Met Leu Pro 225 230 235 240 Arg Tyr Ile Val Gly Arg Asp Ile Glu Gln Gly Arg Leu Gln Val Val                 245 250 255 Met Glu Gln Tyr Gly Ile Ala Pro Leu Glu Ile Tyr Ala Val Tyr Pro             260 265 270 His Arg Lys Tyr Leu Ser Ala Lys Val Arg Ser Phe Leu Glu Phe Ile         275 280 285 Gln Ala Trp Leu Pro His Arg Ile Gly Met Asn Pro     290 295 300 <210> 2 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of LysR family transcriptional regulator          (Methylomonas sp.DH-1) <400> 2 atggacaaac taaccagcat gaacgttttt gtccgcgtcg ccaaggccgg cagcttcgcc 60 ggggccgcca aggatttgga tatctctcga gctatggcca ccaagcacat catgcaattg 120 gagagcgagc tgaatacccg cctgttcaac cgtacgaccc gcagcttaag cctgactgaa 180 gccggcgagg cttatctgga acgctgccag caggtgttgc tggacgtcgc ggaaatggaa 240 tcggccatca cccatctgca aaccgaaccg cgcggcactt taaaaattct ggcaccaccg 300 gtaatcggcg ccagccacat ctcgcccggc ctgaccgagt atctgaaaaa ctacccggat 360 ctttcggtgg agatggtgct gaaaggcggt caggtggatt tgatcgacga aggcgtcgac 420 ttagcgattt atctcggcca gctcaacgac accagcctgg tcgcccgcaa actggccagc 480 tcctcgctgg tagtctgcgc gtcgccggaa tacctgaaaa accacggcat cccgcaagac 540 ccggaagact tggaagacca tagctgcctg attaactggg ccatcccgcc gcgcaacaaa 600 tggcgcttca aaggcatcct cggcgaacgc accgtcactg tgaccggcag gatgcaagcc 660 aacatggccg acccgatccg caatgcggcc gttaacggcc taggcttgat tatgttgccg 720 cgctacatcg tcggccgtga catcgaacaa ggccgtctgc aagtggtgat ggaacaatac 780 ggcatcgccc cgttggagat ttacgcggtt tacccacacc gcaagtatct ttccgctaaa 840 gtccgttcct ttctggaatt tatccaagcc tggctaccgc accggatcgg catgaaccca 900 tga 903 <210> 3 <211> 524 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of promoter (Methylomonas sp. DH-1) <400> 3 gactattaat ctcgatttcg aacgggctga atcatagcat gacgcccaaa ctgccggaaa 60 aactgcgggc aaaaaaaacc tcccaatgct cgcgcagagg gaggcaagaa aaccagcgga 120 gtgcttggaa ggaggttacc gctcgttaat tacaacacca ggaggtagtt acaaattctg 180 gggatcagcg gctcgcttgg gtattgagcg agatattgct gaacattgag gtcgctgcaa 240 acaggacagt ggaaattacg aacaggccgg aaagaaaatt caaaatgccg gcaataaaca 300 aagtaccgac cagtacatct tttttaaatt cattcattgt gctcaaatcc tctgtttaat 360 cttgcatttg gcaagatttt ctgtgctttc tcgttaagtt gccgcacact ataccggaga 420 taaaaaagtt tacaattagg cgtttattaa ataaattgta tgaaattaag aaacaataaa 480 aatgtcaacg ttttttagca acttccaacg ccaccggagg caga 524 <210> 4 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of mutated promoter (Methylomonas sp.DH-1) <400> 4 gactattaat ctcgatttcg aacgggctga atcatagcat gacgcccaaa ctgccggaaa 60 aactgcgggc aaaaaaaacc tcccaatgct cgcgcagagg gaggcaagaa aaccagcgga 120 gtgcttggaa ggaggttacc gctcgttaat tacaacacca ggaggtagtt acaaattctg 180 gggatcagcg gctcgcttgg gtattgagcg agatattgct gaacattgag gtcgctgcaa 240 acaggacagt ggaaattacg aacaggccgg aaagaaaatt caaaatgccg gcaataaaca 300 aagtaccgac cagtacatct tttttaaatt cattcattgt gctcaaatcc tctgtttaat 360 cttgcatttg gcaagatttt ctgtgctttc tcgttaagtt gccgcacact ataccggaga 420 taaaaaagtt tacaattagg cgtttattaa ataaagtatg aaattaagaa acaataaaaa 480 tgtcaacgtt ttttagcaac ttccaacgcc accggaggca ga 522 <210> 5 <211> 996 <212> DNA <213> Leuconostoc mesenteroides <400> 5 atgaagattt ttgcttacgg cattcgtgat gatgaaaagc catcacttga agaatggaaa 60 gcggctaacc cagagattga agtggactac acacaagaat tattgacacc tgaaacagct 120 aagttggctg agggatcaga ttcagctgtt gtttatcaac aattggacta tacacgtgaa 180 acattgacag ctttagctaa cgttggtgtt actaacttgt cattgcgtaa cgttggtaca 240 gataacattg attttgatgc agcacgtgaa tttaacttta acatttcaaa tgttcctgtt 300 tattcaccaa atgctattgc agaacactca atgattcaat tatctcgttt gctacgtcgc 360 acgaaagcat tggatgccaa aattgctaag cacgacttgc gttgggcacc aacaattgga 420 cgtgaaatgc gtatgcaaac agttggtgtt attggtacag gtcatattgg ccgtgttgct 480 attaacattt tgaaaggctt tggggccaag gttattgctt atgacaagta cccaaatgct 540 gaattacaag cagaaggttt gtacgttgac acattagacg aattatatgc acaagctgat 600 gcaatttcat tgtatgttcc tggtgtacct gaaaaccatc atctaatcaa tgcagatgct 660 attgctaaga tgaaggatgg tgtggttatc atgaacgctg cgcgtggtaa tttgatggac 720 attgacgcta ttattgatgg tttgaattct ggtaagattt cagacttcgg tatggacgtt 780 tatgaaaatg aagttggctt gttcaatgaa gattggtctg gtaaagaatt cccagatgct 840 aagattgctg acttgattgc acgcgaaaat gtattggtta cgccacacac ggctttctat 900 acaactaaag ctgttctaga aatggttcac caatcatttg atgcagcagt tgctttcgcc 960 aagggtgaga agccagctat tgctgttgaa tattaa 996 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21110 <400> 6 tccgcattta ttggtggtgc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21110 <400> 7 tgctggaaac ttcgccttcc 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21115 <400> 8 agcagcgcaa acaacagtcg 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21115 <400> 9 ctagttcctg gtgcgccaac 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21120 <400> 10 tatctggaac gctgccagca 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21120 <400> 11 tgaccgcctt tcagcaccat 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21125 <400> 12 ggctaagcct gagcgtcaac 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21125 <400> 13 gggccgtgtt ggtcaagctt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for RT 21130 <400> 14 aatcccaacg ccgtgctgat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for RT 21130 <400> 15 acagaacgtt gtccgctgcg 20

Claims (15)

LysR family transcriptional regulator가 과발현 되도록 형질전환된 재조합 균주로서,
상기 LysR family transcriptional regulator는 서열번호 1로 표시되는 아미노산으로 이루어진 단백질이고,
상기 균주는 메탄자화균(methanotrophs)인 것인, 재조합 균주.
As a recombinant strain transformed to overexpress the LysR family transcriptional regulator,
The LysR family transcriptional regulator is a protein consisting of the amino acid represented by SEQ ID NO: 1,
The strain is a methanotroph (methanotrophs), a recombinant strain.
삭제delete 제 1항에 있어서,
상기 메탄자화균은 Methylomonas sp., Methylovulum sp., Methylocaldum sp., Methylomicrobium sp. 또는 Methylococcus sp. 속 균주인 것인, 재조합 균주.
According to claim 1,
The methane magnetization bacteria are Methylomonas sp., Methylovulum sp., Methylocaldum sp., Methylomicrobium sp. Or Methylococcus sp. Recombinant strains that are genus strains.
제 1항에 있어서,
상기 메탄자화균은 Methylomonas sp. DH-1, Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum 또는 Methylococcus capsulatus인 것인, 재조합 균주.
According to claim 1,
The methane magnetization bacteria Methylomonas sp. DH-1 , Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum or Methylococcus capsulatus .
제 1항에 있어서,
상기 재조합 균주는 LysR family transcriptional regulator를 코딩하는 염기서열을 포함하는 발현벡터가 도입된 것인, 재조합 균주.
According to claim 1,
The recombinant strain is a recombinant strain into which an expression vector comprising a nucleotide sequence encoding a LysR family transcriptional regulator is introduced.
제 5항에 있어서,
상기 LysR family transcriptional regulator를 코딩하는 염기서열은 서열번호 2로 표시되는 염기서열인 것인, 재조합 균주.
The method of claim 5,
The nucleotide sequence encoding the LysR family transcriptional regulator is a nucleotide sequence represented by SEQ ID NO: 2, a recombinant strain.
제 5항에 있어서,
상기 발현벡터는 서열번호 4의 염기서열로 구성되는 프로모터를 LysR family transcriptional regulator를 코딩하는 염기서열의 업스트림(upstream) 위치에 포함하는 것인, 재조합 균주.
The method of claim 5,
The expression vector is a recombinant strain comprising a promoter consisting of the nucleotide sequence of SEQ ID NO: 4 upstream of the nucleotide sequence encoding the LysR family transcriptional regulator.
제 1항에 있어서,
상기 재조합 균주는 내산성이 증가된 것인, 재조합 균주.
According to claim 1,
The recombinant strain is to increase the acid resistance, recombinant strain.
제1항의 재조합 균주에 젖산 탈수소효소 유전자가 도입된 젖산 생산능을 갖는 재조합 균주. A recombinant strain having the ability to produce lactic acid, wherein the lactic acid dehydrogenase gene is introduced into the recombinant strain of claim 1. 제 9항에 있어서,
상기 젖산 탈수소효소 유전자는 서열번호 5의 염기서열인 것인, 젖산 생산능을 갖는 재조합 균주.
The method of claim 9,
The lactic acid dehydrogenase gene is a nucleotide sequence of SEQ ID NO: 5, a recombinant strain having lactic acid production capacity.
제 9항에 있어서,
상기 재조합 균주는 젖산 생산이 가능한 것인, 젖산 생산능을 갖는 재조합 균주.
The method of claim 9,
The recombinant strain is capable of producing lactic acid, a recombinant strain having the ability to produce lactic acid.
제9항의 젖산 생산능을 갖는 재조합 균주를 메탄을 포함하는 조건하에서 배양하는 단계를 포함하는 젖산 생산방법.A method for producing lactic acid, comprising culturing a recombinant strain having the ability to produce lactic acid according to claim 9 under conditions containing methane. 서열번호 4의 염기서열로 구성되는 프로모터. A promoter consisting of the nucleotide sequence of SEQ ID NO: 4. 제13항의 프로모터 및 목적 단백질을 코딩하는 염기서열을 포함하는 발현벡터. An expression vector comprising the nucleotide sequence encoding the promoter of claim 13 and a target protein. 제 14항에 있어서,
상기 목적 단백질은 LysR family transcriptional regulator인 것인, 발현벡터.
The method of claim 14,
The target protein is a LysR family transcriptional regulator, an expression vector.
KR1020180155169A 2018-12-05 2018-12-05 Gene related to acid resistance and methanotrophs comprising the same KR102112286B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180155169A KR102112286B1 (en) 2018-12-05 2018-12-05 Gene related to acid resistance and methanotrophs comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180155169A KR102112286B1 (en) 2018-12-05 2018-12-05 Gene related to acid resistance and methanotrophs comprising the same

Publications (1)

Publication Number Publication Date
KR102112286B1 true KR102112286B1 (en) 2020-05-19

Family

ID=70913140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180155169A KR102112286B1 (en) 2018-12-05 2018-12-05 Gene related to acid resistance and methanotrophs comprising the same

Country Status (1)

Country Link
KR (1) KR102112286B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065916A1 (en) * 2020-09-25 2022-03-31 한국생명공학연구원 Expression vector for use in methanotroph
KR20220046971A (en) * 2020-10-08 2022-04-15 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs
KR20220052189A (en) * 2020-10-20 2022-04-27 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs
KR20220052671A (en) * 2020-10-21 2022-04-28 서울대학교산학협력단 Methanotrophs with increased ability of producing lactic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511086A (en) * 1999-10-14 2003-03-25 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing L-cysteine or L-cysteine derivative by fermentation
KR20160020445A (en) * 2013-06-18 2016-02-23 칼리스타, 인코포레이티드 Compositions and methods for biological production of lactate from c1 compounds using lactate dehydrogenase transformants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511086A (en) * 1999-10-14 2003-03-25 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing L-cysteine or L-cysteine derivative by fermentation
KR20160020445A (en) * 2013-06-18 2016-02-23 칼리스타, 인코포레이티드 Compositions and methods for biological production of lactate from c1 compounds using lactate dehydrogenase transformants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. A. Henard et al., Sci. Rep., 6(2185):1-9, 2016

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065916A1 (en) * 2020-09-25 2022-03-31 한국생명공학연구원 Expression vector for use in methanotroph
KR20220046971A (en) * 2020-10-08 2022-04-15 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs
KR102530483B1 (en) * 2020-10-08 2023-05-09 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs
KR20220052189A (en) * 2020-10-20 2022-04-27 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs
KR102550049B1 (en) * 2020-10-20 2023-06-30 한국에너지기술연구원 Menufacturing method for organic acid using methanotrophs
KR20220052671A (en) * 2020-10-21 2022-04-28 서울대학교산학협력단 Methanotrophs with increased ability of producing lactic acid
KR102441554B1 (en) * 2020-10-21 2022-09-06 서울대학교산학협력단 Methanotrophs with increased ability of producing lactic acid

Similar Documents

Publication Publication Date Title
KR102112286B1 (en) Gene related to acid resistance and methanotrophs comprising the same
RU2615454C1 (en) Method for l-lysine production using microorganisms capable of l-lysine production
JP2020043867A (en) Microorganism producing lactic acid and method for producing lactic acid using the same
EP2041264A2 (en) Production of d-lactic acid with yeast
CN107815424B (en) Yarrowia lipolytica gene engineering bacterium for producing limonene and application thereof
JP2016521115A (en) Microorganism improved in lactic acid production and method for producing lactic acid using the same
US20150329883A1 (en) Genetically engineered bacterial cell and method of producing succinic acid using the same
WO2004081216A1 (en) Alcohol dehydrogenase gene of acetic acid bacterium
TWI790378B (en) Microorganism of the genus corynebacterium producing 5&#39;-xanthosine monophosphate and method for preparing 5&#39;-xanthosine monophosphate using the same
KR101689004B1 (en) Kluyveromyces marxianus deficient in the lactic acid utilization pathway and use thereof
JP2024503049A (en) GlxR protein mutant or threonine production method using the same
JP2023540518A (en) Corynebacterium glutamicum mutant strain with improved L-lysine production ability and method for producing L-lysine using the same
KR101686899B1 (en) Novel Kluyveromyces marxianus MJ1 and use thereof
KR102441554B1 (en) Methanotrophs with increased ability of producing lactic acid
EP3196300B1 (en) Microorganism with improved l-lysine productivity, and method for producing l-lysine by using same
KR20150028121A (en) Corynebacterium comprising NAD+ dependent formate dehydrogenase gene and a method for producing of C4 dicarboxylic acid using the same
KR20200023450A (en) Microorganisms and Related Methods Having Stabilized Copy Numbers of Functional DNA Sequences
Zhang et al. Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon
JP6604584B1 (en) Recombinant hydrogenophilus bacteria with improved valine-producing ability
KR20230083821A (en) Strain with enhanced D-lactate productivity and method for producing D-lactate using the same
KR20230083153A (en) Novel Pichia kudriavzevii strain and uses thereof
EP2829601A1 (en) Bacterial cell having enhanced succinic acid production and a method for producing the succinic acid using the same
KR20150125631A (en) Thermococcus mutant having improved hydrogen production from formate and methods of hydrogen production by using thereof
CA3222017A1 (en) Strain for producing highly concentrated l-glutamic acid, and l-glutamic acid production method using same
RU2671528C2 (en) Genetic modification of producing (s)-lactic acid thermophilic bacteria

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant