KR20220052671A - Methanotrophs with increased ability of producing lactic acid - Google Patents

Methanotrophs with increased ability of producing lactic acid Download PDF

Info

Publication number
KR20220052671A
KR20220052671A KR1020200136871A KR20200136871A KR20220052671A KR 20220052671 A KR20220052671 A KR 20220052671A KR 1020200136871 A KR1020200136871 A KR 1020200136871A KR 20200136871 A KR20200136871 A KR 20200136871A KR 20220052671 A KR20220052671 A KR 20220052671A
Authority
KR
South Korea
Prior art keywords
strain
lactic acid
promoter
methanogenic
recombinant
Prior art date
Application number
KR1020200136871A
Other languages
Korean (ko)
Other versions
KR102441554B1 (en
Inventor
한지숙
이종관
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020200136871A priority Critical patent/KR102441554B1/en
Publication of KR20220052671A publication Critical patent/KR20220052671A/en
Application granted granted Critical
Publication of KR102441554B1 publication Critical patent/KR102441554B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01028D-Lactate dehydrogenase (1.1.1.28)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to recombinant methanotrophs transformed with an expression vector comprising an inducible promoter and a lactate dehydrogenase gene operably linked to the inducible promoter. The recombinant strain of the present invention increased acid resistance and lactic acid production capacity by expressing the LDH gene using an inducible promoter in methanotrophs using methane as the sole carbon source. Therefore, the recombinant strain of the present invention can be usefully used to produce lactic acid using methane in a high concentration.

Description

젖산 생산능이 증가된 메탄자화균주{METHANOTROPHS WITH INCREASED ABILITY OF PRODUCING LACTIC ACID}METHANOTROPHS WITH INCREASED ABILITY OF PRODUCING LACTIC ACID

본 발명은 젖산 생산능이 증가된 재조합 메탄자화균주 및 이를 이용한 젖산의 생산방법에 관한 것이다.The present invention relates to a recombinant methanogenic strain having increased lactic acid-producing ability and a method for producing lactic acid using the same.

PLA(Polylactic Acid)는 젖산(lactic acid)을 락타이드(lactide)로 전환하고 이를 개환중합하여 만드는 생분해성 폴리머이며, 그 원료인 젖산은 발효를 통하여 생산하고 있다. 젖산(lactic acid)은 일반적으로 식품첨가제로 사용되고 있을 뿐만 아니라 화장품, 화학, 금속, 직물, 염색, 의약품 등의 산업에서 폭넓게 이용되고 있는 유기산의 일종이다. PLA (Polylactic Acid) is a biodegradable polymer made by converting lactic acid to lactide and ring-opening polymerization thereof, and its raw material, lactic acid, is produced through fermentation. Lactic acid is a kind of organic acid that is widely used in industries such as cosmetics, chemicals, metals, textiles, dyes, and pharmaceuticals as well as being generally used as a food additive.

젖산은 L형과 D형의 광학 이성질체를 가지고 있다. 이러한 광학이성질체 중 D형은 주로 의료용/약물전달용으로만 사용하였으나, PLA에 적용시 D형 락타이드에 의한 결정화율이 높아지면서 열적 특성이 좋아지는 현상이 발견되고, 또한 순수 L형 폴리머와 순수 D형 폴리머를 혼합한 가공조건에 따라 구조적으로 스테레오콤플렉스 PLA(Stereocomplex PLA)가 형성될 경우 내열성이 기존의 PLA는 물론 PE/PP 보다 높아지는 새로운 폴리머가 발견되는 등 D형에 의한 결정화도 증가 및 이를 통한 PLA 물성을 강화하는 방법에 대한 연구 및 상업화가 빠르게 진행되고 있다. Lactic acid has L-form and D-form optical isomers. Among these optical isomers, type D was mainly used for medical/drug delivery purposes. However, when applied to PLA, the crystallization rate due to D-type lactide increased and the thermal properties improved. In addition, pure L-type polymer and pure D When stereocomplex PLA is structurally formed according to the processing conditions in which the type polymer is mixed, a new polymer with higher heat resistance than PE/PP as well as existing PLA is discovered. Research and commercialization of methods for enhancing physical properties are progressing rapidly.

기존에는 주로 당류와 효모를 이용하여 젖산을 생산하였고, 이와 같은 방법을 이용해 순도 높은 젖산을 생산하는 방법에 대한 연구가 진행되었다. In the past, lactic acid was mainly produced using sugars and yeast, and research on a method for producing high-purity lactic acid using this method was conducted.

한편, 메탄은 천연가스와 바이오 가스의 주성분으로 매우 풍부하고 가장 값싼 탄소원이다. 최근 메탄을 유일한 탄소원 및 에너지원으로 사용할 수 있는 메탄자화균주를 이용한 젖산 생산방법에 대한 연구가 활발히 진행되고 있다. 하지만, 메탄자화균주는 0.5 g/L의 젖산이 첨가된 배지에서 거의 성장하지 못할 정도로 젖산에 대한 저항성이 낮다. 따라서, 메탄자화균주가 젖산을 생산함으로써 젖산의 농도가 높아질수록 메탄자화균주의 성장속도가 감소한다는 문제점이 있다. Meanwhile, methane is the main component of natural gas and biogas, and is the most abundant and cheapest carbon source. Recently, research on a lactic acid production method using a methane magnetized strain that can use methane as the only carbon and energy source is being actively researched. However, the methanogenic strain has low resistance to lactic acid to such an extent that it hardly grows in a medium to which 0.5 g/L of lactic acid is added. Therefore, there is a problem that the growth rate of the methanogenic strain decreases as the concentration of lactic acid increases because the methanogenic strain produces lactic acid.

M. buryatense 5GB1S를 사용하여 메탄으로부터 젖산염(lactate)을 생산한 연구결과가 보고된 바 있으며, 해당 균주는 0.8 g/L의 최대 젖산염 생산 농도 및 0.008 g/L/h의 젖산염 생산성을 나타내었다(C. A. Henard et al., Sci. Rep., 6(2185):1-9, 2016). 하지만, 메탄자화균주의 느린 성장속도 등으로 인해 젖산 생산 증대에 한계를 보이고 있다.The results of a study on the production of lactate from methane using M. buryatense 5GB1S have been reported, and the strain exhibited a maximum lactate production concentration of 0.8 g/L and a lactate productivity of 0.008 g/L/h ( CA Henard et al., Sci. Rep. , 6(2185):1-9, 2016). However, due to the slow growth rate of methane magnetized strains, there is a limit to increasing lactic acid production.

최근 본원 발명자들에 의하여 젖산염의 내성이 증가된 Methylomonas sp. DH-1 유래 JHM80 균주에 젖산 생산에 필요한 젖산 탈수소효소(LDH) 유전자를 도입하여 젖산 생산능이 증가된 균주가 개발되었다. 그러나 상기 균주에서도 강한 세기의 프로모터를 이용하여 LDH 유전자를 발현할 경우, 젖산의 독성으로 인하여 세포의 성장이 크게 저해된다는 단점이 존재하였다. Recently, Methylomonas sp. with increased lactate tolerance by the present inventors. A strain with increased lactic acid production capacity was developed by introducing the lactate dehydrogenase (LDH) gene required for lactic acid production into the JHM80 strain derived from DH-1. However, even in the above strain, when the LDH gene is expressed using a strong promoter, cell growth is greatly inhibited due to the toxicity of lactic acid.

따라서, LDH 유전자 발현 세기의 정교한 조절을 통해, 젖산 생산능을 강화시킨 메탄자화균주 개발이 지속적으로 요구된다.Therefore, there is a continuous need for the development of a methanogenic strain with enhanced lactate-producing ability through sophisticated regulation of LDH gene expression intensity.

(비특허문헌 1) Biotechnol Biofuels 12, 234 (2019) (Non-Patent Document 1) Biotechnol Biofuels 12, 234 (2019)

(특허문헌 1) 등록특허 제211286호(Patent Document 1) Registered Patent No. 211286

이에 본 발명자들은 젖산 생산능이 증대된 메탄자화균주를 개발하기 위해 연구한 결과, 유도성 프로모터(inducible promoter)를 사용함으로써 LDH 유전자의 발현 강도를 증가시킨 균주를 개발하였다. 구체적으로, LDH 도입시 상기 유도성 프로모터를 사용한 메탄자화균주가 구성적 프로모터(constitutive promoter)를 사용한 메탄자화균주 대비 IPTG(Isopropyl β-D-1-thiogalactopyranoside) 처리시 세포 농도당 젖산염 생산량이 월등히 높은것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors studied to develop a methanogenic strain with increased lactic acid production, and developed a strain in which the expression intensity of the LDH gene was increased by using an inducible promoter. Specifically, when LDH was introduced, the methanogenic strain using the inducible promoter produced significantly higher lactate production per cell concentration when treated with IPTG (Isopropyl β-D-1-thiogalactopyranoside) compared to the methanogenic strain using the constitutive promoter. By confirming that, the present invention was completed.

상기 과제를 해결하기 위하여, 본 발명의 일 측면은 유도성 프로모터; 및 상기 유도성 프로모터에 작동 가능하도록 연결된 젖산 탈수소효소 유전자를 포함하는 발현벡터로 형질전환된 재조합 메탄자화균주를 제공한다. In order to solve the above problems, one aspect of the present invention is an inducible promoter; And it provides a recombinant methanogenic strain transformed with an expression vector comprising a lactate dehydrogenase gene operably linked to the inducible promoter.

본 발명의 다른 측면은, 상기 메탄자화균주를 메탄 및 유도인자를 포함하는 조건하에서 배양하는 단계를 포함하는 젖산의 생산방법을 제공한다.Another aspect of the present invention provides a method for producing lactic acid comprising culturing the methanogenic strain under conditions containing methane and an inducer.

본 발명의 재조합 메탄자화균주는 종래 사용되어 왔던 구성적 프로모터가 아니라 유도성 프로모터를 사용함으로써 메탄자화균주에서의 젖산 탈수소효소 유전자의 발현을 증가시켰다. 또한, 본 발명의 재조합 메탄자화균주는 IPTG와 같은 유도인자의 농도조절에 의하여 젖산 탈수소효소 유전자의 발현이 조절된다. 따라서, 본 발명의 재조합 메탄자화균주는 메탄으로부터 생산되는 젖산 생산량을 원하는 수준으로 증가시켜 생산하는데 유용하게 사용될 수 있다. The recombinant methanogenic strain of the present invention increased the expression of the lactate dehydrogenase gene in the methanogenic strain by using an inducible promoter instead of the conventional constitutive promoter. In addition, the expression of the lactate dehydrogenase gene is regulated in the recombinant methanogenic strain of the present invention by controlling the concentration of an inducer such as IPTG. Therefore, the recombinant methanogenic strain of the present invention can be usefully used to increase the production of lactic acid produced from methane to a desired level.

도 1은 JHM80 균주의 유전체 중 돌연변이가 일어난 부위를 도식화한 도면이다.
도 2는 본원 발명의 일 실시예인 JHM87 균주에 포함되는 플라스미드를 도시한 도면이다.
도 3은 JHM88 균주의 무수 테트라사이클린(aTC) 농도별 세포 성장 및 젖산 생산량(상단) 및 JHM87 균주의 IPTG 농도별 세포 성장 및 젖산염 생산량(하단)을 나타낸 도면이다.
도 4는 JHM87 균주의 IPTG 농도별 세포 성장 및 젖산염 생산량을 나타낸 도면이다.
도 5는 JHM86 균주와 JHM87 균주에서의 세포 농도당 젖산염 생산량을 나타낸 도면이다.
1 is a schematic diagram of the mutation site in the genome of the JHM80 strain.
2 is a view showing a plasmid included in the JHM87 strain, which is an embodiment of the present invention.
3 is a view showing the cell growth and lactate production (top) according to the anhydrous tetracycline (aTC) concentration of the JHM88 strain and the cell growth and the lactate production (bottom) by the IPTG concentration of the JHM87 strain.
4 is a view showing the cell growth and lactate production by IPTG concentration of the JHM87 strain.
5 is a view showing the lactate production per cell concentration in JHM86 strain and JHM87 strain.

이하, 본 발명에 대하여 상세히 설명하도록 한다. Hereinafter, the present invention will be described in detail.

본 발명의 일 측면은 유도성 프로모터; 및 상기 유도성 프로모터에 작동 가능하도록 연결된 젖산 탈수소효소 유전자를 포함하는 발현벡터로 형질전환된 재조합 메탄자화균주를 제공한다. One aspect of the present invention is an inducible promoter; And it provides a recombinant methanogenic strain transformed with an expression vector comprising a lactate dehydrogenase gene operably linked to the inducible promoter.

본 발명에서 사용하는 용어 "메탄자화균주(methanotrophs)"란, 메탄산화세균이라고도 호칭되며, 메탄을 유일한 탄소원으로 이용하여 생육하는 원핵생물을 의미한다. 대부분의 메탄자화균주는 대기중의 메탄을 탄소원으로서 사용하는데, 대체로 메탄을 메탄올의 형태로 전환시킨 후, 생체내 대사에 사용한다. The term "methanotrophs" used in the present invention, also called methanotrophs, refers to prokaryotes that grow using methane as the sole carbon source. Most methanogenic strains use methane in the atmosphere as a carbon source, which is usually converted into methanol and then used for in vivo metabolism.

상기 메탄자화균주는 Methylomonas sp., Methylovulum sp., Methylocaldum sp., Methylomicrobium sp. 또는 Methylococcus sp. 속 균주인 것일 수 있다. 바람직하게는, 상기 메탄자화균주는 Methylomonas sp. DH-1, Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum 또는 Methylococcus capsulatus일 수 있으나, 이에 제한되는 것은 아니다. The methanogenic strain is Methylomonas sp., Methylovulum sp., Methylocaldum sp., Methylomicrobium sp. or Methylococcus sp. It may be a genus strain. Preferably, the methanogenic strain is Methylomonas sp . DH-1 , Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum or Methylococcus capsulatus , but is not limited thereto.

본 발명에서 사용되는 용어 "메틸로모나스 속(Methylomonas sp.) DH-1 균주"란, 하수슬러지로부터 유래되고, 종래에 보고되지 않았던 메틸로모나스 속(Methylomonas sp.)에 속하는 균주를 의미한다. 상기 DH-1 균주는 2016년 4월 8일자로 한국생명공학연구원 생물자원센터에 기탁하고, 기탁번호 KCTC13004BP를 부여받은 균주를 의미한다. 상기 균주는 2015년 8월 27일자로 한국생명공학연구원 생물자원센터에 기탁하고, 기탁번호 KCTC18400P를 부여받은 균주를 부다페스트 조약하의 기탁으로 전환한 것으로서, 기탁번호 KCTC13004BP의 균주와 기탁번호 KCTC18400P의 균주가 동일한 것임은 자명하다. The term " Methylomonas sp. DH-1 strain" used in the present invention means a strain belonging to the genus Methylomonas sp., which is derived from sewage sludge and has not been reported previously. The DH-1 strain refers to the strain deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resources Center as of April 8, 2016 and given the deposit number KCTC13004BP. The strain was deposited at the Korea Institute of Biotechnology and Biotechnology Biological Resources Center on August 27, 2015, and the strain given the deposit number KCTC18400P was converted to the deposit under the Budapest Treaty. It is obvious that they are identical.

본 발명에서 사용하는 용어 "젖산 탈수소효소"란, 일반적으로 NAD+를 이용하여 L-젖산 혹은 D-젖산에서 수소를 이탈시켜 피루브산으로 만드는 효소로, 이와는 역반응인 해당의 최종단계를 촉매할 때에는 NADH를 이용하여 피루브산을 환원하여 L-젖산 혹은 D-젖산을 생성하는 효소이다. 즉, 본 발명의 젖산 탈수소효소는 L-젖산 탈수소효소 또는 D-젖산 탈수소효소일 수 있으며, 구체적으로는 D-젖산 탈수소효소일 수 있다.The term "lactate dehydrogenase" used in the present invention is an enzyme that converts hydrogen from L-lactic acid or D-lactic acid to pyruvic acid by using NAD+. When catalyzing the final step of the reverse reaction, NADH is It is an enzyme that produces L-lactic acid or D-lactic acid by reducing pyruvic acid using That is, the lactate dehydrogenase of the present invention may be L-lactate dehydrogenase or D-lactate dehydrogenase, specifically D-lactate dehydrogenase.

상기 젖산 탈수소효소 유전자는 야생형 젖산 탈수소효소뿐 아니라, 이와 최소한 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99%의 상동성을 가지는 동일한 활성을 갖는 효소의 유전자를 포함할 수 있다. 상기 젖산 탈수소효소 유전자는 NCBI의 GenBank 등을 통해 확인할 수 있으며, Leuconostoc mesentoroides subsp. mesenteroides ATCC 8293 유래의 젖산 탈수소효소를 코딩하는 유전자일 수 있다. 구체적으로, 상기 젖산 탈수소효소 유전자는 GenBank: ABJ62843.1의 아미노산 서열을 코딩하는 염기서열일 수 있다. 바람직하게는, 상기 젖산 탈수소효소 유전자는 서열번호 1의 염기서열일 수 있다. The lactate dehydrogenase gene has at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology thereto as well as wild-type lactate dehydrogenase. It may contain the gene of the enzyme having. The lactate dehydrogenase gene can be confirmed through GenBank of NCBI, etc., and Leuconostoc mesenteroides subsp. It may be a gene encoding lactate dehydrogenase from mesenteroides ATCC 8293. Specifically, the lactate dehydrogenase gene may be a nucleotide sequence encoding the amino acid sequence of GenBank: ABJ62843.1. Preferably, the lactate dehydrogenase gene may be the nucleotide sequence of SEQ ID NO: 1.

이때, 상기 메탄자화균주는 glgA(glycogen synthase) 유전자가 결실된 균주일 수 있다. 상기 젖산 탈수소효소 유전자가 도입된 재조합 균주는 젖산 탈수소효소 유전자가 도입되어 젖산 생산이 가능한 균주일 수 있다. In this case, the methanogenic strain may be a strain in which the glgA (glycogen synthase) gene is deleted. The recombinant strain into which the lactate dehydrogenase gene is introduced may be a strain capable of producing lactic acid by introducing the lactate dehydrogenase gene.

또한, 젖산 탈수소효소 유전자가 도입될 메탄자화균주는 LysR family transcriptional regulator를 코딩하는 염기서열을 포함하는 발현벡터가 도입된 메탄자화균주일 수 있다. 구체적으로, 상기 메탄자화균주는 젖산의 저항성에 기여하는 유전자인 AYM39_21120 유전자의 프로모터 중 일부 염기를 결실시켜 AYM39_21120 유전자의 발현이 증가되도록 형질전환된 재조합 균주일 수 있다. In addition, the methanogenic strain into which the lactate dehydrogenase gene will be introduced may be a methanogenic strain into which an expression vector including a nucleotide sequence encoding a LysR family transcriptional regulator is introduced. Specifically, the methanogenic strain may be a recombinant strain transformed to increase the expression of the AYM39_21120 gene by deleting some bases of the promoter of the AYM39_21120 gene, which is a gene contributing to lactic acid resistance.

또한, 상기 젖산 탈수소효소 유전자가 도입될 메탄자화 균주는 lacI 프로모터, lacI 및 lac operator를 추가로 포함할 수 있다. 이때, 상기 LacI 프로모터는 서열번호 2의 염기서열일 수 있다. 또한, 상기 lacI는 서열번호 3의 염기서열일 수 있고, 상기 lac operator는 서열번호 4의 염기서열일 수 있다. In addition, the methanogenic strain into which the lactate dehydrogenase gene is to be introduced may further include a lacI promoter, a lacI and a lac operator. In this case, the LacI promoter may be the nucleotide sequence of SEQ ID NO: 2. In addition, the lacI may be the nucleotide sequence of SEQ ID NO: 3, and the lac operator may be the nucleotide sequence of SEQ ID NO: 4.

본 발명에서 사용하는 용어 "프로모터"란, 전사조절인자들이 결합할 수 있는 DNA 염기서열을 의미하는데, 상기 프로모터는 전사조절인자를 매개로 하여 RNA 중합효소와 결합함으로써, 그의 하류에 위치한 유전자의 전사를 유도할 수 있다. As used herein, the term "promoter" refers to a DNA nucleotide sequence to which transcriptional regulators can bind. The promoter binds to RNA polymerase through a transcriptional regulator as a mediator, thereby transcribing a gene located downstream thereof. can induce

본 명세서에서 사용된 용어 "유도성 프로모터"란, 특정 조건에 반응하여 발현을 유발하는 프로모터를 의미하며, 항상적으로 발현되는 구성적 프로모터(constitutive promoter)와는 구별된다. 상기 유도성 프로모터는 온도, 농도, 기타 물리적/화학적 변화와 같은 환경의 변화 또는 IPTG와 같은 유도인자의 첨가나 농도의 변화에 반응할 수 있으며, 그 발현되는 양의 측면에 있어서도 다양한 측면을 나타낼 수 있다. As used herein, the term “inducible promoter” refers to a promoter that induces expression in response to a specific condition, and is distinct from a constitutive promoter that is constitutively expressed. The inducible promoter can respond to changes in the environment, such as temperature, concentration, and other physical/chemical changes, or to the addition or concentration of inducers such as IPTG, and can exhibit various aspects in terms of the amount of expression. there is.

본 발명에 적합한 유도성 프로모터로서 테트라사이클린 조절 프로모터, 독시사이클린 유도성(TRE) 프로모터, cAMP 유도성 프로모터, 글루코코르티코이드 활성화 프로모터 시스템, IPTG 유도성 프로모터, Cd2+ 또는 Zn2+ 유도성 프로모터와 같은 금속단백질 프로모터, 인터페론 의존성 프로모터(예컨대 쥐 MX 프로모터), HIV LTR 프로모터(Tat), DMSO 유도성 프로모터, 글로빈 프로모터 글로빈 LCR, 호르몬 조절 프로모터(GLVP/TAXI, 엑디손), 및 라파마이신 유도성 프로모터(CID)와 같은 조건부 활성화 프로모터 및 프로모터 시스템으로부터 선택된 유도성 프로모터에서 선택되는 프로모터가 존재하나, 상기 예시한 프로모터에 제한되는 것은 아니다. As inducible promoters suitable for the present invention, metalloprotein promoters such as tetracycline regulated promoter, doxycycline inducible (TRE) promoter, cAMP inducible promoter, glucocorticoid activated promoter system, IPTG inducible promoter, Cd2+ or Zn2+ inducible promoter, interferon conditional such as dependent promoter (such as murine MX promoter), HIV LTR promoter (Tat), DMSO inducible promoter, globin promoter globin LCR, hormone regulated promoter (GLVP/TAXI, ecdysone), and rapamycin inducible promoter (CID) Promoters selected from inducible promoters selected from activating promoters and promoter systems exist, but are not limited to the promoters exemplified above.

한편, 본 발명에 적합한 유도성 프로모터는 바람직하게는 tac 프로모터, trc 프로모터, lac 프로모터 또는 T3 프로모터로부터 선택될 수 있다.Meanwhile, the inducible promoter suitable for the present invention may be preferably selected from the tac promoter, the trc promoter, the lac promoter or the T3 promoter.

본 명세서에서 사용된 용어 "유도인자"란 당류(sugar), 금속 이온, 항생제, 염료, 플라보노이드, 비-당류 대사물질 에스터라제, 올레이트, c-d-AMP, 콜레이트, 살리실레이트 및 스테로이드 호르몬 등과 같이 프로모터의 유도에 영향을 미칠수 있는 모든 인자를 의미한다. 바람직하게는, 상기 유도인자는 당류(sugar), 금속 이온, 항생제, 염료, 플라보노이드, 비-당류 대사물질 에스터라제, 올레이트, c-d-AMP, 콜레이트, 살리실레이트 및 스테로이드 호르몬에서 선택되는 하나 이상일 수 있다. 특히, 바람직하게는 상기 유도인자로서 락토오스, IPTG, L-아라비노스, 말토오스, 트레할로스, 글루코스-6P, 글리세롤-P, 글루시톨, 푸코오스, L-아스코르베이트, 데옥시리보뉴클레오시드, 이노시톨 및 프룩토스에서 하나 이상 선택되는 당류가 사용될 수 있으며, 더욱 바람직하게는 IPTG일 수 있다. As used herein, the term "inducing factor" refers to sugars, metal ions, antibiotics, dyes, flavonoids, non-saccharide metabolites esterases, oleates, c-d-AMPs, cholates, salicylates, steroid hormones, etc. It refers to all factors that can affect the induction of promoters. Preferably, the inducer is one selected from sugar, metal ion, antibiotic, dye, flavonoid, non-saccharide metabolite esterase, oleate, c-d-AMP, cholate, salicylate and steroid hormone. may be more than In particular, preferably, as the inducer, lactose, IPTG, L-arabinose, maltose, trehalose, glucose-6P, glycerol-P, glucitol, fucose, L-ascorbate, deoxyribonucleoside, One or more saccharides selected from inositol and fructose may be used, and more preferably IPTG.

본 발명의 용어 "작동가능도록 연결(operably linked)"이란, 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 상태를 의미한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용 할 수 있다.As used herein, the term "operably linked" refers to a state in which a nucleic acid expression control sequence and a nucleic acid sequence encoding a target protein or RNA are functionally linked to perform a general function. . For example, a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence. The operative linkage with the expression vector can be prepared using a genetic recombination technique well known in the art, and site-specific DNA cleavage and ligation can use enzymes generally known in the art.

본 명세서에서 사용된 용어 "발현벡터"란, 숙주세포에서 목적 단백질을 발현할 수 있는 재조합 벡터로서, 삽입된 유전자가 발현되도록 작동 가능하게 연결된 필수적 조절 요소를 포함하는 유전자 작제물을 의미한다. 상기 발현벡터는 개시코돈, 종결코돈, 프로모터, 오퍼레이터 등의 발현조절 요소들을 포함하는데, 상기 개시 코돈 및 종결 코돈은 일반적으로 폴리펩타이드를 코딩하는 염기서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다.As used herein, the term "expression vector" refers to a recombinant vector capable of expressing a target protein in a host cell, and refers to a genetic construct including essential regulatory elements operably linked to express an inserted gene. The expression vector includes expression control elements such as a start codon, a stop codon, a promoter, and an operator, and the start codon and stop codon are generally considered to be part of a nucleotide sequence encoding a polypeptide, and when the gene construct is administered, the individual It must exhibit an action in the sequence and must be in frame with the coding sequence.

상기 발현벡터는 플라스미드 벡터 또는 코스미드 벡터로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The expression vector may be any one selected from the group consisting of a plasmid vector or a cosmid vector.

상기 플라스미드 벡터는 상업적으로 개발된 pUC18 플라스미드, pBAD 플라스미드, pIDTSAMRT-AMP 플라스미드, pJK001 플라스미드 등일 수 있으나, 이에 제한되는 것은 아니다.The plasmid vector may be a commercially developed pUC18 plasmid, pBAD plasmid, pIDTSAMRT-AMP plasmid, pJK001 plasmid, and the like, but is not limited thereto.

상기 발현벡터를 도입하는 방법은 발현벡터를 포함하는 리포좀을 이용하는 방법, PEG를 이용하여 재조합 발현벡터를 도입하는 방법, 상기 재조합 발현벡터의 직접주입법, 미세입자충격법, 유전자총, 전기천공법(electroporation), 바이러스를 이용한 형질전환법, 진공을 이용한 형질전환법(vacuum infiltration method), 화아침지법(floral meristem dipping method) 등을 사용할 수 있다. 바람직하게는, 상기 발현벡터를 도입하는 방법은 전기천공법일 수 있다. Methods for introducing the expression vector include a method using a liposome containing an expression vector, a method for introducing a recombinant expression vector using PEG, a direct injection method of the recombinant expression vector, a microparticle bombardment method, a gene gun, and an electroporation method ( electroporation), a transformation method using a virus, a vacuum infiltration method, a floral meristem dipping method, and the like can be used. Preferably, the method for introducing the expression vector may be electroporation.

상기 발현벡터는 episomal DNA 형태 또는 균주의 유전체 내 삽입을 통해 유전자를 발현할 수 있지만, 바람직하게는 메탄자화균주의 유전체 내에 삽입을 통한 유전자 발현일 수 있다. The expression vector may express a gene through episomal DNA form or insertion into the genome of the strain, preferably gene expression through insertion into the genome of a methanogenic strain.

상기 발현벡터는 서열번호 5의 염기서열로 구성되는 프로모터를 젖산 탈수소효소 유전자를 코딩하는 염기서열의 상위(upstream) 위치에 포함할 수 있다. The expression vector may include a promoter consisting of the nucleotide sequence of SEQ ID NO: 5 at an upstream position of the nucleotide sequence encoding the lactate dehydrogenase gene.

상기 메탄자화균주는 서열번호 5의 염기서열을 포함하는 발현벡터가 도입됨으로써 유도인자의 존재하에 배양시 젖산 생산능이 증가되는 균주일 수 있다. The methanogenic strain may be a strain in which lactic acid-producing ability is increased when cultured in the presence of an inducer by introducing an expression vector comprising the nucleotide sequence of SEQ ID NO: 5.

한편, 본 발명자들은 젖산에 대한 저항성이 향상된 메탄자화균주를 개발하기 위해 연구한 결과, 높은 농도의 젖산을 포함하는 배지에서 적응진화를 통해 젖산에 대한 저항성이 크게 향상된 메탄자화균주를 선별한 바 있다. 상기 메탄자화균주는 서열번호 6의 염기서열로 표시되는 AYM39_21120 유전자의 프로모터 중 456번째 및 457번째 염기(TT)가 결실되어 있다는 점을 특징으로 한다. On the other hand, as a result of research to develop a methanogenic strain with improved resistance to lactic acid, the present inventors selected a methanogenic strain with significantly improved resistance to lactic acid through adaptive evolution in a medium containing high concentration of lactic acid. . The methanogenic strain is characterized in that the 456th and 457th bases (TT) of the promoter of the AYM39_21120 gene represented by the nucleotide sequence of SEQ ID NO: 6 are deleted.

한편, 본 발명자들은 젖산에 대한 저항성이 크게 향상된 상기 메탄자화균주에 LDH 유전자를 도입하여 젖산을 생산하더라도 젖산 생산능이 여전히 제한되는 단점을 갖는 점을 발견하였다. 상기 문제점을 해결하기 위한 연구개발 끝에, 메탄자화균주에 IPTG를 유도인자로 사용하는 유도성 프로모터를 사용하면 메탄자화균주의 젖산염 생산량이 증가될 수 있음을 확인하였다(도 4 참조). 따라서, 본 발명의 재조합 메탄자화균주는 젖산에 대한 저항성이 높으면서도 젖산을 생산하는 능력이 증가되었으므로, 메탄을 이용한 젖산의 생산에 유용하게 사용될 수 있다.On the other hand, the present inventors have discovered that even if the LDH gene is introduced into the methanogenic strain with greatly improved resistance to lactic acid to produce lactic acid, the lactic acid production ability is still limited. After research and development to solve the above problem, it was confirmed that the lactate production of the methanogenic strain could be increased when an inducible promoter using IPTG as an inducer was used in the methanogenic strain (see FIG. 4 ). Therefore, the recombinant methanogenic strain of the present invention has an increased ability to produce lactic acid while having high resistance to lactic acid, and thus can be usefully used for the production of lactic acid using methane.

본 발명의 다른 측면은, 유도성 프로모터가 IPTG에 의해 유도되는, 재조합 메탄자화균주를 제공하는 것이다. IPTG에 의하여 본 발명의 유도성 프로모터가 유도되어 유도성 프로모터 하위(downstream)에 위치한 유전자의 발현이 증가될 수 있다. Another aspect of the present invention is to provide a recombinant methanogenic strain in which the inducible promoter is induced by IPTG. The inducible promoter of the present invention may be induced by IPTG to increase the expression of genes located downstream of the inducible promoter.

본 발명의 또 다른 측면은, 젖산 탈수소효소 유전자의 발현이 IPTG의 농도에 따라 조절되는 재조합 메탄자화균주를 제공한다. 본 발명의 재조합 메탄자화균주는 IPTG를 전혀 포함하지 않는 배지에서보다 IPTG를 포함하는 배지에서 배양하였을 때 젖산염 생산량이 증가된다. 젖산염 생산량의 증가는 LDH 유전자의 발현이 증가 및/또는 배지 내 존재하는 젖산에 대한 내산성 증가에 따른 결과일 수 있다. 배지에 포함되는 IPTG 농도를 조절함으로써 재조합 메탄자화균주가 생산하는 젖산염 생산량을 조절할 수 있다. Another aspect of the present invention provides a recombinant methanogenic strain in which expression of lactate dehydrogenase gene is regulated according to the concentration of IPTG. The recombinant methanogenic strain of the present invention has an increased lactate production when cultured in a medium containing IPTG than in a medium containing no IPTG. The increase in lactate production may be a result of an increase in LDH gene expression and/or an increase in acid resistance to lactic acid present in the medium. By adjusting the concentration of IPTG contained in the medium, it is possible to control the lactate production produced by the recombinant methanogenic strain.

본 발명의 유도성 프로모터의 유도 및 젖산 탈수소효소 유전자의 발현 조절을 위하여 사용되는 IPTG의 첨가량은 1 μM 내지 10 mM 또는 1 μM 내지 1 mM일 수 있다. 바람직하게는 상기 IPTG의 첨가량은 1 μM 내지 900 μM, 1 μM 내지 800 μM, 1 μM 내지 700 μM, 1 μM 내지 600 μM, 1 μM 내지 500 μM, 1 μM 내지 400 μM, 1 μM 내지 300 μM, 1 μM 내지 200 μM, 1 μM 내지 100 μM, 1 μM 내지 90 μM, 1 μM 내지 80 μM, 1 μM 내지 70 μM, 1 μM 내지 60 μM, 1 μM 내지 50 μM, 1 μM 내지 40 μM, 1 μM 내지 30 μM, 1 μM 내지 20 μM, 또는 1 μM 내지 10 μM일 수 있다. 더욱 바람직하게는, 5 내지 10 μM 의 IPTG가 사용될 수 있다. 또한, 균주의 배양 과정에서의 pH가 증가할수록 상기 IPTG의 첨가량을 증가시킬 수도 있다.The amount of IPTG used for inducing the inducible promoter of the present invention and regulating the expression of lactate dehydrogenase gene may be 1 μM to 10 mM or 1 μM to 1 mM. Preferably, the amount of IPTG added is 1 μM to 900 μM, 1 μM to 800 μM, 1 μM to 700 μM, 1 μM to 600 μM, 1 μM to 500 μM, 1 μM to 400 μM, 1 μM to 300 μM, 1 μM to 200 μM, 1 μM to 100 μM, 1 μM to 90 μM, 1 μM to 80 μM, 1 μM to 70 μM, 1 μM to 60 μM, 1 μM to 50 μM, 1 μM to 40 μM, 1 μM to 30 μM, 1 μM to 20 μM, or 1 μM to 10 μM. More preferably, 5 to 10 μM of IPTG may be used. In addition, as the pH in the culture process of the strain increases, the amount of IPTG added may be increased.

본 발명의 다른 측면은, LysR family transcriptional regulator가 과발현 되도록 형질전환된 재조합 메탄자화균주를 제공하는 것이다. Another aspect of the present invention is to provide a recombinant methanogenic strain transformed so that the LysR family transcriptional regulator is overexpressed.

본 발명에서 사용하는 용어 "LysR family transcriptional regulator"란, AYM39_21120 유전자에 의해 코딩되는 단백질로 LysR 계열의 전사제어인자(transcriptional regulator)를 의미한다. 상기 LysR family transcriptional regulator는 서열번호 7로 표시되는 아미노산 서열을 갖는 단백질일 수 있다. 또한, 상기 LysR family transcriptional regulator를 코딩하는 염기서열은 서열번호 8로 표시되는 염기서열일 수 있다. The term "LysR family transcriptional regulator" used in the present invention is a protein encoded by the AYM39_21120 gene and refers to a LysR family transcriptional regulator. The LysR family transcriptional regulator may be a protein having an amino acid sequence represented by SEQ ID NO: 7. In addition, the nucleotide sequence encoding the LysR family transcriptional regulator may be a nucleotide sequence represented by SEQ ID NO: 8.

본 발명에서 사용되는 발현벡터는 서열번호 5의 염기서열로 구성되는 프로모터를 LysR family transcriptional regulator를 코딩하는 염기서열의 상위(upstream) 위치에 포함할 수 있다.The expression vector used in the present invention may include a promoter composed of the nucleotide sequence of SEQ ID NO: 5 at an upstream position of the nucleotide sequence encoding the LysR family transcriptional regulator.

본 발명의 또 다른 측면은, 상기 재조합 메탄자화균주를 메탄 및 유도인자를 포함하는 조건하에서 배양하여 젖산을 생산하는 단계 및 상기 생성된 젖산을 수득하는 단계를 포함하는 젖산을 생산하는 방법을 제공한다.Another aspect of the present invention provides a method for producing lactic acid, comprising the steps of culturing the recombinant methanogenic strain under conditions containing methane and an inducer to produce lactic acid and obtaining the produced lactic acid. .

상기 재조합 메탄자화균주를 배양하는 방법은 특별히 제한되지 않으나, 메탄을 포함하는 대기조건 하에서, 배지에 접종하여 배양함으로써 수행될 수 있다. The method for culturing the recombinant methanogenic strain is not particularly limited, but may be performed by inoculating and culturing a medium under atmospheric conditions containing methane.

상기 대기중 메탄의 농도는 0.01 내지 50%(v/v)일 수 있으며, 구체적으로 상기 메탄의 농도는 10 내지 40%(v/v) 또는 20%(v/v)일 수 있다. The concentration of methane in the atmosphere may be 0.01 to 50% (v/v), specifically, the concentration of methane may be 10 to 40% (v/v) or 20% (v/v).

배양온도는 특별히 제한되지 않으나, 20℃ 내지 40℃일 수 있다. 바람직하게는, 25℃ 내지 35℃일 수 있다. 배양온도의 일 구체예로는 30℃일 수 있다. 상기 배양은 교반조건에서 수행될 수 있다. 구체적으로, 상기 교반조건은 100 rpm 내지 300 rpm일 수 있으며, 바람직하게는 150 rpm 내지 250 rpm 또는 170 rpm일 수 있다. 배양시간은 20시간 내지 200시간 동안 배양할 수 있으며, 구체적으로, 20시간 내지 140시간 동안 배양할 수 있다. 구체적으로는, 24 시간 내지 120시간 동안 배양할 수 있다. The culture temperature is not particularly limited, but may be 20°C to 40°C. Preferably, it may be 25 °C to 35 °C. As an example of the incubation temperature, it may be 30°C. The culture may be performed under stirring conditions. Specifically, the stirring condition may be 100 rpm to 300 rpm, preferably 150 rpm to 250 rpm or 170 rpm. Incubation time may be incubated for 20 hours to 200 hours, specifically, may be cultured for 20 hours to 140 hours. Specifically, it can be cultured for 24 hours to 120 hours.

본 발명에 있어서, 상기 재조합 메탄자화균주를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 상기 메탄자화균주로부터 젖산을 생산할 수 있는 한 특별히 이에 제한되지 않는다. 또한, 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.In the present invention, the method for culturing the recombinant methanogenic strain can be performed using a method widely known in the art. Specifically, the culture is not particularly limited as long as it can produce lactic acid from the methanogenic strain. In addition, the culture may be continuously cultured in a batch process or in a fed batch or repeated fed batch process.

배양에 사용되는 배지는 메탄자화균주의 배양에 사용되는 것으로 알려진 NMS(nitrate mineral salts) 배지를 사용할 수 있다. 메탄자화균주에 따라 상기 배지에 포함된 성분 또는 이의 함량을 조절한 배지를 사용할 수 있다(http://methanotroph.org/wiki/culturing-tips/). 특히, 배지에 NaCl, KCl 등의 염류를 포함할 경우, DH-1 균주 또는 그의 형질전환체의 증식 또는 젖산의 생산성을 향상시킬 수 있다. 이때, 배지에 포함되는 염류의 농도는 0.1%(w/w) 내지 3.0%(w/w)일 수 있으며, 바람직하게는 1.0%(w/w) 내지 2.0%(w/w) 또는 1.5%(w/w)일 수 있다. The medium used for the culture may be a nitrate mineral salts (NMS) medium known to be used for the culture of methanogenic strains. Depending on the methanogenic strain, the components contained in the medium or a medium in which the content thereof is adjusted may be used (http://methanotroph.org/wiki/culturing-tips/). In particular, when salts such as NaCl and KCl are included in the medium, the proliferation of the DH-1 strain or its transformant or the productivity of lactic acid can be improved. In this case, the concentration of salts contained in the medium may be 0.1% (w/w) to 3.0% (w/w), preferably 1.0% (w/w) to 2.0% (w/w) or 1.5% (w/w).

또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 염기 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. In addition, precursors suitable for the culture medium may be used. The above-mentioned raw materials may be added in a batch, fed-batch or continuous manner by an appropriate method to the culture during the culturing process, but is not particularly limited thereto. A basic compound such as sodium hydroxide, potassium hydroxide, ammonia, or an acid compound such as phosphoric acid or sulfuric acid may be used in an appropriate manner to adjust the pH of the culture. In addition, an antifoaming agent such as a fatty acid polyglycol ester may be used to inhibit the formation of bubbles.

젖산을 수득하는 단계는 투석, 원심분리, 여과, 용매추출, 크로마토그래피, 결정화 등의 당업계에 공지된 방법에 의해 수행될 수 있다. 예를 들면, 상기 형질전환체의 배양물을 원심분리하여 상기 재조합 균주를 제거하고 얻어진 상등액을, 용매추출법에 적용하여 젖산을 회수하는 방법을 사용할 수 있다. 이외에도 상기 젖산의 특성에 맞추어 공지된 실험방법을 조합하여 상기 젖산을 회수할 수 있는 방법이라면 특별히 제한되지 않고 사용될 수 있다.The step of obtaining lactic acid may be performed by methods known in the art such as dialysis, centrifugation, filtration, solvent extraction, chromatography, crystallization, and the like. For example, a method of recovering lactic acid by centrifuging the transformant culture to remove the recombinant strain and applying the obtained supernatant to a solvent extraction method may be used. In addition, any method capable of recovering the lactic acid by combining known experimental methods according to the characteristics of the lactic acid may be used without particular limitation.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

실시예 1. 형질전환된 재조합 메탄자화균주의 제조Example 1. Preparation of Transformed Recombinant Methanogenic Strain

실시예 1.1. 적응진화를 통한 젖산에 대한 저항성이 증가된 균주 선별 Example 1.1. Selection of strains with increased resistance to lactic acid through adaptive evolution

높은 농도의 젖산에서도 성장할 수 있는 메탄자화균주를 선별하기 위하여, 실험실 규모의 적응 진화를 진행하였다. 메틸로모나스 속(Metyhlomonas sp.) DH-1 균주는 경희대에서 분양받았다. In order to select methanogenic strains that can grow even in high concentrations of lactic acid, adaptive evolution on a laboratory scale was performed. The genus Metyhlomonas sp . DH-1 strain was sold at Kyunghee University.

DH-1 균주의 젖산에 대한 적응진화를 유도하기 위해, DH-1 균주를 0.5 g/L 농도의 젖산이 첨가된 배지를 시작으로 0.2 g/L씩 젖산의 농도를 증가시켜 8 g/L의 젖산이 첨가된 배지로 계대배양 하였다. 총 35번의 연속적인 계대배양을 통해, 8 g/L 농도의 젖산이 처리된 배지에서 성장할 수 있는 DH-1 균주를 선별하였다. 야생형 균주와 더불어 선별된 균주를 젖산이 첨가된 배지에서 성장을 비교하여, 젖산에 대한 저항성이 향상된 것을 확인하였다. 상기 선별된 균주를 “JHM 80”으로 명명하였다. In order to induce the adaptive evolution of the DH-1 strain to lactic acid, the DH-1 strain was started with a medium supplemented with lactic acid at a concentration of 0.5 g/L, and the concentration of lactic acid was increased by 0.2 g/L to 8 g/L. It was subcultured in a medium supplemented with lactic acid. Through a total of 35 consecutive passages, a DH-1 strain capable of growing in a medium treated with lactic acid at a concentration of 8 g/L was selected. By comparing the growth of the selected strain with the wild-type strain in the medium to which lactic acid was added, it was confirmed that the resistance to lactic acid was improved. The selected strain was named “JHM 80”.

실시예 1.2. JHM80 균주의 유전체 분석 및 유전자 발현 확인 Example 1.2. Genome analysis and gene expression confirmation of JHM80 strain

실시예 1에서 선별한 JHM80 균주의 젖산에 대한 저항성 향상에 기여하는 유전자를 찾기 위해, JHM80 균주의 유전체 염기서열 분석(whole genome sequencing)을 마크로젠에 의뢰하였다. 그 결과, JHM80 균주에서 AYM39_21115 유전자와 AYM39_21120 유전자 사이의 프로모터에서 2개의 염기서열(TT)이 결손된 돌연변이를 확인하였다(도 1). 상기 프로모터는 서열번호 6의 염기서열로 표시되며, 이는 LysR family transcriptional regulator의 상위에 해당한다. In order to find a gene contributing to the improvement of resistance to lactic acid of the JHM80 strain selected in Example 1, whole genome sequencing of the JHM80 strain was commissioned to Macrogen. As a result, a mutation in which two nucleotide sequences (TT) were deleted in the promoter between the AYM39_21115 gene and the AYM39_21120 gene in the JHM80 strain was confirmed (FIG. 1). The promoter is represented by the nucleotide sequence of SEQ ID NO: 6, which corresponds to the upper rank of the LysR family transcriptional regulator.

실시예 1.3. 형질전환된 재조합 메탄자화균주의 제조 Example 1.3. Preparation of Transformed Recombinant Methanogenic Strain

상동 재조합 시스템을 사용하여 유도성 프로모터를 LDH 유전자 카세트와 함께 포함하는 플라스미드를 제작하였다. 상기 플라스미드의 주형으로서 JHM80 균주의 DNA를 사용하였다. 메탄자화균주의 AYM39_03770(glgA) 유전자 자리에 삽입될 수 있도록 하는 상동성 영역은 glgA 유전자 상위(upstream) 1kb 및 하위(downstream) 1kb를 사용하였다. PCR을 통해 AYM39_03770(glgA) 유전자의 상위 1kb 및 하위 1kb를 PCR 하여 각각 Not1/MauB1, Apa1/Sac1 제한효소를 이용하여 pInsUD-LDH-Kan 벡터에 삽입하였다. 위 벡터를 "pglgAUD-LDH-Kan" 벡터로 명명하였다. A plasmid containing an inducible promoter together with the LDH gene cassette was constructed using a homologous recombination system. DNA of JHM80 strain was used as a template for the plasmid. The homology region allowing insertion into the AYM39_03770 ( glgA ) locus of the methanogenic strain was 1 kb upstream and 1 kb downstream of the glgA gene. Through PCR, the upper 1 kb and lower 1 kb of the AYM39_03770 ( glgA ) gene were inserted into the pInsUD-LDH-Kan vector using Not1/MauB1 and Apa1/Sac1 restriction enzymes, respectively. The above vector was named "pglgAUD-LDH-Kan" vector.

메탄자화균주의 한 종류인 Methylomicrobium buryatense 5GB1S 균주에서 무수 테트라사이클린 유도성 프로모터인 Tet 프로모터를 이용한 젖산생산 연구가 보고된 바 있다. 이에 따라, 발명자들은 E. coli 등 다른 균주에서 많이 활용되는 Tac 프로모터와 LDH 발현 능력을 비교하기 위하여 실시예 1.1에서 선별된 JHM80 균주에 도입하기 위한 유도성 프로모터로서 Tet 프로모터를 선택하였다. A study on lactic acid production using the Tet promoter, an anhydrous tetracycline-inducible promoter, has been reported in the Methylomicrobium buryatense 5GB1S strain, a type of methanogenic strain. Accordingly, the inventors selected the Tet promoter as an inducible promoter for introduction into the JHM80 strain selected in Example 1.1 in order to compare the LDH expression ability with the Tac promoter widely used in other strains such as E. coli .

유도성 프로모터의 도입을 위하여 상기 pglgAUD-LDH Kan 벡터에 Tet 프로모터와 서열번호 5의 염기서열로 표시되는 Tac 프로모터를 MauB1/BamH1 제한효소를 이용하여 각각 삽입하였다. 또한, 서열번호 2의 염기서열로 표시되는 LacI 프로모터, 서열번호 3의 염기서열로 표시되는 lacI 를 Tac 프로모터의 상위에 서열번호 4의 염기서열로 표시되는 lacO operator를 Tac 프로모터의 하위에 삽입하였다. 이에 따라 얻어진 벡터는 각각 "pglgAud-P.tet-LDH" 및 "pglgAud-P.tac-LDH"으로 명명하였다. For the introduction of the inducible promoter, the Tet promoter and the Tac promoter represented by the nucleotide sequence of SEQ ID NO: 5 were inserted into the pglgAUD-LDH Kan vector using MauB1/BamH1 restriction enzymes, respectively. In addition, the LacI promoter represented by the nucleotide sequence of SEQ ID NO: 2 and lacI represented by the nucleotide sequence of SEQ ID NO: 3 were inserted above the Tac promoter, and the lacO operator represented by the nucleotide sequence of SEQ ID NO: 4 was inserted below the Tac promoter. The vectors thus obtained were named "pglgAud-P.tet-LDH" and "pglgAud-P.tac-LDH", respectively.

추가적으로, 다양한 유도성 프로모터를 사용할 수 있도록 MauB1/BamH1 제한효소 인식 자리를 제공하였고, LDH유전자에는 BamH1/Pst1 제한효소 인식 자리를 삽입하여, 다른 유전자의 클로닝에 용이하도록 설계하였다(도 2). Additionally, a MauB1/BamH1 restriction enzyme recognition site was provided so that various inducible promoters could be used, and a BamH1/Pst1 restriction enzyme recognition site was inserted into the LDH gene to facilitate cloning of other genes ( FIG. 2 ).

JHM80 균주의 형질 전환을 위해 MicropulserTM Electroportor(Biorad)를 사용하여 전기천공법을 이용한 형질전환 방법을 이용하였다. 본 실험에서 사용된 균주 및 플라스미드를 하기 표 1에 나타내었다. For transformation of JHM80 strain, a transformation method using electroporation was used using Micropulser TM Electroportor (Biorad). The strains and plasmids used in this experiment are shown in Table 1 below.

균주명strain name 유전자형genotype 출처source DH-1DH-1 KCTC18400PKCTC18400P JHM80JHM80 Evolved strain from DH-1 Evolved strain from DH-1 -- JHM86JHM86 JHM80 △glgA::LDH-KanR JHM80 △glgA::LDH-KanR Biotechnol Biofuels 12, 234 (2019) Biotechnol Biofuels 12, 234 (2019) JHM87JHM87 JHM80 △glgA::P.tac-LDH-KanR JHM80 △glgA::P.tac-LDH-KanR -- JHM88JHM88 JHM80 △glgA::P.tet-LDH-KanR JHM80 △glgA::P.tet-LDH-KanR -- 플라스미드plasmid 특징characteristic 출처source pInsUD-LDH-KanpInsUD-LDH-Kan Plasmid containing KanR marker with LDH Plasmid containing KanR marker with LDH -- pglgAUD-LDH-Kan pglgAUD-LDH-Kan Plasmid containing LDH-KanR cassette with glgA integration site Plasmid containing LDH-KanR cassette with glgA integration site Biotechnol Biofuels 12, 234 (2019) Biotechnol Biofuels 12, 234 (2019) pglgAUD-P.tet-LDH-KanpglgAUD-P.tet-LDH-Kan Plasmid containing P tet -LDH-KanR cassette with glgA integration sitePlasmid containing P tet -LDH-KanR cassette with glgA integration site -- PglgAUD-P.tac-LDH-KanPglgAUD-P.tac-LDH-Kan Plasmid containing P tac -LDH-KanR cassette with glgA integration sitePlasmid containing P tac -LDH-KanR cassette with glgA integration site --

전기천공법을 통해 플라스미드가 JHM80 균주의 유전체 내에 각각 도입되었다. pglgAUD-LDH-Kan 플라스미드가 도입된 JHM80 균주는 "JHM86" 균주로 명명되었다. Tac promoter-LDH 카세트를 포함하는 PglgAUD-P.tac-LDH-Kan 플라스미드가 도입된 JHM80 균주는 "JHM87" 균주로 명명되었고, Tet promoter-LDH 카세트를 포함하는 pglgAUD-P.tet-LDH-Kan 플라스미드가 도입된 균주는 "JHM88" 균주로 명명되었다. Plasmids were respectively introduced into the genome of the JHM80 strain through electroporation. The JHM80 strain into which the pglgAUD-LDH-Kan plasmid was introduced was named "JHM86" strain. The JHM80 strain into which the PglgAUD-P.tac-LDH-Kan plasmid containing the Tac promoter-LDH cassette was introduced was named "JHM87" strain, and the pglgAUD-P.tet-LDH-Kan plasmid containing the Tet promoter-LDH cassette The strain into which was introduced was named "JHM88" strain.

실시예 1.4. 메탄자화균주의 배양 Example 1.4. Cultivation of methane magnetized strains

DH-1, JHM80, JHM86, JHM87, JHM88균주는 NMS (0.488 g/L MgSO4, 1 g/L KNO3, 0.228 g/L CaCl2-2H2O, 3.8% Fe-EDTA, 0.1% NaMo-4H2O, Trace element solution)에 인산용액, 비타민, 10 μM CuSO4가 첨가된 배지에서 배양하였다. Trace element solution은 500 mg/L FeSO4-7H2O, 400 mg/L ZnSO4-7H2O, 15.71 mg/L MnCl2-4H2O, 50 mg/L CoCl2-6H2O, 10 mg/L Nicl2-6H2O, 15 mg/L H3BO3, 250 mg/L EDTA로 구성되어 있으며, 인산 용액(26 g/L KH2PO4, 32.83 g/L Na2HPO4)과 비타민 (2.0 mg/L biotin, 2.0 mg/L folic acid, 5.0 mg/L Thiamine HCl, 5.0 mg/L Ca pantothenate, 0.1 mg/L Vitamin B12, 5.0 mg/L Riboflavin, 5.0 mg/L Nicotinamide)의 조성은 다음과 같다. 세포 배양은 진탕배양기를 이용하여 30 ℃에서 170 rpm 으로 진행하였다. 배양조건으로 초기접종 세포농도는 OD600=0.2 또는 0.5 로 고정하였고, 125 ml 진탕 플라스크에서 12.5 ml 배지로 진행하였고, 가스 시린지 (Agilent 50 ml gas tight syringe 5190-1547)를 사용하여 20%의 메탄을 공급하였다. DH-1, JHM80, JHM86, JHM87, JHM88 strains are NMS (0.488 g/L MgSO 4 , 1 g/L KNO 3 , 0.228 g/L CaCl 2 -2H 2 O, 3.8% Fe-EDTA, 0.1% NaMo- 4H 2 O, Trace element solution) was cultured in a medium containing phosphoric acid solution, vitamins, and 10 μM CuSO 4 . Trace element solution is 500 mg/L FeSO 4 -7H 2 O, 400 mg/L ZnSO 4 -7H 2 O, 15.71 mg/L MnCl 2 -4H 2 O, 50 mg/L CoCl 2 -6H 2 O, 10 mg Consists of /L Nicl 2 -6H 2 O, 15 mg/LH 3 BO 3 , 250 mg/L EDTA, phosphoric acid solution (26 g/L KH 2 PO 4 , 32.83 g/L Na 2 HPO 4 ) and vitamins (2.0 mg/L biotin, 2.0 mg/L folic acid, 5.0 mg/L Thiamine HCl, 5.0 mg/L Ca pantothenate, 0.1 mg/L Vitamin B 12 , 5.0 mg/L Riboflavin, 5.0 mg/L Nicotinamide) Is as follows. Cell culture was performed at 30 °C and 170 rpm using a shaking incubator. As culture conditions, the initial inoculation cell concentration was fixed at OD 600 = 0.2 or 0.5, and 12.5 ml medium was used in a 125 ml shake flask, and 20% methane was used using a gas syringe (Agilent 50 ml gas tight syringe 5190-1547). was supplied.

유전자의 유도를 위하여, 적절한 농도의 무수 테트라사이클린(aTC) 또는 IPTG를 사용하였다.For gene induction, an appropriate concentration of anhydrous tetracycline (aTC) or IPTG was used.

실시예 2. 유도성 프로모터의 종류에 따른 LDH 유전자 발현량 비교 Example 2. Comparison of LDH gene expression level according to the type of inducible promoter

유도성 프로모터의 종류에 따른 형질전환된 재조합 메탄자화균주에서의 LDH 유전자 발현량 차이를 알아보기 위하여 JHM87 균주 및 JHM88 균주에서의 젖산염 생산량을 비교하였다. In order to examine the difference in LDH gene expression level in the transformed recombinant methanogenic strain according to the type of inducible promoter, lactate production in JHM87 strain and JHM88 strain was compared.

배지에 포함된 젖산염 농도의 분석은 배지 300 μL을 0.45 μm 필터로 여과하여 HPLC 분석을 진행함으로써 수행되었다. UtiMate 3000 HPLC system(Thermo fishers scientific), BioRad Aminex HPX-87H 컬럼 및 굴절률검출기(RI detector)를 사용하였다. 이동상은 5 mM 황산을 사용하였고 유속은 0.6 ml/분, 온도는 60도로 설정하였다. 세포 밀도는 Multiskan Go(Thermo fishers scientific)를 사용하여 600nm 의 파장에서 측정하였다,Analysis of the concentration of lactate contained in the medium was performed by filtering 300 μL of the medium through a 0.45 μm filter and performing HPLC analysis. UtiMate 3000 HPLC system (Thermo fishers scientific), BioRad Aminex HPX-87H column and RI detector were used. As the mobile phase, 5 mM sulfuric acid was used, the flow rate was 0.6 ml/min, and the temperature was set to 60°C. Cell density was measured at a wavelength of 600 nm using Multiskan Go (Thermo fishers scientific).

IPTG를 유도인자로 하는 유도성 프로모터를 갖는 JHM87 균주에 0, 0.05, 0.1 및 0.2 mM 농도의 IPTG를 처리한 뒤 세포 성장 및 젖산염 생산량을 확인하였다. 유도인자로서 테트라사이클린을 사용하는 유도성 프로모터를 갖는 JHM88 균주에 0, 0.1, 0.2 및 0.5 mg/L 농도의 aTC를 처리한 뒤 세포 성장 및 젖산염 생산량을 확인하였다. After the JHM87 strain having an inducible promoter using IPTG as an inducer was treated with IPTG at concentrations of 0, 0.05, 0.1 and 0.2 mM, cell growth and lactate production were confirmed. Cell growth and lactate production were confirmed after the JHM88 strain having an inducible promoter using tetracycline as an inducer was treated with aTC at concentrations of 0, 0.1, 0.2 and 0.5 mg/L.

aTc가 처리되지 않은 조건에서, JHM88 균주에서 젖산염 생산은 관찰되지 않았다. 반면에, 0.1 mg/L, 0.2 mg/L 및 0.5 mg/L 농도의 aTc가 처리되었을 때, JHM88 균주는 42 시간 동안 각각 10 mg/L, 15 mg/L 및 30 mg/L 농도의 젖산염을 생산하였다 (도 3 상단). In the condition not treated with aTc, lactate production was not observed in the JHM88 strain. On the other hand, when aTc at concentrations of 0.1 mg/L, 0.2 mg/L and 0.5 mg/L was treated, the JHM88 strain produced lactate at concentrations of 10 mg/L, 15 mg/L, and 30 mg/L, respectively, for 42 hours. produced (Fig. 3 top).

한편, 0.05 mM, 0.1 mM, 및 0.2 mM의 IPTG를 처리하였을 때, JHM87 균주에서 세포 성장은 관찰되지 않았으나 IPTG를 처리한 모든 군에서 70 시간 동안 150 mg/L 농도 이상의 젖산염을 생산하는 것으로 나타났다(도 3 하단). On the other hand, when 0.05 mM, 0.1 mM, and 0.2 mM IPTG was treated, cell growth was not observed in the JHM87 strain, but it was shown that lactate at a concentration of 150 mg/L or more was produced for 70 hours in all groups treated with IPTG ( Fig. 3 bottom).

실시예 3. 저농도 IPTG 처리시 재조합 형질전환 메탄자화균주의 젖산염 생산능 Example 3. Lactate-producing ability of recombinant transformed methanogenic strain upon low-concentration IPTG treatment

Tac 프로모터를 이용한 LDH의 유전자의 발현에 따라 젖산염 생산능이 향상되었는지 확인하기 위하여, 저농도의 5, 10 또는 25 μM IPTG를 처리하여 JHM87 균주를 배양하였다. In order to check whether the lactate production capacity was improved according to the expression of the LDH gene using the Tac promoter, the JHM87 strain was cultured by treatment with a low concentration of 5, 10, or 25 μM IPTG.

125 mL 진탕 플라스크에서 24 시간마다 20 %의 메탄을 추가적으로 공급하는 방식으로 배양하여 세포의 성장과 젖산염 생산량을 관찰했다. IPTG를 처리하지 않은 대조군과 비교하여, IPTG를 처리했을 때 젖산염 생산량이 증가하였다. 5 μM IPTG가 처리되었을 때, 가장 높은 젖산염을 생산하였으며 96 시간 동안 862 mg/L 농도의 젖산염을 생산했다(도 4). Cell growth and lactate production were observed by culturing in a 125 mL shake flask with an additional supply of 20% methane every 24 hours. Compared with the control group not treated with IPTG, lactate production was increased when IPTG was treated. When 5 μM IPTG was treated, the highest lactate was produced and lactate at a concentration of 862 mg/L was produced for 96 hours ( FIG. 4 ).

한편, IPTG 농도가 증가할수록 세포의 성장이 크게 저해되었기 때문에, 세포 농도당 생성된 젖산염의 양을 비교하였다. IPTG가 존재하지 않는 경우에는 구성적 프로모터를 사용하는 JHM86 균주의 동일한 배양 조건에서의 젖산염 생산량보다 JHM87 균주의 젖산염 생산량이 낮았다. 그러나, 저농도의 5, 10 또는 25 μM IPTG을 처리한 경우에는 JHM86 균주보다 JHM87 균주에서의 세포 농도당 젖산염 생산량이 증가하였다(도 5). 특히, 25 μM IPTG를 처리한 경우에는 72시간 기준으로 JHM86 균주보다 JHM87 균주에서의 세포 농도당 젖산염 생산량이 약 4 배인 것으로 나타났다.On the other hand, since the growth of cells was significantly inhibited as the concentration of IPTG increased, the amount of lactate produced per cell concentration was compared. In the absence of IPTG, the lactate production of the JHM87 strain was lower than that of the JHM86 strain using the constitutive promoter under the same culture conditions. However, when a low concentration of 5, 10, or 25 μM IPTG was treated, the lactate production per cell concentration was increased in the JHM87 strain than in the JHM86 strain ( FIG. 5 ). In particular, when 25 μM IPTG was treated, the lactate production per cell concentration in the JHM87 strain was about 4 times higher than that in the JHM86 strain as of 72 hours.

<110> Seoul National University R&DB Foundation <120> METHANOTROPHS WITH INCREASED ABILITY OF PRODUCING LACTIC ACID <130> 202009-0028 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 996 <212> DNA <213> Leuconostoc mesenteroides <400> 1 atgaagattt ttgcttacgg cattcgtgat gatgaaaagc catcacttga agaatggaaa 60 gcggctaacc cagagattga agtggactac acacaagaat tattgacacc tgaaacagct 120 aagttggctg agggatcaga ttcagctgtt gtttatcaac aattggacta tacacgtgaa 180 acattgacag ctttagctaa cgttggtgtt actaacttgt cattgcgtaa cgttggtaca 240 gataacattg attttgatgc agcacgtgaa tttaacttta acatttcaaa tgttcctgtt 300 tattcaccaa atgctattgc agaacactca atgattcaat tatctcgttt gctacgtcgc 360 acgaaagcat tggatgccaa aattgctaag cacgacttgc gttgggcacc aacaattgga 420 cgtgaaatgc gtatgcaaac agttggtgtt attggtacag gtcatattgg ccgtgttgct 480 attaacattt tgaaaggctt tggggccaag gttattgctt atgacaagta cccaaatgct 540 gaattacaag cagaaggttt gtacgttgac acattagacg aattatatgc acaagctgat 600 gcaatttcat tgtatgttcc tggtgtacct gaaaaccatc atctaatcaa tgcagatgct 660 attgctaaga tgaaggatgg tgtggttatc atgaacgctg cgcgtggtaa tttgatggac 720 attgacgcta ttattgatgg tttgaattct ggtaagattt cagacttcgg tatggacgtt 780 tatgaaaatg aagttggctt gttcaatgaa gattggtctg gtaaagaatt cccagatgct 840 aagattgctg acttgattgc acgcgaaaat gtattggtta cgccacacac ggctttctat 900 acaactaaag ctgttctaga aatggttcac caatcatttg atgcagcagt tgctttcgcc 960 aagggtgaga agccagctat tgctgttgaa tattaa 996 <210> 2 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> LacI promoter <400> 2 gacaccatcg aatggtgcaa aacctttcgc ggtatggcat gatagcgccc ggaagagagt 60 caattcaggg tggtgaat 78 <210> 3 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> LacI <400> 3 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 60 tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 120 gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 180 tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 240 gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 300 cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 360 gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 420 actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 480 ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 540 caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 600 tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 660 agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 720 gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 780 gggctgcgcg ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca 840 tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 900 gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 960 gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 1020 gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 1080 tga 1083 <210> 4 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Lac operator <400> 4 ttgtgagcgg ataacaa 17 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> tac promoter <400> 5 ttgacaatta atcatcggct cgtataatg 29 <210> 6 <211> 524 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of promoter (Methylomonas sp. DH-1) <400> 6 gactattaat ctcgatttcg aacgggctga atcatagcat gacgcccaaa ctgccggaaa 60 aactgcgggc aaaaaaaacc tcccaatgct cgcgcagagg gaggcaagaa aaccagcgga 120 gtgcttggaa ggaggttacc gctcgttaat tacaacacca ggaggtagtt acaaattctg 180 gggatcagcg gctcgcttgg gtattgagcg agatattgct gaacattgag gtcgctgcaa 240 acaggacagt ggaaattacg aacaggccgg aaagaaaatt caaaatgccg gcaataaaca 300 aagtaccgac cagtacatct tttttaaatt cattcattgt gctcaaatcc tctgtttaat 360 cttgcatttg gcaagatttt ctgtgctttc tcgttaagtt gccgcacact ataccggaga 420 taaaaaagtt tacaattagg cgtttattaa ataaattgta tgaaattaag aaacaataaa 480 aatgtcaacg ttttttagca acttccaacg ccaccggagg caga 524 <210> 7 <211> 300 <212> PRT <213> Artificial Sequence <220> <223> amino acid sequence of LysR family transcriptional regulator (Methylomonas sp. DH-1) <400> 7 Met Asp Lys Leu Thr Ser Met Asn Val Phe Val Arg Val Ala Lys Ala 1 5 10 15 Gly Ser Phe Ala Gly Ala Ala Lys Asp Leu Asp Ile Ser Arg Ala Met 20 25 30 Ala Thr Lys His Ile Met Gln Leu Glu Ser Glu Leu Asn Thr Arg Leu 35 40 45 Phe Asn Arg Thr Thr Arg Ser Leu Ser Leu Thr Glu Ala Gly Glu Ala 50 55 60 Tyr Leu Glu Arg Cys Gln Gln Val Leu Leu Asp Val Ala Glu Met Glu 65 70 75 80 Ser Ala Ile Thr His Leu Gln Thr Glu Pro Arg Gly Thr Leu Lys Ile 85 90 95 Leu Ala Pro Pro Val Ile Gly Ala Ser His Ile Ser Pro Gly Leu Thr 100 105 110 Glu Tyr Leu Lys Asn Tyr Pro Asp Leu Ser Val Glu Met Val Leu Lys 115 120 125 Gly Gly Gln Val Asp Leu Ile Asp Glu Gly Val Asp Leu Ala Ile Tyr 130 135 140 Leu Gly Gln Leu Asn Asp Thr Ser Leu Val Ala Arg Lys Leu Ala Ser 145 150 155 160 Ser Ser Leu Val Val Cys Ala Ser Pro Glu Tyr Leu Lys Asn His Gly 165 170 175 Ile Pro Gln Asp Pro Glu Asp Leu Glu Asp His Ser Cys Leu Ile Asn 180 185 190 Trp Ala Ile Pro Pro Arg Asn Lys Trp Arg Phe Lys Gly Ile Leu Gly 195 200 205 Glu Arg Thr Val Thr Val Thr Gly Arg Met Gln Ala Asn Met Ala Asp 210 215 220 Pro Ile Arg Asn Ala Ala Val Asn Gly Leu Gly Leu Ile Met Leu Pro 225 230 235 240 Arg Tyr Ile Val Gly Arg Asp Ile Glu Gln Gly Arg Leu Gln Val Val 245 250 255 Met Glu Gln Tyr Gly Ile Ala Pro Leu Glu Ile Tyr Ala Val Tyr Pro 260 265 270 His Arg Lys Tyr Leu Ser Ala Lys Val Arg Ser Phe Leu Glu Phe Ile 275 280 285 Gln Ala Trp Leu Pro His Arg Ile Gly Met Asn Pro 290 295 300 <210> 8 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of LysR family transcriptional regulator (Methylomonas sp. DH-1) <400> 8 atggacaaac taaccagcat gaacgttttt gtccgcgtcg ccaaggccgg cagcttcgcc 60 ggggccgcca aggatttgga tatctctcga gctatggcca ccaagcacat catgcaattg 120 gagagcgagc tgaatacccg cctgttcaac cgtacgaccc gcagcttaag cctgactgaa 180 gccggcgagg cttatctgga acgctgccag caggtgttgc tggacgtcgc ggaaatggaa 240 tcggccatca cccatctgca aaccgaaccg cgcggcactt taaaaattct ggcaccaccg 300 gtaatcggcg ccagccacat ctcgcccggc ctgaccgagt atctgaaaaa ctacccggat 360 ctttcggtgg agatggtgct gaaaggcggt caggtggatt tgatcgacga aggcgtcgac 420 ttagcgattt atctcggcca gctcaacgac accagcctgg tcgcccgcaa actggccagc 480 tcctcgctgg tagtctgcgc gtcgccggaa tacctgaaaa accacggcat cccgcaagac 540 ccggaagact tggaagacca tagctgcctg attaactggg ccatcccgcc gcgcaacaaa 600 tggcgcttca aaggcatcct cggcgaacgc accgtcactg tgaccggcag gatgcaagcc 660 aacatggccg acccgatccg caatgcggcc gttaacggcc taggcttgat tatgttgccg 720 cgctacatcg tcggccgtga catcgaacaa ggccgtctgc aagtggtgat ggaacaatac 780 ggcatcgccc cgttggagat ttacgcggtt tacccacacc gcaagtatct ttccgctaaa 840 gtccgttcct ttctggaatt tatccaagcc tggctaccgc accggatcgg catgaaccca 900 tga 903 <110> Seoul National University R&DB Foundation <120> METHANOTROPHS WITH INCREASED ABILITY OF PRODUCING LACTIC ACID <130> 202009-0028 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 996 <212> DNA <213> Leuconostoc mesenteroides <400> 1 atgaagattt ttgcttacgg cattcgtgat gatgaaaagc catcacttga agaatggaaa 60 gcggctaacc cagagattga agtggactac acacaagaat tattgacacc tgaaacagct 120 aagttggctg agggatcaga ttcagctgtt gtttatcaac aattggacta tacacgtgaa 180 acattgacag ctttagctaa cgttggtgtt actaacttgt cattgcgtaa cgttggtaca 240 gataacattg attttgatgc agcacgtgaa tttaacttta acatttcaaa tgttcctgtt 300 tattcaccaa atgctattgc agaacactca atgattcaat tatctcgttt gctacgtcgc 360 acgaaagcat tggatgccaa aattgctaag cacgacttgc gttgggcacc aacaattgga 420 cgtgaaatgc gtatgcaaac agttggtgtt attggtacag gtcatattgg ccgtgttgct 480 attaacattt tgaaaggctt tggggccaag gttattgctt atgacaagta cccaaatgct 540 gaattacaag cagaaggttt gtacgttgac acattagacg aattatatgc acaagctgat 600 gcaatttcat tgtatgttcc tggtgtacct gaaaaccatc atctaatcaa tgcagatgct 660 attgctaaga tgaaggatgg tgtggttatc atgaacgctg cgcgtggtaa tttgatggac 720 attgacgcta ttattgatgg tttgaattct ggtaagattt cagacttcgg tatggacgtt 780 tatgaaaatg aagttggctt gttcaatgaa gattggtctg gtaaagaatt cccagatgct 840 aagattgctg acttgattgc acgcgaaaat gtattggtta cgccacacac ggctttctat 900 acaactaaag ctgttctaga aatggttcac caatcatttg atgcagcagt tgctttcgcc 960 aagggtgaga agccagctat tgctgttgaa tattaa 996 <210> 2 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> LacI promoter <400> 2 gacaccatcg aatggtgcaa aacctttcgc ggtatggcat gatagcgccc ggaagagagt 60 caattcaggg tggtgaat 78 <210> 3 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> LacI <400> 3 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 60 tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 120 gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 180 tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 240 gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 300 cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 360 gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 420 actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 480 ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 540 caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 600 tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 660 agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 720 gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 780 gggctgcgcg ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca 840 tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 900 gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 960 gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 1020 gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 1080 tga 1083 <210> 4 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Lac operator <400> 4 ttgtgagcgg ataacaa 17 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> tac promoter <400> 5 ttgacaatta atcatcggct cgtataatg 29 <210> 6 <211> 524 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of promoter (Methylomonas sp. DH-1) <400> 6 gactattaat ctcgatttcg aacgggctga atcatagcat gacgcccaaa ctgccggaaa 60 aactgcgggc aaaaaaaacc tcccaatgct cgcgcagagg gaggcaagaa aaccagcgga 120 gtgcttggaa ggaggttacc gctcgttaat tacaacacca ggaggtagtt acaaattctg 180 gggatcagcg gctcgcttgg gtattgagcg agatattgct gaacattgag gtcgctgcaa 240 acaggacagt ggaaattacg aacaggccgg aaagaaaatt caaaatgccg gcaataaaca 300 aagtaccgac cagtacatct tttttaaatt cattcattgt gctcaaatcc tctgtttaat 360 cttgcatttg gcaagatttt ctgtgctttc tcgttaagtt gccgcacact ataccggaga 420 taaaaaagtt tacaattagg cgtttattaa ataaattgta tgaaattaag aaacaataaa 480 aatgtcaacg ttttttagca acttccaacg ccaccggagg caga 524 <210> 7 <211> 300 <212> PRT <213> Artificial Sequence <220> <223> amino acid sequence of LysR family transcriptional regulator (Methylomonas sp. DH-1) <400> 7 Met Asp Lys Leu Thr Ser Met Asn Val Phe Val Arg Val Ala Lys Ala 1 5 10 15 Gly Ser Phe Ala Gly Ala Ala Lys Asp Leu Asp Ile Ser Arg Ala Met 20 25 30 Ala Thr Lys His Ile Met Gln Leu Glu Ser Glu Leu Asn Thr Arg Leu 35 40 45 Phe Asn Arg Thr Thr Arg Ser Leu Ser Leu Thr Glu Ala Gly Glu Ala 50 55 60 Tyr Leu Glu Arg Cys Gln Gln Val Leu Leu Asp Val Ala Glu Met Glu 65 70 75 80 Ser Ala Ile Thr His Leu Gln Thr Glu Pro Arg Gly Thr Leu Lys Ile 85 90 95 Leu Ala Pro Pro Val Ile Gly Ala Ser His Ile Ser Pro Gly Leu Thr 100 105 110 Glu Tyr Leu Lys Asn Tyr Pro Asp Leu Ser Val Glu Met Val Leu Lys 115 120 125 Gly Gly Gln Val Asp Leu Ile Asp Glu Gly Val Asp Leu Ala Ile Tyr 130 135 140 Leu Gly Gln Leu Asn Asp Thr Ser Leu Val Ala Arg Lys Leu Ala Ser 145 150 155 160 Ser Ser Leu Val Val Cys Ala Ser Pro Glu Tyr Leu Lys Asn His Gly 165 170 175 Ile Pro Gln Asp Pro Glu Asp Leu Glu Asp His Ser Cys Leu Ile Asn 180 185 190 Trp Ala Ile Pro Pro Arg Asn Lys Trp Arg Phe Lys Gly Ile Leu Gly 195 200 205 Glu Arg Thr Val Thr Val Thr Gly Arg Met Gln Ala Asn Met Ala Asp 210 215 220 Pro Ile Arg Asn Ala Ala Val Asn Gly Leu Gly Leu Ile Met Leu Pro 225 230 235 240 Arg Tyr Ile Val Gly Arg Asp Ile Glu Gln Gly Arg Leu Gln Val Val 245 250 255 Met Glu Gln Tyr Gly Ile Ala Pro Leu Glu Ile Tyr Ala Val Tyr Pro 260 265 270 His Arg Lys Tyr Leu Ser Ala Lys Val Arg Ser Phe Leu Glu Phe Ile 275 280 285 Gln Ala Trp Leu Pro His Arg Ile Gly Met Asn Pro 290 295 300 <210> 8 <211> 903 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of LysR family transcriptional regulator (Methylomonas sp. DH-1) <400> 8 atggacaaac taaccagcat gaacgttttt gtccgcgtcg ccaaggccgg cagcttcgcc 60 ggggccgcca aggatttgga tatctctcga gctatggcca ccaagcacat catgcaattg 120 gagagcgagc tgaatacccg cctgttcaac cgtacgaccc gcagcttaag cctgactgaa 180 gccggcgagg cttatctgga acgctgccag caggtgttgc tggacgtcgc ggaaatggaa 240 tcggccatca cccatctgca aaccgaaccg cgcggcactt taaaaattct ggcaccaccg 300 gtaatcggcg ccagccacat ctcgcccggc ctgaccgagt atctgaaaaa ctacccggat 360 ctttcggtgg agatggtgct gaaaggcggt caggtggatt tgatcgacga aggcgtcgac 420 ttagcgattt atctcggcca gctcaacgac accagcctgg tcgcccgcaa actggccagc 480 tcctcgctgg tagtctgcgc gtcgccggaa tacctgaaaa accacggcat cccgcaagac 540 ccggaagact tggaagacca tagctgcctg attaactggg ccatcccgcc gcgcaacaaa 600 tggcgcttca aaggcatcct cggcgaacgc accgtcactg tgaccggcag gatgcaagcc 660 aacatggccg acccgatccg caatgcggcc gttaacggcc taggcttgat tatgttgccg 720 cgctacatcg tcggccgtga catcgaacaa ggccgtctgc aagtggtgat ggaacaatac 780 ggcatcgccc cgttggagat ttacgcggtt tacccacacc gcaagtatct ttccgctaaa 840 gtccgttcct ttctggaatt tatccaagcc tggctaccgc accggatcgg catgaaccca 900 tga 903

Claims (11)

유도성 프로모터(inducible promoter); 및
상기 유도성 프로모터에 작동 가능하도록 연결된 젖산 탈수소효소(lactate dehydrogenase) 유전자를 포함하는 발현벡터로 형질전환된, 재조합 메탄자화균주(methanotrophs).
inducible promoter; and
Recombinant methanotrophs transformed with an expression vector containing a lactate dehydrogenase gene operably linked to the inducible promoter.
제1항에 있어서,
상기 유도성 프로모터는 IPTG(isopropyl-β-D-thiogalactopyranoside)에 의해 유도되는, 재조합 메탄자화균주.
The method of claim 1,
The inducible promoter is induced by IPTG (isopropyl-β-D-thiogalactopyranoside), a recombinant methanogenic strain.
제2항에 있어서,
상기 젖산 탈수소효소 유전자의 발현은 IPTG 농도에 따라 조절되는, 재조합 메탄자화균주.
3. The method of claim 2,
The expression of the lactate dehydrogenase gene is regulated according to the IPTG concentration, a recombinant methanogenic strain.
제1항에 있어서,
상기 유도성 프로모터는 tac 프로모터, trc 프로모터, lac 프로모터 또는 T3 프로모터인, 재조합 메탄자화균주.
The method of claim 1,
The inducible promoter is a tac promoter, a trc promoter, a lac promoter, or a T3 promoter.
제1항에 있어서,
상기 젖산 탈수소효소 유전자는 서열번호 1의 염기서열로 이루어진, 재조합 메탄자화균주.
The method of claim 1,
The lactate dehydrogenase gene consists of the nucleotide sequence of SEQ ID NO: 1, a recombinant methanogenic strain.
제1항에 있어서,
상기 메탄자화균주는 Methylomonas sp. DH-1, Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum 또는 Methylococcus capsulatus인, 재조합 메탄자화균주.
The method of claim 1,
The methanogenic strain is Methylomonas sp. DH-1 , Methylomonas koyamae, Methylomonas denitrificans, Methylomonas methanica, Methylovulum psychrotolerans, Methylocaldum marinum, Methylomicrobium alcaliphilum or Methylococcus capsulatus , a recombinant methanogenic strain.
제1항에 있어서,
상기 메탄자화균주는 LysR family transcriptional regulator가 과발현 되도록 형질전환된, 재조합 메탄자화균주.
The method of claim 1,
The methanogenic strain is a recombinant methanogenic strain transformed so that the LysR family transcriptional regulator is overexpressed.
제1항에 있어서,
상기 균주는 젖산 생산능을 갖는, 재조합 메탄자화균주.
The method of claim 1,
The strain is a recombinant methanogenic strain having the ability to produce lactic acid.
제1항 내지 제8항 중 어느 한 항의 재조합 메탄자화균주를 메탄 및 유도인자를 포함하는 조건에서 배양하는 단계; 및
상기 메탄자화균주로부터 생성되는 젖산을 수득하는 단계를 포함하는, 젖산의 생산방법.
The method of any one of claims 1 to 8, comprising: culturing the recombinant methanogenic strain of any one of claims 1 to 8 under conditions containing methane and an inducer; and
A method for producing lactic acid, comprising the step of obtaining lactic acid produced from the methanogenic strain.
제9항에 있어서,
상기 배양단계에서 유도인자는 IPTG인, 젖산의 생산방법.
10. The method of claim 9,
The inducing factor in the culturing step is IPTG, a method for producing lactic acid.
제10항에 있어서,
상기 배양단계에서, 1 μM 내지 100 μM의 농도의 IPTG로 프로모터를 유도하는, 젖산의 생산방법.
11. The method of claim 10,
In the culturing step, inducing a promoter with IPTG at a concentration of 1 μM to 100 μM, a method for producing lactic acid.
KR1020200136871A 2020-10-21 2020-10-21 Methanotrophs with increased ability of producing lactic acid KR102441554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200136871A KR102441554B1 (en) 2020-10-21 2020-10-21 Methanotrophs with increased ability of producing lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200136871A KR102441554B1 (en) 2020-10-21 2020-10-21 Methanotrophs with increased ability of producing lactic acid

Publications (2)

Publication Number Publication Date
KR20220052671A true KR20220052671A (en) 2022-04-28
KR102441554B1 KR102441554B1 (en) 2022-09-06

Family

ID=81446872

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200136871A KR102441554B1 (en) 2020-10-21 2020-10-21 Methanotrophs with increased ability of producing lactic acid

Country Status (1)

Country Link
KR (1) KR102441554B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100211286B1 (en) 1997-06-23 1999-08-02 허영섭 Gene of the helicobacter outer membrane protein and expressing recombinant microorganism
KR20160020445A (en) * 2013-06-18 2016-02-23 칼리스타, 인코포레이티드 Compositions and methods for biological production of lactate from c1 compounds using lactate dehydrogenase transformants
KR102112286B1 (en) * 2018-12-05 2020-05-19 서울대학교산학협력단 Gene related to acid resistance and methanotrophs comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100211286B1 (en) 1997-06-23 1999-08-02 허영섭 Gene of the helicobacter outer membrane protein and expressing recombinant microorganism
KR20160020445A (en) * 2013-06-18 2016-02-23 칼리스타, 인코포레이티드 Compositions and methods for biological production of lactate from c1 compounds using lactate dehydrogenase transformants
KR102112286B1 (en) * 2018-12-05 2020-05-19 서울대학교산학협력단 Gene related to acid resistance and methanotrophs comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(비특허문헌 1) Biotechnol Biofuels 12, 234 (2019)
김원식. 젖산 저항성을 유도한 메탄자화균에서 메탄을 이용한 효율적인 D형 젖산의 생산, 2018.08., 서울대학교 대학원, 석사학위논문.* *

Also Published As

Publication number Publication date
KR102441554B1 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
CN107709540B (en) Pichia kudriavzevii NG7 microorganism and application thereof
KR102112286B1 (en) Gene related to acid resistance and methanotrophs comprising the same
KR101576186B1 (en) Kluyveromyces marxianus deficient in the ethanol fermentation and use thereof
EP2843039A1 (en) Novel strain producing d-lactic acid and use thereof
EP2202294B1 (en) Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid
US20030203459A1 (en) Method for the production of D-(-)-3-hydroxybutyric acid by recombinant esherichia coli
JP2020043867A (en) Microorganism producing lactic acid and method for producing lactic acid using the same
CN112779204B (en) Genetically engineered bacterium for producing L-homoserine and application thereof
EP2204443B1 (en) Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of suc-cinic acid
KR101246780B1 (en) Xylitol producing microorganism introduced with arabinose metabolic pathway and production method of xylitol using the same
CN113444654B (en) Saccharomyces cerevisiae engineering bacterium for producing dihydroartemisinic acid and construction method and application thereof
KR102441554B1 (en) Methanotrophs with increased ability of producing lactic acid
CN114317587B (en) Method for improving cordycepin yield by over-expressing glutathione peroxidase gene
JP2005507255A (en) Fungal microorganisms with enhanced ability to carry out biotechnology processes
KR20160093492A (en) Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same
CN114891822B (en) Construction method of high-yield gamma-linolenic acid mucor circinelloides recombinant bacterium, recombinant bacterium constructed by method and application
CN114717250B (en) Method for improving cordycepin yield by modifying cordycepin based on cofactor metabolic engineering strategy and application
Zhang et al. Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon
KR101175418B1 (en) Novel xylitol dehydrogenase and method for producing xylitol using the same
KR102613937B1 (en) Yeast strain in which all genes involved in galactose utilization are deleted and method for producing recombinant protein using the same
KR102127996B1 (en) Recombinant Corynebacterium glutamicum strains and method of producing cadaverine using the same
KR102030122B1 (en) Methanotroph mutant for producing squalene
KR20230053351A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20220126610A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20230083821A (en) Strain with enhanced D-lactate productivity and method for producing D-lactate using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant