KR20160093492A - Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same - Google Patents
Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same Download PDFInfo
- Publication number
- KR20160093492A KR20160093492A KR1020150014601A KR20150014601A KR20160093492A KR 20160093492 A KR20160093492 A KR 20160093492A KR 1020150014601 A KR1020150014601 A KR 1020150014601A KR 20150014601 A KR20150014601 A KR 20150014601A KR 20160093492 A KR20160093492 A KR 20160093492A
- Authority
- KR
- South Korea
- Prior art keywords
- gly
- ala
- val
- leu
- ile
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1022—Transferases (2.) transferring aldehyde or ketonic groups (2.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/16—Butanols
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01001—Alcohol dehydrogenase (1.1.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01004—R,R-butanediol dehydrogenase (1.1.1.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01006—Glycerol dehydrogenase (1.1.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01076—(S,S)-Butanediol dehydrogenase (1.1.1.76)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y202/00—Transferases transferring aldehyde or ketonic groups (2.2)
- C12Y202/01—Transketolases and transaldolases (2.2.1)
- C12Y202/01006—Acetolactate synthase (2.2.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01005—Acetolactate decarboxylase (4.1.1.5)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
2,3-부탄다이올을 생산할 수 있는 유전적으로 조작된 효모 세포, 그를 사용하여 2,3-부탄다이올을 생산하는 방법에 관한 것이다. A genetically engineered yeast cell capable of producing 2,3-butanediol, and a method for producing 2,3-butanediol using the same.
지구온난화로 대변되는 기후 변화 문제와 화석연료의 고갈에 따른 에너지 확보의 중요성이 대두되면서, 친환경적인 대체에너지 자원의 탐색 및 생산에 대한 관심이 높아지고 있다. 이에 따라 바이오매스로부터 화학제품과 바이오 연료 등을 생산하는 바이오리파이너리 기술에 대한 연구도 활발히 이루어지고 있다. As the importance of climate change due to global warming and the depletion of fossil fuels become important, interest in exploration and production of environmentally friendly alternative energy resources is increasing. Research on biorefinery technology for producing chemical products and biofuels from biomass has been actively conducted.
2,3-부탄다이올은 높은 산업적 활용도를 지니는 화학물질로써, 메틸 에틸 케톤(methyl ethyl ketone), 및 1,3-부타디엔(1,3-butandien) 등으로 전환될 수 있으며, 산업적 용매, 가소제, 의약품 및 식품 첨가제 등으로 활용될 수 있다.2,3-butanediol is a chemical with high industrial utility and can be converted into methyl ethyl ketone, 1,3-butandien, etc., and industrial solvents, plasticizers , Pharmaceuticals and food additives.
2,3-부탄다이올을 효과적으로 생산하는 미생물로는 클렙시엘라 뉴모니아(Klebsiella pneumonia), 클렙시엘라 옥시토카(Klebsiella oxytoca), 엔테로박터 에어로진스(Enterobacter aerogenea) 등이 있으나, 이들 박테리아의 경우 안전성이 확보되지 않았기 때문에 산업적으로 적용하기에 어려움이 따른다. 이에, 일반적으로 안전(GRAS: Generally Recognized As Safe) 하다고 여겨지는 미생물을 사용하여 고효율 및 고수율로 2,3-부탄다이올을 생산하는 방법이 요구되고 있다. Microorganisms that effectively produce 2,3-butanediol include Klebsiella pneumonia), Ella when keulrep oxy cytokine (Klebsiella oxytoca ), Enterobacter aerogenes ). However, these bacteria are difficult to apply industrially because their safety is not ensured. Accordingly, a method for producing 2,3-butanediol at a high efficiency and a high yield by using a microorganism generally considered to be Generally Recognized As Safe (GRAS) is required.
일 양상은 2,3-부탄다이올을 효과적으로 생산할 수 있는 유전적으로 조작된 효모 세포를 제공한다. One aspect provides genetically engineered yeast cells that can effectively produce 2,3-butanediol.
다른 양상은 유전적으로 조작된 효모 세포를 사용하여 2,3-부탄다이올을 생산하는 방법을 제공한다. Another aspect provides a method for producing 2,3-butanediol using genetically engineered yeast cells.
일 양상은 모세포에 비하여 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase), 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 증가되어 있는, 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포를 제공한다. One aspect is the increased activity of acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase compared to the parental cells Lt; RTI ID = 0.0 > 2,3-butanediol. ≪ / RTI >
용어 "모세포 (parent cell)"는 본래 세포 (original cell), 예를 들면, 조작된 미생물에 대하여 동일 타입의 유전적으로 조작되지 않은 세포를 의미할 수 있다. 상기 모세포는 특정 유전적 변형을 갖지 않은 세포이지만, 다른 사항에 대하여는 동일한 것일 수 있다. 따라서, 본 발명의 모세포는 주어진 단백질의 증가된 활성을 갖는 유전적으로 조작된 미생물을 생산하는데 출발 물질 또는 시작 물질 (starting material)로 사용된 세포일 수 있다.The term "parent cell" may refer to an original cell, e. G., A genetically untreated cell of the same type for a manipulated microorganism. The parent cell is a cell that does not have a particular genetic modification, but may be the same for other things. Thus, the parent cells of the invention can be cells used as a starting material or starting material in producing genetically engineered microorganisms with increased activity of a given protein.
또한, 본 발명에서 용어 "유전적 조작 (genetic engineering)" 또는 "유전적으로 조작된 (genetically engineered)"은 세포에 대하여 하나 이상의 유전적 변형 (genetic modification)을 도입하는 행위 또는 그에 의하여 만들어진 세포를 나타낸다. The term "genetic engineering" or "genetically engineered" as used herein also refers to the act of introducing or making one or more genetic modifications to a cell .
본 명세서에서 사용된 용어 "활성 증가 (increase in activity)", 또는 "증가된 활성 (increased activity)"은 주어진 유전적으로 조작되지 않은 모세포(예, 야생형)가 갖지 않는 또는 갖는 내재적 단백질 또는 효소의 활성에 비해, 동일한 타입의 단백질 또는 효소의 활성이 보다 더 높은 활성을 갖는 것을 의미할 수 있다. 단백질 또는 효소의 증가된 활성을 갖는 세포는 당업계에 공지된 임의의 방법을 사용하여 확인될 수 있다. 상기 증가된 활성을 갖는 세포 또는 미생물은, 유전적 변형을 갖지 않은 세포 또는 미생물에 비하여 하나 이상의 효소 또는 폴리펩티드의 활성을 증가시키는 유전적 변형을 갖는 것일 수 있다. As used herein, the term " increase in activity ", or "increased activity" refers to the activity of an endogenous protein or enzyme that does not have or has a given genetically untreated parental , The activity of the same type of protein or enzyme may have higher activity. Cells with increased activity of proteins or enzymes can be identified using any method known in the art. The cell or microorganism having the increased activity may be one having a genetic modification that increases the activity of one or more enzymes or polypeptides relative to a cell or microorganism that does not have a genetic modification.
본 명세서에서 사용된 용어 "2,3-부탄다이올(2,3-butanediol)"은 C4H10O2의 분자식을 갖는 화합물로 부탄다이올의 구조이성질체(constitutional isomers) 중 하나를 의미할 수 있으며, 2,3-부탄다이올의 2R 및 3R 입체이성질체를 포함할 수 있다.As used herein, the term " 2,3-butanediol "refers to a compound having the molecular formula C 4 H 10 O 2 , meaning one of the constitutional isomers of butanediol And may include 2R and 3R stereoisomers of 2,3-butanediol.
본 발명에서 용어 "아세토락테이트 신타아제 (acetolactate synthase) (ALS)" (아세토하이드록시산 신타아제(acetohydroxy acid synthase) (AHAS)와 호환적으로 사용됨)는, 류신, 발린 및 이소류신 등의 분지쇄 아미노산 생합성 경로에 대한 조절효소로서, 두 분자의 피루브산으로부터 각각 한 분자의 이산화탄소와 아세토락테이트를 합성하는 효소일 수 있으며, 미생물 또는 식물 전체에 걸쳐 폭넓게 존재하는 것으로 알려져 있다. 상기 아세토락테이트 신타아제는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 바실러스 서브틸리스 유래의 alsS에 의해 암호화되는 아세토락테이트 신타아제, 대장균 유래의 ilvB 또는 ilvN에 의해 암호화되는 아세토락테이트 신타아제 I, 대장균 유래의 ilvGMEDA에 의해 암호화되는 아세토락테이트 신타아제 II, 또는 대장균 유래의 ilvI 또는 ilvH에 의해 암호화되는 아세토락테이트 신타아제 III를 포함할 수 있다. 또한, 이외에, 대장균, 사카로마이세스 세레비지애, 탄저균(Bacillus anthracis), 해모필러스 인플루엔자(Haemophilus influenzae), 살모넬라 티피무리움(Salmonella Typhimurium), 써모타가 마리티마(Thermotoga maritima), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 결핵균(Mycobacterium tuberculosis), 또는 스트렙토마이세스 신나모네시스(Streptomyces cinnamonensis) 유래의 아세토락테이트 신타아제일 수 있다. 추가적으로 식물 유래로는 애기 장대(Arabidopsis thaliana), 고시피움 히르수툼(Gossypium hirsutum), 헬리안투스 안누우스(Helianthus annuus), 또는 브라시카 나푸스(Brassica napus) 유래의 아세토락테이트 신타아제일 수 있다. 또한, 상기 아세토락테이트 신타아제는 서열번호 2의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. 여기서 "상동성"은 주어진 폴리뉴클레오티드 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 폴리뉴클레오티드 서열과 동일하거나 유사한 활성을 갖는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0를 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은, 당업자에게 잘 알려진 방법으로 결정될 수 있다.The term "acetolactate synthase (ALS)" (used interchangeably with acetohydroxy acid synthase (AHAS)) in the present invention refers to a branched chain such as leucine, valine and isoleucine As a regulatory enzyme for the amino acid biosynthesis pathway, it may be an enzyme that synthesizes one molecule of carbon dioxide and acetolactate from two molecules of pyruvic acid, respectively, and is widely known to exist throughout microorganisms or plants. The acetolactate synthase may comprise an enzyme (e.g., an isoenzyme or a homologue) having an activity similar thereto even if the enzyme has a different name, for example, Bacillus subtilis , Acetolactate synthase I encoded by ilvB or ilvN derived from Escherichia coli, acetolactate synthase II encoded by ilvGMEDA derived from Escherichia coli, or ilvI derived from Escherichia coli Or acetolactate synthase III encoded by ilvH. In addition, in addition to Escherichia coli, Saccharomyces cerevisiae, Bacillus anthracis anthracis ), Haemophilus influenzae influenzae), Salmonella typhimurium (Salmonella Typhimurium , Thermotoga maritima ), Corynebacterium glutamicum , Mycobacterium tuberculosis tuberculosis ), or Streptomyces cinnamonessis cinnamonensis ). < / RTI > In addition, plant-derived Arabidopsis ( Arabidopsis thaliana , Gossypium hirsutum , Helianthus annuus , or Brassica napus. < / RTI > Also, the acetolactate synthase is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95% identical to the amino acid sequence of SEQ ID NO: , About 97% or more, about 98% or more, or about 99% or more of the sequence homology. As used herein, "homology" means the degree to which a given polynucleotide sequence corresponds and may be expressed as a percentage. In the present specification, its homologous sequence having the same or similar activity as a given polynucleotide sequence is indicated as "% homology ". For example, standard software for calculating parameters such as score, identity and similarity, specifically BLAST 2.0, or by sequential hybridization experiments under defined stringent conditions, , And the appropriate hybridization conditions to be defined can be determined by methods well known to those skilled in the art.
본 발명에서 용어 "아세토락테이트 디카복실레이즈 (acetolactate decarboxylase) (ALD)"는 아세토락테이트로부터 이산화탄소를 제거하여 아세토인(acetoin)을 생산하는 효소를 의미할 수 있다. 상기 아세토락테이트 디카복실레이즈는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 바실러스 서브틸리스 유래의 alsD, 락토바실러스 델브루키(Lactobacillus delbrueckii subsp. lactis) 유래의 aldB, 브레비바실러스 브레비스(Brevibacillus brevis), 엔테로박터 에어로게네스(Enterobacter aerogenes), 류코노스톡 락티스(Leuconostoc lactis), 사카로마이세스 세레비지애. 스타필로코커스 아우레우스(Staphylococcus aureus) 유래의 아세토락테이트 디카복실레이즈일 수 있다. 또한, 상기 아세토락테이트 디카복실레이즈는 서열번호 4의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. The term "acetolactate decarboxylase (ALD)" in the present invention may mean an enzyme that produces acetoin by removing carbon dioxide from acetolactate. The acetolactate dicarboxylase may include an enzyme (e.g., an isoenzyme or a homologue) having similar activity to an enzyme having a different name, for example, a Bacillus subtilis AlsD, Lactobacillus delbrueckii ( Lactobacillus delbrueckii subsp. lactis- derived aldB, Brevibacillus < RTI ID = 0.0 > brevis , Enterobacter aerogenes , Leuconostoc lactis , Saccharomyces cerevisiae. It may be an acetolactate dicarboxylate derived from Staphylococcus aureus. Also, the acetolactate dicarboxylase may have at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% and at least about 95% identity to the amino acid sequence of SEQ ID NO: , At least about 97%, at least about 98%, or at least about 99% sequence homology.
본 발명에서 용어 "2,3-부탄다이올 탈수소효소(2,3-butnaediol dehydrogense) (BDH)"는 아세토인, NADH, 및 H+를 기질로 하여, 2,3-부탄다이올 및 NAD+를 생산하는 효소를 의미할 수 있으며, 옥시도리덕타아제(oxidoreductase) 과(family)에 속한다. 상기 2,3-부탄다이올 탈수소효소는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 사카로마이세스 세레비지애 유래의 BDH1, 패니바실러스 폴리믹사(Paenibacillus polymyxa) 유래의 BDH99::67, 바실러스 서브틸리스, 엔테로코커스 패시움(Enterococcus faecium) 엔테로코커스 듀란스(Enterococcus durans) 마이코박테리움 속(Mycobacterium sp .) 락토바실러스 락티스 유래의 2,3-부탄다이올 탈수소효소일 수 있다. 또한, 상기 2,3-부탄다이올 탈수소효소는 서열번호 6의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. The term "2,3-butnaediol dehydrogenase (BDH)" in the present invention refers to 2,3-butanediol dehydrogenase (BDH), which produces 2,3-butanediol and NAD + using acetone, NADH and H + , Which belongs to the oxidoreductase family. The 2,3-butanediol dehydrogenase may contain an enzyme (for example, an isoenzyme or a homolog) having similar activity even if the enzyme has a different name, for example, BDH1 derived from Saccharomyces cerevisiae, Fanny Bacillus polyamic acid (Paenibacillus polymyxa), BDH99 :: 67, Bacillus subtilis, Enterococcus paceum (Enterococcus faecium) Enterococcus Durance (Enterococcus durans) Mycobacterium sp. (Mycobacterium sp .) 2,3-butanediol dehydrogenase derived from Lactobacillus lactis. The 2,3-butanediol dehydrogenase may have an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% About 95% or more, about 97% or more, about 98% or more, or about 99% or more of the polypeptide.
상기 효모 세포는 NADH 산화효소의 활성이 추가적으로 증가되어 있는 것인 효모 세포일 수 있다. The yeast cell may be a yeast cell in which the activity of NADH oxidase is additionally increased.
본 발명에서 용어 "NADH 산화효소(NADH oxidase)"는 산소와 NADH를 기질로 하여 물과 NAD+를 생산하는 반응을 매개하는 효소를 의미할 수 있다. 상기 NADH 산화효소는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, nox1, nox3, nox4, 락토코커스 락티스 유래의 noxE를 포함할 수 있고, 이외에, 엔테로코커스 속, 락토바실러스 속, 디설포비브리오 속(Desulfovibrio sp .), 클로스트리디움 속(Clostridium sp .) 스트렙토코커스 속 유래의 NADH 산화효소일 수 있다. 또한, 상기 NADH 산화효소는 서열번호 30의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. In the present invention, the term "NADH oxidase" may mean an enzyme that mediates a reaction to produce water and NAD + using oxygen and NADH as a substrate. The NADH oxidizing enzyme may include an enzyme (e.g., an isoenzyme or a homologue) having an activity similar thereto even if the enzyme has a different name, for example, nox1, nox3, nox4, And noxE derived from Lactococcus lactis. In addition, it is also possible to use a mixture of Enterococcus sp., Lactobacillus sp., Desulfovibrio sp. sp . ), Clostridium sp . ) May be an NADH oxidase derived from Streptococcus sp. The NADH oxidase may have an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95% , 97% or more, about 98% or more, or about 99% or more.
상기 효모 세포는 아세토락테이트 신타아제를 코딩하는 외인성 유전자 (exogenous gene), 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자 중 어느 하나를 포함하는 것일 수 있다. 용어 "외인성 (exogenous)"은 언급된 분자 (referenced molecule) 또는 언급된 활성 (referenced activity)이 숙주 세포로 도입된 것을 의미할 수 있다. 분자는 예를 들면, 숙주 염색체 내로의 삽입에 의하는 것과 같은 코딩 핵산 (encoding nucleic acid)의 숙주 유전 물질 내로의 도입 또는 플라스미드와 같은 비염색체 유전물질로서 도입될 수 있다. 코딩 핵산의 발현과 관련하여, 상기 용어 "외인성"은 상기 코딩 핵산이 개체 내로 발현 가능한 형태로 도입된 것을 나타낸다. 생합성 활성과 관련하여, 상기 용어 "외인성"은 숙주 모세포에 도입된 활성을 나타낸다. 그 기원 (source)은 예를 들면, 숙주 모세포에 도입된 후 언급된 활성을 발현하는 동질성 (homologous) 또는 이질성 (heterologous) 코딩 핵산일 수 있다. 그러므로, 용어 "내인성 (endogenous)"은 상기 숙주 세포에 존재하는 언급된 분자 또는 활성을 나타낸다. 비슷하게, 코딩 핵산의 발현과 관련하여, 상기 용어 "내인성"은 개체 내에 포함된 코딩 핵산의 발현을 나타낸다. 용어 "이질성 (heterologous)"은 언급된 종 외의 다른 기원으로부터의 분자 또는 활성을 나타내고 용어 "동질성 (homologous)"은 숙주 모세포로부터의 분자 또는 활성을 나타낸다. 따라서, 코딩 핵산의 외인성 발현은 이질성 (heterologous) 또는 동질성 (homologous) 코딩 핵산 중 어느 하나 또는 둘 다를 이용할 수 있다.The yeast cell may be an exogenous gene encoding acetolactate synthase, an exogenous gene encoding acetolactate dicarboxylase, an exogenous gene encoding a 2,3-butanediol dehydrogenase, and an NADH oxidase Lt; RTI ID = 0.0 > exogenous < / RTI > The term "exogenous" may refer to the introduction of a referenced molecule or a referenced activity into a host cell. Molecules may be introduced into the host genetic material, for example, by encoding nucleic acid, such as by insertion into a host chromosome, or as a non-chromosomal genetic material, such as a plasmid. In connection with the expression of a coding nucleic acid, the term "exogenous" indicates that the coding nucleic acid has been introduced into a form capable of expression into the subject. With respect to biosynthesis activity, the term "exogenous" refers to the activity introduced into the host cell. The source may be, for example, a homologous or heterologous coding nucleic acid which is introduced into the host cell and expresses the activity mentioned. Thus, the term "endogenous" refers to the mentioned molecule or activity present in the host cell. Similarly, in connection with the expression of a coding nucleic acid, the term "endogenous" refers to the expression of a coding nucleic acid contained within an individual. The term " heterologous "refers to a molecule or activity from a different source than the species mentioned, and the term" homologous "refers to a molecule or activity from a host cell. Thus, the exogenous expression of the coding nucleic acid may utilize either or both of heterologous or homologous coding nucleic acids.
상기 외인성 유전자는, 상기 효모 세포에서 그 모세포에 비하여 언급된 효소의 활성이 증가되기에 충분한 양으로 발현된 것일 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자의 상동 유전자(homolog)는 서로 다른 미생물로부터 유래하였으나 그들이 코딩하는 단백질과 유사한 활성을 나타내는 단백질을 암호화하는 유전자를 의미할 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자는 각각 서열번호 2, 4, 6, 및 30의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 아미노산 서열을 코딩하는 것일 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자는 각각 서열번호 1, 3, 5, 및 29의 뉴클레오티드 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다. 이러한 외인성 유전자는 미생물에서 발현되기에 적합한 코돈으로 변경된 서열, 최적화된 코돈을 갖는 서열로 변경될 수 있다. 이 코돈 변경은 단백질의 아미노산 서열이 바뀌지 않는 범위 내에서 적절히 이루어질 수 있다. The exogenous gene may be expressed in the yeast cell in an amount sufficient to increase the activity of the enzyme mentioned relative to the parent cell. An exogenous gene encoding acetolactate synthase, an exogenous gene encoding acetolactate dicarboxylase, an exogenous gene encoding 2,3-butanediol dehydrogenase, and an exogenous gene encoding an NADH oxidase Homologs may refer to genes that originate from different microorganisms, but which encode proteins that exhibit similar activities to the proteins they encode. The exogenous gene encoding acetolactate synthase, the exogenous gene encoding acetolactate dicarboxylase, the exogenous gene encoding 2,3-butanediol dehydrogenase, and the exogenous gene encoding NADH oxidase are At least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95%, at least about 70% amino acid sequence identity with the amino acid sequence of SEQ ID NOs: , 97% or more, about 98% or more, or about 99% or more of the amino acid sequence. The exogenous gene encoding acetolactate synthase, the exogenous gene encoding acetolactate dicarboxylase, the exogenous gene encoding 2,3-butanediol dehydrogenase, and the exogenous gene encoding NADH oxidase are At least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 95%, at least about 80% , At least 97%, at least about 98%, or at least about 99% sequence homology. Such an exogenous gene can be changed to a sequence having a codon suitable for expression in a microorganism, a sequence having an optimized codon. This codon change can be made appropriately within a range that does not change the amino acid sequence of the protein.
상기 외인성 유전자는 발현 벡터를 통하여 모세포 내로 도입된 것일 수 있다. 또한, 상기 외인성 유전자는 선형 폴리뉴클레오티드 형태로 모세포 내로 도입된 것일 수 있다. 또한, 상기 외인성 유전자는 세포 내에서 발현 벡터 (예, 플라스미드)로부터 발현되는 것일 수 있다. 또한, 상기 외인성 유전자는 안정적인 발현을 위하여 세포 내의 유전물질 (예, 염색체)에 삽입되어 발현되는 것일 수 있다. 상기 벡터는 복제개시점, 프로모터, 상기 효소를 코딩하는 폴리뉴클레오티드, 및 터미네이터를 포함할 수 있다. 상기 복제 개시점은 효모 자가복제 서열 (autonomous replication sequence, ARS)을 포함할 수 있다. 상기 효모 자가복제서열은 효모 동원체 서열 (centrometric sequence, CEN)에 의해 안정화될 수 있다. 상기 프로모터는 TDH3 프로모터, TEF 프로모터, TPI1 프로모터, 및 FBA1 프로모터로 이루어진 군으로부터 선택된 것일 수 있다. 상기 TDH3 프로모터, TEF 프로모터, TPI1 프로모터, 및 FBA1 프로모터는 각각 서열번호 13, 14, 15, 및 33의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 터미네이터는 PYK1, GPM1, TPI1 및 FBA1로 이루어진 군으로부터 선택되는 것일 수 있다. 상기 PYK1, GPM1, TPI1 및 FBA1 터미네이터는 각각 서열번호 16, 17, 18, 및 34의 뉴클레오티드 서열을 갖는 것일 수 있다. 상기 벡터는 선별 마커를 더 포함할 수 있다. The exogenous gene may be introduced into the parent cell through an expression vector. In addition, the exogenous gene may be introduced into the parent cell in the form of a linear polynucleotide. In addition, the exogenous gene may be expressed from an expression vector (e.g., a plasmid) in a cell. In addition, the exogenous gene may be inserted into a genetic material (e.g., a chromosome) in a cell for stable expression. The vector may comprise a cloning start point, a promoter, a polynucleotide encoding the enzyme, and a terminator. The origin of replication may comprise an autonomous replication sequence (ARS). The yeast self-replication sequence can be stabilized by a centrometric sequence (CEN). The promoter may be selected from the group consisting of TDH3 promoter, TEF promoter, TPI1 promoter, and FBA1 promoter. The TDH3 promoter, the TEF promoter, the TPI1 promoter, and the FBA1 promoter may have the nucleotide sequences of SEQ ID NOs: 13, 14, 15, and 33, respectively. The terminator may be selected from the group consisting of PYK1, GPM1, TPI1 and FBA1. The PYK1, GPM1, TPI1, and FBA1 terminators may be those having the nucleotide sequences of SEQ ID NOs: 16, 17, 18, and 34, respectively. The vector may further comprise a selection marker.
상기 효모 세포는 단일 유전자, 복수의 유전자 예를 들면, 2 내지 10 카피 수를 포함할 수 있다. 상기 효모 세포는, 예를 들면, 1 내지 10, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5, 1 내지 4, 1 내지 3, 2 내지 10, 2 내지 8, 2 내지 7, 2 내지 6, 2 내지 5, 2 내지 4, 또는 2 내지 3 카피의 상기 효소를 코딩하는 유전자를 포함할 수 있다. 상기 효모 세포가 복수의 유전자를 포함하는 경우, 각각의 유전자는 동일한 유전자의 카피이거나 둘 이상의 상이한 유전자의 카피를 포함할 수 있다. 외인성 유전자의 복수의 카피는 숙주 세포의 게놈 내에 동일한 유전자 좌 (locus), 또는 여러 유전자 좌에 포함될 수 있다. The yeast cell may contain a single gene, a plurality of genes, for example, 2 to 10 copies. The yeast cell may be cultured in a culture medium containing, for example, 1 to 10, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 2 to 10, 2 to 8, To 6, 2 to 5, 2 to 4, or 2 to 3 copies of the enzyme. When the yeast cell contains a plurality of genes, each gene may be a copy of the same gene or a copy of two or more different genes. Multiple copies of the exogenous gene may be contained in the same locus or multiple loci within the genome of the host cell.
본 발명에서 제1 과 (family) 또는 종 (species)의 본래 효소 또는 유전자와 관련하여 사용된 용어 "동족체 (homolog)"는 기능적, 구조적 또는 유전체적 분석에 의해, 제1 과 또는 종의 본래 효소 또는 유전자에 상응하는 제2 과 (family) 또는 종 (species)의 효소 또는 유전자인 것으로 결정되는 제2 과 또는 종의 별개의 효소 또는 유전자를 지칭한다. 동족체는 기능적, 구조적 또는 유전체적 유사성을 가질 수 있다. 유전자 프로브 및 PCR을 이용하여 효소 또는 유전자의 동족체를 용이하게 클로닝할 수 있는 기술은 공지되어 있다. 클로닝된 서열의 동족체로서의 확인은 기능적 검사법을 이용하고 및/또는 유전자의 유전체 맵핑 (genomic mapping)에 의해 확인될 수 있다.The term "homolog, " used in connection with the original enzyme or gene of the first family or species in the present invention, refers to a native enzyme of the first or subspecies, by functional, structural or genetic analysis Or a second or different species of an enzyme or gene that is determined to be an enzyme or gene of a second family or species corresponding to the gene. Homologs may have functional, structural, or genetic similarities. Techniques for easily cloning enzymes or homologs of genes using gene probes and PCR are well known. Identification of the cloned sequences as homologues can be confirmed by functional assays and / or by genomic mapping of the genes.
본 명세서에서 사용된 폴리뉴클레오티드는 "유전자"를 포함하고, 본 명세서에서 사용된 핵산 분자는 "벡터" 또는 "플라스미드"를 포함하는 것으로 이해될 수 있다. 따라서 용어 "유전자" (일명, "구조적 유전자")는 아미노산의 특정 서열을 코딩하는 폴리뉴클레오티드를 지칭하는데, 이것은 하나 또는 그 이상의 단백질 또는 효소의 전부 또는 일부를 포함하고, 그리고 예로써, 유전자가 발현되는 조건을 결정하는 조절 (비-전사된) DNA 서열, 예를 들면, 프로모터 서열을 포함할 수 있다. 유전자의 전사된 영역은 코딩 서열뿐만 아니라 인트론, 5'-비번역 영역 (UTR), 그리고 3'-UTR을 비롯한 비번역 영역을 포함할 수 있다.
As used herein, polynucleotides include "genes" and nucleic acid molecules as used herein can be understood to include "vectors" or "plasmids". Thus, the term "gene" (aka, "structural gene") refers to a polynucleotide that encodes a particular sequence of amino acids, including all or part of one or more proteins or enzymes, (Non-transcribed) DNA sequence, e.g., a promoter sequence, that determines the conditions under which the gene is transcribed. The transcribed region of the gene may include a coding sequence as well as an untranslated region, including an intron, a 5'-untranslated region (UTR), and a 3'-UTR.
또한, 상기 효모 세포는 모세포에 비하여 알코올 탈수소효소(alcohol dehydrogenase) 또는 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase)의 활성이 추가적으로 감소되어 있는 것인 효모 세포 일 수 있다. Also, the yeast cell may be a yeast cell in which the activity of alcohol dehydrogenase or glycerol-3-phosphate dehydrogenase is further reduced as compared with that of a parent cell.
본 발명에서 용어 "활성 감소 (decrease in activity)" 또는 "감소된 활성 (decreased activity)"은 모세포 (예, 유전적으로 조작되지 않은 세포) 중에서 측정된 것보다 더 낮은 효소 또는 폴리펩티드의 활성을 갖는 세포를 나타낸다. 또한, "활성 감소 (decrease in activity)" 또는 "감소된 활성 (decreased activity)"은 본래의 (original) 또는 야생형 (wild-type)의 효소 또는 폴리펩티드보다 더 낮은 활성을 갖는 분리된 효소 또는 폴리펩티드를 나타낸다. 활성 감소 또는 감소된 활성은 활성이 없는 것, 예를 들면, 불활성화(incactivation)를 포함한다. 상기 감소된 활성을 갖는 세포는, 유전적 변형을 갖지 않은 세포에 비하여 하나 이상의 효소 또는 폴리펩티드의 활성을 감소시키는 유전적 변형 (genetic modification)을 갖는 것일 수 있다. As used herein, the term "decrease in activity" or "decreased activity" refers to a cell having a lower enzyme or polypeptide activity than that measured in a parent cell (e.g., . In addition, "decrease in activity" or "decreased activity" refers to an isolated enzyme or polypeptide having lower activity than the original or wild-type enzyme or polypeptide . Activity reduction or reduced activity includes those that are not active, for example, inactivation. The cell with reduced activity may be one that has a genetic modification that reduces the activity of one or more enzymes or polypeptides as compared to cells that do not have a genetic modification.
상기 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소의 활성이 감소된 미생물은 상기 단백질을 코딩하는 내인성 유전자(endogenous gene)가 제거 또는 파괴(disruption)된 것일 수 있다. 용어 "제거(deletion)" 또는 "파괴 (disruption)"는 유전자의 발현이 감소되도록 하는 유전적 변형을 나타낸다. 상기 파괴는 유전자의 "불활성화 (inactivation)" 또는 유전자의 "감쇄 (attenuation)"를 포함할 수 있다. 상기 불활성화는 유전자의 기능적 산물 (functional product)이 발현되지 않는 것뿐만 아니라 발현은 되지만 기능적 산물이 발현되지 않는 것을 포함한다. 상기 감쇄는 유전자의 기능적 산물의 발현량 감소를 포함한다. 즉, 상기 감쇄는 유전자의 순 발현량은 증가하였더라도 기능적 산물의 발현량이 감소되는 것을 포함할 수 있다. 여기서 유전자의 기능적 산물이란 모세포 또는 야생형 세포에서 상기 유전자의 산물 (예, 효소)이 갖는 생화학적 또는 생리적 기능 (예, 효소 활성)을 보유하고 있는 것을 말한다. 따라서, 상기 제거 또는 파괴는 유전자의 기능적 제거(functional deletion) 또는 파괴(functional disruption)를 포함한다.The microorganism having reduced activity of the alcohol dehydrogenase or the glycerol-3-phosphate dehydrogenase may be one in which the endogenous gene coding for the protein is removed or disrupted. The term " deletion "or" disruption "refers to a genetic modification that results in decreased expression of the gene. Such destruction can include "inactivation" of a gene or "attenuation" of a gene. The inactivation includes not only the expression of the functional product of the gene but also the expression of the functional product but not the functional product. The attenuation includes a reduction in the expression level of the functional product of the gene. That is, the attenuation may include a decrease in the expression level of the functional product even when the net expression amount of the gene is increased. Here, the functional product of a gene refers to a gene having a biochemical or physiological function (for example, an enzyme activity) of a product (e.g., an enzyme) of the gene in a cell or a wild-type cell. Thus, the removal or destruction involves functional deletion or functional disruption of the gene.
상기 제거 또는 파괴하는 단계는 1) 상기 단백질을 암호화하는 유전자의 일부 또는 전체의 결실, 2) 상기 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 약화되도록 염색체 상의 상기 유전자 서열의 변형 또는 4) 이의 조합 등을 사용하여 수행될 수 있다. 상기 단백질을 암호화하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은 예를 들면, Cre/loxP 재조합 시스템을 사용하여 유전자 결손을 위한 카세트를 모세포에 형질전환함으로써 수행될 수 있고, 효모 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 상기 "일부"란 폴리뉴클레오티드의 종류에 따라서 상이하지만, 예를 들면, 1 내지 700개, 1 내지 500개, 1 내지 300개, 1 내지 100개, 또는 1 내지 50개일 수 있다. 또한, 상기 뉴클레오티드의 발현이 감소하도록 발현조절 서열을 변형하는 방법은 상기 발현조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현조절 서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다. 아울러, 상기 단백질을 암호화하는, 염색체 상의 폴리뉴클레오티드 서열을 변형하는 방법은 상기 단백질의 활성을 더욱 약화하도록 폴리뉴클레오티드 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함으로써 수행할 수 있다.The step of removing or destroying may include 1) deletion of part or all of the gene encoding the protein, 2) modification of the expression control sequence so that the expression of the gene is decreased, 3) A modification of the sequence, or 4) a combination thereof. A method of deleting a part or all of the polynucleotides encoding the protein can be performed, for example, by transforming a cassette for gene deletion into a parent cell using a Cre / loxP recombination system, Into a polynucleotide encoding an intrinsic target protein in the chromosome with a polynucleotide or marker gene in which some nucleic acid sequences have been deleted. The "part" may be, for example, 1 to 700, 1 to 500, 1 to 300, 1 to 100, or 1 to 50 depending on the kind of the polynucleotide. In addition, the method of modifying the expression control sequence so that the expression of the nucleotide is decreased may include a step of mutating the nucleic acid sequence, deletion, insertion, non-conservative or conservative substitution or a combination thereof in the expression control sequence to further weaken the activity of the expression control sequence Or by replacing it with a nucleic acid sequence having a weaker activity. The expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating termination of transcription and translation. In addition, a method of modifying a polynucleotide sequence on a chromosome, which encodes the protein, may be performed by deletion, insertion, non-conservative or conservative substitution of a polynucleotide sequence or a combination thereof to induce a mutation in the sequence to further weaken the activity of the protein , Or by replacing with an improved polynucleotide sequence to have weaker activity.
본 발명에서 용어 "알코올 탈수소효소(alcohol dehydrogenase)"는 NADH의 환원으로 알코올 및 알데하이드 또는 케톤 사이의 상호전환을 촉진하는 효소를 의미할 수 있다. 상기 알코올 탈수소효소는 효소의 이름이 상이하더라도, 그와 유사한 활성을 갖는 효소를 포함할 수 있으며, 예를 들면, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7 또는 SFA1를 포함할 수 있다. 또한, 상기 알코올 탈수소효소는 서열번호 40, 42, 44, 46, 또는 48의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. 상기 알코올 탈수소효소 유전자는 서열번호 39, 41, 43, 45, 47 또는 49의 뉴클레오티드 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.The term "alcohol dehydrogenase" in the present invention may mean an enzyme that promotes the interconversion between alcohol and an aldehyde or ketone by reduction of NADH. The alcohol dehydrogenase may include an enzyme having an activity similar to that of the enzyme but may include, for example, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7 or SFA1. The alcohol dehydrogenase has at least about 70% amino acid sequence identity, at least about 75% amino acid sequence identity, at least about 80% amino acid sequence identity, at least about 85% amino acid sequence identity, at least about 90% amino acid sequence identity, at least about 92% amino acid sequence identity, , At least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology. The alcohol dehydrogenase gene comprises at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% sequence identity to the nucleotide sequence of SEQ ID NO: 39, 41, 43, 45, , At least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.
본 발명에서 용어 "글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase)"는 NADH의 환원으로 DHAP(dihydroxyacetone phosphate)의 글리세롤-3-인산(G3P)로의 상호전환을 촉진하는 효소를 의미할 수 있다. 상기 글리세롤-3-인산 탈수소효소는 효소의 이름이 상이하더라도, 그와 유사한 활성을 갖는 효소를 포함할 수 있으며, 예를 들면, GPD1 또는 GPD2를 포함할 수 있다. 또한, 상기 글리세롤-3-인산 탈수소효소는 서열번호 50 또는 52의 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. 상기 글리세롤-3-인산 탈수소효소 유전자는 서열번호 49 또는 51의 뉴클레오티드 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.The term "glycerol-3-phosphate dehydrogenase " in the present invention means an enzyme that promotes the conversion of DHAP (dihydroxyacetone phosphate) into glycerol-3-phosphate (G3P) by reduction of NADH . The glycerol-3-phosphate dehydrogenase may contain an enzyme having similar activity, even though the enzyme has a different name, for example, GPD1 or GPD2. The glycerol-3-phosphate dehydrogenase may have an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% About 95% or more, about 97% or more, about 98% or more, or about 99% or more of the polypeptide. Wherein the glycerol-3-phosphate dehydrogenase gene comprises a nucleotide sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92% , About 95% or more, about 97% or more, about 98% or more, or about 99% or more.
상기 2,3-부탄다이올 생산능이 증가된 유전적으로 조작된 효모 세포의 제조에 있어서, 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 2,3-부탄다이올 탈수소효소, 및 NADH 산화 효소의 활성 증가 또는 상기 효소를 코딩하는 유전자의 도입, 알코올 탈수소효소 및 글리세롤-3-인산 탈수소효소의 활성 감소 또는 상기 효소를 코딩하는 유전자의 제거 또는 파괴는 동시에 또는 개별적으로 수행될 수 있다. 일구체예에 있어서, 유전적으로 조작된 효모 세포의 제조는 모세포에 알코올 탈수소효소, 글리세롤-3-인산 탈수소효소 또는 그의 조합을 코딩하는 유전자를 제거한 후, 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 2,3-부탄다이올 탈수소효소, NADH 산화 효소 또는 그의 조합을 코딩하는 유전자를 도입하는 것일 수 있다.In the production of the genetically engineered yeast cells having increased 2,3-butanediol production ability, acetolactate synthase, acetolactate dicarboxylase, 2,3-butanediol dehydrogenase, and NADH oxidase Or the introduction of the gene encoding the enzyme, the reduction of the activity of the alcohol dehydrogenase and the glycerol-3-phosphate dehydrogenase, or the elimination or destruction of the gene encoding the enzyme can be performed simultaneously or separately. In one embodiment, the genetically engineered yeast cells are prepared by removing genes encoding alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase, or a combination thereof in a parent cell, and then transforming the yeast cells with acetolactate synthase, acetolactate dicarboxylate Rabies, 2,3-butanediol dehydrogenase, NADH oxidase, or a combination thereof.
상기 효모 세포는 사카로마이세스(Saccharomyces), 클루베로마이세스(Kluyveromyces), 피키아(Pichia), 한세눌라(Hansenula), 자이고사카로마이세스(Zygosaccharomyces) 또는 캔디다(Candida)속에 속하는 균주인 것일 수 있다. 또한, 사카로마이세스(Saccharomyces)속에서 사카로마이세스 센수 스트릭토(Saccharomyces sensustricto) 집합체에 속하는 균주인 것일 수 있다. 사카로마이세스 센수 스트릭토(Saccharomyces sensustricto) 집합체에 속하는 균주는 예를 들면, 사카로마이세스 세레비지애(S. cerevisiae), 사카로마이세스 바야누스(S. bayanus), 사카로마이세스 파라독서스 (S. paradoxus), 사카로마이세스 미카테(S. mikatae), 또는 사카로마이세스 쿠드리아브제비(S. kudriavzevii)일 수 있다. The yeast cell is a strain belonging to the genus Saccharomyces as MY access (Saccharomyces), inclusive Vero My process (Kluyveromyces), Pichia (Pichia), Hanse Cronulla (Hansenula), my process to Xi Kosaka (Zygosaccharomyce s) or Candida (Candida) Lt; / RTI > In addition, the saccharide with my process (Saccharomyces) in a Saccharomyces sensu My process streak soil (Saccharomyces sensustricto ) cluster. Saccharomyces The strains belonging to the sensustricto cluster include, for example, S. cerevisiae , S. bayanus , S. paradoxus , romayi process may be non-catheter (S. mikatae), or a saccharide as MY-ku laundry process Havre lots (S. kudriavzevii).
2,3-부탄다이올을 효과적으로 생산할 수 있는 유전적으로 조작된 효모 세포의 2,3-부탄다이올 생산 경로에 대해 도 1을 참조하여 설명한다. 도 1은 일구체예에 따른 2,3-부탄다이올 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다. The production route of 2,3-butanediol in genetically engineered yeast cells capable of effectively producing 2,3-butanediol will be described with reference to Fig. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagrammatic representation of a 2,3-butanediol production pathway and a competition pathway according to one embodiment.
도 1에 나타낸 바와 같이, 일구체예에 따른 효모 세포는 모세포에 비하여 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 및 2,3-부탄다이올 탈수소효소의 활성이 증가되어 있어 2,3-부탄다이올을 효과적으로 생산할 수 있다. 또한, 2,3-부탄다이올의 생산에 있어서, 부산물 생성을 억제하고, 2,3-부탄다이올의 생산을 더욱 증진시키고자, 상기 효모 세포는 2,3-부탄다이올의 생산 경로의 경쟁적 대상 경로가 추가적으로 차단된 것일 수 있다. 상기 경쟁적 대사 경로는 도 1에 나타낸 바와 같이, 에탄올 및 글리세롤 합성 대사 경로일 수 있으며, 상기 경쟁적 대사 경로는 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소의 활성을 감소시켜 달성될 수 있다. 그에 더하여, 보조인자 불균형을 감소시키기 위한 과정을 추가적으로 수행할 수 있다. 세포는 해당작용을 통해 포도당으로부터 2분자의 피루브산을 생성하면서 2분자의 NAD+를 소모하여 2분자의 NADH를 생성한다. 또한, 2,3-부탄다이올 합성경로에서는 2분자의 피루브산으로 1분자의 2,3-부탄다이올을 생성하면서 1분자의 NADH가 NAD+로 전환된다. 이에 따라 하기 반응과 같이 NADH(과잉) 및 NAD+(부족)의 불균형이 발생한다.As shown in FIG. 1, yeast cells according to one embodiment have increased activities of acetolactate synthase, acetolactate dicarboxylase, and 2,3-butanediol dehydrogenase as compared with the parent cells, - Butane diol can be produced effectively. Further, in the production of 2,3-butanediol, in order to suppress the production of by-products and to further promote the production of 2,3-butanediol, The competitive destination path may be additionally blocked. The competitive metabolic pathway may be an ethanol and glycerol synthesis metabolic pathway, as shown in Figure 1, and the competitive metabolic pathway may be achieved by reducing the activity of an alcohol dehydrogenase or a glycerol-3-phosphate dehydrogenase. In addition, a process for reducing the cofactor imbalance can be additionally performed. Cells produce two molecules of pyruvate from glucose through the action, while consuming two molecules of NAD + to produce two molecules of NADH. Also, in the 2,3-butanediol synthesis route, one molecule of NADH is converted to NAD + while producing one molecule of 2,3-butanediol with two molecules of pyruvic acid. This results in an imbalance of NADH (excess) and NAD + (insufficient) as the following reaction.
따라서, NADH 산화 효소의 활성을 증가시켜 NADH를 환원시킴으로써 보조인자(cofactor, NAD+/NADH)의 불균형을 해소할 수 있다.
Therefore, by reducing NADH by increasing the activity of NADH oxidase, the imbalance of cofactor (NAD + / NADH) can be solved.
다른 양상은 모세포에 비하여 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase), 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 증가되어 있는, 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포를 배양하는 단계;및 상기 배양물로부터 2,3-부탄다이올을 분리하는 단계를 포함하는 2,3-부탄다이올을 생산하는 방법을 제공한다. In another aspect, the activity of acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase is increased compared to the parent cells Which comprises culturing a genetically engineered yeast cell having a 2,3-butanediol producing ability, and isolating a 2,3-butanediol from the culture, Of the present invention.
상기 "모세포에 비하여 아세토락테이트 신타아제, 아세토락테이트 디카복실레이즈, 및 2,3-부탄다이올 탈수소효소의 활성이 증가되어 있는, 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포"에 대해서는 상기한 바와 같다. Butanediol dehydrogenase, which has an increased activity of acetolactate synthase, acetolactate dicarboxylase, and 2,3-butanediol dehydrogenase as compared to the " Yeast cell "is as described above.
본 발명의 용어 "배양"이란, 상기 효모 세포로부터 2,3-부탄다이올을 생산하기 위하여, 상기 세포를 적당히 인공적으로 조절한 환경조건에서 생육시키는 일련의 행위를 의미할 수 있다. 본 발명에서 상기 세포를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다. 배양에 사용되는 배지는 2,3-부탄다이올로 대사 될 수 있는 하나 이상의 기질을 포함하는 것일 수 있으며, 예를 들면, 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 글루코즈를 주탄소원으로 사용하며, 이외에 자일로즈, 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.The term "cultivation" of the present invention may mean a series of actions in which the cells are grown under moderately artificially controlled environmental conditions in order to produce 2,3-butanediol from the yeast cells. The method for culturing the cells in the present invention can be carried out by using methods well known in the art. Specifically, the culture may be continuously cultured in a batch process, an injection batch, or a repeated batch or batch fed batch process. The medium used for the culture may be one containing at least one substrate which can be metabolized to 2,3-butanediol, for example, in a conventional medium containing a suitable carbon source, nitrogen source, amino acid, The conditions of the particular strain must be met in an appropriate manner while controlling the temperature, pH, etc. under the conditions. The carbon source that can be used is glucose as the main carbon source and may also be used in combination with sugars and carbohydrates such as xylose, sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, The same oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture. Nitrogen sources that may be used include inorganic sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine and glutamine, and organic substances such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or their decomposition products, defatted soybean cake or decomposition products thereof . These nitrogen sources may be used alone or in combination. The medium may include potassium phosphate, potassium phosphate and the corresponding sodium-containing salts as a source. Potassium which may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used. Finally, in addition to these materials, essential growth materials such as amino acids and vitamins can be used.
통상적으로 세포는 약 20℃ 내지 약 37℃ 범위의 온도에서 적절한 배지 내에 성장시킬 수 있다. 본 발명에서 성장 배지는, 예를 들면, 효모 질소 베이스(yeast nitrogen base), 암모늄 설페이트, 및 탄소/에너지 공급원으로서의 덱스트로스를 포함하는 브로스(broth) 또는 대부분의 사카로마이세스 세레비지애 균주의 성장을 위한 최적 비율로 펩톤, 효모 추출물 및 덱스트로스를 블렌딩한 YPD 배지와 같이 상업적으로 제조된 통상적인 배지일 수 있다. 그밖에 정의되거나 합성된 성장 배지도 사용할 수 있으며, 특정 미생물의 성장에 적절한 배지는 미생물학 또는 발효과학 분야의 당업자에게 공지되어 있다. Typically, the cells can be grown in a suitable medium at a temperature ranging from about 20 < 0 > C to about 37 < 0 > C. In the present invention, the growth medium may comprise, for example, a yeast nitrogen base, ammonium sulfate, and dextrose as a carbon / energy source, such as broth or most of the Saccharomyces cerevisiae strain For example, a YPD medium in which peptone, yeast extract and dextrose are blended in an optimal ratio for growth. Other defined or synthetic growth media may also be used, and suitable media for growth of particular microorganisms are known to those skilled in the art of microbiology or fermentation.
또한, 상기 분리는 배양물, 예를 들면, 세포, 배양 매질 또는 둘 모두로부터 분리하는 것일 수 있다. In addition, the separation may be separation from the culture, e. G., Cells, culture medium or both.
생물 생산된 2,3-부탄다이올은 당업계에 공지된 방법을 사용하여 배양 배지로부터 분리할 수 있다. 이러한 분리 방법은 원심분리, 여과, 이온교환크로마토그래피 또는 결정화일 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온교환크로마토그래피를 통하여 분리할 수 있다. The biotinylated 2,3-butanediol can be isolated from the culture medium using methods known in the art. Such a separation method may be centrifugation, filtration, ion exchange chromatography or crystallization. For example, the culture can be centrifuged at low speed to remove the biomass, and the resulting supernatant can be separated through ion exchange chromatography.
일 양상에 따른 효모 세포에 의하면, 2,3-부탄다이올을 효율적으로 생산하는데 사용될 수 있다. According to one aspect, yeast cells can be used to efficiently produce 2,3-butanediol.
일 양상에 따른 2,3-부탄다이올을 생산하는 방법에 의하면, 2,3-부탄다이올을 고효율 및 고수율로 생산할 수 있다. According to a method of producing 2,3-butanediol according to one aspect, 2,3-butanediol can be produced with high efficiency and high yield.
도 1은 일구체예에 따른 2,3-부탄다이올 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.
도 2는 일구체예에 따른 2,3-부탄다이올 합성 유전자 발현을 위한 벡터의 개열도를 나타낸 도면이다.
도 3은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 4는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 5는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 6은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 7은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 8은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다.
도 9는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagrammatic representation of a 2,3-butanediol production pathway and a competition pathway according to one embodiment.
2 is a diagram showing the open sequence of a vector for expressing a 2,3-butanediol synthesis gene according to one embodiment.
FIG. 3 is a diagram showing production yields of metabolites of S. cerevisiae strain increased in 2,3-butanediol producing ability according to one embodiment.
FIG. 4 is a graph showing production yields of metabolites of S. cerevisiae strains with increased 2,3-butanediol producing ability according to an embodiment.
FIG. 5 is a graph showing production yields of metabolites of S. cerevisiae strain increased in 2,3-butanediol producing ability according to one embodiment.
FIG. 6 is a graph showing the effect of increasing the 2,3-butanediol producing ability of S. cerevisiae Fig. 3 is a graph showing the production amount of metabolites of a strain. Fig.
FIG. 7 is a graph showing production yields of metabolites of S. cerevisiae strains increased in 2,3-butanediol producing ability according to one embodiment.
FIG. 8 is a graph showing production yields of metabolites of S. cerevisiae strain increased in 2,3-butanediol producing ability according to one embodiment.
9 is a graph showing production yields of metabolites of S. cerevisiae strains with increased 2,3-butanediol producing ability according to one embodiment.
이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are intended to illustrate the present invention, and the scope of the present invention is not limited by these examples.
실시예Example 1: 2,3- 1: 2,3- 부탄다이올Butanediol (2,3-(2,3- butanediolbutanediol ) ) 생산능이Production capacity 증가된Increased S. S. cerevisiaecerevisiae 균주의 제작 Production of strain
본 실시예에서 사용된 S. cerevisiae 균주는 다음과 같이 준비하였다.
The S. cerevisiae strain used in this example was prepared as follows.
1. 2,3-1. 2,3-
부탄다이올Butanediol
합성 유전자 발현 Synthetic gene expression
S. S.
cerevisiaecerevisiae
균주의 제작 Production of strain
(1.1) 2,3-(1.1) 2,3- 부탄다이올Butanediol 합성 유전자 도입용 플라스미드의 제작 Production of plasmid for introducing synthetic gene
(1.1.1) (1.1.1) alsSalsS , , alsDalsD , 및 , And BDH1BDH1 유전자 도입용 For gene introduction p413p413 -- SDBSDB 플라스미드의 제작 Production of plasmid
2.3-부탄다이올 합성 유전자를 도입하기 위해, 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase), 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase) 유전자 도입용 플라스미드를 제작하였다. In order to introduce the 2,3-butanediol synthesis gene, acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase ) Plasmid for gene introduction was constructed.
아세토락테이트 신타아제로는 바실러스 서브틸리스(Bacilus subtilis) 유래의 alsS (서열번호 1의 뉴클레오티드 서열, 서열번호 2의 아미노산 서열), 아세토락테이트 디카복실레이즈로는 바실러스 서브틸리스(Bacilus subtilis) 유래의 alsD (서열번호 3의 뉴클레오티드 서열, 서열번호 4의 아미노산 서열), 2,3-부탄다이올 탈수소효소로는 사카로마이세스 세레비지애(Saccharomyces cerevisiae) 유래의 BDH1 (서열번호 5의 뉴클레오티드 서열, 서열번호 6의 아미노산 서열)을 각각 사용하였다. 구체적으로, alsS 유전자 및 alsD는 바실러스 서브틸리스 유전체 DNA를 주형으로 PCR(alsS 유전자: 서열번호 7 및 8의 프라이머 세트, alsD 유전자: 서열번호 9 및 10의 프라이머 세트)을 통해 확보하였다. 또한, BHD1 유전자는 사카로마이세스 세레비지애 유전체 DNA를 주형으로 PCR(서열번호 11 및 12의 프라이머 세트)을 통해 확보하였다. Acetolactate < / RTI > Synthase is Bacillus subtilis subtilis) of the derived alsS (SEQ ID NO: 1 nucleotide sequence, the amino acid sequence of SEQ ID NO: 2), acetolactate dicarboxylate is raised to Bacillus subtilis (Bacilus (nucleotide sequence of SEQ ID NO: 3, amino acid sequence of SEQ ID NO: 4) originating from the subtilis , 2,3-butanediol dehydrogenase, Saccharomyces cerevisiae (the nucleotide sequence of SEQ ID NO: 5 and the amino acid sequence of SEQ ID NO: 6) derived from S. cerevisiae were respectively used. Specifically, the alsS gene and alsD were obtained by PCR using the Bacillus subtilis genomic DNA as a template (alsS gene: a primer set of SEQ ID NOs: 7 and 8, an alsD gene: a primer set of SEQ ID NOs: 9 and 10). In addition, the BHD1 gene was obtained by PCR (primer set of SEQ ID NOS: 11 and 12) as a template of Saccharomyces cerevisiae genomic DNA.
또한, alsS, alsD 및 BHD1 유전자를 과발현시키기 위해, 각각 TDH3 (서열번호 13), TEF (서열번호 14), 및 TPI1 (서열번호 15)유전자의 프로모터와 PYK1 (서열번호 16), GPM1 (서열번호 17), TPI1 (서열번호 18) 유전자의 터미네이터를 사용하였다. TDH3, TEF1 프로모터는 p414GPD, p414TEF 벡터 (Mumberg et al., 1995)를 SacI, SpeI 제한효소로 처리하여 얻었다. 그 외의 프로모터와 터미네이터는 사카로마이세스 세레비지애의 유전체 DNA를 주형으로 사용하여 PCR(PYK1 터미네이터: 서열번호 19 및 20의 프라이머 세트, GPM1 터미네이터: 서열번호 21 및 22의 프라이머 세트, TPI1 프로모터: 서열번호 23 및 24의 프라이머 세트, TPI1 터미네이터: 서열번호 25 및 26의 프라이머 세트)을 통해 얻었다. 얻어진 프로모터 절편은 SacI, SpeI 제한효소를 이용하여 클로닝하였고, 터미네이터 절편은 XhoI, KpnI 제한효소를 이용하여 클로닝하였다. (SEQ ID NO: 13), TEF (SEQ ID NO: 14) and TPI1 (SEQ ID NO: 15) genes and PYK1 (SEQ ID NO: 16), GPM1 17) and TPI1 (SEQ ID NO: 18) genes were used. The TDH3, TEF1 promoter was obtained by treating p414GPD, p414TEF vector (Mumberg et al., 1995) with SacI and SpeI restriction enzymes. Other promoters and terminators used PCR (PYK1 terminator: primer set of SEQ ID NOs: 19 and 20, GPM1 terminator: primer set of SEQ ID NOs: 21 and 22, TPI1 promoter: Primer set of SEQ ID NOs: 23 and 24, TPI1 terminator: primer set of SEQ ID NOs: 25 and 26). The obtained promoter fragment was cloned using SacI and SpeI restriction enzymes, and the terminator fragment was cloned using XhoI and KpnI restriction enzymes.
이후, alsS, alsD, 및 BDH1는 BamHI, XhoI 제한효소를 사용하여 클로닝하였고, 그에 따라 얻어진 벡터를 각각 p414_P TDH3 -alsS-T PYK1 , p414_P TEF1 - alsD-T GPM1 , 및 p414_P TPI1 -BDH1-T TPI1 로 명명하였다. Then, alsS, alsD, and BDH1 were cloned using BamHI and XhoI restriction enzymes, and the resulting vectors were designated p414_P TDH3 - alsS- T PYK1 , p414_P TEF1 - alsD- T GPM1 and p414_P TPI1 - BDH1- T TPI1 Respectively.
최종적으로는 하나의 벡터를 사용하여 필요한 유전자를 모두 발현시키기 위하여, 앞서 클로닝 된 3종류의 벡터를 각각 주형으로 서열번호 27 및 28의 프라이머 세트를 사용하여 '프로모터-유전자-터미네이터'를 지니는 PCR 산물을 얻었다. 이 PCR 산물은 5' 말단에 MluI 제한효소 서열, 3' 말단에 AscI-NotI-MluI 서열을 갖는다. p413GPD 플라스미드 벡터(HIS3, P TDH3 , T CYC1 ) (Mumberg et al., 1995)를 BssHII 제한효소로 처리하고 PCR 산물인 P TEF1 - alsD-T GPM1 을 MluI 제한효소로 처리하여 클로닝하였다. 추가적인 클로닝은 벡터의 AscI, NotI 제한효소 자리와 PCR 산물의 MluI, NotI 제한효소 자리를 이용하였다. AscI과 MluI 은 동일한 접착말단(sticky end)을 형성하므로 서로 접착이 가능하고, 접착된 후에는 각 효소에 의해 더 이상 인지되지 않기 때문에 PCR 산물에 포함되어 클로닝된 새로운 AscI 제한효소 자리를 이용하여 추가적인 클로닝이 가능하다. 이러한 방법을 통하여 P TPI1 -BDH1-T TPI1 및 P TDH3 -alsS-T PYK1 를 순차적으로 클로닝 하여 벡터를 제작하고, 그를 p413-SDB로 명명하였다.
Finally, in order to express all of the necessary genes by using one vector, PCR was carried out using three kinds of previously cloned vectors as templates and a PCR product having a 'promoter-gene-terminator' using the primer sets of SEQ ID NOs: 27 and 28 ≪ / RTI > This PCR product has the MluI restriction enzyme sequence at the 5 'end and the AscI-NotI-MluI sequence at the 3' end. The p413GPD plasmid vector ( HIS3 , P TDH3 , T CYC1 ) (Mumberg et al., 1995) was treated with BssHII restriction enzyme and the PCR product P TEF1 - alsD- T GPM1 was cloned by treatment with MluI restriction enzyme. Additional cloning was performed using the AscI and NotI restriction sites of the vector and the MluI and NotI restriction sites of the PCR products. Since AscI and MluI form the same sticky end, they can be adhered to each other. After adhesion, they are no longer recognized by each enzyme. Therefore, the new AscI restriction site Cloning is possible. Through this method, PTPI1 - BDH1 - TTPI1 and P TDH3 - alsS- T PYK1 were sequentially cloned into a vector, which was named p413-SDB.
(1.1.2) (1.1.2) alsDalsD , , alsDalsD , , BDH1BDH1 , 및 , And noxEnoxE 유전자 도입용 For gene introduction p413p413 -- SDBNSDBN 플라스미드의 제작 Production of plasmid
2,3-부탄다이올 합성 경로에서 발생할 수 있는 보조인자(cofactor, NAD+/NADH)의 불균형을 개선하고자 NADH 산화 효소를 추가적으로 발현시키고자 하였다. We intend to further express NADH oxidase to improve the unbalance of cofactor (NAD + / NADH) that can occur in 2,3-butanediol synthesis pathway.
NADH 산화 효소로는 락토코커스 락티스(Lactococcus lactis) 유래의 noxE (서열번호 29의 뉴클레오티드 서열, 서열번호 30의 아미노산 서열)를 사용하였다. noxE 유전자는 락토코커스 락티스의 유전체 DNA를 주형으로 PCR(서열번호 31 및 32의 프라이머 세트)을 통해 확보하였다. NADH oxidases include Lactococcus lactis lactis) were used noxE (nucleotide of SEQ ID NO: 29 sequence, the amino acid sequence of SEQ ID NO: 30) derived from. The noxE gene was obtained by PCR (primer set of SEQ ID NOS: 31 and 32) as a template of the genomic DNA of Lactococcus lactis.
또한, noxE 유전자를 과발현하기 위해, FBA1 유전자의 프로모터(서열번호 33)와 FBA1 유전자의 터미네이터(서열번호 34)를 사용하였다. FBA1 프로모터 및 터미네이터는 사카로마이세스 세레비지애의 유전체 DNA를 주형으로 사용하여 PCR(프로모터: 서열번호 35 및 36의 프라이머 세트, 터미네이터: 서열번호 37 및 38의 프라이머 세트)을 통해 얻었다.In order to overexpress the noxE gene, the promoter of the FBA1 gene (SEQ ID NO: 33) and the terminator of the FBA1 gene (SEQ ID NO: 34) were used. The FBA1 promoter and terminator were obtained through PCR (primer set of SEQ ID NOs: 35 and 36, terminator: primer set of SEQ ID NOs: 37 and 38) using the genomic DNA of Saccharomyces cerevisiae as a template.
그 외의 클로닝 방법은 상기 실시예 1의 (1.1.1)과 동일한 방법으로 수행하였고, 이에 따라 얻어진 벡터를 p414_P FBA1 -noxE-TFBA1로 명명하였다. Other cloning methods were performed in the same manner as in (1.1.1) of Example 1, and the vector thus obtained was named p414_P FBA1 - noxE - T FBA1 .
또한, 최종적으로 하나의 벡터를 사용하여 필요한 유전자를 모두 발현시키기 위하여, 상기 실시예 1의 (1.1.1)과 동일한 방법으로 p413-SDB 벡터에 동일한 방법으로 P FBA1 -noxE-TFBA1 클로닝하여 벡터를 제작하였고, 그를 p413-SDBN으로 명명하였다. In order to finally express all of the required genes using one vector, the same procedure as in (1.1.1) of Example 1 was repeated to obtain p413-SDB vector in the same manner as PFBA1 - noxE- T FBA1 Cloning was performed to construct a vector, which was named p413-SDBN.
도 2는 일구체예에 따른 2,3-부탄다이올 합성 유전자 발현을 위한 벡터의 개열도를 나타낸 도면이다.
2 is a diagram showing the open sequence of a vector for expressing a 2,3-butanediol synthesis gene according to one embodiment.
(1.2) (1.2) alsSalsS , , alsDalsD , 및 , And BDH1BDH1 유전자 발현 Gene expression S. S. cerevisiaecerevisiae 균주의 제작 Production of strain
S. cerevisiae 균주 CEN. PK2-1C(MATa ura3 -52 trp1 -289 leu2 -3,112 his3 Δ1 MAL2-8C SUC2) (Euroscarf, 독일)에 alsS, alsD, 및 BDH1 유전자를 과발현시키기 위하여, 실시예 1의 (1.1.1)에서 제작한 p413-SDB 벡터를 상기 균주에 리튬 아세테이트를 이용한 화학적 형질전환 방법에 의하여 도입하였다. 이후, 상기 형질전환 균주를 SC 배지 (20 g/l 포도당, 6.7 g/l YNB, 적당한 아미노산 첨가물)에서 배양하여, 상기 유전자가 형질전환된 균주를 선별하였고, 그를 S. cerevisiae WT[SDB]라고 명명하였다.
S. cerevisiae strain CEN. PK2-1C produced in (MATa ura3 leu2 -3,112 -289 -52 trp1 his3 Δ1 MAL2-8C SUC2) of (Euroscarf, Germany) in order to overexpress the alsS, alsD, and BDH1 gene, Example 1 (1.1.1) A p413-SDB vector was introduced into the strain by chemical transformation using lithium acetate. Then, the transformant was cultured in an SC medium (20 g / l glucose, 6.7 g / l YNB, an appropriate amino acid additive) to select a strain transformed with the gene, which was named S. cerevisiae WT [SDB] Respectively.
2. 2,3-2. 2,3- 부탄다이올Butanediol 합성 유전자 발현 및 알코올 탈수소 효소 및/또는 글리세롤 3-인산 탈수소 효소 유전자 결손 Synthetic gene expression and alcohol dehydrogenase and / or glycerol 3-phosphate dehydrogenase gene deficiency S. S. cerevisiaecerevisiae 균주의 제작 Production of strain
본 실시예에서는 2,3-부탄다이올 합성 경로에서 추가로 경쟁적 대사경로를 차단함으로써 부산물 생성을 억제하고 2,3-부탄다이올 생산을 증진시키고자 하였다. 사카로마이세스 세레비지애는 에탄올을 주요 대사산물로 생산하며 생장하는 균주이다. 2,3-부탄다이올 합성경로가 도입된 균주의 경우 글리세롤이 주요한 경쟁 대사산물로 생성된다. 따라서, 에탄올 및 글리세롤을 합성하는 대사경로를 차단함으로써, 2,3-부탄다이올 생산을 증진시킬 수 있다. 사카로마이세스 세레비지애에는 보조인자로 NADH를 사용하는 6종의 알코올 탈수소효소 (ADH1, ADH2, ADH3, ADH4, ADH5, 및 SFA1) 및 NADPH를 사용하는 알코올 탈수소효소 (ADH6, 및 ADH7)가 존재한다. 또한, NADH를 보조인자로 사용하여 디히드록시아세톤인산 (dihydroxyacetone phosphate, DHAP) 을 글리세롤-3-인산으로 전환시키는 글리세롤-3-인산 탈수소 효소 (GPD1 및 GPD2)가 존재한다. In this example, the production of 2,3-butanediol was inhibited by inhibiting further competitive metabolic pathways in the 2,3-butanediol synthesis route. Saccharomyces cerevisiae is a strain that produces ethanol as a major metabolite and grows. Glycerol is produced as a major competitive metabolite in strains in which the 2,3-butanediol synthesis pathway is introduced. Thus, the production of 2,3-butanediol can be promoted by blocking the metabolic pathway for the synthesis of ethanol and glycerol. (ADH1, ADH2, ADH3, ADH4, ADH5, and SFA1) using NADH and alcohol dehydrogenase (ADH6 and ADH7) using NADPH are present in the Saccharomyces cerevisiae do. There are also glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) that convert dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate using NADH as a cofactor.
이에, 본 실시예에서는 상기 ADH1 (서열번호 39의 뉴클레오티드 서열, 서열번호 40의 아미노산 서열), ADH2 (서열번호 41의 뉴클레오티드 서열, 서열번호 42의 아미노산 서열), ADH3 (서열번호 43의 뉴클레오티드 서열, 서열번호 44의 아미노산 서열), ADH4 (서열번호 45의 뉴클레오티드 서열, 서열번호 46의 아미노산 서열), ADH5 (서열번호 47의 뉴클레오티드 서열, 서열번호 48의 아미노산 서열), GPD1 (서열번호 49의 뉴클레오티드 서열, 서열번호 50의 아미노산 서열), 및 GPD2 (서열번호 51의 뉴클레오티드 서열, 서열번호 52의 아미노산 서열)를 결손시킨 균주를 제작하였다.
ADH2 (the nucleotide sequence of SEQ ID NO: 41, the amino acid sequence of SEQ ID NO: 42), ADH3 (the nucleotide sequence of SEQ ID NO: 43, the amino acid sequence of SEQ ID NO: ADH4 (nucleotide sequence of SEQ ID NO: 45, amino acid sequence of SEQ ID NO: 46), ADH5 (nucleotide sequence of SEQ ID NO: 47, amino acid sequence of SEQ ID NO: 48), GPD1 (nucleotide sequence of SEQ ID NO: , The amino acid sequence of SEQ ID NO: 50), and GPD2 (the nucleotide sequence of SEQ ID NO: 51 and the amino acid sequence of SEQ ID NO: 52).
(2.1) 알코올 탈수소 효소 및/또는 글리세롤 3-인산 탈수소 효소 유전자 결손용 카세트의 제작(2.1) Production of cassette for alcohol dehydrogenase and / or glycerol 3-phosphate dehydrogenase gene deletion
ADH1 내지 ADH5, GPD1 및 GPD2 유전자가 결손된 돌연변이는 Cre/loxP 재조합 시스템을 이용하였다. 유전자 결손을 위한 카세트는 pUG27(loxP-his5 + -loxP 결손 카세트를 포함하는 플라스미드, Euroscarf, 독일) 또는 pUG72 (loxP - URA3 - loxP 결손 카세트를 포함하는 플라스미드, Euroscarf, 독일) 플라스미드를 주형으로 사용하여 PCR 증폭을 통해 획득하였다. 유전자 결손 카세트 제작을 위한 프라이머 세트로는, 서열번호 53 및 54 (ADH1), 서열번호 55 및 56 (ADH2), 서열번호 57 및 58 (ADH3), 서열번호 59 및 60 (ADH4), 서열번호 61 및 62 (ADH5), 서열번호 63 및 64 (GPD1), 및 서열번호 65 및 66 (GPD2)의 조합을 각각 해당 유전자에 대해 사용하였다.
Mutants lacking the ADH1 to ADH5, GPD1, and GPD2 genes used the Cre / loxP recombination system. Cassette for the gene defect is pUG27 using (loxP plasmid containing the deletion cassette, Euroscarf, Germany loxP - - URA3) plasmid as a template (loxP - - his5 + loxP deletion plasmid, Euroscarf containing the cassette, Germany) or pUG72 PCR amplification. (ADH1), SEQ ID NOs: 55 and 56 (ADH2), SEQ ID NOs: 57 and 58 (ADH3), SEQ ID NOs: 59 and 60 (ADH4), SEQ ID NO: 61 And 62 (ADH5), SEQ ID NOS: 63 and 64 (GPD1), and SEQ ID NOS: 65 and 66 (GPD2), respectively.
(2.2) 2,3-(2.2) 2,3- 부탄다이올Butanediol 합성 유전자 발현 및 알코올 탈수소 효소 및/또는 글리세롤 3-인산 탈수소 효소 유전자 결손 Synthetic gene expression and alcohol dehydrogenase and / or glycerol 3-phosphate dehydrogenase gene deficiency S. S. cerevisiaecerevisiae 균주의 제작 Production of strain
(2.2.1) (2.2.1)
alsSalsS
, ,
alsDalsD
, 및 , And
BDH1BDH1
유전자 발현, 및 Gene expression, and
ADH
실시예 1의 (2.1)에서 획득한 ADH1 유전자 결손 카세트를 효모 균주에 실시예 1의 (1.2)와 동일한 방법으로 형질전환하여 해당 유전자가 결손된 균주를 획득하였고, 이를 확인용 프라이머 (서열번호 67 및 68)를 사용하여 확인하였다. 유전자가 결손된 균주가 지니고 있는 선별마커를 제거하기 위하여 Cre recombinase를 발현시키는 pSH63 (TRP1, Cre recombinase under the control of GAL1 promoter, Euroscarf, 독일)를 형질전환 하였고 선별마커 유전자가 제거된 결손 균주를 제작하였다. 이후, 상기 유전자가 제거된 결손 균주에, 실시예 1의 (1.1.1)에서 제작한 p413-SDB 벡터를 형질전환하였고, 최종적으로 수득된 균주를 S. cerevisiae adh1Δ[SDB]로 명명하였다.
The ADH1 gene-deficient cassette obtained in Example 1 (2.1) was transformed into the yeast strain in the same manner as in (1.2) of Example 1 to obtain a strain deficient in the corresponding gene. The confirmation primer (SEQ ID NO: 67 And 68). In order to remove the selectable markers of the gene-deficient strain, pSH63 ( TRP1 , Cre recombinase under the control of GAL1 promoter, Euroscarf, Germany) expressing Cre recombinase was transformed and a deletion strain in which a selective marker gene was deleted was prepared Respectively. Then, the p413-SDB vector prepared in (1.1.1) of Example 1 was transformed into the defective strain from which the gene had been deleted, and the finally obtained strain was named S. cerevisiae adh1Δ [SDB].
(2.2.2) (2.2.2)
alsSalsS
, ,
alsDalsD
, 및 , And
BDH1BDH1
유전자 발현, 및 Gene expression, and
ADH
확인용 프라이머로서, 각각 서열번호 69 및 70 (ADH2), 서열번호 71 및 72 (ADH3), 서열번호 73 및 74 (ADH4), 및 서열번호 75 및 76 (ADH5)의 조합을 사용한 것만을 제외하고는 실시예 1의 (2.2.1)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae adh1-5Δ[SDB]로 명명하였다.
Except for using a combination of SEQ ID NOS: 69 and 70 (ADH2), SEQ ID NOS: 71 and 72 (ADH3), SEQ ID NOS: 73 and 74 (ADH4), and SEQ ID NOS: 75 and 76 (ADH5) Was prepared in the same manner as in (2.2.1) of Example 1, and designated as S. cerevisiae adh1-5Δ [SDB].
(2.2.3) (2.2.3)
alsSalsS
, ,
alsDalsD
, 및 , And
BDH1BDH1
유전자 발현, 및 Gene expression, and
GPD
확인용 프라이머로서, 각각 서열번호 77 및 78 (GPD 1), 및 서열번호 79 및 80 (GPD 2)의 조합을 사용한 것만을 제외하고는 실시예 1의 (2.2.1)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae gpd1Δgpd2Δ[SDB]로 명명하였다.
(2.2.1) of Example 1, except that a combination of SEQ ID NOS: 77 and 78 (GPD 1) and SEQ ID NOS: 79 and 80 (GPD 2) , And designated S. cerevisiae gpd1Δgpd2Δ [SDB].
(2.2.4) (2.2.4)
alsSalsS
, ,
alsDalsD
, 및 , And
BDH1BDH1
유전자 발현, Gene expression,
ADH
실시예 1의 (2.2.1) 및 (2.2.3)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae adh1Δgpd1Δgpd2Δ[SDB]로 명명하였다.
A strain was prepared in the same manner as in (2.2.1) and (2.2.3) of Example 1, and designated as S. cerevisiae adh1Δgpd1Δgpd2Δ [SDB].
(2.2.5) (2.2.5)
alsSalsS
, ,
alsDalsD
, 및 , And
BDH1BDH1
유전자 발현, Gene expression,
ADH
실시예 1의 (2.2.2) 및 (2.2.3)과 동일한 방법으로 균주를 제작하였고, 그를 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDB]로 명명하였다.
The strain was prepared in the same manner as in (2.2.2) and (2.2.3) of Example 1 and named as S. cerevisiae adh1-5Δgpd1Δgpd2Δ [SDB].
3. 2,3-3. 2,3- 부탄다이올Butanediol 합성 유전자 발현, 알코올 탈수소 효소 유전자 결손, 글리세롤-3-인산 탈수소 효소 유전자 결손 및 Synthetic gene expression, alcohol dehydrogenase gene deletion, glycerol-3-phosphate dehydrogenase gene deletion and NADHNADH 산화 효소 발현 Oxidase expression S. S. cerevisiaecerevisiae 균주의 제작 Production of strain
실시예 1의 (2.2.5)에서 제작한 ADH 1 내지 5 유전자 결손, 및 GPD 1 및 2 유전자 결손 S. cerevisiae 균주에, 실시예 1의 (1.1.2)에서 제작한 p413-SDBN 벡터를 실시예 1의 (2.2.1)과 동일한 방법으로 형질전환하여 균주를 제작하였고, 그를 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDBN]로 명명하였다.
실시예Example
2: 제작된 2: Manufactured
S. S.
cerevisiaecerevisiae
균주의 2,3- The 2,3-
부탄다이올Butanediol
생산성 증대 확인 Increase productivity
1. 2,3-1. 2,3- 부탄다이올Butanediol 합성 유전자 발현 Synthetic gene expression S. S. cerevisiaecerevisiae 균주의 2,3-The 2,3- 부탄다이올Butanediol 생산성 증대 확인 Increase productivity
2,3-부탄다이올 합성 유전자 발현 S. cerevisiae 균주의 2,3-부탄다이올 생산성 증대 확인하기 위해, 실시예 1의 (1.2)에서 제작한 균주를 2,3-부탄다이올 생산 배지에서 배양하였다. Expression of 2,3-butanediol Synthesis Gene To confirm the productivity of 2,3-butanediol of S. cerevisiae strain, the strain prepared in (1.2) of Example 1 was cultured on 2,3-butanediol production medium Lt; / RTI >
구체적으로, 2,3-부탄다이올 생산 배지로는 SC-H (50 g/l 포도당, 6.7 g/l YNB, 히스티딘을 제외한 아미노산 첨가물) 및 YPD10(100 g/l포도당, 10 g/l yeast extract, 20 g/l bacto-peptone)을 사용하였다. 세포 배양은 진탕배양기를 이용하여 30 ℃에서 170rpm으로 진행하였다. 2,3-부탄다이올을 생산하기 위한 배양조건은 초기접종 세포농도는 OD600=0.3으로 고정하였고, 50 ml 코니컬 튜브에서 8 ml 배지로 진행하였다. 대사산물을 분석하기 위하여 배양액 800μl를 원심분리하여 상등액을 얻고, 이를 0.22 μm 필터로 여과하여 HPLC 분석을 진행하였다. UltiMate 3000 HPLC system(Thermo fishers scientific)을 이용하였고 BioRad Aminex HPX-87H 컬럼과 굴절률검출기(RI detector)를 사용하였다. 이동상은 5 mM 황산을 사용하였고 유속은 0.6 ml/분, 온도는 60도로 설정하여, 대사산물의 생산량을 확인하였고, 그 결과를 도 3에 나타내었다. Specifically, 2,3-butanediol production medium was SC-H (50 g / l glucose, 6.7 g / l YNB, amino acid addition except histidine) and YPD10 (100 g / l glucose, 10 g / l yeast extract, 20 g / l bacto-peptone) was used. Cell culture was carried out at 30 DEG C and 170 rpm using a shaking incubator. For the production of 2,3-butanediol, the initial inoculated cell concentration was fixed at OD 600 = 0.3, and the culture was carried out in a 8 ml culture medium in a 50 ml conical tube. To analyze the metabolites, 800 μl of the culture was centrifuged to obtain supernatant, which was then filtered through a 0.22 μm filter for HPLC analysis. UltiMate 3000 HPLC system (Thermo fishers scientific) was used and a BioRad Aminex HPX-87H column and a refractive index detector (RI detector) were used. The mobile phase used was 5 mM sulfuric acid, the flow rate was set at 0.6 ml / min, and the temperature was set at 60 degrees, and the production amount of the metabolite was confirmed. The results are shown in FIG.
도 3은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. FIG. 3 is a diagram showing production yields of metabolites of S. cerevisiae strain increased in 2,3-butanediol producing ability according to one embodiment.
도 3에 나타낸 바와 같이, 2,3-부탄다이올 합성 유전자를 발현하는 S. cerevisiae WT[SDB] 균주는 50 g/l의 포도당을 소모하여, 11.3 g/l의 2,3-부탄다이올, 6.0 g/l의 에탄올, 및 6.55 g/l의 글리세롤을 생산하는 것을 확인할 수 있다.
As shown in Fig. 3, the S. cerevisiae WT [SDB] strain expressing the 2,3-butanediol synthesis gene consumed 50 g / l of glucose and contained 11.3 g / l of 2,3-butanediol , 6.0 g / l of ethanol, and 6.55 g / l of glycerol.
2. 2,3-2. 2,3- 부탄다이올Butanediol 합성 유전자 발현, 알코올 탈수소 효소 유전자 결손, 및/또는 글리세롤-3-인산 탈수소 효소 유전자 결손 Synthetic gene expression, alcohol dehydrogenase gene deletion, and / or glycerol-3-phosphate dehydrogenase gene deletion S. S. cerevisiaecerevisiae 균주의 2,3-The 2,3- 부탄다이올Butanediol 생산성 증대 확인 Increase productivity
(2.1) (2.1) ADH1ADH1 결손균주Defective strain adh1adh1 △에서의 2,3-The ratio of 2,3- 부탄다이올Butanediol 생산 production
실시예 1의 (2.2.1)에서 제작한 S. cerevisiae adh1Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 4로 나타내었다. The production amount of the metabolite of the S. cerevisiae adh1Δ [SDB] strain produced in Example 1 (2.2.1) was confirmed by the same method as in Example 2, and the result is shown in FIG.
도 4는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. FIG. 4 is a graph showing production yields of metabolites of S. cerevisiae strains with increased 2,3-butanediol producing ability according to an embodiment.
도 4에 나타낸 바와 같이, S. cerevisiae adh1Δ[SDB] 균주는 S. cerevisiae WT[SDB] 균주와 비교하여 에탄올 생성이 감소하고 2,3-부탄다이올 생성이 증가함을 확인할 수 있다.
As shown in FIG. 4, the S. cerevisiae adh1Δ [SDB] strain shows reduced ethanol production and 2,3-butanediol production as compared with S. cerevisiae WT [SDB] strain.
(2.2) (2.2) ADH1ADH1 내지 5가 To 5 결손된Deficient 균주 Strain adh1adh1 -5△에서의 2,3--5 < RTI ID = 0.0 > 부탄다이올Butanediol 생산 production
실시예 1의 (2.2.2)에서 제작한 S. cerevisiae adh1-5Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 5로 나타내었다. The production amount of the metabolite of the S. cerevisiae adh1-5Δ [SDB] strain produced in Example 1 (2.2.2) was confirmed in the same manner as in Example 2, and the results are shown in FIG.
도 5는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. FIG. 5 is a graph showing production yields of metabolites of S. cerevisiae strain increased in 2,3-butanediol producing ability according to one embodiment.
도 5에 나타낸 바와 같이, S. cerevisiae adh1-5Δ[SDB] 균주는 에탄올이 거의 생성되지 않음(0.4 g/l 이하)을 확인하였다. 또한, S. cerevisiae WT[SDB] 균주와 비교하여 2,3-부탄다이올 단독으로는 1 g/l, 아세토인과 2,3-부탄다이올의 합은 1.8 g/l 향상되었음을 확인할 수 있다.
As shown in Fig. 5, it was confirmed that S. cerevisiae adh1-5Δ [SDB] strain hardly produced ethanol (less than 0.4 g / l). In addition, it was confirmed that the addition of 1 g / l of 2,3-butanediol alone and 1.8 g / l of the sum of acetone and 2,3-butanediol were improved compared with the strain of S. cerevisiae WT [SDB] .
(2.3) (2.3) GPD1GPD1 및 And GPD2GPD2 가 end 결손된Deficient gpd1gpd1 △△ gpd2gpd2 △에서의 2,3-The ratio of 2,3- 부탄다이올Butanediol 생산 production
실시예 1의 (2.2.3)에서 제작한 S. cerevisiae gpd1Δgpd2Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 6으로 나타내었다. The production amount of the metabolite of the S. cerevisiae gpd1Δgpd2Δ [SDB] strain produced in Example 1 (2.2.3) was confirmed in the same manner as in Example 2, and the results are shown in FIG.
도 6은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. FIG. 6 is a graph showing production yields of metabolites of S. cerevisiae strains with increased 2,3-butanediol producing ability according to an embodiment.
도 6에 나타낸 바와 같이, S. cerevisiae gpd1Δgpd2Δ[SDB] 균주는 글리세롤을 거의 생성하지 않았고(0.1 g/l 이하) 2,3-부탄다이올의 생산이 증가하였음을 확인할 수 있다.
As shown in Fig. 6, the strain S. cerevisiae gpd1Δgpd2Δ [SDB] produced little glycerol (less than 0.1 g / l) and increased the production of 2,3-butanediol.
(2.4) (2.4) ADH1ADH1 , , GPD1GPD1 및 And GPD2GPD2 가 end 결손된Deficient adh1adh1 △△ gpd1gpd1 △△ gpd2gpd2 △에서의 2,3-The ratio of 2,3- 부탄다이Bhutan Dai 올 생산All production
실시예 1의 (2.2.4)에서 제작한 S. cerevisiae adh1Δgpd1Δgpd2Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 7로 나타내었다. The production amount of the metabolite of the S. cerevisiae adh1Δgpd1Δgpd2Δ [SDB] strain produced in Example 1 (2.2.4) was confirmed by the same method as in Example 2, and the results are shown in FIG.
도 7은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. FIG. 7 is a graph showing production yields of metabolites of S. cerevisiae strains increased in 2,3-butanediol producing ability according to one embodiment.
도 7에 나타낸 바와 같이, S. cerevisiae adh1Δgpd1Δgpd2Δ[SDB] 균주는 에탄올 및 글리세롤의 감소와 2,3-부탄다이올 생산량 증가 효과가 크게 나타났음을 확인할 수 있다.
As shown in FIG. 7, it was confirmed that S. cerevisiae adh1Δgpd1Δgpd2Δ [SDB] showed a significant effect of decreasing ethanol and glycerol and increasing 2,3-butanediol production.
(2.5) (2.5) ADH1ADH1 내지 5, To 5, GPD1GPD1 및 And GPD2GPD2 가 end 결손된Deficient adh1adh1 -5△-5 Δ gpd1gpd1 △△ gpd2gpd2 △에서의 2,3-부The < RTI ID = 0.0 > 2,3- 탄다Get on 이올 생산증가Increase production of alcohol
실시예 1의 (2.2.5)에서 제작한 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDB] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 8로 나타내었다. The production amount of the metabolite of the S. cerevisiae adh1-5Δgpd1Δgpd2Δ [SDB] strain produced in Example 1 (2.2.5) was confirmed in the same manner as in Example 2, and the results are shown in FIG.
도 8은 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. FIG. 8 is a graph showing production yields of metabolites of S. cerevisiae strain increased in 2,3-butanediol producing ability according to one embodiment.
도 8에 나타낸 바와 같이, S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDB] 균주에서 에탄올(0.1 g/l 이하) 및 글리세롤(0.15 g/l 이하) 생성이 크게 감소하였고 2,3-부탄다이올(18.1 g/l)의 생산이 크게 증가함을 확인하였다.
As shown in Fig. 8, the production of ethanol (less than 0.1 g / l) and glycerol (less than 0.15 g / l) was greatly reduced in S. cerevisiae adh1-5Δgpd1Δgpd2Δ [SDB] strain and 2,3-butanediol / l) production was significantly increased.
3. 2,3-3. 2,3- 부탄다이올Butanediol 합성 유전자 발현, 알코올 탈수소 효소 유전자 결손, 글리세롤-3-인산 탈수소 효소 유전자 결손 및 Synthetic gene expression, alcohol dehydrogenase gene deletion, glycerol-3-phosphate dehydrogenase gene deletion and NADHNADH 산화 효소 발현 Oxidase expression S. cerevisiaeS. cerevisiae 균주의 2,3- The 2,3- 부탄다이올Butanediol 생산성 증대 확인 Increase productivity
실시예 1의 3에서 제작한 S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDBN] 균주의 대사 산물의 생산량을 실시예 2의 1과 동일한 방법으로 확인하였고, 그 결과를 도 9로 나타내었다. The production amount of the metabolites of S. cerevisiae adh1-5Δgpd1Δgpd2Δ [SDBN] produced in Example 1, 3 was confirmed by the same method as in Example 2, and the results are shown in FIG.
도 9는 일구체예에 따른 2,3-부탄다이올 생산능이 증가된 S. cerevisiae 균주의 대사산물의 생산량을 나타낸 도면이다. 9 is a graph showing production yields of metabolites of S. cerevisiae strains with increased 2,3-butanediol producing ability according to one embodiment.
도 9에 나타낸 바와 같이, S. cerevisiae adh1-5Δgpd1Δgpd2Δ[SDBN] 균주는 2,3-부탄다이올을 포함한 대사산물의 생성량은 동일한 수준으로 유지된 반면, 50 g/l 포도당을 모두 소모하는데 소요된 시간이 noxE를 발현시키지 않은 경우 72 시간인 것에 비해 43 시간으로 단축되었음을 확인할 수 있다.
As shown in Fig. 9, the S. cerevisiae adh1-5Δgpd1Δgpd2Δ [SDBN] strain was maintained at the same level of production of metabolites including 2,3-butanediol, while the consumption of 50 g / l glucose When the time was not expressed noxE, it was reduced to 43 hours compared to 72 hours.
추가적으로 상기 실시예 2의 1, 2 및 3의 결과를 하기 표 1 과 같이 정리하였다. WT[C]로 명명된 균주는 야생형 효모 균주 CEN.PK2-1C에 공벡터인 p413GPD를 형질전환한 균주로 본 실험에서 대조군으로 사용되었다Further, results of 1, 2 and 3 of Example 2 were summarized as shown in Table 1 below. The strain designated WT [C] was transformed with wild-type yeast strain CEN.PK2-1C, p413GPD, which is a public vector, and used as a control in this experiment
(h)Incubation time
(h)
(g/l)ethanol
(g / l)
(g/l)Acetone
(g / l)
(g/l)2,3-butanediol
(g / l)
2,3-부탄다이올
(g/l)Acetone +
2,3-butanediol
(g / l)
(CEN.PK2-1C,p413GPD) WT [C]
(CEN.PK2-1C, p413GPD)
±0.1122.03
± 0.11
±0.010.70
± 0.01
±0.050.56
± 0.05
±0.000.03
± 0.00
±0.050.59
± 0.05
±0.695.97
± 0.69
±0.586.55
± 0.58
±0.240.86
± 0.24
±0.3311.30
± 0.33
±0.4312.16
± 0.43
±0.723.44
± 0.72
±0.328.64
± 0.32
±0.370.60
± 0.37
±0.2813.27
± 0.28
±0.5913.87
± 0.59
±0.050.39
± 0.05
±0.2510.54
± 0.25
±0.151.77
± 0.15
±0.1312.22
± 0.13
±0.2514.00
± 0.25
±0.297.78
± 0.29
±0.000.04
± 0.00
±0.011.11
± 0.01
±0.1412.31
± 0.14
±0.1413.42
± 0.14
±0.574.38
± 0.57
±0.010.07
± 0.01
±0.651.54
± 0.65
±0.3415.67
± 0.34
±0.3417.20
± 0.34
±0.020.07
± 0.02
±0.000.13
± 0.00
±0.451.22
± 0.45
±0.5818.47
± 0.58
±0.1419.69
± 0.14
±0.090.12
± 0.09
±0.010.04
± 0.01
±0.221.78
± 0.22
±1.2218.89
± 1.22
±1.0020.67
± 1.00
<110> SNU R&DB Foundation <120> Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same <130> PN108410 <160> 80 <170> KopatentIn 2.0 <210> 1 <211> 1713 <212> DNA <213> Bacillus subtilis alsS <400> 1 atgacaaaag caacaaaaga acaaaaatcc cttgtgaaaa acagaggggc ggagcttgtt 60 gttgattgct tagtggagca aggtgtcaca catgtatttg gcattccagg tgcaaaaatt 120 gatgcggtat ttgacgcttt acaagataaa ggacctgaaa ttatcgttgc ccggcacgaa 180 caaaacgcag cattcatggc ccaagcagtc ggccgtttaa ctggaaaacc gggagtcgtg 240 ttagtcacat caggaccggg tgcctctaac ttggcaacag gcctgctgac agcgaacact 300 gaaggagacc ctgtcgttgc gcttgctgga aacgtgatcc gtgcagatcg tttaaaacgg 360 acacatcaat ctttggataa tgcggcgcta ttccagccga ttacaaaata cagtgtagaa 420 gttcaagatg taaaaaatat accggaagct gttacaaatg catttaggat agcgtcagca 480 gggcaggctg gggccgcttt tgtgagcttt ccgcaagatg ttgtgaatga agtcacaaat 540 acgaaaaacg tgcgtgctgt tgcagcgcca aaactcggtc ctgcagcaga tgatgcaatc 600 agtgcggcca tagcaaaaat ccaaacagca aaacttcctg tcgttttggt cggcatgaaa 660 ggcggaagac cggaagcaat taaagcggtt cgcaagcttt tgaaaaaggt tcagcttcca 720 tttgttgaaa catatcaagc tgccggtacc ctttctagag atttagagga tcaatatttt 780 ggccgtatcg gtttgttccg caaccagcct ggcgatttac tgctagagca ggcagatgtt 840 gttctgacga tcggctatga cccgattgaa tatgatccga aattctggaa tatcaatgga 900 gaccggacaa ttatccattt agacgagatt atcgctgaca ttgatcatgc ttaccagcct 960 gatcttgaat tgatcggtga cattccgtcc acgatcaatc atatcgaaca cgatgctgtg 1020 aaagtggaat ttgcagagcg tgagcagaaa atcctttctg atttaaaaca atatatgcat 1080 gaaggtgagc aggtgcctgc agattggaaa tcagacagag cgcaccctct tgaaatcgtt 1140 aaagagttgc gtaatgcagt cgatgatcat gttacagtaa cttgcgatat cggttcgcac 1200 gccatttgga tgtcacgtta tttccgcagc tacgagccgt taacattaat gatcagtaac 1260 ggtatgcaaa cactcggcgt tgcgcttcct tgggcaatcg gcgcttcatt ggtgaaaccg 1320 ggagaaaaag tggtttctgt ctctggtgac ggcggtttct tattctcagc aatggaatta 1380 gagacagcag ttcgactaaa agcaccaatt gtacacattg tatggaacga cagcacatat 1440 gacatggttg cattccagca attgaaaaaa tataaccgta catctgcggt cgatttcgga 1500 aatatcgata tcgtgaaata tgcggaaagc ttcggagcaa ctggcttgcg cgtagaatca 1560 ccagaccagc tggcagatgt tctgcgtcaa ggcatgaacg ctgaaggtcc tgtcatcatc 1620 gatgtcccgg ttgactacag tgataacatt aatttagcaa gtgacaagct tccgaaagaa 1680 ttcggggaac tcatgaaaac gaaagctctc tag 1713 <210> 2 <211> 570 <212> PRT <213> Bacillus subtilis alsS <400> 2 Met Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg Gly 1 5 10 15 Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His Val 20 25 30 Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln 35 40 45 Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala 50 55 60 Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val 65 70 75 80 Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu 85 90 95 Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val 100 105 110 Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala 115 120 125 Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val 130 135 140 Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala 145 150 155 160 Gly Gln Ala Gly Ala Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn 165 170 175 Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu 180 185 190 Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ile Ala Lys Ile Gln 195 200 205 Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro 210 215 220 Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu Pro 225 230 235 240 Phe Val Glu Thr Tyr Gln Ala Ala Gly Thr Leu Ser Arg Asp Leu Glu 245 250 255 Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly Asp 260 265 270 Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp Pro 275 280 285 Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr Ile 290 295 300 Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln Pro 305 310 315 320 Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile Glu 325 330 335 His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile Leu 340 345 350 Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala Asp 355 360 365 Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu Arg 370 375 380 Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser His 385 390 395 400 Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr Leu 405 410 415 Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp Ala 420 425 430 Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Val Ser 435 440 445 Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala Val 450 455 460 Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr Tyr 465 470 475 480 Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser Ala 485 490 495 Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe Gly 500 505 510 Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val Leu 515 520 525 Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro Val 530 535 540 Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys Glu 545 550 555 560 Phe Gly Glu Leu Met Lys Thr Lys Ala Leu 565 570 <210> 3 <211> 768 <212> DNA <213> Bacillus subtilis alsD <400> 3 atgaaacgag aaagcaacat tcaagtgctc agccgtggtc aaaaagatca gcctgtgagc 60 cagatttatc aagtatcaac aatgacttct ctattagacg gagtatatga cggagatttt 120 gaactgtcag agattccgaa atatggagac ttcggtatcg gaacctttaa caagcttgac 180 ggagagctga ttgggtttga cggcgaattt taccgtcttc gctcagacgg aaccgcgaca 240 ccggtccaaa atggagaccg ttcaccgttc tgttcattta cgttctttac accggacatg 300 acgcacaaaa ttgatgcgaa aatgacacgc gaagactttg aaaaagagat caacagcatg 360 ctgccaagca gaaacttatt ttatgcaatt cgcattgacg gattgtttaa aaaggtgcag 420 acaagaacag tagaacttca agaaaaacct tacgtgccaa tggttgaagc ggtcaaaaca 480 cagccgattt tcaacttcga caacgtgaga ggaacgattg taggtttctt gacaccagct 540 tatgcaaacg gaatcgccgt ttctggctat cacctgcact tcattgacga aggacgcaat 600 tcaggcggac acgtttttga ctatgtgctt gaggattgca cggttacgat ttctcaaaaa 660 atgaacatga atctcagact tccgaacaca gcggatttct ttaatgcgaa tctggataac 720 cctgattttg cgaaagatat cgaaacaact gaaggaagcc ctgaataa 768 <210> 4 <211> 255 <212> PRT <213> Bacillus subtilis alsD <400> 4 Met Lys Arg Glu Ser Asn Ile Gln Val Leu Ser Arg Gly Gln Lys Asp 1 5 10 15 Gln Pro Val Ser Gln Ile Tyr Gln Val Ser Thr Met Thr Ser Leu Leu 20 25 30 Asp Gly Val Tyr Asp Gly Asp Phe Glu Leu Ser Glu Ile Pro Lys Tyr 35 40 45 Gly Asp Phe Gly Ile Gly Thr Phe Asn Lys Leu Asp Gly Glu Leu Ile 50 55 60 Gly Phe Asp Gly Glu Phe Tyr Arg Leu Arg Ser Asp Gly Thr Ala Thr 65 70 75 80 Pro Val Gln Asn Gly Asp Arg Ser Pro Phe Cys Ser Phe Thr Phe Phe 85 90 95 Thr Pro Asp Met Thr His Lys Ile Asp Ala Lys Met Thr Arg Glu Asp 100 105 110 Phe Glu Lys Glu Ile Asn Ser Met Leu Pro Ser Arg Asn Leu Phe Tyr 115 120 125 Ala Ile Arg Ile Asp Gly Leu Phe Lys Lys Val Gln Thr Arg Thr Val 130 135 140 Glu Leu Gln Glu Lys Pro Tyr Val Pro Met Val Glu Ala Val Lys Thr 145 150 155 160 Gln Pro Ile Phe Asn Phe Asp Asn Val Arg Gly Thr Ile Val Gly Phe 165 170 175 Leu Thr Pro Ala Tyr Ala Asn Gly Ile Ala Val Ser Gly Tyr His Leu 180 185 190 His Phe Ile Asp Glu Gly Arg Asn Ser Gly Gly His Val Phe Asp Tyr 195 200 205 Val Leu Glu Asp Cys Thr Val Thr Ile Ser Gln Lys Met Asn Met Asn 210 215 220 Leu Arg Leu Pro Asn Thr Ala Asp Phe Phe Asn Ala Asn Leu Asp Asn 225 230 235 240 Pro Asp Phe Ala Lys Asp Ile Glu Thr Thr Glu Gly Ser Pro Glu 245 250 255 <210> 5 <211> 1149 <212> DNA <213> Saccharomyces cerevisiae BDH1 <400> 5 atgagagctt tggcatattt caagaagggt gatattcact tcactaatga tatccctagg 60 ccagaaatcc aaaccgacga tgaggttatt atcgacgtct cttggtgtgg gatttgtggc 120 tcggatcttc acgagtactt ggatggtcca atcttcatgc ctaaagatgg agagtgccat 180 aaattatcca acgctgcttt acctctggca atgggccatg agatgtcagg aattgtttcc 240 aaggttggtc ctaaagtgac aaaggtgaag gttggcgacc acgtggtcgt tgatgctgcc 300 agcagttgtg cggacctgca ttgctggcca cactccaaat tttacaattc caaaccatgt 360 gatgcttgtc agaggggcag tgaaaatcta tgtacccacg ccggttttgt aggactaggt 420 gtgatcagtg gtggctttgc tgaacaagtc gtagtctctc aacatcacat tatcccggtt 480 ccaaaggaaa ttcctctaga tgtggctgct ttagttgagc ctctttctgt cacctggcat 540 gctgttaaga tttctggttt caaaaaaggc agttcagcct tggttcttgg tgcaggtccc 600 attgggttgt gtaccatttt ggtacttaag ggaatggggg ctagtaaaat tgtagtgtct 660 gaaattgcag agagaagaat agaaatggcc aagaaactgg gcgttgaggt gttcaatccc 720 tccaagcacg gtcataaatc tatagagata ctacgtggtt tgaccaagag ccatgatggg 780 tttgattaca gttatgattg ttctggtatt caagttactt tcgaaacctc tttgaaggca 840 ttaacattca aggggacagc caccaacatt gcagtttggg gtccaaaacc tgtcccattc 900 caaccaatgg atgtgactct ccaagagaaa gttatgactg gttcgatcgg ctatgttgtc 960 gaagacttcg aagaagttgt tcgtgccatc cacaacggag acatcgccat ggaagattgt 1020 aagcaactaa tcactggtaa gcaaaggatt gaggacggtt gggaaaaggg attccaagag 1080 ttgatggatc acaaggaatc caacgttaag attctattga cgcctaacaa tcacggtgaa 1140 atgaagtaa 1149 <210> 6 <211> 382 <212> PRT <213> Saccharomyces cerevisiae BDH1 <400> 6 Met Arg Ala Leu Ala Tyr Phe Lys Lys Gly Asp Ile His Phe Thr Asn 1 5 10 15 Asp Ile Pro Arg Pro Glu Ile Gln Thr Asp Asp Glu Val Ile Ile Asp 20 25 30 Val Ser Trp Cys Gly Ile Cys Gly Ser Asp Leu His Glu Tyr Leu Asp 35 40 45 Gly Pro Ile Phe Met Pro Lys Asp Gly Glu Cys His Lys Leu Ser Asn 50 55 60 Ala Ala Leu Pro Leu Ala Met Gly His Glu Met Ser Gly Ile Val Ser 65 70 75 80 Lys Val Gly Pro Lys Val Thr Lys Val Lys Val Gly Asp His Val Val 85 90 95 Val Asp Ala Ala Ser Ser Cys Ala Asp Leu His Cys Trp Pro His Ser 100 105 110 Lys Phe Tyr Asn Ser Lys Pro Cys Asp Ala Cys Gln Arg Gly Ser Glu 115 120 125 Asn Leu Cys Thr His Ala Gly Phe Val Gly Leu Gly Val Ile Ser Gly 130 135 140 Gly Phe Ala Glu Gln Val Val Val Ser Gln His His Ile Ile Pro Val 145 150 155 160 Pro Lys Glu Ile Pro Leu Asp Val Ala Ala Leu Val Glu Pro Leu Ser 165 170 175 Val Thr Trp His Ala Val Lys Ile Ser Gly Phe Lys Lys Gly Ser Ser 180 185 190 Ala Leu Val Leu Gly Ala Gly Pro Ile Gly Leu Cys Thr Ile Leu Val 195 200 205 Leu Lys Gly Met Gly Ala Ser Lys Ile Val Val Ser Glu Ile Ala Glu 210 215 220 Arg Arg Ile Glu Met Ala Lys Lys Leu Gly Val Glu Val Phe Asn Pro 225 230 235 240 Ser Lys His Gly His Lys Ser Ile Glu Ile Leu Arg Gly Leu Thr Lys 245 250 255 Ser His Asp Gly Phe Asp Tyr Ser Tyr Asp Cys Ser Gly Ile Gln Val 260 265 270 Thr Phe Glu Thr Ser Leu Lys Ala Leu Thr Phe Lys Gly Thr Ala Thr 275 280 285 Asn Ile Ala Val Trp Gly Pro Lys Pro Val Pro Phe Gln Pro Met Asp 290 295 300 Val Thr Leu Gln Glu Lys Val Met Thr Gly Ser Ile Gly Tyr Val Val 305 310 315 320 Glu Asp Phe Glu Glu Val Val Arg Ala Ile His Asn Gly Asp Ile Ala 325 330 335 Met Glu Asp Cys Lys Gln Leu Ile Thr Gly Lys Gln Arg Ile Glu Asp 340 345 350 Gly Trp Glu Lys Gly Phe Gln Glu Leu Met Asp His Lys Glu Ser Asn 355 360 365 Val Lys Ile Leu Leu Thr Pro Asn Asn His Gly Glu Met Lys 370 375 380 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsS <400> 7 ctgaggatcc atgacaaaag caacaaaaga ac 32 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsS <400> 8 ctgactcgag ctagagagct ttcgttttca 30 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsD <400> 9 ctgaggatcc atgaaacgag aaagcaacat 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsD <400> 10 ctgactcgag ttattcaggg cttccttcag 30 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F primer for BDH1 <400> 11 actgggatcc atgagagctt tggcatattt ca 32 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for BDH1 <400> 12 actgggatcc atgagagctt tggcatattt ca 32 <210> 13 <211> 644 <212> DNA <213> Artificial Sequence <220> <223> TDH3 promoter <400> 13 tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60 aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120 tagggggcgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agtttattcc 180 tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240 tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300 cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360 atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420 cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaa 480 aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540 taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600 gttagtcttt tttttagttt taaaacacca gaacttagtt tcga 644 <210> 14 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> TEF1 promoter <400> 14 atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca 60 tcgccgtacc acttcaaaac acccaagcac agcatactaa atttcccctc tttcttcctc 120 tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt 180 tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaaat 240 tttttttttg atttttttct ctttcgatga cctcccattg atatttaagt taataaacgg 300 tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt tttttacttc 360 ttgctcatta gaaagaaagc atagcaatct aatctaagtt t 401 <210> 15 <211> 430 <212> DNA <213> Artificial Sequence <220> <223> TPI1 promoter <400> 15 tatatctagg aacccatcag gttggtggaa gattacccgt tctaagactt ttcagcttcc 60 tctattgatg ttacacctgg acaccccttt tctggcatcc agtttttaat cttcagtggc 120 atgtgagatt ctccgaaatt aattaaagca atcacacaat tctctcggat accacctcgg 180 ttgaaactga caggtggttt gttacgcatg ctaatgcaaa ggagcctata tacctttggc 240 tcggctgctg taacagggaa tataaagggc agcataattt aggagtttag tgaacttgca 300 acatttacta ttttcccttc ttacgtaaat atttttcttt ttaattctaa atcaatcttt 360 ttcaattttt tgtttgtatt cttttcttgc ttaaatctat aactacaaaa aacacataca 420 taaactaaaa 430 <210> 16 <211> 393 <212> DNA <213> Artificial Sequence <220> <223> PYK1 terminator <400> 16 aaaaagaatc atgattgaat gaagatatta tttttttgaa ttatattttt taaattttat 60 ataaagacat ggtttttctt ttcaactcaa ataaagattt ataagttact taaataacat 120 acattttata aggtattcta taaaaagagt attatgttat tgttaacctt tttgtctcca 180 attgtcgtca taacgatgag gtgttgcatt tttggaaacg agattgacat agagtcaaaa 240 tttgctaaat ttgatccctc ccatcgcaag ataatcttcc ctcaaggtta tcatgattat 300 caggatggcg aaaggatacg ctaaaaattc aataaaaaat tcaatataat tttcgtttcc 360 caagaactaa cttggaaggt tatacatggg tac 393 <210> 17 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> GPM1 terminator <400> 17 gtctgaagaa tgaatgattt gatgatttct ttttccctcc atttttctta ctgaatatat 60 caatgatata gacttgtata gtttattatt tcaaattaag tagctatata tagtcaagat 120 aacgtttgtt tgacacgatt acattattcg tcgacatctt ttttcagcct gtcgtggtag 180 caatttgagg agtattatta attgaatagg ttcattttgc gctcgcataa acagttttcg 240 tcagggacag tatgttggaa tgagtggtaa ttaatggtga catgacatgt tatagcaata 300 accttgatgt ttacatcgta gtttaatgta caccccgcga attcgttcaa gtaggagtgc 360 accaattgca aagggaaaag ctgaatgggc agttcgaata g 401 <210> 18 <211> 393 <212> DNA <213> Artificial Sequence <220> <223> TPI1 terminator <400> 18 gattaatata attatataaa aatattatct tcttttcttt atatctagtg ttatgtaaaa 60 taaattgatg actacggaaa gcttttttat attgtttctt tttcattctg agccacttaa 120 atttcgtgaa tgttcttgta agggacggta gatttacaag tgatacaaca aaaagcaagg 180 cgctttttct aataaaaaga agaaaagcat ttaacaattg aacacctcta tatcaacgaa 240 gaatattact ttgtctctaa atccttgtaa aatgtgtacg atctctatat gggttactca 300 taagtgtacc gaagactgca ttgaaagttt atgttttttc actggaggcg tcattttcgc 360 gttgagaaga tgttcttatc caaatttcaa ctg 393 <210> 19 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> F primer for PYK1 terminator <400> 19 gtcactcgag aaaaagaatc atgattgaat gaag 34 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for PYK1 terminator <400> 20 gtcaggtacc gtacccatgt ataaccttcc 30 <210> 21 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPM1 terminator <400> 21 gtcactcgag gtctgaagaa tgaatgattt g 31 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPM1 terminator <400> 22 gtcaggtacc tattcgaact gcccattca 29 <210> 23 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for TPI1 promoter <400> 23 gtcagagctc tatatctagg aacccatcag g 31 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> R primer for TPI1 promoter <400> 24 gtcaactagt ttttagttta tgtatgtgtt ttttg 35 <210> 25 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> F primer for TPI1 terminator <400> 25 gtcactcgag ctagaaacta agattaatat aat 33 <210> 26 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for TPI1 terminator <400> 26 gtcaggtacc cagttgaaat ttggataaga ac 32 <210> 27 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Universal F primer <400> 27 gactacgcgt ggaacaaaag ctggagctc 29 <210> 28 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Universal R primer <400> 28 gactacgcgt gcggccgcta atggcgcgcc atagggcgaa ttgggtacc 49 <210> 29 <211> 1341 <212> DNA <213> Lactococcus lactis noxE <400> 29 atgaaaatcg tagttatcgg tacgaaccac gcaggcattg ctacagcaaa tacattaatt 60 gatcgatatc caggccatga gattgttatg attgaccgta acagtaatat gagttacttg 120 gggtgtggga cagctatttg ggtcggaaga caaattgaaa aaccagatga gctgttttat 180 gccaaagcag aagattttga aaaaaaggga gtaaagatat taacagaaac agaagtttca 240 gaaattgact ttactaataa aatgatttat gccaagtcaa aaactggaga aaagattaca 300 gaaagttatg ataaactcgt tctggcaaca ggttcacgtc caattattcc taacttgcca 360 ggaaaagatc ttaaaggcat tcatttttta aaactttttc aagaagggca agccattgac 420 gaagagtttg ctaagaatga tgtgaaacgg attgctgtga ttggtgctgg ttatattggg 480 acagaaattg ctgaagctgc caaacgtcgt ggaaaagaag tcctactttt tgatgcagaa 540 agtacttcac ttgcttcata ttatgatgaa gagtttgcta aagggatgga tgaaaatctt 600 gcccaacatg gaattgaact ccattttggg gaattagctc aagagtttaa ggcaaatgaa 660 aaaggtcatg tatcacagat tgtaactaat aaatcaactt atgatgttga cctcgttatt 720 aattgtattg gctttacagc caatagtgca ttggctggtg aacatttaga aacctttaaa 780 aatggagcaa tcaaagtgga taaacatcaa caaagtagtg acccagatgt ttctgctgta 840 ggagatgttg ccacaatcta ttctaatgct ttacaagact tcacctacat tgcccttgcc 900 tcaaacgctg ttcgctcagg gattgttgct ggtcataata ttggaggaaa atcaatagag 960 tctgttggtg tacaaggttc taatggaatc tctatttttg gttacaatat gacttctacg 1020 ggcttgtcgg ttaaagctgc gaaaaaaatc ggcctagaag tttcatttag tgattttgaa 1080 gataagcaaa aagcatggtt ccttcatgaa aataatgata gtgtgaaaat tcgtatcgtt 1140 tatgaaacaa aaaatcgcag aattattggt gctcaacttg ctagcaagag tgaaataatt 1200 gcaggaaata ttaatatgtt tagtttagct attcaagaaa agaaaacgat tgatgaatta 1260 gccttacttg atttattctt cttaccacac ttcaatagtc catataatta catgactgtt 1320 gcagctttaa atgcaaaata a 1341 <210> 30 <211> 446 <212> PRT <213> Lactococcus lactis noxE <400> 30 Met Lys Ile Val Val Ile Gly Thr Asn His Ala Gly Ile Ala Thr Ala 1 5 10 15 Asn Thr Leu Ile Asp Arg Tyr Pro Gly His Glu Ile Val Met Ile Asp 20 25 30 Arg Asn Ser Asn Met Ser Tyr Leu Gly Cys Gly Thr Ala Ile Trp Val 35 40 45 Gly Arg Gln Ile Glu Lys Pro Asp Glu Leu Phe Tyr Ala Lys Ala Glu 50 55 60 Asp Phe Glu Lys Lys Gly Val Lys Ile Leu Thr Glu Thr Glu Val Ser 65 70 75 80 Glu Ile Asp Phe Thr Asn Lys Met Ile Tyr Ala Lys Ser Lys Thr Gly 85 90 95 Glu Lys Ile Thr Glu Ser Tyr Asp Lys Leu Val Leu Ala Thr Gly Ser 100 105 110 Arg Pro Ile Ile Pro Asn Leu Pro Gly Lys Asp Leu Lys Gly Ile His 115 120 125 Phe Leu Lys Leu Phe Gln Glu Gly Gln Ala Ile Asp Glu Glu Phe Ala 130 135 140 Lys Asn Asp Val Lys Arg Ile Ala Val Ile Gly Ala Gly Tyr Ile Gly 145 150 155 160 Thr Glu Ile Ala Glu Ala Ala Lys Arg Arg Gly Lys Glu Val Leu Leu 165 170 175 Phe Asp Ala Glu Ser Thr Ser Leu Ala Ser Tyr Tyr Asp Glu Glu Phe 180 185 190 Ala Lys Gly Met Asp Glu Asn Leu Ala Gln His Gly Ile Glu Leu His 195 200 205 Phe Gly Glu Leu Ala Gln Glu Phe Lys Ala Asn Glu Lys Gly His Val 210 215 220 Ser Gln Ile Val Thr Asn Lys Ser Thr Tyr Asp Val Asp Leu Val Ile 225 230 235 240 Asn Cys Ile Gly Phe Thr Ala Asn Ser Ala Leu Ala Gly Glu His Leu 245 250 255 Glu Thr Phe Lys Asn Gly Ala Ile Lys Val Asp Lys His Gln Gln Ser 260 265 270 Ser Asp Pro Asp Val Ser Ala Val Gly Asp Val Ala Thr Ile Tyr Ser 275 280 285 Asn Ala Leu Gln Asp Phe Thr Tyr Ile Ala Leu Ala Ser Asn Ala Val 290 295 300 Arg Ser Gly Ile Val Ala Gly His Asn Ile Gly Gly Lys Ser Ile Glu 305 310 315 320 Ser Val Gly Val Gln Gly Ser Asn Gly Ile Ser Ile Phe Gly Tyr Asn 325 330 335 Met Thr Ser Thr Gly Leu Ser Val Lys Ala Ala Lys Lys Ile Gly Leu 340 345 350 Glu Val Ser Phe Ser Asp Phe Glu Asp Lys Gln Lys Ala Trp Phe Leu 355 360 365 His Glu Asn Asn Asp Ser Val Lys Ile Arg Ile Val Tyr Glu Thr Lys 370 375 380 Asn Arg Arg Ile Ile Gly Ala Gln Leu Ala Ser Lys Ser Glu Ile Ile 385 390 395 400 Ala Gly Asn Ile Asn Met Phe Ser Leu Ala Ile Gln Glu Lys Lys Thr 405 410 415 Ile Asp Glu Leu Ala Leu Leu Asp Leu Phe Phe Leu Pro His Phe Asn 420 425 430 Ser Pro Tyr Asn Tyr Met Thr Val Ala Ala Leu Asn Ala Lys 435 440 445 <210> 31 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for noxE <400> 31 gactaagctt atgaaaatcg tagttatcgg t 31 <210> 32 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for noxE <400> 32 gactctcgag ttattttgca tttaaagctg ca 32 <210> 33 <211> 821 <212> DNA <213> Artificial Sequence <220> <223> FBA1 pormoter <400> 33 atccaactgg caccgctggc ttgaacaaca ataccagcct tccaacttct gtaaataacg 60 gcggtacgcc agtgccacca gtaccgttac ctttcggtat acctcctttc cccatgtttc 120 caatgccctt catgcctcca acggctacta tcacaaatcc tcatcaagct gacgcaagcc 180 ctaagaaatg aataacaata ctgacagtac taaataattg cctacttggc ttcacatacg 240 ttgcatacgt cgatatagat aataatgata atgacagcag gattatcgta atacgtaata 300 gttgaaaatc tcaaaaatgt gtgggtcatt acgtaaataa tgataggaat gggattcttc 360 tatttttcct ttttccattc tagcagccgt cgggaaaacg tggcatcctc tctttcgggc 420 tcaattggag tcacgctgcc gtgagcatcc tctctttcca tatctaacaa ctgagcacgt 480 aaccaatgga aaagcatgag cttagcgttg ctccaaaaaa gtattggatg gttaatacca 540 tttgtctgtt ctcttctgac tttgactcct caaaaaaaaa aaatctacaa tcaacagatc 600 gcttcaatta cgccctcaca aaaacttttt tccttcttct tcgcccacgt taaattttat 660 ccctcatgtt gtctaacgga tttctgcact tgatttatta taaaaagaca aagacataat 720 acttctctat caatttcagt tattgttctt ccttgcgtta ttcttctgtt cttctttttc 780 ttttgtcata tataaccata accaagtaat acatattcaa a 821 <210> 34 <211> 202 <212> DNA <213> Artificial Sequence <220> <223> FBA1 terminator <400> 34 gttaattcaa attaattgat atagtttttt aatgagtatt gaatctgttt agaaataatg 60 gaatattatt tttatttatt tatttatatt attggtcggc tcttttcttc tgaaggtcaa 120 tgacaaaatg atatgaagga aataatgatt tctaaaattt tacaacgtaa gatattttta 180 caaaagccta gctcatcttt tg 202 <210> 35 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 promoter <400> 35 gtcagagctc atccaactgg caccgctg 28 <210> 36 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 promoter <400> 36 gtcagagctc atccaactgg caccgctg 28 <210> 37 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 terminator <400> 37 gtcactcgag taagttaatt caaattaatt gatatag 37 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 terminator <400> 38 gtcaggtacc caaaagatga gctaggcttt 30 <210> 39 <211> 1047 <212> DNA <213> Saccharomyces cerevisiae ADH1 <400> 39 atgtctatcc cagaaactca aaaaggtgtt atcttctacg aatcccacgg taagttggaa 60 tacaaagata ttccagttcc aaagccaaag gccaacgaat tgttgatcaa cgttaaatac 120 tctggtgtct gtcacactga cttgcacgct tggcacggtg actggccatt gccagttaag 180 ctaccattag tcggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca acaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ccgacttggc ccaagtcgcc cccatcttgt gtgctggtat caccgtctac 480 aaggctttga agtctgctaa cttgatggcc ggtcactggg ttgctatctc cggtgctgct 540 ggtggtctag gttctttggc tgttcaatac gccaaggcta tgggttacag agtcttgggt 600 attgacggtg gtgaaggtaa ggaagaatta ttcagatcca tcggtggtga agtcttcatt 660 gacttcacta aggaaaagga cattgtcggt gctgttctaa aggccactga cggtggtgct 720 cacggtgtca tcaacgtttc cgtttccgaa gccgctattg aagcttctac cagatacgtt 780 agagctaacg gtaccaccgt tttggtcggt atgccagctg gtgccaagtg ttgttctgat 840 gtcttcaacc aagtcgtcaa gtccatctct attgttggtt cttacgtcgg taacagagct 900 gacaccagag aagctttgga cttcttcgcc agaggtttgg tcaagtctcc aatcaaggtt 960 gtcggcttgt ctaccttgcc agaaatttac gaaaagatgg aaaagggtca aatcgttggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 40 <211> 348 <212> PRT <213> Saccharomyces cerevisiae ADH1 <400> 40 Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 5 10 15 Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu 195 200 205 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 235 240 His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 260 265 270 Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 41 <211> 1047 <212> DNA <213> Saccharomyces cerevisiae ADH2 <400> 41 atgtctattc cagaaactca aaaagccatt atcttctacg aatccaacgg caagttggag 60 cataaggata tcccagttcc aaagccaaag cccaacgaat tgttaatcaa cgtcaagtac 120 tctggtgtct gccacaccga tttgcacgct tggcatggtg actggccatt gccaactaag 180 ttaccattag ttggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca agaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ctgacttggc tgaagtcgcg ccaatcttgt gtgctggtat caccgtatac 480 aaggctttga agtctgccaa cttgagagca ggccactggg cggccatttc tggtgctgct 540 ggtggtctag gttctttggc tgttcaatat gctaaggcga tgggttacag agtcttaggt 600 attgatggtg gtccaggaaa ggaagaattg tttacctcgc tcggtggtga agtattcatc 660 gacttcacca aagagaagga cattgttagc gcagtcgtta aggctaccaa cggcggtgcc 720 cacggtatca tcaatgtttc cgtttccgaa gccgctatcg aagcttctac cagatactgt 780 agggcgaacg gtactgttgt cttggttggt ttgccagccg gtgcaaagtg ctcctctgat 840 gtcttcaacc acgttgtcaa gtctatctcc attgtcggct cttacgtggg gaacagagct 900 gataccagag aagccttaga tttctttgcc agaggtctag tcaagtctcc aataaaggta 960 gttggcttat ccagtttacc agaaatttac gaaaagatgg agaagggcca aattgctggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 42 <211> 348 <212> PRT <213> Saccharomyces cerevisiae ADH2 <400> 42 Met Ser Ile Pro Glu Thr Gln Lys Ala Ile Ile Phe Tyr Glu Ser Asn 1 5 10 15 Gly Lys Leu Glu His Lys Asp Ile Pro Val Pro Lys Pro Lys Pro Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Thr Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Glu 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Arg Ala Gly His Trp Ala Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Pro Gly Lys Glu 195 200 205 Glu Leu Phe Thr Ser Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Ser Ala Val Val Lys Ala Thr Asn Gly Gly Ala 225 230 235 240 His Gly Ile Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Cys Arg Ala Asn Gly Thr Val Val Leu Val Gly Leu Pro 260 265 270 Ala Gly Ala Lys Cys Ser Ser Asp Val Phe Asn His Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Ser Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Ala Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 43 <211> 1128 <212> DNA <213> Saccharomyces cerevisiae ADH3 <400> 43 atgttgagaa cgtcaacatt gttcaccagg cgtgtccaac caagcctatt ttctagaaac 60 attcttagat tgcaatccac agctgcaatc cctaagactc aaaaaggtgt catcttttat 120 gagaataagg ggaagctgca ttacaaagat atccctgtcc ccgagcctaa gccaaatgaa 180 attttaatca acgttaaata ttctggtgta tgtcacaccg atttacatgc ttggcacggc 240 gattggccat tacctgttaa actaccatta gtaggtggtc atgaaggtgc tggtgtagtt 300 gtcaaactag gttccaatgt caagggctgg aaagtcggtg atttagcagg tatcaaatgg 360 ctgaacggtt cttgtatgac atgcgaattc tgtgaatcag gtcatgaatc aaattgtcca 420 gatgctgatt tatctggtta cactcatgat ggttctttcc aacaatttgc gaccgctgat 480 gctattcaag ccgccaaaat tcaacagggt accgacttgg ccgaagtagc cccaatatta 540 tgtgctggtg ttactgtata taaagcacta aaagaggcag acttgaaagc tggtgactgg 600 gttgccatct ctggtgctgc aggtggcttg ggttccttgg ccgttcaata tgcaactgcg 660 atgggttaca gagttctagg tattgatgca ggtgaggaaa aggaaaaact tttcaagaaa 720 ttggggggtg aagtattcat cgactttact aaaacaaaga atatggtttc tgacattcaa 780 gaagctacca aaggtggccc tcatggtgtc attaacgttt ccgtttctga agccgctatt 840 tctctatcta cggaatatgt tagaccatgt ggtaccgtcg ttttggttgg tttgcccgct 900 aacgcctacg ttaaatcaga ggtattctct catgtggtga agtccatcaa tatcaagggt 960 tcttatgttg gtaacagagc tgatacgaga gaagccttag acttctttag cagaggtttg 1020 atcaaatcac caatcaaaat tgttggatta tctgaattac caaaggttta tgacttgatg 1080 gaaaagggca agattttggg tagatacgtc gtcgatacta gtaaataa 1128 <210> 44 <211> 375 <212> PRT <213> Saccharomyces cerevisiae ADH3 <400> 44 Met Leu Arg Thr Ser Thr Leu Phe Thr Arg Arg Val Gln Pro Ser Leu 1 5 10 15 Phe Ser Arg Asn Ile Leu Arg Leu Gln Ser Thr Ala Ala Ile Pro Lys 20 25 30 Thr Gln Lys Gly Val Ile Phe Tyr Glu Asn Lys Gly Lys Leu His Tyr 35 40 45 Lys Asp Ile Pro Val Pro Glu Pro Lys Pro Asn Glu Ile Leu Ile Asn 50 55 60 Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu His Ala Trp His Gly 65 70 75 80 Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val Gly Gly His Glu Gly 85 90 95 Ala Gly Val Val Val Lys Leu Gly Ser Asn Val Lys Gly Trp Lys Val 100 105 110 Gly Asp Leu Ala Gly Ile Lys Trp Leu Asn Gly Ser Cys Met Thr Cys 115 120 125 Glu Phe Cys Glu Ser Gly His Glu Ser Asn Cys Pro Asp Ala Asp Leu 130 135 140 Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln Phe Ala Thr Ala Asp 145 150 155 160 Ala Ile Gln Ala Ala Lys Ile Gln Gln Gly Thr Asp Leu Ala Glu Val 165 170 175 Ala Pro Ile Leu Cys Ala Gly Val Thr Val Tyr Lys Ala Leu Lys Glu 180 185 190 Ala Asp Leu Lys Ala Gly Asp Trp Val Ala Ile Ser Gly Ala Ala Gly 195 200 205 Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Thr Ala Met Gly Tyr Arg 210 215 220 Val Leu Gly Ile Asp Ala Gly Glu Glu Lys Glu Lys Leu Phe Lys Lys 225 230 235 240 Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys Thr Lys Asn Met Val 245 250 255 Ser Asp Ile Gln Glu Ala Thr Lys Gly Gly Pro His Gly Val Ile Asn 260 265 270 Val Ser Val Ser Glu Ala Ala Ile Ser Leu Ser Thr Glu Tyr Val Arg 275 280 285 Pro Cys Gly Thr Val Val Leu Val Gly Leu Pro Ala Asn Ala Tyr Val 290 295 300 Lys Ser Glu Val Phe Ser His Val Val Lys Ser Ile Asn Ile Lys Gly 305 310 315 320 Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu Ala Leu Asp Phe Phe 325 330 335 Ser Arg Gly Leu Ile Lys Ser Pro Ile Lys Ile Val Gly Leu Ser Glu 340 345 350 Leu Pro Lys Val Tyr Asp Leu Met Glu Lys Gly Lys Ile Leu Gly Arg 355 360 365 Tyr Val Val Asp Thr Ser Lys 370 375 <210> 45 <211> 1149 <212> DNA <213> Saccharomyces cerevisiae ADH4 <400> 45 atgtcttccg ttactgggtt ttacattcca ccaatctctt tctttggtga aggtgcttta 60 gaagaaaccg ctgattacat caaaaacaag gattacaaaa aggctttgat cgttactgat 120 cctggtattg cagctattgg tctctccggt agagtccaaa agatgttgga agaacgtggc 180 ttaaacgttg ctatctatga caaaactcaa ccaaacccaa atattgccaa tgtcacagct 240 ggtttgaagg ttttgaagga agaaaactct gaaattgtcg tttccattgg tggtggttct 300 gctcacgaca atgctaaggc cattgcttta ttggctacta acggtgggga aattggagat 360 tatgaaggtg tcaaccaatc taagaaggct gctttaccgc tatttgccat caacactact 420 gctggtactg cttccgagat gaccagattc actattatct ctaatgaaga aaagaaaatc 480 aagatggcca tcattgacaa caacgtcact ccagctgttg ctgtcaacga cccatctacc 540 atgtttggtt tgccacctgc tttgactgct gctactggtc tagatgcttt gactcactgt 600 atcgaagctt acgtttccac cgcctctaac ccaatcaccg atgcttgtgc tttgaagggt 660 attgatttga tcaatgaaag cttggtcgcc gcatacaaag acggtaaaga caagaaggcc 720 agaactgata tgtgttacgc agaatacttg gcaggtatgg ctttcaacaa tgcttctcta 780 ggttatgttc atgcccttgc tcatcaactt ggtggtttct accacttgcc tcatggtgtt 840 tgtaacgctg tcttgttgcc tcatgttcaa gaggccaaca tgcaatgtcc aaaggccaag 900 aagagattag gtgaaattgc cttgcattgc ggtgcttctc aagaagatcc agaagaaacc 960 atcaaggctt tgcacgtttt aaacagaacc atgaacattc caagaaactt gaaagactta 1020 ggtgttaaaa ccgaagattt tgacattttg gctgaacacg ccatgcatga tgcctgccat 1080 ttgactaacc cagttcaatt caccaaagaa caagtggttg ccattatcaa gaaagcctat 1140 gaatattaa 1149 <210> 46 <211> 382 <212> PRT <213> Saccharomyces cerevisiae ADH4 <400> 46 Met Ser Ser Val Thr Gly Phe Tyr Ile Pro Pro Ile Ser Phe Phe Gly 1 5 10 15 Glu Gly Ala Leu Glu Glu Thr Ala Asp Tyr Ile Lys Asn Lys Asp Tyr 20 25 30 Lys Lys Ala Leu Ile Val Thr Asp Pro Gly Ile Ala Ala Ile Gly Leu 35 40 45 Ser Gly Arg Val Gln Lys Met Leu Glu Glu Arg Gly Leu Asn Val Ala 50 55 60 Ile Tyr Asp Lys Thr Gln Pro Asn Pro Asn Ile Ala Asn Val Thr Ala 65 70 75 80 Gly Leu Lys Val Leu Lys Glu Glu Asn Ser Glu Ile Val Val Ser Ile 85 90 95 Gly Gly Gly Ser Ala His Asp Asn Ala Lys Ala Ile Ala Leu Leu Ala 100 105 110 Thr Asn Gly Gly Glu Ile Gly Asp Tyr Glu Gly Val Asn Gln Ser Lys 115 120 125 Lys Ala Ala Leu Pro Leu Phe Ala Ile Asn Thr Thr Ala Gly Thr Ala 130 135 140 Ser Glu Met Thr Arg Phe Thr Ile Ile Ser Asn Glu Glu Lys Lys Ile 145 150 155 160 Lys Met Ala Ile Ile Asp Asn Asn Val Thr Pro Ala Val Ala Val Asn 165 170 175 Asp Pro Ser Thr Met Phe Gly Leu Pro Pro Ala Leu Thr Ala Ala Thr 180 185 190 Gly Leu Asp Ala Leu Thr His Cys Ile Glu Ala Tyr Val Ser Thr Ala 195 200 205 Ser Asn Pro Ile Thr Asp Ala Cys Ala Leu Lys Gly Ile Asp Leu Ile 210 215 220 Asn Glu Ser Leu Val Ala Ala Tyr Lys Asp Gly Lys Asp Lys Lys Ala 225 230 235 240 Arg Thr Asp Met Cys Tyr Ala Glu Tyr Leu Ala Gly Met Ala Phe Asn 245 250 255 Asn Ala Ser Leu Gly Tyr Val His Ala Leu Ala His Gln Leu Gly Gly 260 265 270 Phe Tyr His Leu Pro His Gly Val Cys Asn Ala Val Leu Leu Pro His 275 280 285 Val Gln Glu Ala Asn Met Gln Cys Pro Lys Ala Lys Lys Arg Leu Gly 290 295 300 Glu Ile Ala Leu His Cys Gly Ala Ser Gln Glu Asp Pro Glu Glu Thr 305 310 315 320 Ile Lys Ala Leu His Val Leu Asn Arg Thr Met Asn Ile Pro Arg Asn 325 330 335 Leu Lys Asp Leu Gly Val Lys Thr Glu Asp Phe Asp Ile Leu Ala Glu 340 345 350 His Ala Met His Asp Ala Cys His Leu Thr Asn Pro Val Gln Phe Thr 355 360 365 Lys Glu Gln Val Val Ala Ile Ile Lys Lys Ala Tyr Glu Tyr 370 375 380 <210> 47 <211> 1056 <212> DNA <213> Saccharomyces cerevisiae ADH5 <400> 47 atgccttcgc aagtcattcc tgaaaaacaa aaggctattg tcttttatga gacagatgga 60 aaattggaat ataaagacgt cacagttccg gaacctaagc ctaacgaaat tttagtccac 120 gttaaatatt ctggtgtttg tcatagtgac ttgcacgcgt ggcacggtga ttggccattt 180 caattgaaat ttccattaat cggtggtcac gaaggtgctg gtgttgttgt taagttggga 240 tctaacgtta agggctggaa agtcggtgat tttgcaggta taaaatggtt gaatgggact 300 tgcatgtcct gtgaatattg tgaagtaggt aatgaatctc aatgtcctta tttggatggt 360 actggcttca cacatgatgg tacttttcaa gaatacgcaa ctgccgatgc cgttcaagct 420 gcccatattc caccaaacgt caatcttgct gaagttgccc caatcttgtg tgcaggtatc 480 actgtttata aggcgttgaa aagagccaat gtgataccag gccaatgggt cactatatcc 540 ggtgcatgcg gtggcttggg ttctctggca atccaatacg cccttgctat gggttacagg 600 gtcattggta tcgatggtgg taatgccaag cgaaagttat ttgaacaatt aggcggagaa 660 atattcatcg atttcacgga agaaaaagac attgttggtg ctataataaa ggccactaat 720 ggcggttctc atggagttat taatgtgtct gtttctgaag cagctatcga ggcttctacg 780 aggtattgta ggcccaatgg tactgtcgtc ctggttggta tgccagctca tgcttactgc 840 aattccgatg ttttcaatca agttgtaaaa tcaatctcca tcgttggatc ttgtgttgga 900 aatagagctg atacaaggga ggctttagat ttcttcgcca gaggtttgat caaatctccg 960 atccacttag ctggcctatc ggatgttcct gaaatttttg caaagatgga gaagggtgaa 1020 attgttggta gatatgttgt tgagacttct aaatga 1056 <210> 48 <211> 351 <212> PRT <213> Saccharomyces cerevisiae ADH5 <400> 48 Met Pro Ser Gln Val Ile Pro Glu Lys Gln Lys Ala Ile Val Phe Tyr 1 5 10 15 Glu Thr Asp Gly Lys Leu Glu Tyr Lys Asp Val Thr Val Pro Glu Pro 20 25 30 Lys Pro Asn Glu Ile Leu Val His Val Lys Tyr Ser Gly Val Cys His 35 40 45 Ser Asp Leu His Ala Trp His Gly Asp Trp Pro Phe Gln Leu Lys Phe 50 55 60 Pro Leu Ile Gly Gly His Glu Gly Ala Gly Val Val Val Lys Leu Gly 65 70 75 80 Ser Asn Val Lys Gly Trp Lys Val Gly Asp Phe Ala Gly Ile Lys Trp 85 90 95 Leu Asn Gly Thr Cys Met Ser Cys Glu Tyr Cys Glu Val Gly Asn Glu 100 105 110 Ser Gln Cys Pro Tyr Leu Asp Gly Thr Gly Phe Thr His Asp Gly Thr 115 120 125 Phe Gln Glu Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro 130 135 140 Pro Asn Val Asn Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile 145 150 155 160 Thr Val Tyr Lys Ala Leu Lys Arg Ala Asn Val Ile Pro Gly Gln Trp 165 170 175 Val Thr Ile Ser Gly Ala Cys Gly Gly Leu Gly Ser Leu Ala Ile Gln 180 185 190 Tyr Ala Leu Ala Met Gly Tyr Arg Val Ile Gly Ile Asp Gly Gly Asn 195 200 205 Ala Lys Arg Lys Leu Phe Glu Gln Leu Gly Gly Glu Ile Phe Ile Asp 210 215 220 Phe Thr Glu Glu Lys Asp Ile Val Gly Ala Ile Ile Lys Ala Thr Asn 225 230 235 240 Gly Gly Ser His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile 245 250 255 Glu Ala Ser Thr Arg Tyr Cys Arg Pro Asn Gly Thr Val Val Leu Val 260 265 270 Gly Met Pro Ala His Ala Tyr Cys Asn Ser Asp Val Phe Asn Gln Val 275 280 285 Val Lys Ser Ile Ser Ile Val Gly Ser Cys Val Gly Asn Arg Ala Asp 290 295 300 Thr Arg Glu Ala Leu Asp Phe Phe Ala Arg Gly Leu Ile Lys Ser Pro 305 310 315 320 Ile His Leu Ala Gly Leu Ser Asp Val Pro Glu Ile Phe Ala Lys Met 325 330 335 Glu Lys Gly Glu Ile Val Gly Arg Tyr Val Val Glu Thr Ser Lys 340 345 350 <210> 49 <211> 1176 <212> DNA <213> Saccharomyces cerevisiae GPD1 <400> 49 atgtctgctg ctgctgatag attaaactta acttccggcc acttgaatgc tggtagaaag 60 agaagttcct cttctgtttc tttgaaggct gccgaaaagc ctttcaaggt tactgtgatt 120 ggatctggta actggggtac tactattgcc aaggtggttg ccgaaaattg taagggatac 180 ccagaagttt tcgctccaat agtacaaatg tgggtgttcg aagaagagat caatggtgaa 240 aaattgactg aaatcataaa tactagacat caaaacgtga aatacttgcc tggcatcact 300 ctacccgaca atttggttgc taatccagac ttgattgatt cagtcaagga tgtcgacatc 360 atcgttttca acattccaca tcaatttttg ccccgtatct gtagccaatt gaaaggtcat 420 gttgattcac acgtcagagc tatctcctgt ctaaagggtt ttgaagttgg tgctaaaggt 480 gtccaattgc tatcctctta catcactgag gaactaggta ttcaatgtgg tgctctatct 540 ggtgctaaca ttgccaccga agtcgctcaa gaacactggt ctgaaacaac agttgcttac 600 cacattccaa aggatttcag aggcgagggc aaggacgtcg accataaggt tctaaaggcc 660 ttgttccaca gaccttactt ccacgttagt gtcatcgaag atgttgctgg tatctccatc 720 tgtggtgctt tgaagaacgt tgttgcctta ggttgtggtt tcgtcgaagg tctaggctgg 780 ggtaacaacg cttctgctgc catccaaaga gtcggtttgg gtgagatcat cagattcggt 840 caaatgtttt tcccagaatc tagagaagaa acatactacc aagagtctgc tggtgttgct 900 gatttgatca ccacctgcgc tggtggtaga aacgtcaagg ttgctaggct aatggctact 960 tctggtaagg acgcctggga atgtgaaaag gagttgttga atggccaatc cgctcaaggt 1020 ttaattacct gcaaagaagt tcacgaatgg ttggaaacat gtggctctgt cgaagacttc 1080 ccattatttg aagccgtata ccaaatcgtt tacaacaact acccaatgaa gaacctgccg 1140 gacatgattg aagaattaga tctacatgaa gattag 1176 <210> 50 <211> 391 <212> PRT <213> Saccharomyces cerevisiae GPD1 <400> 50 Met Ser Ala Ala Ala Asp Arg Leu Asn Leu Thr Ser Gly His Leu Asn 1 5 10 15 Ala Gly Arg Lys Arg Ser Ser Ser Ser Val Ser Leu Lys Ala Ala Glu 20 25 30 Lys Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr Thr 35 40 45 Ile Ala Lys Val Val Ala Glu Asn Cys Lys Gly Tyr Pro Glu Val Phe 50 55 60 Ala Pro Ile Val Gln Met Trp Val Phe Glu Glu Glu Ile Asn Gly Glu 65 70 75 80 Lys Leu Thr Glu Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr Leu 85 90 95 Pro Gly Ile Thr Leu Pro Asp Asn Leu Val Ala Asn Pro Asp Leu Ile 100 105 110 Asp Ser Val Lys Asp Val Asp Ile Ile Val Phe Asn Ile Pro His Gln 115 120 125 Phe Leu Pro Arg Ile Cys Ser Gln Leu Lys Gly His Val Asp Ser His 130 135 140 Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Val Gly Ala Lys Gly 145 150 155 160 Val Gln Leu Leu Ser Ser Tyr Ile Thr Glu Glu Leu Gly Ile Gln Cys 165 170 175 Gly Ala Leu Ser Gly Ala Asn Ile Ala Thr Glu Val Ala Gln Glu His 180 185 190 Trp Ser Glu Thr Thr Val Ala Tyr His Ile Pro Lys Asp Phe Arg Gly 195 200 205 Glu Gly Lys Asp Val Asp His Lys Val Leu Lys Ala Leu Phe His Arg 210 215 220 Pro Tyr Phe His Val Ser Val Ile Glu Asp Val Ala Gly Ile Ser Ile 225 230 235 240 Cys Gly Ala Leu Lys Asn Val Val Ala Leu Gly Cys Gly Phe Val Glu 245 250 255 Gly Leu Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Val Gly 260 265 270 Leu Gly Glu Ile Ile Arg Phe Gly Gln Met Phe Phe Pro Glu Ser Arg 275 280 285 Glu Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile Thr 290 295 300 Thr Cys Ala Gly Gly Arg Asn Val Lys Val Ala Arg Leu Met Ala Thr 305 310 315 320 Ser Gly Lys Asp Ala Trp Glu Cys Glu Lys Glu Leu Leu Asn Gly Gln 325 330 335 Ser Ala Gln Gly Leu Ile Thr Cys Lys Glu Val His Glu Trp Leu Glu 340 345 350 Thr Cys Gly Ser Val Glu Asp Phe Pro Leu Phe Glu Ala Val Tyr Gln 355 360 365 Ile Val Tyr Asn Asn Tyr Pro Met Lys Asn Leu Pro Asp Met Ile Glu 370 375 380 Glu Leu Asp Leu His Glu Asp 385 390 <210> 51 <211> 1323 <212> DNA <213> Saccharomyces cerevisiae GPD2 <400> 51 atgcttgctg tcagaagatt aacaagatac acattcctta agcgaacgca tccggtgtta 60 tatactcgtc gtgcatataa aattttgcct tcaagatcta ctttcctaag aagatcatta 120 ttacaaacac aactgcactc aaagatgact gctcatacta atatcaaaca gcacaaacac 180 tgtcatgagg accatcctat cagaagatcg gactctgccg tgtcaattgt acatttgaaa 240 cgtgcgccct tcaaggttac agtgattggt tctggtaact gggggaccac catcgccaaa 300 gtcattgcgg aaaacacaga attgcattcc catatcttcg agccagaggt gagaatgtgg 360 gtttttgatg aaaagatcgg cgacgaaaat ctgacggata tcataaatac aagacaccag 420 aacgttaaat atctacccaa tattgacctg ccccataatc tagtggccga tcctgatctt 480 ttacactcca tcaagggtgc tgacatcctt gttttcaaca tccctcatca atttttacca 540 aacatagtca aacaattgca aggccacgtg gcccctcatg taagggccat ctcgtgtcta 600 aaagggttcg agttgggctc caagggtgtg caattgctat cctcctatgt tactgatgag 660 ttaggaatcc aatgtggcgc actatctggt gcaaacttgg caccggaagt ggccaaggag 720 cattggtccg aaaccaccgt ggcttaccaa ctaccaaagg attatcaagg tgatggcaag 780 gatgtagatc ataagatttt gaaattgctg ttccacagac cttacttcca cgtcaatgtc 840 atcgatgatg ttgctggtat atccattgcc ggtgccttga agaacgtcgt ggcacttgca 900 tgtggtttcg tagaaggtat gggatggggt aacaatgcct ccgcagccat tcaaaggctg 960 ggtttaggtg aaattatcaa gttcggtaga atgtttttcc cagaatccaa agtcgagacc 1020 tactatcaag aatccgctgg tgttgcagat ctgatcacca cctgctcagg cggtagaaac 1080 gtcaaggttg ccacatacat ggccaagacc ggtaagtcag ccttggaagc agaaaaggaa 1140 ttgcttaacg gtcaatccgc ccaagggata atcacatgca gagaagttca cgagtggcta 1200 caaacatgtg agttgaccca agaattccca ttattcgagg cagtctacca gatagtctac 1260 aacaacgtcc gcatggaaga cctaccggag atgattgaag agctagacat cgatgacgaa 1320 tag 1323 <210> 52 <211> 440 <212> PRT <213> Saccharomyces cerevisiae GPD2 <400> 52 Met Leu Ala Val Arg Arg Leu Thr Arg Tyr Thr Phe Leu Lys Arg Thr 1 5 10 15 His Pro Val Leu Tyr Thr Arg Arg Ala Tyr Lys Ile Leu Pro Ser Arg 20 25 30 Ser Thr Phe Leu Arg Arg Ser Leu Leu Gln Thr Gln Leu His Ser Lys 35 40 45 Met Thr Ala His Thr Asn Ile Lys Gln His Lys His Cys His Glu Asp 50 55 60 His Pro Ile Arg Arg Ser Asp Ser Ala Val Ser Ile Val His Leu Lys 65 70 75 80 Arg Ala Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr 85 90 95 Thr Ile Ala Lys Val Ile Ala Glu Asn Thr Glu Leu His Ser His Ile 100 105 110 Phe Glu Pro Glu Val Arg Met Trp Val Phe Asp Glu Lys Ile Gly Asp 115 120 125 Glu Asn Leu Thr Asp Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr 130 135 140 Leu Pro Asn Ile Asp Leu Pro His Asn Leu Val Ala Asp Pro Asp Leu 145 150 155 160 Leu His Ser Ile Lys Gly Ala Asp Ile Leu Val Phe Asn Ile Pro His 165 170 175 Gln Phe Leu Pro Asn Ile Val Lys Gln Leu Gln Gly His Val Ala Pro 180 185 190 His Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Leu Gly Ser Lys 195 200 205 Gly Val Gln Leu Leu Ser Ser Tyr Val Thr Asp Glu Leu Gly Ile Gln 210 215 220 Cys Gly Ala Leu Ser Gly Ala Asn Leu Ala Pro Glu Val Ala Lys Glu 225 230 235 240 His Trp Ser Glu Thr Thr Val Ala Tyr Gln Leu Pro Lys Asp Tyr Gln 245 250 255 Gly Asp Gly Lys Asp Val Asp His Lys Ile Leu Lys Leu Leu Phe His 260 265 270 Arg Pro Tyr Phe His Val Asn Val Ile Asp Asp Val Ala Gly Ile Ser 275 280 285 Ile Ala Gly Ala Leu Lys Asn Val Val Ala Leu Ala Cys Gly Phe Val 290 295 300 Glu Gly Met Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Leu 305 310 315 320 Gly Leu Gly Glu Ile Ile Lys Phe Gly Arg Met Phe Phe Pro Glu Ser 325 330 335 Lys Val Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile 340 345 350 Thr Thr Cys Ser Gly Gly Arg Asn Val Lys Val Ala Thr Tyr Met Ala 355 360 365 Lys Thr Gly Lys Ser Ala Leu Glu Ala Glu Lys Glu Leu Leu Asn Gly 370 375 380 Gln Ser Ala Gln Gly Ile Ile Thr Cys Arg Glu Val His Glu Trp Leu 385 390 395 400 Gln Thr Cys Glu Leu Thr Gln Glu Phe Pro Leu Phe Glu Ala Val Tyr 405 410 415 Gln Ile Val Tyr Asn Asn Val Arg Met Glu Asp Leu Pro Glu Met Ile 420 425 430 Glu Glu Leu Asp Ile Asp Asp Glu 435 440 <210> 53 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH1 deletion <400> 53 ttcaagctat accaagcata caatcaacta tctcatatac acagctgaag cttcgtacgc 60 60 <210> 54 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH1 deletion <400> 54 cttatttaat aataaaaatc ataaatcata agaaattcgc gcataggcca ctagtggat 59 <210> 55 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2 deletion <400> 55 tacaatcaac tatcaactat taactatatc gtaatacaca cagctgaagc ttcgtacgc 59 <210> 56 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2 deletion <400> 56 ataatgaaaa ctataaatcg taaagacata agagatccgc gcataggcca ctagtggat 59 <210> 57 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH3 deletion <400> 57 gttaaaacta ggaatagtat agtcataagt taacaccatc cagctgaagc ttcgtacgc 59 <210> 58 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH3 deletion <400> 58 acaaagactt tcataaaaag tttgggtgcg taacacgcta gcataggcca ctagtggat 59 <210> 59 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH4 deletion <400> 59 caagtttaca tttgcaacaa ctaatagtca aataagaaaa cagctgaagc ttcgtacgc 59 <210> 60 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH4 deletion <400> 60 gcacacgcat aattgacgtt tatgagttcg ttcgattttt gcataggcca ctagtggat 59 <210> 61 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH5 deletion <400> 61 agaaaattat ttaactacat atctacaaaa tcaaagcatc cagctgaagc ttcgtacgc 59 <210> 62 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH5 deletion <400> 62 taaaaagtaa aaatatattc atcaaattcg ttacaaaaga gcataggcca ctagtggat 59 <210> 63 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD1 deletion <400> 63 cacccccccc ctccacaaac acaaatattg ataatataaa gcagctgaag cttcgtacgc 60 60 <210> 64 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD1 deletion <400> 64 aagtggggga aagtatgata tgttatcttt ctccaataaa tgcataggcc actagtggat 60 60 <210> 65 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD2 deletion <400> 65 tctctttccc tttccttttc cttcgctccc cttccttatc acagctgaag cttcgtacgc 60 60 <210> 66 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD2 deletion <400> 66 ggcaacagga aagatcagag ggggaggggg ggggagagtg tgcataggcc actagtggat 60 60 <210> 67 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH1 deletion <400> 67 caccatatcc gcaatgac 18 <210> 68 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH1 deletion <400> 68 gtgttgtcct ctgaggac 18 <210> 69 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH2 deletion <400> 69 accgggcatc tccaactt 18 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH2 deletion <400> 70 ccatgtctac agtttagagg 20 <210> 71 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH3 deletion <400> 71 atgagcagca gccattttg 19 <210> 72 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH3 deletion <400> 72 tgatggtgat aatgtctctc a 21 <210> 73 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH4 deletion <400> 73 aagaactagt ttttagttcg cg 22 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH4 deletion <400> 74 agaacttccg ttcttctttt 20 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH5 deletion <400> 75 ctgctatctg cttgtagaag 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH5 deletion <400> 76 gaaacgtttg tataggttgt 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD1 deletion <400> 77 cgccttgctt ctctcccctt 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD1 deletion <400> 78 ccgacagcct ctgaatgagt 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD2 deletion <400> 79 tacggaccta ttgccattgt 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD2 deletion <400> 80 ttaagggcta tagataacag 20 <110> SNU R & DB Foundation <120> Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same <130> PN108410 <160> 80 <170> Kopatentin 2.0 <210> 1 <211> 1713 <212> DNA <213> Bacillus subtilis alsS <400> 1 atgacaaaag caacaaaaga acaaaaatcc cttgtgaaaa acagaggggc ggagcttgtt 60 gttgattgct tagtggagca aggtgtcaca catgtatttg gcattccagg tgcaaaaatt 120 gatgcggtat ttgacgcttt acaagataaa ggacctgaaa ttatcgttgc ccggcacgaa 180 caaaacgcag cattcatggc ccaagcagtc ggccgtttaa ctggaaaacc gggagtcgtg 240 ttagtcacat caggaccggg tgcctctaac ttggcaacag gcctgctgac agcgaacact 300 gaaggagacc ctgtcgttgc gcttgctgga aacgtgatcc gtgcagatcg tttaaaacgg 360 acacatcaat ctttggataa tgcggcgcta ttccagccga ttacaaaata cagtgtagaa 420 gttcaagatg taaaaaatat accggaagct gttacaaatg catttaggat agcgtcagca 480 gggcaggctg gggccgcttt tgtgagcttt ccgcaagatg ttgtgaatga agtcacaaat 540 acgaaaaacg tgcgtgctgt tgcagcgcca aaactcggtc ctgcagcaga tgatgcaatc 600 cggcatgaaa 660 ggcggaagac cggaagcaat taaagcggtt cgcaagcttt tgaaaaaggt tcagcttcca 720 tttgttgaaa catatcaagc tgccggtacc ctttctagag atttagagga tcaatatttt 780 ggccgtatcg gtttgttccg caaccagcct ggcgatttac tgctagagca ggcagatgtt 840 gttctgacga tcggctatga cccgattgaa tatgatccga aattctggaa tatcaatgga 900 gaccggacaa ttatccattt agacgagatt atcgctgaca ttgatcatgc ttaccagcct 960 gatcttgaat tgatcggtga cattccgtcc acgatcaatc atatcgaaca cgatgctgtg 1020 aaagtggaat ttgcagagcg tgagcagaaa atcctttctg atttaaaaca atatatgcat 1080 gaaggtgagc aggtgcctgc agattggaaa tcagacagag cgcaccctct tgaaatcgtt 1140 aaagagttgc gtaatgcagt cgatgatcat gttacagtaa cttgcgatat cggttcgcac 1200 gccatttgga tgtcacgtta tttccgcagc tacgagccgt taacattaat gatcagtaac 1260 ggtatgcaaa cactcggcgt tgcgcttcct tgggcaatcg gcgcttcatt ggtgaaaccg 1320 ggagaaaaag tggtttctgt ctctggtgac ggcggtttct tattctcagc aatggaatta 1380 gagacagcag ttcgactaaa agcaccaatt gtacacattg tatggaacga cagcacatat 1440 gacatggttg cattccagca attgaaaaaa tataaccgta catctgcggt cgatttcgga 1500 aatatcgata tcgtgaaata tgcggaaagc ttcggagcaa ctggcttgcg cgtagaatca 1560 ccagaccagc tggcagatgt tctgcgtcaa ggcatgaacg ctgaaggtcc tgtcatcatc 1620 gatgtcccgg ttgactacag tgataacatt aatttagcaa gtgacaagct tccgaaagaa 1680 ttcggggaac tcatgaaaac gaaagctctc tag 1713 <210> 2 <211> 570 <212> PRT <213> Bacillus subtilis alsS <400> 2 Met Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg Gly 1 5 10 15 Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His Val 20 25 30 Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln 35 40 45 Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala 50 55 60 Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val 65 70 75 80 Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu 85 90 95 Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val 100 105 110 Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala 115 120 125 Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val 130 135 140 Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala 145 150 155 160 Gly Gln Ala Gly Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn 165 170 175 Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu 180 185 190 Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ila Ala Lys Ile Gln 195 200 205 Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro 210 215 220 Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu Pro 225 230 235 240 Phe Val Glu Thr Tyr Gln Ala Gly Thr Leu Ser Arg Asp Leu Glu 245 250 255 Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly Asp 260 265 270 Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp Pro 275 280 285 Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr Ile 290 295 300 Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln Pro 305 310 315 320 Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile Glu 325 330 335 His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile Leu 340 345 350 Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala Asp 355 360 365 Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu Arg 370 375 380 Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser His 385 390 395 400 Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr Leu 405 410 415 Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp Ala 420 425 430 Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Ser Ser 435 440 445 Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala Val 450 455 460 Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr Tyr 465 470 475 480 Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser Ala 485 490 495 Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe Gly 500 505 510 Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val Leu 515 520 525 Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro Val 530 535 540 Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys Glu 545 550 555 560 Phe Gly Glu Leu Met Lys Thr Lys Ala Leu 565 570 <210> 3 <211> 768 <212> DNA <213> Bacillus subtilis alsD <400> 3 atgaaacgag aaagcaacat tcaagtgctc agccgtggtc aaaaagatca gcctgtgagc 60 cagatttatc aagtatcaac aatgacttct ctattagacg gagtatatga cggagatttt 120 gaactgtcag agattccgaa atatggagac ttcggtatcg gaacctttaa caagcttgac 180 ggagagctga ttgggtttga cggcgaattt taccgtcttc gctcagacgg aaccgcgaca 240 ccggtccaaa atggagaccg ttcaccgttc tgttcattta cgttctttac accggacatg 300 acgcacaaaa ttgatgcgaa aatgacacgc gaagactttg aaaaagagat caacagcatg 360 ctgccaagca gaaacttatt ttatgcaatt cgcattgacg gattgtttaa aaaggtgcag 420 acaagaacag tagaacttca agaaaaacct tacgtgccaa tggttgaagc ggtcaaaaca 480 cagccgattt tcaacttcga caacgtgaga ggaacgattg taggtttctt gacaccagct 540 tatgcaaacg gaatcgccgt ttctggctat cacctgcact tcattgacga aggacgcaat 600 tcaggcggac acgtttttga ctatgtgctt gaggattgca cggttacgat ttctcaaaaa 660 atgaacatga atctcagact tccgaacaca gcggatttct ttaatgcgaa tctggataac 720 cctgattttg cgaaagatat cgaaacaact gaaggaagcc ctgaataa 768 <210> 4 <211> 255 <212> PRT <213> Bacillus subtilis alsD <400> 4 Met Lys Arg Glu Ser Asn Ile Gln Val Leu Ser Arg Gly Gln Lys Asp 1 5 10 15 Gln Pro Val Ser Gln Ile Tyr Gln Val Ser Thr Met Thr Ser Leu Leu 20 25 30 Asp Gly Val Tyr Asp Gly Asp Phe Glu Leu Ser Glu Ile Pro Lys Tyr 35 40 45 Gly Asp Phe Gly Ily Gly Thr Phe Asn Lys Leu Asp Gly Glu Leu Ile 50 55 60 Gly Phe Asp Gly Glu Phe Tyr Arg Leu Arg Ser Asp Gly Thr Ala Thr 65 70 75 80 Pro Val Gln Asn Gly Asp Arg Ser Pro Phe Cys Ser Phe Thr Phe Phe 85 90 95 Thr Pro Asp Met Thr His Lys Ile Asp Ala Lys Met Thr Arg Glu Asp 100 105 110 Phe Glu Lys Glu Ile Asn Ser Met Leu Pro Ser Arg Asn Leu Phe Tyr 115 120 125 Ala Ile Arg Ile Asp Gly Leu Phe Lys Lys Val Gln Thr Arg Thr Val 130 135 140 Glu Leu Gln Glu Lys Pro Tyr Val Pro Met Val Glu Ala Val Lys Thr 145 150 155 160 Gln Pro Ile Phe Asn Phe Asp Asn Val Arg Gly Thr Ile Val Gly Phe 165 170 175 Leu Thr Pro Ala Tyr Ala Asn Gly Ile Ala Val Ser Gly Tyr His Leu 180 185 190 His Phe Ile Asp Glu Gly Arg Asn Ser Gly Gly His Val Phe Asp Tyr 195 200 205 Val Leu Glu Asp Cys Thr Val Thr Ile Ser Gln Lys Met Asn Met Asn 210 215 220 Leu Arg Leu Pro Asn Thr Ala Asp Phe Phe Asn Ala Asn Leu Asp Asn 225 230 235 240 Pro Asp Phe Ala Lys Asp Ile Glu Thr Thr Glu Gly Ser Pro Glu 245 250 255 <210> 5 <211> 1149 <212> DNA <213> Saccharomyces cerevisiae BDH1 <400> 5 atgagagctt tggcatattt caagaagggt gatattcact tcactaatga tatccctagg 60 ccagaaatcc aaaccgacga tgaggttatt atcgacgtct cttggtgtgg gatttgtggc 120 tcggatcttc acgagtactt ggatggtcca atcttcatgc ctaaagatgg agagtgccat 180 aaattatcca acgctgcttt acctctggca atgggccatg agatgtcagg aattgtttcc 240 aaggttggtc ctaaagtgac aaaggtgaag gttggcgacc acgtggtcgt tgatgctgcc 300 agcagttgtg cggacctgca ttgctggcca cactccaaat tttacaattc caaaccatgt 360 gatgcttgtc agaggggcag tgaaaatcta tgtacccacg ccggttttgt aggactaggt 420 gtgatcagtg gtggctttgc tgaacaagtc gtagtctctc aacatcacat tatcccggtt 480 ccaaaggaaa ttcctctaga tgtggctgct ttagttgagc ctctttctgt cacctggcat 540 gctgttaaga tttctggttt caaaaaaggc agttcagcct tggttcttgg tgcaggtccc 600 attgggttgt gtaccatttt ggtacttaag ggaatggggg ctagtaaaat tgtagtgtct 660 gaaattgcag agagaagaat agaaatggcc aagaaactgg gcgttgaggt gttcaatccc 720 tccaagcacg gtcataaatc tatagagata ctacgtggtt tgaccaagag ccatgatggg 780 tttgattaca gttatgattg ttctggtatt caagttactt tcgaaacctc tttgaaggca 840 ttaacattca aggggacagc caccaacatt gcagtttggg gtccaaaacc tgtcccattc 900 caaccaatgg atgtgactct ccaagagaaa gttatgactg gttcgatcgg ctatgttgtc 960 gaagacttcg aagaagttgt tcgtgccatc cacaacggag acatcgccat ggaagattgt 1020 aagcaactaa tcactggtaa gcaaaggatt gaggacggtt gggaaaaggg attccaagag 1080 ttgatggatc acaaggaatc caacgttaag attctattga cgcctaacaa tcacggtgaa 1140 atgaagtaa 1149 <210> 6 <211> 382 <212> PRT <213> Saccharomyces cerevisiae BDH1 <400> 6 Met Arg Ala Leu Ala Tyr Phe Lys Lys Gly Asp Ile His Phe Thr Asn 1 5 10 15 Asp Ile Pro Arg Pro Glu Ile Gln Thr Asp Asp Glu Val Ile Ile Asp 20 25 30 Val Ser Trp Cys Gly Ile Cys Gly Ser Asp Leu His Glu Tyr Leu Asp 35 40 45 Gly Pro Ile Phe Met Pro Lys Asp Gly Glu Cys His Lys Leu Ser Asn 50 55 60 Ala Ala Leu Pro Leu Ala Met Gly His Glu Met Ser Gly Ile Val Ser 65 70 75 80 Lys Val Gly Pro Lys Val Thr Lys Val Lys Val Gly Asp His Val Val 85 90 95 Val Asp Ala Ser Ser Cys Ala Asp Leu His Cys Trp Pro His Ser 100 105 110 Lys Phe Tyr Asn Ser Lys Pro Cys Asp Ala Cys Gln Arg Gly Ser Glu 115 120 125 Asn Leu Cys Thr His Ala Gly Phe Val Gly Leu Gly Val Ile Ser Gly 130 135 140 Gly Phe Ala Glu Gln Val Val Val Ser Ser Gln His His Ile Ile Pro Val 145 150 155 160 Pro Lys Glu Ile Pro Leu Asp Val Ala Ala Leu Val Glu Pro Leu Ser 165 170 175 Val Thr Trp His Ala Val Lys Ile Ser Gly Phe Lys Lys Gly Ser Ser 180 185 190 Ala Leu Val Leu Gly Ala Gly Pro Ile Gly Leu Cys Thr Ile Leu Val 195 200 205 Leu Lys Gly Met Gly Ala Ser Lys Ile Val Val Ser Glu Ile Ala Glu 210 215 220 Arg Arg Ile Glu Met Ala Lys Lys Leu Gly Val Glu Val Phe Asn Pro 225 230 235 240 Ser Lys His Gly His Lys Ser Ile Glu Ile Leu Arg Gly Leu Thr Lys 245 250 255 Ser His Asp Gly Phe Asp Tyr Ser Tyr Asp Cys Ser Gly Ile Gln Val 260 265 270 Thr Phe Glu Thr Ser Leu Lys Ala Leu Thr Phe Lys Gly Thr Ala Thr 275 280 285 Asn Ile Ala Val Trp Gly Pro Lys Pro Val Pro Phe Gln Pro Met Asp 290 295 300 Val Thr Leu Gln Glu Lys Val Met Thr Gly Ser Ile Gly Tyr Val Val 305 310 315 320 Glu Asp Phe Glu Glu Val Val Arg Ala Ile His Asn Gly Asp Ile Ala 325 330 335 Met Glu Asp Cys Lys Gln Leu Ile Thr Gly Lys Gln Arg Ile Glu Asp 340 345 350 Gly Trp Glu Lys Gly Phe Gln Glu Leu Met Asp His Lys Glu Ser Asn 355 360 365 Val Lys Ile Leu Leu Thr Pro Asn Asn His Gly Glu Met Lys 370 375 380 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsS <400> 7 ctgaggatcc atgacaaaag caacaaaaga ac 32 <210> 8 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsS <400> 8 ctgactcgag ctagagagct ttcgttttca 30 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsD <400> 9 ctgaggatcc atgaaacgag aaagcaacat 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsD <400> 10 ctgactcgag ttattcaggg cttccttcag 30 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F primer for BDH1 <400> 11 actgggatcc atgagagctt tggcatattt ca 32 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> ≪ 223 > R primer for BDH1 <400> 12 actgggatcc atgagagctt tggcatattt ca 32 <210> 13 <211> 644 <212> DNA <213> Artificial Sequence <220> <223> TDH3 promoter <400> 13 tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60 aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120 tagggggcgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agtttattcc 180 tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240 tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300 cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360 atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420 cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaa 480 aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540 taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600 gttagtcttt tttttagttt taaaacacca gaacttagtt tcga 644 <210> 14 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> TEF1 promoter <400> 14 atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca 60 tcgccgtacc acttcaaaac acccaagcac agcatactaa atttcccctc tttcttcctc 120 tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt 180 tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaaat 240 tttttttttg atttttttct ctttcgatga cctcccattg atatttaagt taataaacgg 300 tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt tttttacttc 360 ttgctcatta gaaagaaagc atagcaatct aatctaagtt t 401 <210> 15 <211> 430 <212> DNA <213> Artificial Sequence <220> <223> TPI1 promoter <400> 15 tatatctagg aacccatcag gttggtggaa gattacccgt tctaagactt ttcagcttcc 60 tctattgatg ttacacctgg acaccccttt tctggcatcc agtttttaat cttcagtggc 120 atgtgagatt ctccgaaatt aattaaagca atcacacaat tctctcggat accacctcgg 180 ttgaaactga caggtggttt gttacgcatg ctaatgcaaa ggagcctata tacctttggc 240 tcggctgctg taacagggaa tataaagggc agcataattt aggagtttag tgaacttgca 300 acatttacta ttttcccttc ttacgtaaat atttttcttt ttaattctaa atcaatcttt 360 ttcaattttt tgtttgtatt cttttcttgc ttaaatctat aactacaaaa aacacataca 420 taaactaaaa 430 <210> 16 <211> 393 <212> DNA <213> Artificial Sequence <220> <223> PYK1 terminator <400> 16 aaaaagaatc atgattgaat gaagatatta tttttttgaa ttatattttt taaattttat 60 ataaagacat ggtttttctt ttcaactcaa ataaagattt ataagttact taaataacat 120 acattttata aggtattcta taaaaagagt attatgttat tgttaacctt tttgtctcca 180 attgtcgtca taacgatgag gtgttgcatt tttggaaacg agattgacat agagtcaaaa 240 tttgctaaat ttgatccctc ccatcgcaag ataatcttcc ctcaaggtta tcatgattat 300 caggatggcg aaaggatacg ctaaaaattc aataaaaaat tcaatataat tttcgtttcc 360 caagaactaa cttggaaggt tatacatggg tac 393 <210> 17 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> GPM1 terminator <400> 17 gtctgaagaa tgaatgattt gatgatttct ttttccctcc atttttctta ctgaatatat 60 caatgatata gacttgtata gtttattatt tcaaattaag tagctatata tagtcaagat 120 aacgtttgtt tgacacgatt acattattcg tcgacatctt ttttcagcct gtcgtggtag 180 caatttgagg agtattatta attgaatagg ttcattttgc gctcgcataa acagttttcg 240 tcagggacag tatgttggaa tgagtggtaa ttaatggtga catgacatgt tatagcaata 300 accttgatgt ttacatcgta gtttaatgta caccccgcga attcgttcaa gtaggagtgc 360 accaattgca aagggaaaag ctgaatgggc agttcgaata g 401 <210> 18 <211> 393 <212> DNA <213> Artificial Sequence <220> <223> TPI1 terminator <400> 18 gattaatata attatataaa aatattatct tcttttcttt atatctagtg ttatgtaaaa 60 taaattgatg actacggaaa gcttttttat attgtttctt tttcattctg agccacttaa 120 atttcgtgaa tgttcttgta agggacggta gatttacaag tgatacaaca aaaagcaagg 180 cgctttttct aataaaaaga agaaaagcat ttaacaattg aacacctcta tatcaacgaa 240 gaatattact ttgtctctaa atccttgtaa aatgtgtacg atctctatat gggttactca 300 taagtgtacc gaagactgca ttgaaagttt atgttttttc actggaggcg tcattttcgc 360 gttgagaaga tgttcttatc caaatttcaa ctg 393 <210> 19 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> F primer for PYK1 terminator <400> 19 gtcactcgag aaaaagaatc atgattgaat gaag 34 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for PYK1 terminator <400> 20 gtcaggtacc gtacccatgt ataaccttcc 30 <210> 21 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPM1 terminator <400> 21 gtcactcgag gtctgaagaa tgaatgattt g 31 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPM1 terminator <400> 22 gtcaggtacc tattcgaact gcccattca 29 <210> 23 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for TPI1 promoter <400> 23 gtcagagctc tatatctagg aacccatcag g 31 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> R primer for TPI1 promoter <400> 24 gtcaactagt ttttagttta tgtatgtgtt ttttg 35 <210> 25 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> F primer for TPI1 terminator <400> 25 gtcactcgag ctagaaacta agattaatat aat 33 <210> 26 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for TPI1 terminator <400> 26 gtcaggtacc cagttgaaat ttggataaga ac 32 <210> 27 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Universal F primer <400> 27 gactacgcgt ggaacaaaag ctggagctc 29 <210> 28 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Universal R primer <400> 28 gactacgcgt gcggccgcta atggcgcgcc atagggcgaa ttgggtacc 49 <210> 29 <211> 1341 <212> DNA <213> Lactococcus lactis noxE <400> 29 atgaaaatcg tagttatcgg tacgaaccac gcaggcattg ctacagcaaa tacattaatt 60 gatcgatatc caggccatga gattgttatg attgaccgta acagtaatat gagttacttg 120 gggtgtggga cagctatttg ggtcggaaga caaattgaaa aaccagatga gctgttttat 180 gccaaagcag aagattttga aaaaaaggga gtaaagatat taacagaaac agaagtttca 240 gaaattgact ttactaataa aatgatttat gccaagtcaa aaactggaga aaagattaca 300 gaaagttatg ataaactcgt tctggcaaca ggttcacgtc caattattcc taacttgcca 360 ggaaaagatc ttaaaggcat tcatttttta aaactttttc aagaagggca agccattgac 420 gaagagtttg ctaagaatga tgtgaaacgg attgctgtga ttggtgctgg ttatattggg 480 acagaaattg ctgaagctgc caaacgtcgt ggaaaagaag tcctactttt tgatgcagaa 540 agtacttcac ttgcttcata ttatgatgaa gagtttgcta aagggatgga tgaaaatctt 600 gcccaacatg gaattgaact ccattttggg gaattagctc aagagtttaa ggcaaatgaa 660 aaaggtcatg tatcacagat tgtaactaat aaatcaactt atgatgttga cctcgttatt 720 aattgtattg gctttacagc caatagtgca ttggctggtg aacatttaga aacctttaaa 780 aatggagcaa tcaaagtgga taaacatcaa caaagtagtg acccagatgt ttctgctgta 840 ggagatgttg ccacaatcta ttctaatgct ttacaagact tcacctacat tgcccttgcc 900 tcaaacgctg ttcgctcagg gattgttgct ggtcataata ttggaggaaa atcaatagag 960 tctgttggtg tacaaggttc taatggaatc tctatttttg gttacaatat gacttctacg 1020 ggcttgtcgg ttaaagctgc gaaaaaaatc ggcctagaag tttcatttag tgattttgaa 1080 gataagcaaa aagcatggtt ccttcatgaa aataatgata gtgtgaaaat tcgtatcgtt 1140 tatgaaacaa aaaatcgcag aattattggt gctcaacttg ctagcaagag tgaaataatt 1200 gcaggaaata ttaatatgtt tagtttagct attcaagaaa agaaaacgat tgatgaatta 1260 gccttacttg atttattctt cttaccacac ttcaatagtc catataatta catgactgtt 1320 gcagctttaa atgcaaaata a 1341 <210> 30 <211> 446 <212> PRT <213> Lactococcus lactis noxE <400> 30 Met Lys Ile Val Val Ile Gly Thr Asn His Ala Gly Ile Ala Thr Ala 1 5 10 15 Asn Thr Leu Ile Asp Arg Tyr Pro Gly His Glu Ile Val Met Ile Asp 20 25 30 Arg Asn Ser Asn Met Ser Tyr Leu Gly Cys Gly Thr Ala Ile Trp Val 35 40 45 Gly Arg Gln Ile Glu Lys Pro Asp Glu Leu Phe Tyr Ala Lys Ala Glu 50 55 60 Asp Phe Glu Lys Lys Gly Val Lys Ile Leu Thr Glu Thr Glu Val Ser 65 70 75 80 Glu Ile Asp Phe Thr Asn Lys Met Ile Tyr Ala Lys Ser Lys Thr Gly 85 90 95 Glu Lys Ile Thr Glu Ser Tyr Asp Lys Leu Val Leu Ala Thr Gly Ser 100 105 110 Arg Pro Ile Ile Pro Asn Leu Pro Gly Lys Asp Leu Lys Gly Ile His 115 120 125 Phe Leu Lys Leu Phe Gln Glu Gly Gln Ala Ile Asp Glu Glu Phe Ala 130 135 140 Lys Asn Asp Val Lys Arg Ile Ala Val Ile Gly Ala Gly Tyr Ile Gly 145 150 155 160 Thr Glu Ile Ala Glu Ala Ala Lys Arg Arg Gly Lys Glu Val Leu Leu 165 170 175 Phe Asp Ala Glu Ser Thr Ser Leu Ala Ser Tyr Tyr Asp Glu Glu Phe 180 185 190 Ala Lys Gly Met Asp Glu Asn Leu Ala Gln His Gly Ile Glu Leu His 195 200 205 Phe Gly Glu Leu Ala Gln Glu Phe Lys Ala Asn Glu Lys Gly His Val 210 215 220 Ser Gln Ile Val Thr Asn Lys Ser Thr Tyr Asp Val Asp Leu Val Ile 225 230 235 240 Asn Cys Ile Gly Phe Thr Ala Asn Ser Ala Leu Ala Gly Glu His Leu 245 250 255 Glu Thr Phe Lys Asn Gly Ala Ile Lys Val Asp Lys His Gln Gln Ser 260 265 270 Ser Asp Pro Asp Val Ser Ala Val Gly Asp Val Ala Thr Ile Tyr Ser 275 280 285 Asn Ala Leu Gln Asp Phe Thr Tyr Ile Ala Leu Ala Ser Asn Ala Val 290 295 300 Arg Ser Gly Ile Val Ala Gly His Asn Ile Gly Gly Lys Ser Ile Glu 305 310 315 320 Ser Val Gly Val Gly Gly Ser Asn Gly Ile Ser Ile Phe Gly Tyr Asn 325 330 335 Met Thr Ser Thr Gly Leu Ser Val Lys Ala Ala Lys Lys Ile Gly Leu 340 345 350 Glu Val Ser Phe Ser Asp Phe Glu Asp Lys Gln Lys Ala Trp Phe Leu 355 360 365 His Glu Asn Asn Asp Ser Val Lys Ile Arg Ile Val Tyr Glu Thr Lys 370 375 380 Asn Arg Arg Ile Ile Gly Ala Gln Leu Ala Ser Lys Ser Glu Ile Ile 385 390 395 400 Ala Gly Asn Ile Asn Met Phe Ser Leu Ala Ile Gln Glu Lys Lys Thr 405 410 415 Ile Asp Glu Leu Ala Leu Leu Asp Leu Phe Leu Pro His Phe Asn 420 425 430 Ser Pro Tyr Asn Tyr Met Thr Val Ala Ala Leu Asn Ala Lys 435 440 445 <210> 31 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for noxE <400> 31 gactaagctt atgaaaatcg tagttatcgg t 31 <210> 32 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for noxE <400> 32 gactctcgag ttattttgca tttaaagctg ca 32 <210> 33 <211> 821 <212> DNA <213> Artificial Sequence <220> <223> FBA1 pormoter <400> 33 atccaactgg caccgctggc ttgaacaaca ataccagcct tccaacttct gtaaataacg 60 gcggtacgcc agtgccacca gtaccgttac ctttcggtat acctcctttc cccatgtttc 120 caatgccctt catgcctcca acggctacta tcacaaatcc tcatcaagct gacgcaagcc 180 ctaagaaatg aataacaata ctgacagtac taaataattg cctacttggc ttcacatacg 240 ttgcatacgt cgatatagat aataatgata atgacagcag gattatcgta atacgtaata 300 gtggaaaatc tcaaaaatgt gtgggtcatt acgtaaataa tgataggaat gggattcttc 360 tatttttcct ttttccattc tagcagccgt cgggaaaacg tggcatcctc tctttcgggc 420 tcaattggag tcacgctgcc gtgagcatcc tctctttcca tatctaacaa ctgagcacgt 480 aaccaatgga aaagcatgag cttagcgttg ctccaaaaaa gtattggatg gttaatacca 540 tttgtctgtt ctcttctgac tttgactcct caaaaaaaaaaaatctacaa tcaacagatc 600 gcttcaatta cgccctcaca aaaacttttt tccttcttct tcgcccacgt taaattttat 660 ccctcatgtt gtctaacgga tttctgcact tgatttatta taaaaagaca aagacataat 720 acttctctat caatttcagt tattgttctt ccttgcgtta ttcttctgtt cttctttttc 780 ttttgtcata tataaccata accaagtaat acatattcaa a 821 <210> 34 <211> 202 <212> DNA <213> Artificial Sequence <220> <223> FBA1 terminator <400> 34 gttaattcaa attaattgat atagtttttt aatgagtatt gaatctgttt agaaataatg 60 gaatattatt tttatttatt tatttatatt attggtcggc tcttttcttc tgaaggtcaa 120 tgacaaaatg atatgaagga aataatgatt tctaaaattt tacaacgtaa gatattttta 180 caaaagccta gctcatcttt tg 202 <210> 35 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 promoter <400> 35 gtcagagctc atccaactgg caccgctg 28 <210> 36 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 promoter <400> 36 gtcagagctc atccaactgg caccgctg 28 <210> 37 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 terminator <400> 37 gtcactcgag taagttaatt caaattaatt gatatag 37 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 terminator <400> 38 gtcaggtacc caaaagatga gctaggcttt 30 <210> 39 <211> 1047 <212> DNA <213> Saccharomyces cerevisiae ADH1 <400> 39 atgtctatcc cagaaactca aaaaggtgtt atcttctacg aatcccacgg taagttggaa 60 tacaaagata ttccagttcc aaagccaaag gccaacgaat tgttgatcaa cgttaaatac 120 tctggtgtct gtcacactga cttgcacgct tggcacggtg actggccatt gccagttaag 180 ctaccattag tcggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca acaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ccgacttggc ccaagtcgcc cccatcttgt gtgctggtat caccgtctac 480 aaggctttga agtctgctaa cttgatggcc ggtcactggg ttgctatctc cggtgctgct 540 ggtggtctag gttctttggc tgttcaatac gccaaggcta tgggttacag agtcttgggt 600 attgacggtg gtgaaggtaa ggaagaatta ttcagatcca tcggtggtga agtcttcatt 660 gacttcacta aggaaaagga cattgtcggt gctgttctaa aggccactga cggtggtgct 720 cacggtgtca tcaacgtttc cgtttccgaa gccgctattg aagcttctac cagatacgtt 780 agagctaacg gtaccaccgt tttggtcggt atgccagctg gtgccaagtg ttgttctgat 840 gtcttcaacc aagtcgtcaa gtccatctct attgttggtt cttacgtcgg taacagagct 900 gacaccagag aagctttgga cttcttcgcc agaggtttgg tcaagtctcc aatcaaggtt 960 gtcggcttgt ctaccttgcc agaaatttac gaaaagatgg aaaagggtca aatcgttggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 40 <211> 348 <212> PRT <213> Saccharomyces cerevisiae ADH1 <400> 40 Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 5 10 15 Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175 Ser Gly Ala Gly Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu 195 200 205 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 235 240 His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 260 265 270 Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 41 <211> 1047 <212> DNA <213> Saccharomyces cerevisiae ADH2 <400> 41 atgtctattc cagaaactca aaaagccatt atcttctacg aatccaacgg caagttggag 60 cataaggata tcccagttcc aaagccaaag cccaacgaat tgttaatcaa cgtcaagtac 120 tctggtgtct gccacaccga tttgcacgct tggcatggtg actggccatt gccaactaag 180 ttaccattag ttggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca agaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ctgacttggc tgaagtcgcg ccaatcttgt gtgctggtat caccgtatac 480 aaggctttga agtctgccaa cttgagagca ggccactggg cggccatttc tggtgctgct 540 gt; attgatggtg gtccaggaaa ggaagaattg tttacctcgc tcggtggtga agtattcatc 660 gacttcacca aagagaagga cattgttagc gcagtcgtta aggctaccaa cggcggtgcc 720 cacggtatca tcaatgtttc cgtttccgaa gccgctatcg aagcttctac cagatactgt 780 agggcgaacg gtactgttgt cttggttggt ttgccagccg gtgcaaagtg ctcctctgat 840 gtcttcaacc acgttgtcaa gtctatctcc attgtcggct cttacgtggg gaacagagct 900 gataccagag aagccttaga tttctttgcc agaggtctag tcaagtctcc aataaaggta 960 gttggcttat ccagtttacc agaaatttac gaaaagatgg agaagggcca aattgctggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 42 <211> 348 <212> PRT <213> Saccharomyces cerevisiae ADH2 <400> 42 Met Ser Ile Pro Glu Thr Gln Lys Ala Ile Ile Phe Tyr Glu Ser Asn 1 5 10 15 Gly Lys Leu Glu His Lys Asp Ile Pro Val Pro Lys Pro Lys Pro Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Thr Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Glu 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Arg Ala Gly His Trp Ala Ala Ile 165 170 175 Ser Gly Ala Gly Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Pro Gly Lys Glu 195 200 205 Glu Leu Phe Thr Ser Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Ser Ala Val Val Lys Ala Thr Asn Gly Gly Ala 225 230 235 240 His Gly Ile Ile Asn Val Ser Ser Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Cys Arg Ala Asn Gly Thr Val Val Leu Val Gly Leu Pro 260 265 270 Ala Gly Ala Lys Cys Ser Ser Asp Val Phe Asn His Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Ser Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Ala Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 43 <211> 1128 <212> DNA <213> Saccharomyces cerevisiae ADH3 <400> 43 atgttgagaa cgtcaacatt gttcaccagg cgtgtccaac caagcctatt ttctagaaac 60 attcttagat tgcaatccac agctgcaatc cctaagactc aaaaaggtgt catcttttat 120 gagaataagg ggaagctgca ttacaaagat atccctgtcc ccgagcctaa gccaaatgaa 180 attttaatca acgttaaata ttctggtgta tgtcacaccg atttacatgc ttggcacggc 240 gattggccat tacctgttaa actaccatta gtaggtggtc atgaaggtgc tggtgtagtt 300 gtcaaactag gttccaatgt caagggctgg aaagtcggtg atttagcagg tatcaaatgg 360 ctgaacggtt cttgtatgac atgcgaattc tgtgaatcag gtcatgaatc aaattgtcca 420 gatgctgatt tatctggtta cactcatgat ggttctttcc aacaatttgc gaccgctgat 480 gctattcaag ccgccaaaat tcaacagggt accgacttgg ccgaagtagc cccaatatta 540 tgtgctggtg ttactgtata taaagcacta aaagaggcag acttgaaagc tggtgactgg 600 gttgccatct ctggtgctgc aggtggcttg ggttccttgg ccgttcaata tgcaactgcg 660 atgggttaca gagttctagg tattgatgca ggtgaggaaa aggaaaaact tttcaagaaa 720 ttggggggtg aagtattcat cgactttact aaaacaaaga atatggtttc tgacattcaa 780 gaagctacca aaggtggccc tcatggtgtc attaacgttt ccgtttctga agccgctatt 840 tctctatcta cggaatatgt tagaccatgt ggtaccgtcg ttttggttgg tttgcccgct 900 aacgcctacg ttaaatcaga ggtattctct catgtggtga agtccatcaa tatcaagggt 960 tcttatgttg gtaacagagc tgatacgaga gaagccttag acttctttag cagaggtttg 1020 atcaaatcac caatcaaaat tgttggatta tctgaattac caaaggttta tgacttgatg 1080 gaaaagggca agattttggg tagatacgtc gtcgatacta gtaaataa 1128 <210> 44 <211> 375 <212> PRT <213> Saccharomyces cerevisiae ADH3 <400> 44 Met Leu Arg Thr Ser Thr Leu Phe Thr Arg Arg Val Gln Pro Ser Leu 1 5 10 15 Phe Ser Arg Asn Ile Leu Arg Leu Gln Ser Thr Ala Ala Ile Pro Lys 20 25 30 Thr Gln Lys Gly Val Ile Phe Tyr Glu Asn Lys Gly Lys Leu His Tyr 35 40 45 Lys Asp Ile Pro Val Pro Glu Pro Lys Pro Asn Glu Ile Leu Ile Asn 50 55 60 Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu His Ala Trp His Gly 65 70 75 80 Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val Gly Gly His Glu Gly 85 90 95 Ala Gly Val Val Val Lys Leu Gly Ser Asn Val Lys Gly Trp Lys Val 100 105 110 Gly Asp Leu Ala Gly Ile Lys Trp Leu Asn Gly Ser Cys Met Thr Cys 115 120 125 Glu Phe Cys Glu Ser Gly His Glu Ser Asn Cys Pro Asp Ala Asp Leu 130 135 140 Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln Phe Ala Thr Ala Asp 145 150 155 160 Ala Ile Gln Ala Ala Lys Ile Gln Gln Gly Thr Asp Leu Ala Glu Val 165 170 175 Ala Pro Ile Leu Cys Ala Gly Val Thr Val Tyr Lys Ala Leu Lys Glu 180 185 190 Ala Asp Leu Lys Ala Gly Asp Trp Val Ala Ile Ser Gly Ala Ala Gly 195 200 205 Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Thr Ala Met Gly Tyr Arg 210 215 220 Val Leu Gly Ile Asp Ala Gly Glu Glu Lys Glu Lys Leu Phe Lys Lys 225 230 235 240 Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys Thr Lys Asn Met Val 245 250 255 Ser Asp Ile Gln Glu Ala Thr Lys Gly Gly Pro His Gly Val Ile Asn 260 265 270 Val Ser Val Ser Glu Ala Ala Ile Ser Leu Ser Thr Glu Tyr Val Arg 275 280 285 Pro Cys Gly Thr Val Val Leu Val Gly Leu Pro Ala Asn Ala Tyr Val 290 295 300 Lys Ser Glu Val Phe Ser His Val Val Lys Ser Ile Asn Ile Lys Gly 305 310 315 320 Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu Ala Leu Asp Phe Phe 325 330 335 Ser Arg Gly Leu Ile Lys Ser Pro Ile Lys Ile Val Gly Leu Ser Glu 340 345 350 Leu Pro Lys Val Tyr Asp Leu Met Glu Lys Gly Lys Ile Leu Gly Arg 355 360 365 Tyr Val Val Asp Thr Ser Lys 370 375 <210> 45 <211> 1149 <212> DNA <213> Saccharomyces cerevisiae ADH4 <400> 45 atgtcttccg ttactgggtt ttacattcca ccaatctctt tctttggtga aggtgcttta 60 gaagaaaccg ctgattacat caaaaacaag gattacaaaa aggctttgat cgttactgat 120 cctggtattg cagctattgg tctctccggt agagtccaaa agatgttgga agaacgtggc 180 ttaaacgttg ctatctatga caaaactcaa ccaaacccaa atattgccaa tgtcacagct 240 ggtttgaagg ttttgaagga agaaaactct gaaattgtcg tttccattgg tggtggttct 300 gctcacgaca atgctaaggc cattgcttta ttggctacta acggtgggga aattggagat 360 tatgaaggtg tcaaccaatc taagaaggct gctttaccgc tatttgccat caacactact 420 gctggtactg cttccgagat gaccagattc actattatct ctaatgaaga aaagaaaatc 480 aagatggcca tcattgacaa caacgtcact ccagctgttg ctgtcaacga cccatctacc 540 atgtttggtt tgccacctgc tttgactgct gctactggtc tagatgcttt gactcactgt 600 atcgaagctt acgtttccac cgcctctaac ccaatcaccg atgcttgtgc tttgaagggt 660 attgatttga tcaatgaaag cttggtcgcc gcatacaaag acggtaaaga caagaaggcc 720 agaactgata tgtgttacgc agaatacttg gcaggtatgg ctttcaacaa tgcttctcta 780 ggttatgttc atgcccttgc tcatcaactt ggtggtttct accacttgcc tcatggtgtt 840 tgtaacgctg tcttgttgcc tcatgttcaa gaggccaaca tgcaatgtcc aaaggccaag 900 aagagattag gtgaaattgc cttgcattgc ggtgcttctc aagaagatcc agaagaaacc 960 atcaaggctt tgcacgtttt aaacagaacc atgaacattc caagaaactt gaaagactta 1020 ggtgttaaaa ccgaagattt tgacattttg gctgaacacg ccatgcatga tgcctgccat 1080 ttgactaacc cagttcaatt caccaaagaa caagtggttg ccattatcaa gaaagcctat 1140 gaatattaa 1149 <210> 46 <211> 382 <212> PRT <213> Saccharomyces cerevisiae ADH4 <400> 46 Met Ser Ser Val Thr Gly Phe Tyr Ile Pro Pro Ile Ser Phe Phe Gly 1 5 10 15 Glu Gly Ala Leu Glu Glu Thr Ala Asp Tyr Ile Lys Asn Lys Asp Tyr 20 25 30 Lys Lys Ala Leu Ile Val Thr Asp Pro Gly Ile Ala Ala Ile Gly Leu 35 40 45 Ser Gly Arg Val Gln Lys Met Leu Glu Glu Arg Gly Leu Asn Val Ala 50 55 60 Ile Tyr Asp Lys Thr Gln Pro Asn Pro Asn Ile Ala Asn Val Thr Ala 65 70 75 80 Gly Leu Lys Val Leu Lys Glu Glu Asn Ser Glu Ile Val Val Ser Ile 85 90 95 Gly Gly Gly Ser Ala His Asp Asn Ala Lys Ala Ile Ala Leu Ala 100 105 110 Thr Asn Gly Gly Glu Ile Gly Asp Tyr Glu Gly Val Asn Gln Ser Lys 115 120 125 Lys Ala Ala Leu Pro Leu Phe Ala Ile Asn Thr Thr Ala Gly Thr Ala 130 135 140 Ser Glu Met Thr Arg Phe Thr Ile Ile Ser Asn Glu Glu Lys Lys Ile 145 150 155 160 Lys Met Ale Ile Ile Asp Asn Asn Ale Val Ale Val Ale Val Asn 165 170 175 Asp Pro Ser Thr Met Phe Gly Leu Pro Pro Ala Leu Thr Ala Ala Thr 180 185 190 Gly Leu Asp Ala Leu Thr His Cys Ile Glu Ala Tyr Val Ser Thr Ala 195 200 205 Ser Asn Pro Ile Thr Asp Ala Cys Ala Leu Lys Gly Ile Asp Leu Ile 210 215 220 Asn Glu Ser Leu Val Ala Ala Tyr Lys Asp Gly Lys Asp Lys Lys Ala 225 230 235 240 Arg Thr Asp Met Cys Tyr Ala Glu Tyr Leu Ala Gly Met Ala Phe Asn 245 250 255 Asn Ala Ser Leu Gly Tyr Val His Ala Leu Ala His Gln Leu Gly Gly 260 265 270 Phe Tyr His Leu Pro His Gly Val Cys Asn Ala Val Leu Leu Pro His 275 280 285 Val Gln Glu Ala Asn Met Gln Cys Pro Lys Ala Lys Lys Arg Leu Gly 290 295 300 Glu Ile Ala Leu His Cys Gly Ala Ser Gln Glu Asp Pro Glu Glu Thr 305 310 315 320 Ile Lys Ala Leu His Val Leu Asn Arg Thr Met Asn Ile Pro Arg Asn 325 330 335 Leu Lys Asp Leu Gly Val Lys Thr Glu Asp Phe Asp Ile Leu Ala Glu 340 345 350 His Ala Met His Asp Ala Cys His Leu Thr Asn Pro Val Gln Phe Thr 355 360 365 Lys Glu Gln Val Val Ala Ile Ile Lys Lys Ala Tyr Glu Tyr 370 375 380 <210> 47 <211> 1056 <212> DNA <213> Saccharomyces cerevisiae ADH5 <400> 47 atgccttcgc aagtcattcc tgaaaaacaa aaggctattg tcttttatga gacagatgga 60 aaattggaat ataaagacgt cacagttccg gaacctaagc ctaacgaaat tttagtccac 120 gttaaatatt ctggtgtttg tcatagtgac ttgcacgcgt ggcacggtga ttggccattt 180 caattgaaat ttccattaat cggtggtcac gaaggtgctg gtgttgttgt taagttggga 240 tctaacgtta agggctggaa agtcggtgat tttgcaggta taaaatggtt gaatgggact 300 tgcatgtcct gtgaatattg tgaagtaggt aatgaatctc aatgtcctta tttggatggt 360 actggcttca cacatgatgg tacttttcaa gaatacgcaa ctgccgatgc cgttcaagct 420 gcccatattc caccaaacgt caatcttgct gaagttgccc caatcttgtg tgcaggtatc 480 actgtttata aggcgttgaa aagagccaat gtgataccag gccaatgggt cactatatcc 540 ggtgcatgcg gtggcttggg ttctctggca atccaatacg cccttgctat gggttacagg 600 gtcattggta tcgatggtgg taatgccaag cgaaagttat ttgaacaatt aggcggagaa 660 atattcatcg atttcacgga agaaaaagac attgttggtg ctataataaa ggccactaat 720 gt; aggtattgta ggcccaatgg tactgtcgtc ctggttggta tgccagctca tgcttactgc 840 aattccgatg ttttcaatca agttgtaaaa tcaatctcca tcgttggatc ttgtgttgga 900 aatagagctg atacaaggga ggctttagat ttcttcgcca gaggtttgat caaatctccg 960 atccacttag ctggcctatc ggatgttcct gaaatttttg caaagatgga gaagggtgaa 1020 attgttggta gatatgttgt tgagacttct aaatga 1056 <210> 48 <211> 351 <212> PRT <213> Saccharomyces cerevisiae ADH5 <400> 48 Met Pro Ser Gln Val Ile Pro Glu Lys Gln Lys Ala Ile Val Phe Tyr 1 5 10 15 Glu Thr Asp Gly Lys Leu Glu Tyr Lys Asp Val Thr Val Pro Glu Pro 20 25 30 Lys Pro Asn Glu Ile Leu Val His Val Lys Tyr Ser Gly Val Cys His 35 40 45 Ser Asp Leu His Ala Trp His Gly Asp Trp Pro Phe Gln Leu Lys Phe 50 55 60 Pro Leu Ile Gly Gly His Glu Gly Ala Gly Val Val Val Lys Leu Gly 65 70 75 80 Ser Asn Val Lys Gly Trp Lys Val Gly Asp Phe Ala Gly Ile Lys Trp 85 90 95 Leu Asn Gly Thr Cys Met Ser Cys Glu Tyr Cys Glu Val Gly Asn Glu 100 105 110 Ser Gln Cys Pro Tyr Leu Asp Gly Thr Gly Phe Thr His Asp Gly Thr 115 120 125 Phe Gln Glu Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro 130 135 140 Pro Asn Val Asn Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile 145 150 155 160 Thr Val Tyr Lys Ala Leu Lys Arg Ala Asn Val Ile Pro Gly Gln Trp 165 170 175 Val Thr Ile Ser Gly Ala Cys Gly Gly Leu Gly Ser Leu Ala Ile Gln 180 185 190 Tyr Ala Leu Ala Met Gly Tyr Arg Val Ile Gly Ile Asp Gly Gly Asn 195 200 205 Ala Lys Arg Lys Leu Phe Glu Gln Leu Gly Gly Glu Ile Phe Ile Asp 210 215 220 Phe Thr Glu Glu Lys Asp Ile Val Gly Ala Ile Ile Lys Ala Thr Asn 225 230 235 240 Gly Gly Ser His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile 245 250 255 Glu Ala Ser Thr Arg Tyr Cys Arg Pro Asn Gly Thr Val Val Leu Val 260 265 270 Gly Met Pro Ala His Ala Tyr Cys Asn Ser Asp Val Phe Asn Gln Val 275 280 285 Val Lys Ser Ile Ser Ile Val Gly Ser Cys Val Gly Asn Arg Ala Asp 290 295 300 Thr Arg Glu Ala Leu Asp Phe Phe Ala Arg Gly Leu Ile Lys Ser Pro 305 310 315 320 Ile His Leu Ala Gly Leu Ser Asp Val Pro Glu Ile Phe Ala Lys Met 325 330 335 Glu Lys Gly Glu Ile Val Gly Arg Tyr Val Val Glu Thr Ser Lys 340 345 350 <210> 49 <211> 1176 <212> DNA <213> Saccharomyces cerevisiae GPD1 <400> 49 atgtctgctg ctgctgatag attaaactta acttccggcc acttgaatgc tggtagaaag 60 agaagttcct cttctgtttc tttgaaggct gccgaaaagc ctttcaaggt tactgtgatt 120 ggatctggta actggggtac tactattgcc aaggtggttg ccgaaaattg taagggatac 180 ccagaagttt tcgctccaat agtacaaatg tgggtgttcg aagaagagat caatggtgaa 240 aaattgactg aaatcataaa tactagacat caaaacgtga aatacttgcc tggcatcact 300 ctacccgaca atttggttgc taatccagac ttgattgatt cagtcaagga tgtcgacatc 360 atcgttttca acattccaca tcaatttttg ccccgtatct gtagccaatt gaaaggtcat 420 gttgattcac acgtcagagc tatctcctgt ctaaagggtt ttgaagttgg tgctaaaggt 480 gtccaattgc tatcctctta catcactgag gaactaggta ttcaatgtgg tgctctatct 540 ggtgctaaca ttgccaccga agtcgctcaa gaacactggt ctgaaacaac agttgcttac 600 cacattccaa aggatttcag aggcgagggc aaggacgtcg accataaggt tctaaaggcc 660 ttgttccaca gaccttactt ccacgttagt gtcatcgaag atgttgctgg tatctccatc 720 tgtggtgctt tgaagaacgt tgttgcctta ggttgtggtt tcgtcgaagg tctaggctgg 780 ggtaacaacg cttctgctgc catccaaaga gtcggtttgg gtgagatcat cagattcggt 840 caaatgtttt tcccagaatc tagagaagaa acatactacc aagagtctgc tggtgttgct 900 gatttgatca ccacctgcgc tggtggtaga aacgtcaagg ttgctaggct aatggctact 960 tctggtaagg acgcctggga atgtgaaaag gagttgttga atggccaatc cgctcaaggt 1020 ttaattacct gcaaagaagt tcacgaatgg ttggaaacat gtggctctgt cgaagacttc 1080 ccattatttg aagccgtata ccaaatcgtt tacaacaact acccaatgaa gaacctgccg 1140 gacatgattg aagaattaga tctacatgaa gattag 1176 <210> 50 <211> 391 <212> PRT <213> Saccharomyces cerevisiae GPD1 <400> 50 Met Ser Ala Ala Ala Asp Arg Leu Asn Leu Thr Ser Gly His Leu Asn 1 5 10 15 Ala Gly Arg Lys Arg Ser Ser Ser Val Ser Leu Lys Ala Ala Glu 20 25 30 Lys Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr Thr 35 40 45 Ile Ala Lys Val Val Ala Glu Asn Cys Lys Gly Tyr Pro Glu Val Phe 50 55 60 Ala Pro Ile Val Gln Met Trp Val Phe Glu Glu Glu Ile Asn Gly Glu 65 70 75 80 Lys Leu Thr Glu Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr Leu 85 90 95 Pro Gly Ile Thr Leu Pro Asp Asn Leu Val Ala Asn Pro Asp Leu Ile 100 105 110 Asp Ser Val Lys Asp Val Asp Ile Ile Val Phe Asn Ile Pro His Gln 115 120 125 Phe Leu Pro Arg Ile Cys Ser Gln Leu Lys Gly His Val Asp Ser His 130 135 140 Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Val Gly Ala Lys Gly 145 150 155 160 Val Gln Leu Leu Ser Ser Tyr Ile Thr Glu Glu Leu Gly Ile Gln Cys 165 170 175 Gly Ala Leu Ser Gly Ala Asn Ile Ala Thr Glu Val Ala Gln Glu His 180 185 190 Trp Ser Glu Thr Thr Val Ala Tyr His Ile Pro Lys Asp Phe Arg Gly 195 200 205 Glu Gly Lys Asp Val Asp His Lys Val Leu Lys Ala Leu Phe His Arg 210 215 220 Pro Tyr Phe His Val Ser Val Ile Glu Asp Val Ala Gly Ile Ser Ile 225 230 235 240 Cys Gly Ala Leu Lys Asn Val Val Ala Leu Gly Cys Gly Phe Val Glu 245 250 255 Gly Leu Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Val Gly 260 265 270 Leu Gly Glu Ile Ile Arg Phe Gly Gln Met Phe Phe Pro Glu Ser Arg 275 280 285 Glu Glu Thr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile Thr 290 295 300 Thr Cys Ala Gly Gly Arg Asn Val Lys Val Ala Arg Leu Met Ala Thr 305 310 315 320 Ser Gly Lys Asp Ala Trp Glu Cys Glu Lys Glu Leu Leu Asn Gly Gln 325 330 335 Ser Ala Gln Gly Leu Ile Thr Cys Lys Glu Val His Glu Trp Leu Glu 340 345 350 Thr Cys Gly Ser Val Glu Asp Phe Pro Leu Phe Glu Ala Val Tyr Gln 355 360 365 Ile Val Tyr Asn Asn Tyr Pro Met Lys Asn Leu Pro Asp Met Ile Glu 370 375 380 Glu Leu Asp Leu His Glu Asp 385 390 <210> 51 <211> 1323 <212> DNA <213> Saccharomyces cerevisiae GPD2 <400> 51 atgcttgctg tcagaagatt aacaagatac acattcctta agcgaacgca tccggtgtta 60 tatactcgtc gtgcatataa aattttgcct tcaagatcta ctttcctaag aagatcatta 120 ttacaaacac aactgcactc aaagatgact gctcatacta atatcaaaca gcacaaacac 180 tgtcatgagg accatcctat cagaagatcg gactctgccg tgtcaattgt acatttgaaa 240 cgtgcgccct tcaaggttac agtgattggt tctggtaact gggggaccac catcgccaaa 300 gtcattgcgg aaaacacaga attgcattcc catatcttcg agccagaggt gagaatgtgg 360 gtttttgatg aaaagatcgg cgacgaaaat ctgacggata tcataaatac aagacaccag 420 aacgttaaat atctacccaa tattgacctg ccccataatc tagtggccga tcctgatctt 480 ttacactcca tcaagggtgc tgacatcctt gttttcaaca tccctcatca atttttacca 540 aacatagtca aacaattgca aggccacgtg gcccctcatg taagggccat ctcgtgtcta 600 aaagggttcg agttgggctc caagggtgtg caattgctat cctcctatgt tactgatgag 660 ttaggaatcc aatgtggcgc actatctggt gcaaacttgg caccggaagt ggccaaggag 720 cattggtccg aaaccaccgt ggcttaccaa ctaccaaagg attatcaagg tgatggcaag 780 gatgtagatc ataagatttt gaaattgctg ttccacagac cttacttcca cgtcaatgtc 840 atcgatgatg ttgctggtat atccattgcc ggtgccttga agaacgtcgt ggcacttgca 900 tgtggtttcg tagaaggtat gggatggggt aacaatgcct ccgcagccat tcaaaggctg 960 ggtttaggtg aaattatcaa gttcggtaga atgtttttcc cagaatccaa agtcgagacc 1020 tactatcaag aatccgctgg tgttgcagat ctgatcacca cctgctcagg cggtagaaac 1080 gtcaaggttg ccacatacat ggccaagacc ggtaagtcag ccttggaagc agaaaaggaa 1140 ttgcttaacg gtcaatccgc ccaagggata atcacatgca gagaagttca cgagtggcta 1200 caaacatgtg agttgaccca agaattccca ttattcgagg cagtctacca gatagtctac 1260 aacaacgtcc gcatggaaga cctaccggag atgattgaag agctagacat cgatgacgaa 1320 tag 1323 <210> 52 <211> 440 <212> PRT <213> Saccharomyces cerevisiae GPD2 <400> 52 Met Leu Ala Val Arg Arg Leu Thr Arg Tyr Thr Phe Leu Lys Arg Thr 1 5 10 15 His Pro Val Leu Tyr Thr Arg Arg Ala Tyr Lys Ile Leu Pro Ser Arg 20 25 30 Ser Thr Phe Leu Arg Arg Ser Leu Leu Gln Thr Gln Leu His Ser Lys 35 40 45 Met Thr Ala His Thr Asn Ile Lys Gln His Lys His Cys His Glu Asp 50 55 60 His Pro Ile Arg Arg Ser Asp Ser Ala Val Ser Ile Val His Leu Lys 65 70 75 80 Arg Ala Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr 85 90 95 Thr Ile Ala Lys Val Ile Ala Glu Asn Thr Glu Leu His Ser His Ile 100 105 110 Phe Glu Pro Glu Val Arg Met Trp Val Phe Asp Glu Lys Ile Gly Asp 115 120 125 Glu Asn Leu Thr Asp Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr 130 135 140 Leu Pro Asn Ile Asp Leu Pro His Asn Leu Val Ala Asp Pro Asp Leu 145 150 155 160 Leu His Ser Ile Lys Gly Ala Asp Ile Leu Val Phe Asn Ile Pro His 165 170 175 Gln Phe Leu Pro Asn Ile Val Lys Gln Leu Gln Gly His Val Ala Pro 180 185 190 His Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Leu Gly Ser Lys 195 200 205 Gly Val Gln Leu Leu Ser Ser Tyr Val Thr Asp Glu Leu Gly Ile Gln 210 215 220 Cys Gly Ala Leu Ser Gly Ala Asn Leu Ala Pro Glu Val Ala Lys Glu 225 230 235 240 His Trp Ser Glu Thr Thr Val Ala Tyr Gln Leu Pro Lys Asp Tyr Gln 245 250 255 Gly Asp Gly Lys Asp Val Asp His Lys Ile Leu Lys Leu Leu Phe His 260 265 270 Arg Pro Tyr Phe His Val Asn Val Ile Asp Asp Val Ala Gly Ile Ser 275 280 285 Ile Ala Gly Ala Leu Lys Asn Val Val Ala Leu Ala Cys Gly Phe Val 290 295 300 Glu Gly Met Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Leu 305 310 315 320 Gly Leu Gly Glu Ile Ile Lys Phe Gly Arg Met Phe Phe Pro Glu Ser 325 330 335 Lys Val Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile 340 345 350 Thr Thr Cys Ser Gly Gly Arg Asn Val Lys Val Ala Thr Tyr Met Ala 355 360 365 Lys Thr Gly Lys Ser Ala Leu Glu Ala Glu Lys Glu Leu Leu Asn Gly 370 375 380 Gln Ser Ala Gln Gly Ile Ile Thr Cys Arg Glu Val His Glu Trp Leu 385 390 395 400 Gln Thr Cys Glu Leu Thr Gln Glu Phe Pro Leu Phe Glu Ala Val Tyr 405 410 415 Gln Ile Val Tyr Asn Asn Val Arg Met Glu Asp Leu Pro Glu Met Ile 420 425 430 Glu Glu Leu Asp Ile Asp Asp Glu 435 440 <210> 53 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH1 deletion <400> 53 ttcaagctat accaagcata caatcaacta tctcatatac acagctgaag cttcgtacgc 60 60 <210> 54 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH1 deletion <400> 54 cttatttaat aataaaaatc ataaatcata agaaattcgc gcataggcca ctagtggat 59 <210> 55 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2 deletion <400> 55 tacaatcaac tatcaactat taactatatc gtaatacaca cagctgaagc ttcgtacgc 59 <210> 56 <211> 59 <212> DNA <213> Artificial Sequence <220> ≪ 223 > R primer for ADH2 deletion <400> 56 ataatgaaaa ctataaatcg taaagacata agagatccgc gcataggcca ctagtggat 59 <210> 57 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH3 deletion <400> 57 gttaaaacta ggaatagtat agtcataagt taacaccatc cagctgaagc ttcgtacgc 59 <210> 58 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH3 deletion <400> 58 acaaagactt tcataaaaag tttgggtgcg taacacgcta gcataggcca ctagtggat 59 <210> 59 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH4 deletion <400> 59 caagtttaca tttgcaacaa ctaatagtca aataagaaaa cagctgaagc ttcgtacgc 59 <210> 60 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH4 deletion <400> 60 gcacacgcat aattgacgtt tatgagttcg ttcgattttt gcataggcca ctagtggat 59 <210> 61 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH5 deletion <400> 61 agaaaattat ttaactacat atctacaaaa tcaaagcatc cagctgaagc ttcgtacgc 59 <210> 62 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH5 deletion <400> 62 taaaaagtaa aaatatattc atcaaattcg ttacaaaaga gcataggcca ctagtggat 59 <210> 63 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD1 deletion <400> 63 cacccccccc ctccacaaac acaaatattg ataatataaa gcagctgaag cttcgtacgc 60 60 <210> 64 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD1 deletion <400> 64 aagtggggga aagtatgata tgttatcttt ctccaataaa tgcataggcc actagtggat 60 60 <210> 65 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD2 deletion <400> 65 tctctttccc tttccttttc cttcgctccc cttccttatc acagctgaag cttcgtacgc 60 60 <210> 66 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD2 deletion <400> 66 ggcaacagga aagatcagag ggggaggggg ggggagagtg tgcataggcc actagtggat 60 60 <210> 67 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH1 deletion <400> 67 caccatatcc gcaatgac 18 <210> 68 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH1 deletion <400> 68 gtgttgtcct ctgaggac 18 <210> 69 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH2 deletion <400> 69 accgggcatc tccaactt 18 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> ≪ 223 > R primer for identification of ADH2 deletion <400> 70 ccatgtctac agtttagagg 20 <210> 71 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH3 deletion <400> 71 atgagcagca gccattttg 19 <210> 72 <211> 21 <212> DNA <213> Artificial Sequence <220> ≪ 223 > R primer for identification of ADH3 deletion <400> 72 tgatggtgat aatgtctctc a 21 <210> 73 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH4 deletion <400> 73 aagaactagt ttttagttcg cg 22 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH4 deletion <400> 74 agaacttccg ttcttctttt 20 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH5 deletion <400> 75 ctgctatctg cttgtagaag 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> ≪ 223 > R primer for identification of ADH5 deletion <400> 76 gaaacgtttg tataggttgt 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD1 deletion <400> 77 cgccttgctt ctctcccctt 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD1 deletion <400> 78 ccgacagcct ctgaatgagt 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD2 deletion <400> 79 tacggaccta ttgccattgt 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD2 deletion <400> 80 ttaagggcta tagataacag 20
Claims (17)
상기 배양물로부터 2,3-부탄다이올을 분리하는 단계를 포함하는 2,3-부탄다이올을 생산하는 방법. Culturing the yeast cells of any one of claims 1 to 16 in a medium; and
And isolating the 2,3-butanediol from the culture.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150014601A KR101773123B1 (en) | 2015-01-29 | 2015-01-29 | Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same |
PCT/KR2015/013553 WO2016122107A1 (en) | 2015-01-29 | 2015-12-11 | Genetically modified yeast cell having 2,3-butanediol or acetoin productivity and method for producing 2,3-butanediol or acetoin by using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150014601A KR101773123B1 (en) | 2015-01-29 | 2015-01-29 | Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160093492A true KR20160093492A (en) | 2016-08-08 |
KR101773123B1 KR101773123B1 (en) | 2017-09-12 |
Family
ID=56711937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150014601A KR101773123B1 (en) | 2015-01-29 | 2015-01-29 | Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101773123B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018212366A1 (en) * | 2017-05-15 | 2018-11-22 | 서울대학교산학협력단 | Recombinant yeast for producing 2,3-butanediol into which candida tropicalis-derived pyruvate decarboxylase is introduced, and method for producing 2,3-butanediol by using same |
WO2020080708A1 (en) * | 2018-10-19 | 2020-04-23 | 서울대학교산학협력단 | Method for producing 2,3-butanediol using recombinant polyploid yeast |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2916000B1 (en) * | 2007-05-07 | 2013-07-05 | Lallemand Sas | MEANS FOR REDUCING ACETOIN ACCUMULATION IN ALCOHOLIC FERMENTATION MEDIA |
WO2013076144A2 (en) * | 2011-11-21 | 2013-05-30 | Metabolic Explorer | Microorganism strains for the production of 2,3-butanediol |
-
2015
- 2015-01-29 KR KR1020150014601A patent/KR101773123B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018212366A1 (en) * | 2017-05-15 | 2018-11-22 | 서울대학교산학협력단 | Recombinant yeast for producing 2,3-butanediol into which candida tropicalis-derived pyruvate decarboxylase is introduced, and method for producing 2,3-butanediol by using same |
US10982236B2 (en) | 2017-05-15 | 2021-04-20 | Seoul National University R&Db Foundation | Recombinant yeast for producing 2,3-butanediol including pyruvate decarboxylase derived from candida tropicolis and method for producing 2,3-butanediol using the same |
WO2020080708A1 (en) * | 2018-10-19 | 2020-04-23 | 서울대학교산학협력단 | Method for producing 2,3-butanediol using recombinant polyploid yeast |
Also Published As
Publication number | Publication date |
---|---|
KR101773123B1 (en) | 2017-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110914435B (en) | Yeast for producing Exidocrine | |
KR101759673B1 (en) | Genetically engineered yeast cell having enhanced growth rate and method of producing target materials using the same | |
EP2873725B1 (en) | Genetically Engineered Yeast Cell Producing Lactate Including Acetaldehyde Dehydrogenase, Method of Producing Yeast Cell, and Method of Producing Lactate Using the Same | |
CN106715679B (en) | Method for producing acetoin | |
RU2710323C2 (en) | Microorganism for producing o-acetylhomoserine and a method of producing o-acetylhomoserine using said microorganism | |
KR20210128742A (en) | Recombinant Acid Resistant Yeast Inhibited Glycerol Production and Method for Preparing Lactic Acid Using The Same | |
CN110869488B (en) | Enhanced metabolite producing yeast | |
CN112725210A (en) | Recombinant acid-resistant yeast inhibiting lactic acid metabolism and ethanol production and method for producing lactic acid using same | |
US20190136278A1 (en) | Mutant yeast strains with enhanced production of erythritol or erythrulose | |
WO2020128623A1 (en) | Microbial strains engineered for improved fructose utilization | |
KR20150064802A (en) | Yeast cell with inactivated glycerol-3-phosphate dehydrogenase and activated glyceraldehyde-3-phosphate dehydrogenase and method of producing lactate using the same | |
EP2963054B1 (en) | Yeast having improved productivity and method of producing product | |
KR101965364B1 (en) | A recombinant yeast strain expressing UPC2 and use thereof | |
KR101819189B1 (en) | Genetically engineered yeast cell producing acetoin and method of producing acetoin using the same | |
KR20200040017A (en) | Recombinant Acid Resistant Yeast Inhibited alcohol production and Method for Preparing Lactic Acid Using The Same | |
CN110892073B (en) | Enhanced metabolite producing yeast | |
KR20130001103A (en) | Modified microorganism for high efficient production of lactic acid | |
KR101773123B1 (en) | Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same | |
KR102548752B1 (en) | Microorganisms having mycosporine-like amino acid production ability and method for producing mycosporin-like amino acids using the same | |
KR102306725B1 (en) | Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same | |
KR102605543B1 (en) | Methionine-producing yeast | |
US9598709B2 (en) | Genetically engineered and stress resistant yeast cell with enhanced MSN2 activity and method of producing lactate using the same | |
US20120045803A1 (en) | Method for production of substance in candida utilis using xylose as carbon source | |
KR20200023450A (en) | Microorganisms and Related Methods Having Stabilized Copy Numbers of Functional DNA Sequences | |
US10808265B2 (en) | Microbes and methods for improved conversion of a feedstock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |