KR102306725B1 - Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same - Google Patents

Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same Download PDF

Info

Publication number
KR102306725B1
KR102306725B1 KR1020200082364A KR20200082364A KR102306725B1 KR 102306725 B1 KR102306725 B1 KR 102306725B1 KR 1020200082364 A KR1020200082364 A KR 1020200082364A KR 20200082364 A KR20200082364 A KR 20200082364A KR 102306725 B1 KR102306725 B1 KR 102306725B1
Authority
KR
South Korea
Prior art keywords
leu
gly
ala
lys
val
Prior art date
Application number
KR1020200082364A
Other languages
Korean (ko)
Inventor
한지숙
배상정
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020200082364A priority Critical patent/KR102306725B1/en
Priority to PCT/KR2020/014539 priority patent/WO2022004953A1/en
Application granted granted Critical
Publication of KR102306725B1 publication Critical patent/KR102306725B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/03Oxidoreductases acting on NADH or NADPH (1.6) with oxygen as acceptor (1.6.3)
    • C12Y106/03001NAD(P)H oxidase (1.6.3.1), i.e. NOX1
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01005Acetolactate decarboxylase (4.1.1.5)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a genetically engineered yeast having an acetoin-producing ability, and an acetoin production method using the same. In the genetically engineered yeast having an acetoin-producing ability and the yeast excellent in an acetoin-producing ability, i) an alcohol dehydrogenase (ADH) gene, a glycerol-3-phosphate dehydrogenase (GPD) gene, and a 2,3-butanediol dehydrogenase (BDH) gene are deleted, ii) an alsS gene, an alsD gene, and a noxE gene are introduced, and iii) EMP46, PEP7, SUR1, and HXK2 are mutated. When acetoin is produced by using the same, a large amount of acetoin can be produced from the same amount of glucose. Therefore, the genetically engineered yeast and evolved yeast having acetoin-producing ability according to the present invention can be useful to produce acetoin at high yield.

Description

아세토인 생산능을 갖는 유전적으로 조작된 효모 및 이를 이용한 아세토인 생산방법{GENETICALLY ENGINEERED YEAST HAVING ACETOIN PRODUCING ABILITY AND METHOD FOR PRODUCING ACETOIN USING THE SAME}Genetically engineered yeast having acetoin-producing ability and acetoin production method using the same

본 발명은 아세토인 생산능을 갖는 유전적으로 조작된 효모 및 이를 이용한 아세토인의 생산방법에 관한 것이다.The present invention relates to a genetically engineered yeast having acetoin-producing ability and a method for producing acetoin using the same.

아세토인(acetoin)은 버터향이 나는 향료로 식품, 화장품, 담배, 세제 등에 널리 사용될 뿐만 아니라, 해충의 유인제로 작용하여 방충제로서의 활용이 가능하다. 이러한 아세토인은 다양한 활용 가능성과 대량생산이 가능하다는 장점으로 인해, 미국 에너지국이 정한 바이오 매스로부터 생산 가능한 30개 플랫폼 화학물질에 포함되어 있다.Acetoin (acetoin) is a perfume with a buttery scent and is widely used in food, cosmetics, cigarettes, detergents, etc., as well as acts as an attractant of pests and can be used as an insect repellent. This acetoin is included in 30 platform chemicals that can be produced from biomass determined by the U.S. Department of Energy due to the advantages of various uses and mass production.

현재 대부분의 아세토인은 화학적 합성법으로 생산되고 있으나, 화장품 분야 및 식품 분야에서는 천연향료에 대한 선호도가 증가하고 있어, 생물공정을 통한 아세토인 생산방법이 주목 받고 있다. 최근 미생물을 이용하여 아세토인을 생산하는 방법에 관한 연구가 활발히 진행되고 있다. 예컨대, 재조합 엔테로박터 에어로게네스균(Enterobactera erogenes) 및 재조합 고초균(Bacillus subtilis)을 이용한 아세토인 생산방법이 개발된 바 있다(대한민국 특허출원 제10-2016-0006582호 및 대한민국 특허출원 제2015-0081821호). 그러나, 주로 박테리아 균주를 기반으로 진행되고 있으며, 이들 중 대부분은 병원성을 가지거나 산성 조건, 삼투압, 고농도의 글루코스 또는 고농도의 아세토인에 대한 내성이 부족하여 생산 수율이 낮다는 문제점이 있다. Currently, most of acetoin is produced by chemical synthesis, but in the cosmetic field and food field, preference for natural fragrance is increasing, so the acetoin production method through a biological process is attracting attention. Recently, research on a method for producing acetoin using microorganisms is being actively conducted. For example, a method for producing acetoin using recombinant Enterobactera erogenes and recombinant Bacillus subtilis has been developed (Korean Patent Application No. 10-2016-0006582 and Korean Patent Application No. 2015-0081821) like). However, it is mainly carried out based on bacterial strains, and most of them have a problem in that they have pathogenicity or lack of resistance to acidic conditions, osmotic pressure, high concentration of glucose or high concentration of acetoin, so that the production yield is low.

이에, 미국 FDA에서 GRAS(Generally Recognized As Safe)로 인정되는 미생물을 사용하여 고수율로 아세토인을 생산하는 방법이 요구되고 있다.Accordingly, there is a need for a method for producing acetoin in high yield using microorganisms recognized as GRAS (Generally Recognized As Safe) by the US FDA.

대한민국 특허출원 제10-2016-0006582호Korean Patent Application No. 10-2016-0006582 대한민국 특허출원 제10-2015-0081821호Korean Patent Application No. 10-2015-0081821

이에 본 발명자들은 글루코스로부터 아세토인을 고수율로 생산하는 유전적으로 조작된 효모를 개발하기 위해 연구한 결과, i) 알코올 탈수소효소(alcohol dehydrogenase), 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase) 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 감소되고, ii) 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase) 및 NADH 산화효소(NADH oxidase)의 활성이 증가되며, iii) EMP46, PEP7, SUR1 및/또는 HXK2가 돌연변이된 효모가 고수율로 아세토인을 생산하는 것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors studied to develop a genetically engineered yeast that produces acetoin from glucose in a high yield, and as a result, i) alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase) and 2,3-butanediol dehydrogenase (2,3-butanediol dehydrogenase) activity is decreased, ii) acetolactate synthase, acetolactate decarboxylase and NADH The present invention was completed by confirming that the activity of NADH oxidase is increased, and iii) yeast in which EMP46, PEP7, SUR1 and/or HXK2 is mutated produces acetoin in high yield.

상기 목적을 달성하기 위하여, 본 발명의 일 측면은, 모균주에 비해, i) 알코올 탈수소효소(alcohol dehydrogenase), 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase) 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 감소되고, ii) 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase) 및 NADH 산화효소(NADH oxidase)의 활성이 증가되며, iii) EMP46, PEP7, SUR1, HXK2 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나가 돌연변이된, 유전적으로 조작된 효모를 제공한다.In order to achieve the above object, one aspect of the present invention, compared to the parent strain, i) alcohol dehydrogenase (alcohol dehydrogenase), glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate dehydrogenase) and 2,3-butane Diol dehydrogenase (2,3-butanediol dehydrogenase) activity is reduced, ii) acetolactate synthase (acetolactate synthase), acetolactate decarboxylase (acetolactate decarboxylase) and NADH oxidase (NADH oxidase) activity is increased, and iii) any one selected from the group consisting of EMP46, PEP7, SUR1, HXK2 and combinations thereof is mutated, to provide a genetically engineered yeast.

본 발명의 다른 측면은, i) 상기 유전적으로 조작된 효모를 배양하는 단계; 및 ii) 상기 효모로부터 생산되는 아세토인을 수득하는 단계를 포함하는 아세토인을 생산하는 방법을 제공한다.Another aspect of the present invention comprises the steps of: i) culturing the genetically engineered yeast; And ii) provides a method for producing acetoin comprising the step of obtaining acetoin produced from the yeast.

본 발명의 또 다른 측면은, i) 야생형 효모의 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 유전자 및 이들의 조합으로 이루어지는 군으로부터 선택되는 어느 하나를 결실시키는 단계; ii) 아세토락테이트 신타아제를 코딩하는 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 유전자, NADH 산화효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 외인성 유전자(exogenous gene)를 도입시키는 단계; 및 iii) 상기 효모를 아세토인이 첨가된 배지에서 적어도 15회 계대배양하는 단계를 포함하는, 아세토인 생산능이 우수한 효모를 제조하는 방법을 제공한다.Another aspect of the present invention is i) a gene encoding an alcohol dehydrogenase of wild-type yeast, a gene encoding a glycerol-3-phosphate dehydrogenase, a gene encoding 2,3-butanediol dehydrogenase, and combinations thereof Deleting any one selected from the group consisting of; ii) any one exogenous gene selected from the group consisting of a gene encoding acetolactate synthase, a gene encoding acetolactate decarboxylase, a gene encoding NADH oxidase, and combinations thereof introducing; And iii) it provides a method for producing a yeast excellent in acetoin-producing ability, comprising the step of culturing the yeast at least 15 times in an acetoin-added medium.

본 발명의 또 다른 측면은, 상기 방법으로 제조된 아세토인 생산능이 우수한 효모를 제공한다.Another aspect of the present invention provides a yeast excellent in acetoin-producing ability prepared by the above method.

본 발명의 또 다른 측면은, i) 상기 아세토인 생산능이 우수한 효모를 배양하는 단계; 및 ii) 상기 효모로부터 생산되는 아세토인을 수득하는 단계를 포함하는 아세토인을 생산하는 방법을 제공한다.Another aspect of the present invention, i) culturing the yeast excellent in the acetoin-producing ability; And ii) provides a method for producing acetoin comprising the step of obtaining acetoin produced from the yeast.

본 발명에 따른 아세토인 생산능을 갖는 유전적으로 조작된 효모 및 아세토인 생산능이 우수한 효모는 i) ADH(alcohol dehydrogenase) 유전자, GPD(glycerol-3-phosphate dehydrogenase) 유전자 및 BDH(2,3-butanediol dehydrogenase) 유전자가 결실되고, ii) alsS 유전자, alsD 유전자 및 noxE 유전자가 도입되며, iii) EMP46, PEP7, SUR1 및 HXK2가 돌연변이된 것으로서, 이를 이용하여 아세토인을 생산할 경우, 같은 양의 글루코스로부터 많은 양의 아세토인을 생산할 수 있다. 따라서, 본 발명에 따른 아세토인 생산능을 갖는 유전적으로 조작된 효모 및 진화된 효모는 아세토인을 고수율로 생산하는데 유용하게 사용될 수 있다.The genetically engineered yeast having acetoin-producing ability and yeast having excellent acetoin-producing ability according to the present invention are i) ADH (alcohol dehydrogenase) gene, GPD (glycerol-3-phosphate dehydrogenase) gene, and BDH (2,3-butanediol) dehydrogenase) gene is deleted, ii) alsS gene, alsD gene and noxE gene are introduced, iii) EMP46, PEP7, SUR1 and HXK2 are mutated. Able to produce positive amounts of acetoin. Therefore, the genetically engineered yeast and evolved yeast having acetoin-producing ability according to the present invention can be usefully used to produce acetoin in high yield.

도 1은 일 실시예에 따른 아세토인 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.
도 2는 일 실시예에 따른 JHY902D 균주 및 JHY903 균주를 YPD 배지 또는 18 g/L 농도의 아세토인이 첨가된 YPD 배지에서 배양한 것을 촬영한 사진이다.
도 3a는 일 실시예에 따른 JHY902A 균주, D1 내지 D3 균주, JHY902D 균주 및 JHY903 균주의 성장율을 나타낸 그래프이다.
도 3b는 일 실시예에 따른 JHY902A 균주, D1 내지 D3 균주, JHY902D 균주 및 JHY903 균주의 배양액 내 글루코스 농도를 나타낸 그래프이다.
도 4는 일 실시예에 따른 JHY902A 균주, D1 내지 D3 균주, JHY902D 균주 및 JHY903 균주의 아세토인 및 2,3-부탄다이올의 생산량을 나타낸 그래프이다.
도 5a는 일 실시예에 따른 JHY903 균주 및 JHY903-1 내지 JHY903-9 균주의 성장율을 나타낸 그래프이다.
도 5b는 일 실시예에 따른 JHY903 균주 및 JHY903-1 내지 JHY903-9 균주의 배양액 내 글루코스 농도를 나타낸 그래프이다.
도 6은 일 실시예에 따른 JHY903 균주 및 JHY903-1 내지 JHY903-9 균주의 아세토인 및 2,3-부탄다이올의 생산량을 나타낸 그래프이다.
도 7은 ARA1, YPR1 및 YMR226C 효소의 라세믹 아세토인(3R/S-아세토인)에 대한 입체선택성 및 입체특이성을 가스 크로마토그래피(gas chromatography, GC)로 분석한 결과이다.
도 8a는 일 실시예에 따른 JHY903 균주, JHY903 [ARA1] 균주 및 JHY903 [YPR1] 균주의 성장율을 나타낸 그래프이다.
도 8b는 일 실시예에 JHY903 균주, JHY903 [ARA1] 균주 및 JHY903 [YPR1] 균주의 배양액 내 글루코스 농도를 나타낸 그래프이다.
도 9a는 일 실시예에 따른 JHY903 균주, JHY903 [ARA1] 균주 및 JHY903 [YPR1] 균주의 2,3-부탄다이올의 생산량을 나타낸 그래프이다.
도 9b는 일 실시예에 따른 JHY903 균주, JHY903 [ARA1] 균주 및 JHY903 [YPR1] 균주의 아세토인의 생산량을 나타낸 그래프이다.
도 10a는 일 실시예에 따른 JHY903 균주, JHY903-4 균주, JHY903-45 균주 및 JHY903-459 균주의 성장율을 나타낸 그래프이다.
도 10b는 일 실시예에 따른 JHY903 균주, JHY903-4 균주, JHY903-45 균주 및 JHY903-459 균주의 배양액 내 글루코스 농도를 나타낸 그래프이다.
도 11은 일 실시예에 따른 JHY903 균주, JHY903-4 균주, JHY903-45 균주 및 JHY903-459 균주의 아세토인 및 2,3-부탄다이올의 생산량을 나타낸 그래프이다.
1 is a diagram schematically showing an acetoin production pathway and a competitive pathway according to an embodiment.
2 is a photograph taken of culturing the JHY902D strain and the JHY903 strain according to an embodiment in YPD medium or YPD medium containing acetoin at a concentration of 18 g/L.
Figure 3a is a graph showing the growth rate of JHY902A strain, D1 to D3 strain, JHY902D strain and JHY903 strain according to an embodiment.
Figure 3b is a graph showing the glucose concentration in the culture of JHY902A strain, D1 to D3 strain, JHY902D strain and JHY903 strain according to an embodiment.
Figure 4 is a graph showing the production of acetoin and 2,3-butanediol of JHY902A strain, D1 to D3 strain, JHY902D strain and JHY903 strain according to an embodiment.
Figure 5a is a graph showing the growth rate of the strain JHY903 and JHY903-1 to JHY903-9 according to an embodiment.
Figure 5b is a graph showing the glucose concentration in the culture solution of the strain JHY903 and JHY903-1 to JHY903-9 according to an embodiment.
6 is a graph showing the production of acetoin and 2,3-butanediol of JHY903 strains and JHY903-1 to JHY903-9 strains according to an embodiment.
7 shows the results of analyzing the stereoselectivity and stereospecificity of the enzymes ARA1, YPR1 and YMR226C for racemic acetoin (3R/S-acetoin) by gas chromatography (GC).
Figure 8a is a graph showing the growth rate of JHY903 strain, JHY903 [ARA1] strain and JHY903 [YPR1] strain according to an embodiment.
Figure 8b is a graph showing the glucose concentration in the culture of JHY903 strain, JHY903 [ARA1] strain and JHY903 [YPR1] strain in one embodiment.
Figure 9a is a graph showing the production of 2,3-butanediol of JHY903 strain, JHY903 [ARA1] strain and JHY903 [YPR1] strain according to an embodiment.
Figure 9b is a graph showing the production of acetoin in JHY903 strain, JHY903 [ARA1] strain and JHY903 [YPR1] strain according to an embodiment.
Figure 10a is a graph showing the growth rate of strain JHY903, strain JHY903-4, strain JHY903-45 and strain JHY903-459 according to an embodiment.
Figure 10b is a graph showing the glucose concentration in the culture of JHY903 strain, JHY903-4 strain, JHY903-45 strain and JHY903-459 strain according to an embodiment.
11 is a graph showing the production of acetoin and 2,3-butanediol of strain JHY903, strain JHY903-4, strain JHY903-45 and strain JHY903-459 according to an embodiment.

본 발명의 일 측면은, 모균주에 비해 i) 알코올 탈수소효소(alcohol dehydrogenase), 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase) 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 감소되고, ii) 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase) 및 NADH 산화효소(NADH oxidase)의 활성이 증가되며, iii) EMP46, PEP7, SUR1, HXK2 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나가 돌연변이된, 유전적으로 조작된 효모를 제공한다.One aspect of the present invention, compared to the parent strain i) alcohol dehydrogenase (alcohol dehydrogenase), glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate dehydrogenase) and 2,3-butanediol dehydrogenase (2,3) -butanediol dehydrogenase) activity is decreased, ii) acetolactate synthase, acetolactate decarboxylase and NADH oxidase activity are increased, iii) EMP46, Provided is a genetically engineered yeast in which any one selected from the group consisting of PEP7, SUR1, HXK2 and combinations thereof is mutated.

본 발명에서 사용하는 용어 "아세토인(acetoin)"이란, 3-히드록시부타논(3-hydroxybutanone) 또는 아세틸 메틸 카르비놀(acetyl methyl carbinol)과 호환적으로 사용되고, C4H8O2의 분자식을 갖는 화합물을 의미할 수 있다. 상기 아세토인은(R)-아세토인을 포함할 수 있다.The term "acetoin" used in the present invention is used interchangeably with 3-hydroxybutanone or acetyl methyl carbinol, and the molecular formula of C 4 H 8 O 2 It may mean a compound having a. The acetoin may include (R)-acetoin.

본 발명에서 사용하는 용어 "알코올 탈수소효소"란, NADH의 산화로 알코올 및 알데하이드 또는 케톤 사이의 상호전환을 촉진하는 효소를 의미할 수 있다. 상기 알코올 탈수소효소는 효소의 이름이 상이하더라도, 그와 유사한 활성을 갖는 효소를 포함할 수 있으며, 예를 들면, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7 또는 SFA1를 포함할 수 있다. 바람직하게는, 상기 알코올 탈수소효소는 ADH1, ADH2, ADH3, ADH4, ADH5 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. As used herein, the term “alcohol dehydrogenase” may refer to an enzyme that promotes interconversion between alcohol and aldehyde or ketone by oxidation of NADH. The alcohol dehydrogenase may include an enzyme having a similar activity, even if the name of the enzyme is different, for example, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7 or SFA1. Preferably, the alcohol dehydrogenase may be any one selected from the group consisting of ADH1, ADH2, ADH3, ADH4, ADH5, and combinations thereof.

구체적으로, 상기 알코올 탈수소효소는 서열번호 99, 101, 103, 105, 또는 107로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드일 수 있다.Specifically, the alcohol dehydrogenase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more of the amino acid sequence represented by SEQ ID NO: 99, 101, 103, 105, or 107 , at least about 92%, at least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.

본 발명에서 사용하는 용어 "글리세롤-3-인산 탈수소효소"란, 글리세롤-3-인산(G3P)으로의 전환을 촉진하는 효소를 의미할 수 있다. 상기 글리세롤-3-인산 탈수소효소는 효소의 이름이 상이하더라도, 그와 유사한 활성을 갖는 효소를 포함할 수 있으며, GPD1, GPD2 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The term "glycerol-3-phosphate dehydrogenase" used in the present invention may refer to an enzyme that promotes conversion to glycerol-3-phosphate (G3P). The glycerol-3-phosphate dehydrogenase may include an enzyme having a similar activity, even if the name of the enzyme is different, and may be any one selected from the group consisting of GPD1, GPD2, and combinations thereof.

또한, 상기 글리세롤-3-인산 탈수소효소는 서열번호 109 또는 111로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드일 수 있다. In addition, the glycerol-3-phosphate dehydrogenase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% of the amino acid sequence represented by SEQ ID NO: 109 or 111 or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more sequence homology.

본 발명에서 사용하는 용어 "상동성"란, 주어진 폴리염기서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 이때, 주어진 폴리염기서열과 동일하거나 유사한 활성을 갖는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0를 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은, 당업자에게 잘 알려진 방법으로 결정될 수 있다.The term "homology" used in the present invention means the degree of agreement with a given polynucleotide sequence and may be expressed as a percentage. In this case, the homologous sequence having the same or similar activity to the given polynucleotide sequence is expressed as "% homology". For example, using standard software that calculates parameters such as score, identity and similarity, specifically BLAST 2.0, or by Southern hybridization experiments under defined stringent conditions. It can be confirmed by comparing , and an appropriate hybridization condition defined can be determined by a method well known to those skilled in the art.

본 발명에서 사용하는 용어 "2,3-부탄다이올 탈수소효소"란, 아세토인, NADH, 및 H+를 기질로 하여, 2,3-부탄다이올 및 NAD+를 생산하는 효소를 의미할 수 있으며, 옥시도리덕타아제(oxidoreductase) 과(family)에 속한다. 상기 2,3-부탄다이올 탈수소효소는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소(isoenzyme) 또는 동족체(homolog))를 포함할 수 있으며, 예를 들면, 사카로마이세스 세레비지애 유래의 BDH1, BDH2, 패니바실러스 폴리믹사(Paenibacillus polymyxa) 유래의 BDH99::67, 바실러스 서브틸리스, 엔테로코커스 패시움(Enterococcusfaecium) 엔테로코커스 듀란스(Enterococcusdurans) 마이코박테리움 속(Mycobacterium sp.) 락토바실러스 락티스 유래의 2,3-부탄다이올 탈수소효소일 수 있다. The term "2,3-butanediol dehydrogenase" used in the present invention may refer to an enzyme that uses acetoin, NADH, and H + as substrates to produce 2,3-butanediol and NAD +, It belongs to the oxidoreductase family. The 2,3-butanediol dehydrogenase may include an enzyme having a similar activity (eg, isoenzyme or homolog) even if the name of the enzyme is different, for example, BDH1, BDH2 from Saccharomyces cerevisiae, BDH99::67 from Paenibacillus polymyxa, Bacillus subtilis, Enterococcus faecium Enterococcus durans Mycobacteria It may be a 2,3-butanediol dehydrogenase derived from Mycobacterium sp. Lactobacillus lactis.

또한, 상기 2,3-부탄다이올 탈수소효소는 서열번호 113으로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드일 수 있다. In addition, the 2,3-butanediol dehydrogenase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% of the amino acid sequence represented by SEQ ID NO: 113. or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more sequence homology.

본 발명에서 사용하는 용어 "활성 감소(decrease in activity)" 란, 모균주(예, 유전적으로 조작되지 않은 균주 또는 세포)에 비해 더 적은 양의 효소 또는 폴리펩티드를 발현하거나, 효소 또는 폴리펩티드의 활성이 비활성화 또는 불활성화(inactivation)된 것을 의미할 수 있다. 또한, 상기 활성이 감소된 균주는, 유전적 변형을 갖지 않은 균주에 비해 하나 이상의 효소 또는 폴리펩티드의 활성을 감소시키는 유전적 변형(genetic modification)을 갖는 것일 수 있다. As used herein, the term "decrease in activity" means expressing a smaller amount of an enzyme or polypeptide compared to the parent strain (eg, a strain or cell that is not genetically engineered), or the activity of the enzyme or polypeptide is reduced. It may mean inactivated or inactivated (inactivation). In addition, the strain with reduced activity may have a genetic modification that reduces the activity of one or more enzymes or polypeptides compared to a strain without the genetic modification.

상기 효소 또는 폴리펩티드의 활성을 감소시키는 유전적 변형은 1) 상기 효소 또는 폴리펩티드를 암호화하는 유전자의 일부 또는 전체의 결실, 2) 상기 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 효소 또는 폴리펩티드의 활성이 약화되도록 염색체 상의 상기 유전자 서열의 변형 또는 4) 이의 조합 등을 사용하여 수행될 수 있다.Genetic modifications that reduce the activity of the enzyme or polypeptide include 1) deletion of a part or all of a gene encoding the enzyme or polypeptide, 2) modification of an expression control sequence to decrease the expression of the gene, 3) the enzyme or Modification of the above gene sequence on the chromosome or 4) a combination thereof so that the activity of the polypeptide is weakened.

상기 효소 또는 폴리펩티드를 암호화하는 유전자의 일부 또는 전체를 결실하는 방법은 예를 들면, Cre/loxP 재조합 시스템을 사용하여 유전자 결손을 위한 카세트를 모균주에 형질전환함으로써 수행될 수 있고, 효모 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 유전자를 일부 핵산 서열이 결실된 유전자 또는 마커 유전자로 교체함으로써 수행될 수 있다. 상기 발현조절 서열을 변형하는 방법은 상기 발현조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현조절 서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다. 아울러, 상기 효소 또는 폴리펩티드를 암호화하는, 염색체 상의 염기서열을 변형하는 방법은 상기 단백질의 활성을 더욱 약화하도록 염기서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 염기서열로 교체함으로써 수행할 수 있다.The method of deleting part or all of the gene encoding the enzyme or polypeptide may be performed by, for example, transforming a cassette for gene deletion into a parent strain using a Cre/loxP recombination system, and chromosomal insertion in yeast. It can be performed by replacing a gene encoding an endogenous target protein in a chromosome with a gene or a marker gene in which some nucleic acid sequences have been deleted through the vector. The method of modifying the expression control sequence is performed by inducing mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, of a nucleic acid sequence to further weaken the activity of the expression control sequence, or It can be carried out by replacing it with a nucleic acid sequence having activity. The expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation. In addition, the method of modifying a nucleotide sequence on a chromosome encoding the enzyme or polypeptide induces sequence mutation by deletion, insertion, non-conservative or conservative substitution of the nucleotide sequence, or a combination thereof to further weaken the activity of the protein. It can be carried out by replacing the nucleotide sequence with an improved nucleotide sequence to have weaker activity.

상기 효모는 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자 및 2,3-부탄다이올 탈수소효소를 코딩하는 유전자가 결실된 것일 수 있다. In the yeast, a gene encoding alcohol dehydrogenase, a gene encoding glycerol-3-phosphate dehydrogenase, and a gene encoding 2,3-butanediol dehydrogenase may be deleted.

상기 알코올 탈수소효소를 코딩하는 유전자는 서열번호 100, 102, 104, 106, 또는 108로 표시되는 염기서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.The gene encoding the alcohol dehydrogenase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% of the nucleotide sequence represented by SEQ ID NO: 100, 102, 104, 106, or 108 or more, about 92% or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more sequence homology.

상기 글리세롤-3-인산 탈수소효소를 코딩하는 유전자는 서열번호 110 또는 112로 표시되는 염기서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.The gene encoding the glycerol-3-phosphate dehydrogenase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about the nucleotide sequence represented by SEQ ID NO: 110 or 112. It may have 92% or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more sequence homology.

상기 2,3-부탄다이올 탈수소효소를 코딩하는 유전자는 서열번호 114로 표시되는 염기서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다.The gene encoding the 2,3-butanediol dehydrogenase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about the nucleotide sequence represented by SEQ ID NO: 114. It may have 92% or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more sequence homology.

상기 알코올 탈수소효소를 코딩하는 유전자는 adh1 유전자(서열번호 100), adh2 유전자(서열번호 102), adh3 유전자(서열번호 104), adh4 유전자(서열번호 106), adh5 유전자(서열번호 108) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 상기 글리세롤-3-인산 탈수소효소를 코딩하는 유전자는 gpd1 유전자(서열번호 110), gpd2 유전자(서열번호 112) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 상기 2,3-부탄다이올 탈수소효소를 코딩하는 유전자는 bdh1 유전자(서열번호 114)일 수 있다. The genes encoding the alcohol dehydrogenase include adh1 gene (SEQ ID NO: 100), adh2 gene (SEQ ID NO: 102), adh3 gene (SEQ ID NO: 104), adh4 gene (SEQ ID NO: 106), adh5 gene (SEQ ID NO: 108) And it may be any one selected from the group consisting of combinations thereof. The gene encoding the glycerol-3-phosphate dehydrogenase may be any one selected from the group consisting of a gpd1 gene (SEQ ID NO: 110), a gpd2 gene (SEQ ID NO: 112), and combinations thereof. The gene encoding the 2,3-butanediol dehydrogenase may be a bdh1 gene (SEQ ID NO: 114).

또한, 상기 효모는 아세토락테이트 신타아제를 코딩하는 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 유전자, NADH 산화효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 외인성 유전자(exogenous gene)를 포함할 수 있다. In addition, the yeast is selected from the group consisting of a gene encoding acetolactate synthase, a gene encoding acetolactate decarboxylase, a gene encoding NADH oxidase, and combinations thereof. gene) may be included.

본 발명에서 사용하는 용어 "아세토락테이트 신타아제"란, 아세토하이드록시산 신타아제(acetohydroxy acid synthase, AHAS)와 호환적으로 사용되며, 류신, 발린 및 이소류신 등의 분지쇄 아미노산 생합성 경로에 대한 조절효소로서, 두 분자의 피루브산으로부터 각각 한 분자의 이산화탄소와 아세토락테이트를 합성하는 효소일 수 있다. 상기 아세토락테이트 신타아제는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소 또는 동족체)를 포함할 수 있으며, 예를 들면, 바실러스 서브틸리스 유래의 alsS 유전자에 의해 암호화되는 아세토락테이트 신타아제, 대장균 유래의 ilvB 유전자 또는 ilvN 유전자에 의해 암호화되는 아세토락테이트 신타아제 I, 대장균 유래의 ilvGMEDA 유전자에 의해 암호화되는 아세토락테이트 신타아제 II, 또는 대장균 유래의 ilvI 또는 ilvH 유전자에 의해 암호화되는 아세토락테이트 신타아제 III를 포함할 수 있다. 또한, 이외에, 대장균, 사카로마이세스 세레비지애, 탄저균(Bacillus anthracis), 해모필러스 인플루엔자(Haemophilusinfluenzae), 살모넬라 티피무리움(Salmonella Typhimurium), 써모타가 마리티마(Thermotogamaritima), 코리네박테리움 글루타미쿰(Corynebacteriumglutamicum), 결핵균(Mycobacterium tuberculosis), 또는 스트렙토마이세스 신나모네시스(Streptomycescinnamonensis) 유래의 아세토락테이트 신타아제일 수 있다. 추가적으로 식물 유래로는 애기 장대(Arabidopsisthaliana), 고시피움 히르수툼(Gossypiumhirsutum), 헬리안투스 안누우스(Helianthus annuus), 또는 브라시카 나푸스(Brassicanapus) 유래의 아세토락테이트 신타아제일 수 있다. The term "acetolactate synthase" used in the present invention is used interchangeably with acetohydroxy acid synthase (AHAS), and regulates the biosynthetic pathway of branched chain amino acids such as leucine, valine and isoleucine. As the enzyme, it may be an enzyme that synthesizes one molecule of carbon dioxide and acetolactate from two molecules of pyruvic acid, respectively. The acetolactate synthase may include an enzyme (eg, isoenzyme or homologue) having a similar activity even if the name of the enzyme is different, for example, by the alsS gene derived from Bacillus subtilis. acetolactate synthase encoded by acetolactate synthase, acetolactate synthase I encoded by the ilvB gene or ilvN gene from E. coli, acetolactate synthase II encoded by the ilvGMEDA gene from E. coli, or ilvI or ilvH from E. coli acetolactate synthase III encoded by the gene. In addition, in addition to Escherichia coli, Saccharomyces cerevisiae, Bacillus anthracis, Haemophilus influenzae (Haemophilusinfluenzae), Salmonella typhimurium (Salmonella Typhimurium), Thermotaga maritima (Thermotogamaritima), Corynebacterium glue It may be an acetolactate synthase derived from Corynebacterium glutamicum, Mycobacterium tuberculosis, or Streptomyces cinnamonensis. Additionally, plant-derived acetolactate synthase may be derived from Arabidopsisthhaliana, Gossypiumhirsutum, Helianthus annuus, or Brassicanapus.

또한, 상기 아세토락테이트 신타아제는 서열번호 32로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. In addition, the acetolactate synthase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% or more, about 95% or more of the amino acid sequence represented by SEQ ID NO: 32. % or greater, about 97% or greater, about 98% or greater, or about 99% or greater sequence homology.

본 발명에서 사용하는 용어 "아세토락테이트 디카복실레이즈"란, 아세토락테이트로부터 이산화탄소를 제거하여 아세토인을 생산하는 효소를 의미할 수 있다. 상기 아세토락테이트 디카복실레이즈는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소 또는 동족체)를 포함할 수 있으며, 예를 들면, 바실러스 서브틸리스 유래의 alsD, 락토바실러스 델브루키(Lactobacillus delbrueckii subsp. lactis) 유래의 aldB, 브레비바실러스 브레비스(Brevibacillusbrevis), 엔테로박터 에어로게네스(Enterobacteraerogenes), 류코노스톡 락티스(Leuconostoc lactis), 사카로마이세스 세레비지애. 스타필로코커스 아우레우스(Staphylococcus aureus) 유래의 아세토락테이트 디카복실레이즈일 수 있다. As used herein, the term “acetolactate decarboxylase” may refer to an enzyme that produces acetoin by removing carbon dioxide from acetolactate. The acetolactate decarboxylase may include an enzyme having a similar activity (eg, isoenzyme or homologue) even if the name of the enzyme is different, for example, alsD from Bacillus subtilis, lacto aldB from Bacillus delbrueckii subsp. lactis, Brevibacillus brevis, Enterobacter aerogenes, Leuconostoc lactis, Saccharomyces cerevisiae It may be acetolactate decarboxylase from Staphylococcus aureus.

또한, 상기 아세토락테이트 디카복실레이즈는 서열번호 34로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다. In addition, the acetolactate decarboxylase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% or more, about It may be a polypeptide having at least 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.

아세토인을 효과적으로 생산할 수 있는 유전적으로 조작된 효모의 아세토인 생산 경로에 대해 도 1을 참조하여 설명한다. 도 1은 일구체예에 따른 아세토인 생산 경로 및 경쟁 경로를 도식화하여 나타낸 도면이다.An acetoin production pathway of genetically engineered yeast capable of effectively producing acetoin will be described with reference to FIG. 1 . 1 is a diagram schematically showing an acetoin production pathway and a competitive pathway according to one embodiment.

도 1에 나타낸 바와 같이, 일구체예에 따른 효모는 모균주에 비하여 아세토락테이트 신타아제, 및 아세토락테이트 디카복실레이즈의 활성이 증가되어 있어 아세토인을 효과적으로 생산할 수 있다. 또한, 아세토인의 생산에 있어서, 부산물 생성을 억제하고, 아세토인의 생산을 더욱 증진시키고자, 상기 효모는 아세토인의 생산 경로의 경쟁적 대사 경로가 추가적으로 차단된 것일 수 있다. 상기 경쟁적 대사 경로는 도 1에 나타낸 바와 같이, 에탄올 및 글리세롤 합성 대사 경로일 수 있으며, 상기 경쟁적 대사 경로는 알코올 탈수소효소 또는 글리세롤-3-인산 탈수소효소의 활성을 감소시켜 달성될 수 있다. 또한, 아세토인을 2,3-부탄다이올로 전환하는 대사 경로를 제거하여 아세토인의 생산을 더 증가시킬 수 있다. 그에 더하여, 보조인자 불균형을 감소시키기 위한 과정을 추가적으로 수행할 수 있다. 하기 반응에서와 같이 효모는 해당작용을 통해 포도당으로부터 2분자의 피루브산을 생성하면서 2분자의 NAD+를 소모하여 2분자의 NADH를 생성한다. 이에 따라, 아세토인 합성 경로에서 NADH(과잉)와 NAD+(부족) 현상이 발생할 수도 있다. As shown in FIG. 1 , the yeast according to one embodiment has increased activity of acetolactate synthase and acetolactate decarboxylase compared to the parent strain, and thus can effectively produce acetoin. In addition, in the production of acetoin, in order to suppress the production of by-products and further enhance the production of acetoin, the yeast may be one in which the competitive metabolic pathway of the acetoin production pathway is additionally blocked. The competitive metabolic pathway may be an ethanol and glycerol synthesis metabolic pathway, as shown in FIG. 1 , and the competitive metabolic pathway may be achieved by reducing the activity of alcohol dehydrogenase or glycerol-3-phosphate dehydrogenase. In addition, it is possible to further increase the production of acetoin by eliminating the metabolic pathway that converts acetoin to 2,3-butanediol. In addition, a process for reducing cofactor imbalance may be additionally performed. As shown in the following reaction, yeast produces two molecules of NADH by consuming two molecules of NAD+ while producing two molecules of pyruvic acid from glucose through glycolysis. Accordingly, NADH (excess) and NAD+ (shortage) phenomena may occur in the acetoin synthesis pathway.

Figure 112020069517037-pat00001
Figure 112020069517037-pat00001

NADH 산화 효소의 활성을 증가시켜 NADH를 산화시킴으로써 보조인자(cofactor, NAD+/NADH)의 불균형을 해소할 수 있다. 상기 효모는 NADH 산화효소를 코딩하는 외인성 유전자(exogenous gene)를 포함할 수 있다.By increasing the activity of NADH oxidase to oxidize NADH, the imbalance of cofactors (NAD+/NADH) can be resolved. The yeast may include an exogenous gene encoding NADH oxidase.

본 발명에서 사용하는 용어 "NADH 산화효소"란, 산소와 NADH를 기질로 하여 물과 NAD+를 생산하는 반응을 매개하는 효소를 의미할 수 있다. 상기 NADH 산화효소는 효소의 이름이 상이하더라도 그와 유사한 활성을 갖는 효소(예를 들면, 동질효소 또는 동족체)를 포함할 수 있으며, 예를 들면, nox1, nox3, nox4, 락토코커스 락티스 유래의 noxE를 포함할 수 있고, 이외에, 엔테로코커스 속, 락토바실러스 속, 디설포비브리오 속(Desulfovibriosp.), 클로스트리디움 속(Clostridium sp.) 스트렙토코커스 속 유래의 NADH 산화효소일 수 있다. The term "NADH oxidase" used in the present invention may refer to an enzyme mediating a reaction for producing water and NAD+ using oxygen and NADH as substrates. The NADH oxidase may include an enzyme having a similar activity (eg, isoenzyme or homologue) even if the name of the enzyme is different, for example, nox1, nox3, nox4, Lactococcus lactis-derived enzyme It may include noxE, and, in addition, Enterococcus genus, Lactobacillus genus, Disulfovibriosp. , Clostridium sp. It may be an NADH oxidase derived from Streptococcus genus.

또한, 상기 NADH 산화효소는 서열번호 46으로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 폴리펩티드 일 수 있다.In addition, the NADH oxidase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% or more, about 95% or more of the amino acid sequence represented by SEQ ID NO: 46. , at least about 97%, at least about 98%, or at least about 99% sequence homology.

본 발명에서 사용하는 용어 "활성 증가(increase in activity)"란, 모균주(예, 유전적으로 조작되지 않은 균주 또는 세포)가 갖지 않는 또는 갖는 폴리펩티드 또는 효소에 비해, 동일한 타입의 폴리펩티드 또는 효소의 활성이 보다 더 높은 활성을 갖거나, 더 많은 양의 동일한 타입의 폴리펩티드 또는 효소를 발현하는 것을 의미할 수 있다. 또한, 상기 활성이 증가된 균주는, 유전적 변형을 갖지 않은 균주에 비해 하나 이상의 효소 또는 폴리펩티드의 활성을 증가시키는 유전적 변형을 갖는 것일 수 있다. As used herein, the term "increase in activity" refers to the activity of a polypeptide or enzyme of the same type as compared to a polypeptide or enzyme not or possessed by the parent strain (eg, a non-genetically engineered strain or cell). It may mean to have a higher activity than this, or to express a higher amount of a polypeptide or enzyme of the same type. In addition, the strain with increased activity may have a genetic modification that increases the activity of one or more enzymes or polypeptides compared to a strain without the genetic modification.

상기 효소 또는 폴리펩티드의 활성을 증가시키는 유전적 변형은 1) 상기 유전자의 발현이 증가하도록 발현조절 서열의 변형, 2) 상기 효소 또는 폴리펩티드의 활성이 증가되도록 염색체 상의 상기 유전자 서열의 변형, 3) 상기 효소 또는 폴리펩티드를 코딩하는 유전자를 추가적으로 도입 또는 4) 이의 조합 등을 사용하여 수행될 수 있다.The genetic modification to increase the activity of the enzyme or polypeptide is 1) modification of the expression control sequence to increase the expression of the gene, 2) modification of the gene sequence on the chromosome to increase the activity of the enzyme or polypeptide, 3) the above It can be carried out by additionally introducing a gene encoding an enzyme or a polypeptide or 4) a combination thereof.

상기 아세토락테이트 신타아제는 alsS 유전자에 의해 코딩되는 것일 수 있으며, 상기 alsS 유전자는 서열번호 31로 표시되는 염기서열을 포함하는 것일 수 있다. 상기 아세토락테이트 디카복실레이즈는 alsD 유전자에 의해 코딩되는 것일 수 있으며, 상기 alsD 유전자는 서열번호 33으로 표시되는 염기서열을 포함하는 것일 수 있다. 상기 NADH 산화효소는 noxE 유전자에 의해 코딩되는 것일 수 있으며, 상기 noxE 유전자는 서열번호 45로 표시되는 염기서열을 포함하는 것인일 수 있다. The acetolactate synthase may be encoded by the alsS gene, the alsS gene may be one comprising a nucleotide sequence shown in SEQ ID NO: 31. The acetolactate dicarboxylate raised may be encoded by the gene alsD, alsD the gene may be one comprising a nucleotide sequence shown in SEQ ID NO: 33. The NADH oxidase may be encoded by the gene noxE, noxE the gene may be the one that includes the nucleotide sequence shown in SEQ ID NO: 45.

본 발명에서 사용하는 용어 "외인성(exogenous)"이란, 언급된 분자(referenced molecule)또는 언급된 활성(referenced activity)이 숙주 세포로 도입된 것을 의미할 수 있다. 분자는 예를 들면, 숙주 염색체 내로의 삽입에 의하는 것과 같은 코딩 핵산(encoding nucleic acid)의 숙주 유전 물질 내로의 도입 또는 플라스미드와 같은 비염색체 유전물질로서 도입될 수 있다. 코딩 핵산의 발현과 관련하여, 상기 용어 "외인성"은 상기 코딩 핵산이 개체 내로 발현 가능한 형태로 도입된 것을 나타낸다. 생합성 활성과 관련하여, 상기 용어 "외인성"은 숙주 모세포에 도입된 활성을 나타낸다. As used herein, the term “exogenous” may mean that a referenced molecule or referenced activity is introduced into a host cell. The molecule may be introduced, for example, as non-chromosomal genetic material such as a plasmid or the introduction of an encoding nucleic acid into the host genetic material, such as by insertion into a host chromosome. With respect to the expression of an encoding nucleic acid, the term "exogenous" indicates that the encoding nucleic acid is introduced into an organism in an expressible form. With respect to biosynthetic activity, the term “exogenous” refers to an activity introduced into a host parent cell.

상기 외인성 유전자는, 상기 효모에서 그 모균주에 비하여 언급된 효소의 활성이 증가되기에 충분한 양으로 발현된 것일 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자, 및 NADH 산화효소를 코딩하는 외인성 유전자의 상동 유전자(homolog)는 서로 다른 미생물로부터 유래하였으나 그들이 코딩하는 단백질과 유사한 활성을 나타내는 단백질을 암호화하는 유전자를 의미할 수 있다. The exogenous gene may be expressed in an amount sufficient to increase the activity of the mentioned enzyme compared to the parent strain in the yeast. Homologs of the exogenous gene encoding acetolactate synthase, the exogenous gene encoding acetolactate decarboxylase, and the exogenous gene encoding NADH oxidase are derived from different microorganisms, but the proteins they encode It may refer to a gene encoding a protein exhibiting an activity similar to

상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자는 서열번호 32로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 아미노산 서열을 코딩하는 것일 수 있다. 상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자는 각각 서열번호 31로 표시되는 염기서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다. The exogenous gene encoding the acetolactate synthase has about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% or more of the amino acid sequence represented by SEQ ID NO: 32. , which encodes an amino acid sequence having sequence homology of about 95% or more, about 97% or more, about 98% or more, or about 99% or more. The exogenous gene encoding the acetolactate synthase has about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% of the nucleotide sequence represented by SEQ ID NO: 31, respectively. It may have a sequence homology of at least about 95%, at least about 97%, at least about 98%, or at least about 99%.

상기 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자를 코딩하는 외인성 유전자는 각각 서열번호 34로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 아미노산 서열을 코딩하는 것일 수 있다. 상기 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자를 코딩하는 외인성 유전자는 각각 서열번호 33으로 표시되는 염기서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다. The exogenous gene encoding the exogenous gene encoding the acetolactate decarboxylase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% of the amino acid sequence represented by SEQ ID NO: 34, respectively. % or more, about 92% or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more of sequence homology. The exogenous gene encoding the exogenous gene encoding the acetolactate decarboxylase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% of the nucleotide sequence represented by SEQ ID NO: 33, respectively. % or more, about 92% or more, about 95% or more, about 97% or more, about 98% or more, or about 99% or more sequence homology.

상기 NADH 산화효소를 코딩하는 외인성 유전자는 서열번호 46으로 표시되는 아미노산 서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 아미노산 서열을 코딩하는 것일 수 있다. 상기 NADH 산화효소를 코딩하는 외인성 유전자는 각각 서열번호 45로 표시되는 염기서열과 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85%이상, 약 90% 이상, 약 92% 이상, 약 95% 이상, 약 97% 이상, 약 98% 이상, 또는 약 99% 이상의 서열 상동성을 갖는 것일 수 있다. The exogenous gene encoding the NADH oxidase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% or more, about the amino acid sequence represented by SEQ ID NO: 46. It may encode an amino acid sequence having at least 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology. The exogenous gene encoding the NADH oxidase is about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 92% or more, It may have at least about 95%, at least about 97%, at least about 98%, or at least about 99% sequence homology.

이러한 외인성 유전자는 미생물에서 발현되기에 적합한 코돈으로 변경된 서열, 최적화된 코돈을 갖는 서열로 변경될 수 있다. 이 코돈 변경은 단백질의 아미노산 서열이 바뀌지 않는 범위 내에서 적절히 이루어질 수 있다.Such an exogenous gene may be changed to a sequence with codons suitable for expression in a microorganism, or a sequence with optimized codons. This codon change may be appropriately made within a range in which the amino acid sequence of the protein does not change.

상기 외인성 유전자는 발현 벡터를 통하여 모균주 내로 도입된 것일 수 있다. 또한, 상기 외인성 유전자는 선형 폴리뉴클레오티드 형태로 모균주 내로 도입된 것일 수 있다. 또한, 상기 외인성 유전자는 균주 내에서 발현 벡터(예, 플라스미드)로부터 발현되는 것일 수 있다. 또한, 상기 외인성 유전자는 안정적인 발현을 위하여 균주 내의 유전물질(예, 염색체)에 삽입되어 발현되는 것일 수 있다. 상기 벡터는 복제개시점, 프로모터, 상기 효소를 코딩하는 유전자, 및 터미네이터를 포함할 수 있다. 상기 복제 개시점은 효모 자가복제 서열(autonomous replication sequence, ARS)을 포함할 수 있다. 상기 효모 자가복제서열은 효모 동원체 서열(centromeric sequence, CEN)에 의해 안정화될 수 있다. 상기 프로모터는 TDH3 프로모터, TEF 프로모터, 및 FBA1 프로모터로 이루어진 군으로부터 선택된 것일 수 있다. 상기 터미네이터는 CYC1, GPM1, 및 FBA1로 이루어진 군으로부터 선택되는 것일 수 있다. 상기 벡터는 선별 마커를 더 포함할 수 있다.The exogenous gene may be introduced into the parent strain through an expression vector. In addition, the exogenous gene may be introduced into the parent strain in the form of a linear polynucleotide. In addition, the exogenous gene may be expressed from an expression vector (eg, a plasmid) in a strain. In addition, the exogenous gene may be expressed by being inserted into a genetic material (eg, a chromosome) in a strain for stable expression. The vector may include an origin of replication, a promoter, a gene encoding the enzyme, and a terminator. The replication initiation point may include a yeast autonomous replication sequence (ARS). The yeast self-replicating sequence may be stabilized by a yeast centromeric sequence (CEN). The promoter may be selected from the group consisting of TDH3 promoter, TEF promoter, and FBA1 promoter. The terminator may be selected from the group consisting of CYC1, GPM1, and FBA1. The vector may further include a selection marker.

상기 효모는 단일 유전자, 복수의 유전자 예를 들면, 2 내지 10 카피 수를 포함할 수 있다. 상기 효모는, 예를 들면, 1 내지 10, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5, 1 내지 4, 1 내지 3, 2 내지 10, 2 내지 8, 2 내지 7, 2 내지 6, 2 내지 5, 2 내지 4, 또는 2 내지 3 카피의 상기 효소를 코딩하는 유전자를 포함할 수 있다. 상기 효모가 복수의 유전자를 포함하는 경우, 각각의 유전자는 동일한 유전자의 카피이거나 둘 이상의 상이한 유전자의 카피를 포함할 수 있다. 외인성 유전자의 복수의 카피는 숙주 세포의 게놈 내에 동일한 유전자 좌(locus), 또는 여러 유전자 좌에 포함될 수 있다.The yeast may include a single gene, a plurality of genes, for example, 2 to 10 copy numbers. The yeast is, for example, 1 to 10, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 2 to 10, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, or 2 to 3 copies of the gene encoding the enzyme. When the yeast comprises a plurality of genes, each gene may be a copy of the same gene or may include copies of two or more different genes. The multiple copies of the exogenous gene may be comprised at the same locus, or at multiple loci, within the genome of the host cell.

본 발명에서 사용하는 용어 "EMP46"란, 당단백질의 분비와 핵 구조 및 유전자 침묵에 관여하는 단백질로, NCBI Reference Sequence: NC_001144.5에 개시된 서열을 갖는 것일 수 있다. 상기 EMP46은 서열번호 115로 표시되는 아미노산 서열을 갖는 것일 수 있다. 또한, 상기 EMP46은 서열번호 116으로 표시되는 염기서열에 의해 코딩되는 것일 수 있다. 상기 EMP46 돌연변이는 서열번호 115로 표시되는 아미노산 서열 중 160번째 아미노산인 류신(Leucine)이 페닐알라닌(Phenylalanine)으로 치환된 것일 수 있다. 또한, 상기 EMP46 돌연변이는 서열번호 116으로 표시되는 염기서열 중 480번째 염기인 구아닌(guanin)이 티민(thymine)으로 치환된 것일 수 있다. As used herein, the term "EMP46" refers to a protein involved in glycoprotein secretion, nuclear structure, and gene silencing, and may have a sequence disclosed in NCBI Reference Sequence: NC_001144.5. The EMP46 may have an amino acid sequence represented by SEQ ID NO: 115. In addition, the EMP46 may be encoded by the nucleotide sequence represented by SEQ ID NO: 116. The EMP46 mutation may be one in which leucine, which is the 160th amino acid in the amino acid sequence shown in SEQ ID NO: 115, is substituted with phenylalanine. In addition, the EMP46 mutation may be one in which guanine, which is the 480th base, of the nucleotide sequence represented by SEQ ID NO: 116 is substituted with thymine.

본 발명에서 사용하는 용어 "PEP7"이란, 액포 분리 및 액상 단백질 분비에 관여하는 단백질로, NCBI Reference Sequence: NC_001136.10에 개시된 서열을 갖는 것일 수 있다. 상기 PEP7은 서열번호 117로 표시되는 아미노산 서열을 갖는 것일 수 있다. 또한, 상기 PEP7은 서열번호 118로 표시되는 염기서열에 의해 코딩되는 것일 수 있다. 상기 PEP7 돌연변이는 서열번호 117로 표시되는 아미노산 서열 중 169번째 아미노산인 글루타민(Glutamine)이 리신(Lysine)으로 치환된 것일 수 있다. 또한, 상기 PEP7 돌연변이는 서열번호 118로 표시되는 염기서열 중 505번째 염기인 사이토신(cytosine)이 아데닌(adenine)으로 치환된 것일 수 있다.As used herein, the term “PEP7” refers to a protein involved in vacuole separation and liquid protein secretion, and may have a sequence disclosed in NCBI Reference Sequence: NC_001136.10. The PEP7 may have an amino acid sequence represented by SEQ ID NO: 117. In addition, the PEP7 may be encoded by the nucleotide sequence represented by SEQ ID NO: 118. The PEP7 mutation may be one in which glutamine, which is the 169th amino acid in the amino acid sequence shown in SEQ ID NO: 117, is substituted with lysine. In addition, the PEP7 mutation may be one in which cytosine, which is the 505th base in the nucleotide sequence represented by SEQ ID NO: 118, is substituted with adenine.

본 발명에서 사용하는 용어 "SUR1"이란, 만노실 포스포릴이노시톨 세라마이드의 합성에 관여하는 단백질로, 포스포릴 이노시톨 세라마이드에 만노실을 첨가하는 반응을 촉매한다. 상기 SUR1은 NCBI Reference Sequence: NC_001148.4에 개시된 서열을 갖는 것일 수 있다. 상기 SUR1은 서열번호 119로 표시되는 아미노산 서열을 갖는 것일 수 있다. 또한, 상기 SUR1은 서열번호 120으로 표시되는 염기서열에 의해 코딩되는 것일 수 있다. 상기 SUR1 돌연변이는 서열번호 119로 표시되는 아미노산 서열 중 176번째 아미노산인 히스티딘(Histidine)이 티로신(Tyrosine)으로 치환된 것일 수 있다. 상기 SUR1 돌연변이는 서열번호 120으로 표시되는 염기서열 중 526번째 염기인 사이토신이 티민으로 치환된 것일 수 있다.The term "SUR1" used in the present invention is a protein involved in the synthesis of mannosyl phosphoryl inositol ceramide, and catalyzes the reaction of adding mannosyl to phosphoryl inositol ceramide. The SUR1 may have a sequence disclosed in NCBI Reference Sequence: NC_001148.4. The SUR1 may have an amino acid sequence represented by SEQ ID NO: 119. In addition, the SUR1 may be encoded by the nucleotide sequence represented by SEQ ID NO: 120. The SUR1 mutation may be one in which histidine, which is the 176th amino acid in the amino acid sequence shown in SEQ ID NO: 119, is substituted with tyrosine. The SUR1 mutation may be one in which cytosine, which is the 526th base in the nucleotide sequence represented by SEQ ID NO: 120, is substituted with thymine.

본 발명에서 사용하는 용어 "HXK2"이란, D-글루코스 및 D-과당과 같은 육탄당의 인산화를 육탄당 6-인산(각각 D-글루코스 6-포스페이트 및 D-과당 6- 인산)으로 인산화하는 반응에 관여하는 단백질로, NCBI Reference Sequence: NC_001139.9에 개시된 서열을 갖는 것일 수 있다. 상기 HXK2은 서열번호 121로 표시되는 아미노산 서열을 갖는 것일 수 있다. 또한, 상기 HXK2은 서열번호 122로 표시되는 염기서열에 의해 코딩되는 것일 수 있다. 상기 HXK2 돌연변이는 서열번호 122로 표시되는 염기서열 중 754번째 염기인 구아닌이 티민으로 치환된 것일 수 있다. As used herein, the term "HXK2" refers to a reaction in which phosphorylation of hexoses such as D-glucose and D-fructose to hexose 6-phosphate (D-glucose 6-phosphate and D-fructose 6-phosphate, respectively). As the protein involved, it may be one having the sequence disclosed in NCBI Reference Sequence: NC_001139.9. The HXK2 may have an amino acid sequence represented by SEQ ID NO: 121. In addition, the HXK2 may be encoded by the nucleotide sequence shown in SEQ ID NO: 122. The HXK2 mutation may be one in which guanine, which is the 754th base in the nucleotide sequence shown in SEQ ID NO: 122, is substituted with thymine.

상기 효모는 사카로마이세스(Saccharomyces), 클루베로마이세스(Kluyveromyces), 피키아(Pichia), 한세눌라(Hansenula), 자이고사카로마이세스(Zygosaccharomyces) 또는 캔디다(Candida) 속 균주일 수 있다. 또한, 상기 효모는 사카로마이세스(Saccharomyces) 속 균주일 수 있다. 상기 사카로마이세스 속 균주는 사카로마이세스 세레비지애(S. scerevisiae), 사카로마이세스 바야누스(S. bayanus), 사카로마이세스 파라독서스 (S. paradoxus), 사카로마이세스 미카테(S. mikatae), 및 사카로마이세스 쿠드리아브제비(S. kudriavzevii)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The yeast may be a My process (Saccharomyces), inclusive Vero My process (Kluyveromyces), Pichia (Pichia), Hanse Cronulla (Hansenula), my process to Xi Kosaka (Zygosaccharomyce s) or Candida (Candida) spp a saccharide . In addition, the yeast may be a Saccharomyces genus strain. The Saccharomyces sp. strain is Saccharomyces cerevisiae ( S. scerevisiae ), Saccharomyces bayanus ( S. bayanus ), Saccharomyces paradoxus ( S. paradoxus ), Saccharomyces It may be a non-catheter (S. mikatae), and a saccharide as MY-ku laundry process Havre swallow any one selected from the group consisting of (S. kudriavzevii).

상기 효모는 아라비노스 탈수소효소(arabinose dehydrogenase, ARA1), NADP-의존적 알도-케도 환원 효소(NADPH-dependent aldo-keto reductase, YPR1), NADP-의존적 3-히드록시산 탈수소효소(NADP-dependent 3-hydroxy acid dehydrogenase, YMR226C) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 활성이 감소된 것일 수 있다. 구체적으로, 상기 효모는 아라비노스 탈수소효소를 코딩하는 유전자, NADP-의존적 알도-케도 환원 효소를 코딩하는 유전자, NADP-의존적 3-히드록시산 탈수소효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나가 결실된 것일 수 있다.The yeast is arabinose dehydrogenase (ARA1), NADP-dependent aldo-keto reductase (NADPH-dependent aldo-keto reductase, YPR1), NADP-dependent 3-hydroxy acid dehydrogenase (NADP-dependent 3- The activity of any one selected from the group consisting of hydroxy acid dehydrogenase, YMR226C) and combinations thereof may be reduced. Specifically, the yeast is selected from the group consisting of a gene encoding arabinose dehydrogenase, a gene encoding NADP-dependent aldo-kedo reductase, a gene encoding NADP-dependent 3-hydroxy acid dehydrogenase, and combinations thereof. Any one selected may be deleted.

본 발명에서 사용하는 용어 "아라비노스 탈수소효소"란, NADP+의 존재 하에서 D-아라비노스, L-크실로스, L-푸코스 및 L-갈락토스의 산화 촉매에 관여하는 효소를 의미할 수 있고, 예를 들어, ARA1일 수 있다. 상기 아라비노스 탈수소효소는 NCBI Reference Sequence: NC_001134.8에 기재된 서열을 갖는 것일 수 있다. 상기 아라비노스 탈수소효소는 서열번호 124로 표시되는 염기서열을 포함하는 ara1 유전자에 의해 코딩되는 것일 수 있다. The term "arabinose dehydrogenase" used in the present invention may refer to an enzyme involved in catalyzing the oxidation of D-arabinose, L-xylose, L-fucose and L-galactose in the presence of NADP+, for example For example, it may be ARA1. The arabinose dehydrogenase may have a sequence described in NCBI Reference Sequence: NC_001134.8. The arabinose dehydrogenase is It may be one encoded by the ara1 gene including the nucleotide sequence represented by SEQ ID NO: 124.

본 발명에서 사용하는 용어 "NADP-의존적 알도-케도 환원 효소"란, 2-메틸부틸알데히드를 포함하는 여러 기질을 감소시킬 수 있는 효소로, 삼투 및 산화 스트레스에 의해 빠르게 유도될 수 있다. 예를 들어, 상기 NADP-의존적 알도-케도 환원 효소는 GTR3, YJR096W 또는 YPR1일 수 있다. 상기 NADP-의존적 알도-케도 환원 효소는 NCBI Reference Sequence: NC_001136.10에 기재된 서열을 갖는 것일 수 있다. 상기 NADP-의존적 알도-케도 환원 효소는 서열번호 126으로 표시되는 염기서열을 포함하는 ypr1 유전자에 의해 코딩되는 것일 수 있다.As used herein, the term "NADP-dependent aldo-kedo reductase" is an enzyme capable of reducing various substrates including 2-methylbutylaldehyde, and can be rapidly induced by osmotic and oxidative stress. For example, the NADP-dependent aldo-kedo reductase may be GTR3, YJR096W or YPR1. The NADP-dependent aldo-kedo reductase may have the sequence described in NCBI Reference Sequence: NC_001136.10. The NADP-dependent aldo-kedo reductase is It may be one encoded by the ypr1 gene including the nucleotide sequence represented by SEQ ID NO: 126.

본 발명에서 사용하는 용어 "NADP-의존적 3-히드록시산 탈수소효소"란, 3-히드록시산에 작용하는 광범위한 기질 특이성을 갖는 NADP-의존적 탈수소효소일 수 있고, 예를 들어, NRE1, IRC24, ENV9 또는 YMR226C일 수 있다. 상기 NADP-의존적 3-히드록시산 탈수소효소는 NCBI Reference Sequence: NC_001145.3에 기재된 서열을 갖는 것일 수 있다. 상기 NADP-의존적 3-히드록시산 탈수소효소는 서열번호 128로 표시되는 염기서열을 포함하는 ymr226c 유전자에 의해 코딩되는 것일 수 있다. The term "NADP-dependent 3-hydroxy acid dehydrogenase" used in the present invention may be a NADP-dependent dehydrogenase having a broad substrate specificity acting on 3-hydroxy acids, for example, NRE1, IRC24, ENV9 or YMR226C. The NADP-dependent 3-hydroxy acid dehydrogenase may have a sequence described in NCBI Reference Sequence: NC_001145.3. The NADP-dependent 3-hydroxy acid dehydrogenase may be encoded by the ymr226c gene including the nucleotide sequence shown in SEQ ID NO: 128.

본 발명의 다른 측면은, i) 상기 유전적으로 조작된 효모를 배양하는 단계; 및 ii) 상기 효모로부터 생산되는 아세토인을 수득하는 단계를 포함하는 아세토인을 생산하는 방법을 제공한다.Another aspect of the present invention comprises the steps of: i) culturing the genetically engineered yeast; And ii) provides a method for producing acetoin comprising the step of obtaining acetoin produced from the yeast.

상기 아세토인을 생산하는 방법에 있어서, 상기 효모에 대해서는 전술한 유전적으로 조작된 효모에 대한 설명을 참조한다. In the method for producing the acetoin, refer to the description of the genetically engineered yeast described above for the yeast.

본 발명에서 사용하는 용어 "배양"이란, 상기 효모로부터 아세토인을 생산하기 위하여, 상기 효모를 적당히 인공적으로 조절한 환경조건에서 생육시키는 일련의 행위를 의미할 수 있다. 본 발명에서 상기 세포를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다. 배양에 사용되는 배지는 아세토인으로 대사될 수 있는 하나 이상의 기질을 포함하는 것일 수 있으며, 예를 들면, 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. The term "cultivation" used in the present invention may refer to a series of actions in which the yeast is grown in an appropriately artificially controlled environmental condition in order to produce acetoin from the yeast. The method of culturing the cells in the present invention can be performed using a method widely known in the art. Specifically, the culture may be continuously cultured in a batch process or injection batch or repeated fed batch process. The medium used for culture may include one or more substrates that can be metabolized to acetoin, for example, in a conventional medium containing an appropriate carbon source, nitrogen source, amino acid, vitamin, etc. under aerobic conditions at temperature, pH It is necessary to meet the requirements of a particular strain in an appropriate manner while adjusting the etc.

사용될 수 있는 탄소원으로는 글루코스를 주탄소원으로 사용하며, 이외에 자일로스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있다. As a carbon source that can be used, glucose is used as the main carbon source, and in addition, sugars and carbohydrates such as xylose, sucrose, lactose, fructose, maltose, starch, cellulose, soybean oil, sunflower oil, castor oil, coconut oil, etc. Oils and fats, fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol, ethanol, and organic acids such as acetic acid may be included.

상기 배양은 글루코스 존재 하에 효모를 배양하는 것을 특징으로 할 수 있다.The culture may be characterized by culturing yeast in the presence of glucose.

이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.These substances can be used individually or as a mixture. Examples of the nitrogen source that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, and glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, defatted soybean cake or its degradation products, etc. can These nitrogen sources may be used alone or in combination. The medium may contain monopotassium phosphate, dipotassium phosphate and the corresponding sodium-containing salt as phosphorus. The phosphorus that may be used includes potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. In addition, as the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, and the like may be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used.

통상적으로, 효모는 약 20℃ 내지 약 37℃ 범위의 온도에서 적절한 배지 내에 성장시킬 수 있다. 본 발명에서 성장 배지는, 예를 들면, 효모 질소 베이스(yeast nitrogen base), 암모늄 설페이트, 및 탄소/에너지 공급원으로서의 덱스트로스를 포함하는 브로스(broth) 또는 대부분의 사카로마이세스 세레비지애 균주의 성장을 위한 최적 비율로 펩톤, 효모 추출물 및 덱스트로스를 블렌딩한 YPD 배지와 같이 상업적으로 제조된 통상적인 배지일 수 있다. 그밖에 정의되거나 합성된 성장 배지도 사용할 수 있으며, 특정 미생물의 성장에 적절한 배지는 미생물학 또는 발효과학 분야의 당업자에게 공지되어 있다.Typically, yeast can be grown in a suitable medium at a temperature ranging from about 20°C to about 37°C. In the present invention, the growth medium is, for example, a broth containing yeast nitrogen base, ammonium sulfate, and dextrose as a carbon/energy source, or most strains of Saccharomyces cerevisiae. It may be a commercially prepared conventional medium such as YPD medium in which peptone, yeast extract and dextrose are blended in an optimal ratio for growth. Other defined or synthetic growth media may be used, and media suitable for the growth of specific microorganisms are known to those skilled in the art of microbiology or fermentation science.

상기 효모를 통해 생산된 아세토인은 당업계에 공지된 방법을 사용하여 배양 배지로부터 분리할 수 있다. 이러한 분리 방법은 원심분리, 여과, 이온교환크로마토그래피 또는 결정화일 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온교환크로마토그래피를 통하여 분리할 수 있다.Acetoin produced by the yeast can be isolated from the culture medium using a method known in the art. This separation method may be centrifugation, filtration, ion exchange chromatography or crystallization. For example, the culture may be centrifuged at low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography.

본 발명의 또 다른 측면은, i) 야생형 효모의 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자, 2,3-부탄다이올 탈수소효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나를 결실시키는 단계; ii) 아세토락테이트 신타아제를 코딩하는 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 유전자, NADH 산화효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 외인성 유전자를 도입시키는 단계; 및 iii) 상기 효모를 아세토인이 첨가된 배지에서 적어도 15회 계대배양하는 단계를 포함하는 아세토인 생산능이 우수한 효모를 제조하는 방법을 제공한다.Another aspect of the present invention is i) a gene encoding an alcohol dehydrogenase of wild-type yeast, a gene encoding a glycerol-3-phosphate dehydrogenase, a gene encoding 2,3-butanediol dehydrogenase, and combinations thereof Deleting any one selected from the group consisting of; ii) introducing any one exogenous gene selected from the group consisting of a gene encoding acetolactate synthase, a gene encoding acetolactate decarboxylase, a gene encoding NADH oxidase, and combinations thereof; And iii) it provides a method for producing a yeast excellent in acetoin-producing ability comprising the step of culturing the yeast at least 15 times in an acetoin-added medium.

구체적으로, 상기 방법은, i) 단계에서 야생형 효모의 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자 및 2,3-부탄다이올 탈수소효소를 코딩하는 유전자를 결실시킬 수 있고, ii) 단계에서 아세토락테이트 신타아제를 코딩하는 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 유전자 및 NADH 산화효소를 코딩하는 유전자를 도입시킬 수 있다.Specifically, the method comprises deleting a gene encoding an alcohol dehydrogenase of wild-type yeast, a gene encoding a glycerol-3-phosphate dehydrogenase, and a gene encoding a 2,3-butanediol dehydrogenase in step i). and a gene encoding acetolactate synthase, a gene encoding acetolactate decarboxylase and a gene encoding NADH oxidase may be introduced in step ii).

상기 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자 및 2,3-부탄다이올 탈수소효소를 코딩하는 유전자 및 이들을 결실시키는 방법은 유전적으로 조작된 효모에서 상술한 바와 동일하다. The gene encoding the alcohol dehydrogenase, the gene encoding the glycerol-3-phosphate dehydrogenase and the gene encoding the 2,3-butanediol dehydrogenase and the method for deleting them are the same as described above in the genetically engineered yeast. do.

상기 아세토인이 첨가된 배지는 적어도 4 g/L 농도의 아세토인이 첨가된 것을 특징으로 하는 것일 수 있다. 상기 아세토인이 첨가된 배지는 4 g/L 농도에서 점진적으로 16.5 g/L 농도까지 증가시킬 수 있다. The medium to which acetoin is added may be characterized in that at least 4 g/L of acetoin is added. The acetoin-added medium may be gradually increased from a concentration of 4 g/L to a concentration of 16.5 g/L.

상기 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자 및 NADH 산화효소를 코딩하는 외인성 유전자 및 이들을 도입시키는 방법은 유전적으로 조작된 효모에서 상술한 바와 동일하다. The exogenous gene encoding acetolactate synthase, the exogenous gene encoding acetolactate decarboxylase and the exogenous gene encoding NADH oxidase and the method for introducing them are the same as described above in the genetically engineered yeast.

상기 ii) 단계에서 계대배양 횟수는 적어도 15회 이상일 수 있으며, 바람직하게는, 상기 ii) 단계에서 계대배양 횟수는 15회, 17회, 19회, 21회, 23회, 25회, 27회 또는 29회 이상일 수 있다. The number of passages in step ii) may be at least 15 times or more, preferably, the number of passages in step ii) is 15 times, 17 times, 19 times, 21 times, 23 times, 25 times, 27 times or 29 or more.

본 발명의 일 실시예에 있어서, 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자 및 2,3-부탄다이올 탈수소효소를 코딩하는 유전자가 결실된 효모(JHY605)에 아세토락테이트 신타아제를 코딩하는 외인성 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 외인성 유전자 및 NADH 산화효소를 코딩하는 외인성 유전자를 도입시킨 후, 4 g/L 농도에서 아세토인이 첨가된 배지로 옮겨서 37℃ 온도 및 200 rpm 조건에서 배양하여 600nm 파장에서 O.D 값이 약 1.0이 되었을 때, 효모 균주를 계대배양하는 단계를 19회 이상 반복할 수 있다. 이때, 상기 아세토인이 첨가된 배지는 4 g/L 농도에서 점진적으로 16.5 g/L 농도까지 증가시킬 수 있다.In one embodiment of the present invention, the gene encoding alcohol dehydrogenase, the gene encoding glycerol-3-phosphate dehydrogenase, and the gene encoding 2,3-butanediol dehydrogenase are deleted in yeast (JHY605) After introducing an exogenous gene encoding acetolactate synthase, an exogenous gene encoding acetolactate decarboxylase and an exogenous gene encoding NADH oxidase, it was transferred to a medium supplemented with acetoin at a concentration of 4 g/L. When the OD value becomes about 1.0 at a wavelength of 600 nm by culturing at 37 ° C. temperature and 200 rpm conditions, the step of subculturing the yeast strain can be repeated 19 times or more. In this case, the acetoin-added medium may be gradually increased from a concentration of 4 g/L to a concentration of 16.5 g/L.

ii) 단계 후, 상기 효모에 아라비노스 탈수소효소를 코딩하는 유전자, NADP-의존적 알도-케도 환원 효소를 코딩하는 유전자, NADP-의존적 3-히드록시산 탈수소효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나를 결실시키는 단계를 추가적으로 포함할 수 있다. After step ii), the yeast consists of a gene encoding arabinose dehydrogenase, a gene encoding NADP-dependent aldo-kedo reductase, a gene encoding NADP-dependent 3-hydroxy acid dehydrogenase, and combinations thereof. It may further comprise the step of deleting any one selected from the group.

아라비노스 탈수소효소를 코딩하는 유전자, NADP-의존적 알도-케도 환원 효소를 코딩하는 유전자, NADP-의존적 3-히드록시산 탈수소효소를 코딩하는 유전자 및 이들을 결실시키는 방법은 유전적으로 조작된 효모에서 상술한 바와 동일하다. The gene encoding arabinose dehydrogenase, the gene encoding NADP-dependent aldo-kedo reductase, the gene encoding NADP-dependent 3-hydroxy acid dehydrogenase, and methods for deleting them are described above in genetically engineered yeast. same as bar

본 발명의 또 다른 측면은, 상기 방법으로 제조된 아세토인 생산능이 우수한 효모를 제공한다.Another aspect of the present invention provides a yeast excellent in acetoin-producing ability prepared by the above method.

본 발명의 또 다른 측면은, i) 상기 아세토인 생산능이 우수한 효모를 배양하는 단계; 및 ii) 상기 효모로부터 생산되는 아세토인을 수득하는 단계를 포함하는 아세토인을 생산하는 방법을 제공한다. 배양 방법 및 아세토인 수득 방법은 유전적으로 조작된 효모를 이용한 아세토인을 생산하는 방법에서 상술한 바와 동일하다.Another aspect of the present invention, i) culturing the yeast excellent in the acetoin-producing ability; And ii) provides a method for producing acetoin comprising the step of obtaining acetoin produced from the yeast. The culture method and the method for obtaining acetoin are the same as those described above in the method for producing acetoin using genetically engineered yeast.

이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

제조예 1. 아세토인(acetoin) 생산능을 갖는 유전적으로 조작된 사카로마이세스 세레비지애(Preparation Example 1. Genetically engineered Saccharomyces cerevisiae having acetoin-producing ability ( S. cerevisiaeS. cerevisiae ) 균주 제작) strain production

S. cerevisiae는 에탄올을 주요 대사산물로 생산하며 이에 관여하는 유전자는 보조인자로 NADH를 사용하는 6종의 알코올 탈수소효소(ADH1, ADH2, ADH3, ADH4, ADH5, SFA1)와 NADPH를 사용하는 알코올 탈수소효소(ADH6, ADH7)가 존재한다고 보고되고 있다. 주요 대사산물인 에탄올의 생산을 줄이기 위해 adh1, adh2, adh3, adh4 및 adh5 유전자를 제거할 경우 보조인자 불균형이 발생하는데 이에 상보적으로 NADH를 사용하는 글리세롤 탈수소효소(GPD1, GPD2)에 의해 글리세롤이 주요 대사산물로 생산된다. 또한, 아세토인은 2,3-부탄다이올 탈수소효소(BDH1)에 의하여 2,3-부탄다이올로 전환된다. 따라서, 에탄올과 글리세롤, 2,3-부탄다이올의 합성경로를 모두 차단한 탈수소효소, 글리세롤-3-인산 탈수소효소, 및 2,3-부탄다이올 탈수소효소가 결손된 균주(adh1-5△ gpd1,2△, bdh1△)를 이용하여 아세토인을 생산하고자 한다(도 1). S. cerevisiae produces ethanol as a major metabolite, and the genes involved in this are six alcohol dehydrogenases (ADH1, ADH2, ADH3, ADH4, ADH5, SFA1) using NADH as a cofactor and alcohol dehydrogenase using NADPH. (ADH6, ADH7) has been reported to exist. When the adh1, adh2, adh3, adh4 and adh5 genes are removed to reduce the production of ethanol, a major metabolite, a cofactor imbalance occurs. It is produced as a major metabolite. In addition, acetoin is converted to 2,3-butanediol by 2,3-butanediol dehydrogenase (BDH1). Therefore, the dehydrogenase, glycerol-3-phosphate dehydrogenase, and 2,3-butanediol dehydrogenase that block all synthesis pathways of ethanol, glycerol, and 2,3-butanediol are deficient strains (adh1-5Δ gpd1,2Δ, bdh1Δ) to produce acetoin (Fig. 1).

상기 탈수소효소, 글리세롤-3-인산 탈수소효소, 및 2,3-부탄다이올 탈수소효소가 결손된 균주를 이용하여, 적응진화 및 형질전환을 통해 제작한 균주를 하기 표 1에 정리하였다. The strains prepared through adaptive evolution and transformation using strains deficient in the dehydrogenase, glycerol-3-phosphate dehydrogenase, and 2,3-butanediol dehydrogenase are summarized in Table 1 below.

균주명strain name 유전자형genotype JHY605JHY605 CEN.PK2-1c adh1β::loxP adh2β::loxP adh3β::loxP adh4β::loxP adh5β::loxP gpd1β::loxP gpd2β::loxP CEN.PK2-1c adh1β::loxP adh2β::loxP adh3β::loxP adh4β::loxP adh5β::loxP gpd1β::loxP gpd2β::loxP JHY901JHY901 CEN.PK2-1c adh1β::loxP adh2β::loxP adh3β::loxP adh4β::loxP adh5β::loxP gpd1β::loxP gpd2β::loxP bdh1::loxP CEN.PK2-1c adh1β::loxP adh2β::loxP adh3β::loxP adh4β::loxP adh5β::loxP gpd1β::loxP gpd2β::loxP bdh1::loxP JHY902AJHY902A JHY901 adh2β::P TDH3 -alsS-T CYC1 , P TEF -alsD-T GPM1 , P FBA1 -noxE-T FBA1 JHY901 adh2β:: P TDH3 -alsS- T CYC1 , P TEF -alsD- T GPM1 , P FBA1 -noxE- T FBA1 JHY902DJHY902D JHY901 delta::P TDH3 -alsS-T CYC1 , P TEF -alsD-T GPM1 , P FBA1 -noxE-T FBA1 JHY901 delta:: P TDH3 -alsS- T CYC1 , P TEF -alsD- T GPM1 , P FBA1 -noxE- T FBA1 JHY903JHY903 Evolved strain from JHY902DEvolved strain from JHY902D JHY903-1JHY903-1 JHY903 bdh2△ JHY903 bdh2△ JHY903-2JHY903-2 JHY903 gre3△ JHY903 gre3△ JHY903-3JHY903-3 JHY903 yjr096w△ JHY903yjr096w JHY903-4JHY903-4 JHY903 ara1△ JHY903 ara1△ JHY903-5JHY903-5 JHY903 ypr1△ JHY903 ypr1△ JHY903-6JHY903-6 JHY903 nre1△ JHY903 nre1△ JHY903-7JHY903-7 JHY903 irc24△ JHY903 irc24△ JHY903-8JHY903-8 JHY903 env9△ JHY903 env9△ JHY903-9JHY903-9 JHY903 ymr226c△ JHY903 ymr226c△ JHY903-45JHY903-45 JHY903 ara1△ ypr1△ JHY903 ara1△ ypr1△ JHY903-49JHY903-49 JHY903 ara1△ ymr226c△ JHY903 ara1△ ymr226c△ JHY903-459JHY903-459 JHY903 ara1△ ypr1△ ymr226c△ JHY903 ara1△ ypr1△ ymr226c△

아울러, 상기 표 1에 기재된 균주들을 제작하는데 사용한 플라스미드를 하기 표 2에 나타내었다. In addition, the plasmids used to construct the strains listed in Table 1 are shown in Table 2 below.

플라스미드plasmid 특징characteristic p413Gp413G CEN/ARS plasmid, HIS3, P TDH3 , T CYC1 CEN/ARS plasmid, HIS3 , P TDH3 , T CYC1 p414Gp414G CEN/ARS plasmid, TRP1, P TDH3 , T CYC1 CEN/ARS plasmid, TRP1 , P TDH3 , T CYC1 p416Gp416G CEN/ARS plasmid, URA3, P TDH3 , T CYC1 CEN/ARS plasmid, URA3 , P TDH3 , T CYC1 pUG27pUG27 Plasmid containing loxP-URA3-loxP deletion cassettePlasmid containing loxP - URA3 - loxP deletion cassette pSH63pSH63 Plasmid containing the Cre-recombinase under the control of GAL1 promoter; TRP1 Plasmid containing the Cre-recombinase under the control of GAL1 promoter; TRP1 ADH2-SDNADH2-SDN Plasmid containing P TDH3 -alsS-T CYC1 , P TEF -alsD-T GPM1 , P FBA1 -noxE-T FBA1 , and loxp-HIS-loxp flanked by 300 bp of up- and downstream of ADH2 Plasmid containing P TDH3 - alsS -T CYC1 , P TEF - alsD -T GPM1 , P FBA1 - noxE -T FBA1 , and loxp-HIS-loxp flanked by 300 bp of up- and downstream of ADH2 Delta-SDNDelta-SDN Plasmid containing P TDH3 -alsS-T CYC1 , P TEF -alsD-T GPM1 , P FBA1 -noxE-T FBA1 , and loxp-HIS-loxp flanked by YARCdelta4-1 and 2Plasmid containing P TDH3 - alsS -T CYC1 , P TEF - alsD -T GPM1 , P FBA1 - noxE -T FBA1 , and loxp-HIS-loxp flanked by YARCdelta4-1 and 2 p413G-alsSp413G-alsS p413G containing P TDH3 -alsS-T CYC1 p413G containing P TDH3 - alsS -T CYC1 p414G-alsDp414G-alsD p414G containing P TDH3 -alsD-T CYC1 p414G containing P TDH3 - alsD -T CYC1 p416F-noxEp416F-noxE p416F containing P FBA1 -noxE-T CYC1 p416F containing P FBA1 - noxE -T CYC1 p416G-ARA1p416G-ARA1 p416G containing P TDH3 -ARA1-T CYC1 p416G containing P TDH3 - ARA1 -T CYC1 p416G-YPR1p416G-YPR1 p416G containing P TDH3 -YPR1-T CYC1 p416G containing P TDH3 - YPR1 -T CYC1 p416G-YMR226Cp416G-YMR226C p416G containing P TDH3 -YMR226C-T CYC1 p416G containing P TDH3 - YMR226C -T CYC1 pET-28b(+)pET-28b(+) Km R , His6-tagged protein expression vector Km R , His 6 -tagged protein expression vector pET-ARA1-HispET-ARA1-His Ara1-His6 expression plasmidAra1-His 6 expression plasmid pET-YPR1-HispET-YPR1-His Ypr1-His6 expression plasmidYpr1-His 6 expression plasmid pET-YMR226C-HispET-YMR226C-His Ymr226c-His6 expression plasmidYmr226c-His 6 expression plasmid pET-alsS-HispET-alsS-His AlsS-His6 expression plasmidAlsS-His 6 expression plasmid p413-Cas9-ARA1 target gRNAp413-Cas9-ARA1 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -ARA1 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - ARA1 gRNA-T SUP4 p413-Cas9-BDH2 target gRNAp413-Cas9-BDH2 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -BDH2 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - BDH2 gRNA-T SUP4 p413-Cas9-YPR1 target gRNAp413-Cas9-YPR1 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -YPR1 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - YPR1 gRNA-T SUP4 p413-Cas9-GRE3 target gRNAp413-Cas9-GRE3 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -GRE3 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - GRE3 gRNA-T SUP4 p413-Cas9-YJR096W target gRNAp413-Cas9-YJR096W target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -YJR096W gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - YJR096W gRNA-T SUP4 p413-Cas9-YMR226C target gRNAp413-Cas9-YMR226C target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -YMR226C gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - YMR226C gRNA-T SUP4 p413-Cas9-NRE1 target gRNAp413-Cas9-NRE1 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -NRE1 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - NRE1 gRNA-T SUP4 p413-Cas9-IRC24 target gRNAp413-Cas9-IRC24 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -IRC24 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - IRC24 gRNA-T SUP4 p413-Cas9-ENV9 target gRNAp413-Cas9-ENV9 target gRNA CEN/ARS plasmid, HIS3, P TDH3 -CAS9- T TPI1 , P SNR52 -ENV9 gRNA-T SUP4 CEN/ARS plasmid, HIS3 , P TDH3 -CAS9- T TPI1 , P SNR52 - ENV9 gRNA-T SUP4

실시예 1. Example 1. adhadh 유전자( gene( adh1, adh2, adh3, adh4, adh5adh1, adh2, adh3, adh4, adh5 ) 및 ) and gpdgpd 유전자( gene( gpd1, gpd2gpd1, gpd2 )가 결손된 ) is missing S. cerevisiae S. cerevisiae 균주(JHY605) 제작 Strain (JHY605) production

adh 유전자(adh1, adh2, adh3, adh4, adh5) 및 gpd 유전자(gpd1, gpd2)가 결손된 S. cerevisiae 균주는 Cre/loxP 재조합 시스템을 이용하여 제작하였다. 유전자 결손을 위한 카세트는 pUG27(loxP-his5+-loxP 결손 카세트를 포함하는 플라스미드, Euroscarf, 독일) 또는 pUG72(loxP-URA3-loxP 결손 카세트를 포함하는 플라스미드, Euroscarf, 독일) 플라스미드를 주형으로 사용하여 PCR 증폭을 통해 획득하였다. 유전자 결손 카세트 제작을 위한 프라이머 세트로는, 서열번호 1 및 2(adh1), 서열번호 3 및 4(adh2), 서열번호 5 및 6(adh3), 서열번호 7 및 8(adh4), 서열번호 9 및 10(adh5), 서열번호 11 및 12(gpd1), 및 서열번호 13 및 14(gpd2)의 조합을 각각 해당 유전자를 결손시키기 위해 사용하였다. S. cerevisiae strains lacking adh genes ( adh1, adh2, adh3, adh4, adh5 ) and gpd genes ( gpd1, gpd2 ) were prepared using the Cre/loxP recombination system. The cassette for gene deletion was PCR using pUG27 (plasmid containing loxP-his5+-loxP deletion cassette, Euroscarf, Germany) or pUG72 (plasmid containing loxP-URA3-loxP deletion cassette, Euroscarf, Germany) plasmid as a template obtained through amplification. As a primer set for constructing the gene deletion cassette, SEQ ID NOs: 1 and 2 ( adh1 ), SEQ ID NOs: 3 and 4 ( adh2 ), SEQ ID NOs: 5 and 6 ( adh3 ), SEQ ID NOs: 7 and 8 ( adh 4), SEQ ID NO: Combinations of 9 and 10 ( adh5 ), SEQ ID NOs: 11 and 12 ( gpd1 ), and SEQ ID NOs: 13 and 14 ( gpd2 ) were used to delete the corresponding gene, respectively.

S. cerevisiae 균주 CEN. PK2-1C(MATaura3-52trp1-289 leu2-3,112 his3β1 MAL2-8C SUC2)(Euroscarf, 독일)에 adh 유전자(adh1, adh2, adh3, adh4, adh5) 및 gpd 유전자(gpd1, gpd2)를 결손시키기 위해, 상기 유전자 결손용 카세트를 리튬 아세테이트를 이용한 화학적 형질전환 방법을 이용하여 도입시켰다. 이후, 상기 형질전환시킨 S. cerevisiae 균주를 SC 배지(20 g/L 포도당, 6.7 g/L YNB, 적당한 아미노산 첨가물)에서 배양하였으며, 각각의 유전자가 결손된 S. cerevisiae 균주를 선별하였다. S. cerevisiae strain CEN. To delete adh genes ( adh1, adh2, adh3, adh4, adh5 ) and gpd genes ( gpd1, gpd2 ) in PK2-1C ( MATaura3-52trp1-289 leu2-3,112 his3β1 MAL2-8C SUC2 ) (Euroscarf, Germany), The cassette for the gene deletion was introduced using a chemical transformation method using lithium acetate. Then, the transformed S. cerevisiae strain was cultured in SC medium (20 g/L glucose, 6.7 g/L YNB, appropriate amino acid addition), and S. cerevisiae strains lacking each gene were selected.

이때, 확인용 프라이머로서, 각각 서열번호 15 및 16(adh1), 서열번호 17 및 18(adh2), 서열번호 19 및 20(adh3), 서열번호 21 및 22(adh4), 서열번호 23 및 24(adh5), 서열번호 25 및 26(gpd1), 및 서열번호 27 및 28(gpd2) 조합을 이용하여 해당 유전자의 결손을 확인하였다. At this time, as a primer for confirmation, SEQ ID NOs: 15 and 16 ( adh1 ), SEQ ID NOs: 17 and 18 ( adh2 ), SEQ ID NOs: 19 and 20 ( adh3 ), SEQ ID NOs: 21 and 22 ( adh4 ), SEQ ID NOs: 23 and 24 ( adh5 ), SEQ ID NOs: 25 and 26 ( gpd1 ), and SEQ ID NOs: 27 and 28 ( gpd2 ) were used in combination to confirm the deletion of the gene.

adh 유전자(adh1, adh2, adh3, adh4, adh5) 및 gpd 유전자(gpd1, gpd2)가 결손된 S. cerevisiae 균주가 지니고 있는 선별마커를 제거하기 위해, Cre 재조합효소를 발현시키는 pSH63(TRP1, Cre recombinase under the control of GAL1 promoter, Euroscarf, 독일)로 형질전환시켰으며, 선별마커 유전자가 제거된 adh 유전자(adh1, adh2, adh3, adh4, adh5) 및 gpd 유전자(gpd1, gpd2)가 결손된 S. cerevisiae 균주를"JHY605"균주(CEN.PK2-1C adh1β::loxP adh2β::loxP adh3β::loxP adh4β::loxP adh5β::loxP gpd1β::loxP gpd2β::loxP)로 명명하였다.pSH63 (TRP1, Cre recombinase) expressing Cre recombinase in order to remove the selectable markers possessed by the S. cerevisiae strain lacking the adh genes ( adh1, adh2, adh3, adh4, adh5 ) and gpd genes ( gpd1, gpd2) Under the control of GAL1 promoter, Euroscarf, Germany), the adh gene ( adh1, adh2, adh3, adh4, adh5 ) and gpd gene ( gpd1, gpd2 ) from which the selectable marker gene was removed S. cerevisiae The strain was named "JHY605" strain (CEN.PK2-1C adh1β::loxP adh2β::loxP adh3β::loxP adh4β::loxP adh5β::loxP gpd1β::loxP gpd2β::loxP ).

실시예 2. Example 2. adhadh 유전자( gene( adh1, adh2, adh3, adh4, adh5adh1, adh2, adh3, adh4, adh5 ), ), gpdgpd 유전자( gene( gpd1, gpd2gpd1, gpd2 ) 및 BDH 유전자() and the BDH gene ( bdh1bdh1 )가 결손된 ) is missing S. cerevisiae S. cerevisiae 균주(JHY901) 제작Strain (JHY901) production

실시예 1에서 제작한 JHY605 균주에 추가적으로 bdh1 유전자를 결손시킨 JHY901 균주를 제작하였다. JHY901 균주는 Cre/loxp 재조합 시스템을 이용하여 제작하였으며 실시예 1과 동일한 방법으로 수행하였다. 이때, bdh1 유전자 결손을 위한 카세트는 pUG27 플라스미드를 주형으로 사용하여, PCR 증폭을 통해 획득하였으며, bdh1 유전자 결손 카세트 제작을 위한 프라이머 세트로는 서열번호 29 및 30 조합을 이용하였다. In addition to the JHY605 strain prepared in Example 1, a JHY901 strain in which the bdh1 gene was deleted was prepared. The JHY901 strain was produced using the Cre/loxp recombination system and was performed in the same manner as in Example 1. At this time, the cassette for the bdh1 gene deletion was obtained through PCR amplification using the pUG27 plasmid as a template, and a combination of SEQ ID NOs: 29 and 30 was used as a primer set for the production of the bdh1 gene deletion cassette.

실시예 3. Example 3. adhadh 유전자( gene( adh1, adh2, adh3, adh4, adh5adh1, adh2, adh3, adh4, adh5 ), ), gpdgpd 유전자( gene( gpd1, gpd2gpd1, gpd2 ) 및 ) and bdh bdh 유전자(gene( bdh1bdh1 )가 결손되고, ) is missing, alsD, alsD alsD, alsD and noxE noxE 유전자가 도입된 gene introduced S. cerevisiae S. cerevisiae 균주(JHY902A/ JHY902D) 제작Strain (JHY902A/ JHY902D) production

아세토락테이트 신타아제로는 바실러스 서브틸리스(Bacilus subtilis) 유래의 alsS(서열번호 31의 염기서열, 서열번호 32의 아미노산 서열), 아세토락테이트 디카복실레이즈로는 바실러스 서브틸리스 유래의 alsD(서열번호 33의 염기서열, 서열번호 34의 아미노산 서열)을 각각 사용하였다. 구체적으로, alsS 유전자 및 alsD 유전자는 바실러스 서브틸리스 유전체 DNA를 주형으로 PCR(alsS 유전자: 서열번호 35 및 36의 프라이머 세트, alsD 유전자: 서열번호 37 및 38의 프라이머 세트)을 통해 확보하였다. NADH 산화 효소로는 락토코커스 락티스(Lactococcus lactis) 유래의 noxE 유전자(서열번호 45의 염기서열, 서열번호 46의 아미노산 서열)를 사용하였다. noxE 유전자는 락토코커스 락티스의 유전체 DNA를 주형으로 PCR(서열번호 47 및 48의 프라이머 세트)을 통해 확보하였다. 상동재조합을 통해 유전자 카세트를 삽입하고자 ADH2 유전자의 ADH2-1(상위 301 bp, 서열번호 129)와 ADH2-2(하위 302 bp, 서열 번호 130) 및 YARCdelta4을 절반인 YARCdelta4-1(167 bp, 서열 번호 131)와 YARCdelta4-2(170 bp, 서열 번호 132)를 S. cerevisiae의 유전체 DNA를 주형으로 사용하여 PCR(상위 302 bp: 서열번호 133 및 134의 프라이머 세트, 하위 301 bp: 서열번호 135 및 136의 프라이머 세트) (YARCdelta4-1: 서열번호 137 및 138의 프라이머 세트, YARCdelta4-2: 서열번호 139 및 140의 프라이머 세트)을 통해 확보하였다.As acetolactate synthase, alsS (base sequence of SEQ ID NO: 31, amino acid sequence of SEQ ID NO: 32) derived from Bacillus subtilis, and acetolactate decarboxylase derived from Bacillus subtilis alsD ( The nucleotide sequence of SEQ ID NO: 33 and the amino acid sequence of SEQ ID NO: 34) were used, respectively. Specifically, the alsS gene and the alsD gene were obtained through PCR (alsS gene: primer sets of SEQ ID NOs: 35 and 36, alsD gene: primer sets of SEQ ID NOs: 37 and 38) using Bacillus subtilis genomic DNA as a template. As the NADH oxidase, Lactococcus lactis-derived noxE gene (base sequence of SEQ ID NO: 45, amino acid sequence of SEQ ID NO: 46) was used. The noxE gene was obtained through PCR (primer sets of SEQ ID NOs: 47 and 48) using the genomic DNA of Lactococcus lactis as a template. In order to insert a gene cassette through homologous recombination, ADH2-1 (upper 301 bp, SEQ ID NO: 129), ADH2-2 (lower 302 bp, SEQ ID NO: 130) and YARCdelta4 of the ADH2 gene YARCdelta4-1 (167 bp, sequence No. 131) and YARCdelta4-2 (170 bp, SEQ ID NO: 132) using S. cerevisiae genomic DNA as a template, PCR (upper 302 bp: primer set of SEQ ID NOs: 133 and 134, lower 301 bp: SEQ ID NO: 135 and 136 primer set) (YARCdelta4-1: primer set of SEQ ID NOs: 137 and 138, YARCdelta4-2: primer set of SEQ ID NO: 139 and 140).

alsS 유전자 및 alsD 유전자를 과발현시키기 위해, 각각 TDH3 프로모터(서열번호 39) 및 TEF1 프로모터(서열번호 40)와 CYC1 터미네이터(서열번호 41) 및 GPM1 터미네이터(서열번호 42)를 사용하였다. TDH3 프로모터 및 TEF1 프로모터는 각각 p414GPD, p414TEF 벡터(Mumberg et al., 1995)를 SacI, SpeI 제한효소로 처리하여 얻었다. GPM1 터미네이터는 S. cerevisiae의 유전체 DNA를 주형으로 사용하여 PCR(GPM1 터미네이터: 서열번호 43 및 44의 프라이머 세트)을 통해 얻었다. 얻어진 프로모터 절편은 SacI, SpeI 제한효소를 이용하여 클로닝하였고, 터미네이터 절편은 XhoI, KpnI 제한효소를 이용하여 클로닝하였다. 또한, noxE 유전자를 과발현하기 위해, FBA1 프로모터(서열번호 49)와 FBA1 터미네이터(서열번호 50)를 사용하였다. FBA1 프로모터 및 터미네이터는 S. cerevisiae의 유전체 DNA를 주형으로 사용하여 PCR(프로모터: 서열번호 51 및 52의 프라이머 세트, 터미네이터: 서열번호 53 및 54의 프라이머 세트)을 통해 얻었다. 이후, alsS 유전자와 noxE alsD 유전자는 BamHI, XhoI 제한효소를 사용하여 클로닝하였고, 그에 따라 얻어진 벡터를 각각 p414_P TDH3 -alsS-T CYC1 , p414_P TEF1 - alsD-T GPM1 및 p414_P FBA1 -noxE-TFBA1로 명명하였다. To overexpress the alsS gene and the alsD gene, the TDH3 promoter (SEQ ID NO: 39) and the TEF1 promoter (SEQ ID NO: 40) and the CYC1 terminator (SEQ ID NO: 41) and GPM1 terminator (SEQ ID NO: 42) were used, respectively. TDH3 promoter and TEF1 promoter were obtained by treating p414GPD and p414TEF vectors (Mumberg et al., 1995) with SacI and SpeI restriction enzymes, respectively. The GPM1 terminator was obtained through PCR (GPM1 terminator: primer sets of SEQ ID NOs: 43 and 44) using S. cerevisiae genomic DNA as a template. The obtained promoter fragment was cloned using SacI and SpeI restriction enzymes, and the terminator fragment was cloned using XhoI and KpnI restriction enzymes. In addition, in order to overexpress the noxE gene, the FBA1 promoter (SEQ ID NO: 49) and the FBA1 terminator (SEQ ID NO: 50) were used. The FBA1 promoter and terminator were obtained through PCR (promoter: primer sets of SEQ ID NOs: 51 and 52, terminator: primer sets of SEQ ID NOs: 53 and 54) using S. cerevisiae genomic DNA as a template. Thereafter, the alsS gene and the noxE and alsD genes were cloned using BamHI and XhoI restriction enzymes, and the resulting vectors were respectively p414_P TDH3 - alsS -T CYC1 , p414_P TEF1 - alsD -T GPM1 and p414_P FBA1 - noxE -T FBA1 named as

최종적으로는 하나의 벡터를 사용하여 필요한 유전자를 모두 발현시키기 위하여, 앞서 클로닝 된 3종류의 벡터를 각각 주형으로 서열번호 55 및 56의 프라이머 세트를 사용하여 '프로모터-유전자-터미네이터'를 지니는 PCR 산물을 얻었다. 이 PCR 산물은 5' 말단에 MluI 제한효소 서열, 3' 말단에 AscI-NotI-MluI 서열을 갖는다. p413G 플라스미드 벡터(HIS3, P TDH3, T CYC1 )(Mumberg et al., 1995)를 BssHII 제한효소로 처리하고 PCR 산물인 P TEF1 - alsD-T GPM1 을 MluI 제한효소로 처리하여 클로닝하여 p413-D 벡터를 획득하였다. 해당 벡터에 상동재조합에 필요한 서열을 유전자 카세트 양 말단에 추가로 삽입하고자 413GPD로부터 암피실린 저항성 유전자(Amp R)와 박테리아 복제시작점(pUG ori)을 포함한 PCR 산물과 ADH2-1 (또는 YARCdelta4-1), ADH2-2 (또는 YARCdelta4-2)을 오버랩 PCR (총 3가지 절편)을 통해 연결하였고 이를 SacI 및 NotI 제한효소로 처리한 p413-D 벡터에 삽입하였다. 또한 추가적인 클로닝은 벡터의 AscI, NotI 제한효소 자리와 PCR 산물의 MluI, NotI 제한효소 자리를 이용하였다. AscI과 MluI은 동일한 접착말단(sticky end)을 형성하므로 서로 접착이 가능하고, 접착된 후에는 각 효소에 의해 더 이상 인지되지 않기 때문에 PCR 산물에 포함되어 클로닝된 새로운 AscI 제한효소 자리를 이용하여 추가적인 클로닝이 가능하다. 이러한 방법을 통하여 P TDH3 -alsS-T CYC1 및 P FBA1 -noxE-TFBA1를 순차적으로 클로닝 하였고 최종적으로 ADH2-SDN 벡터 또는 delta-SDN 벡터가 제작되었다.Finally, in order to express all the necessary genes using a single vector, a PCR product having a 'promoter-gene-terminator' using the primer sets of SEQ ID NOs: 55 and 56, respectively, as a template for each of the three types of vectors cloned above got This PCR product has an MluI restriction enzyme sequence at the 5' end and an AscI-NotI-MluI sequence at the 3' end. The p413G plasmid vector ( HIS3 , P TDH3, T CYC1 ) (Mumberg et al., 1995) was treated with BssHII restriction enzyme and the PCR product P TEF1 - alsD- T GPM1 was treated with MluI restriction enzyme and cloned into p413-D vector. has been obtained. In order to additionally insert sequences necessary for homologous recombination into the vector at both ends of the gene cassette, PCR products including the ampicillin resistance gene (Amp R) and bacterial replication origin (pUG ori) from 413GPD and ADH2-1 (or YARCdelta4-1), ADH2-2 (or YARCdelta4-2) was ligated through overlap PCR (a total of three fragments) and inserted into p413-D vector treated with SacI and NotI restriction enzymes. In addition, for additional cloning, the AscI and NotI restriction enzyme sites of the vector and the MluI and NotI restriction enzyme sites of the PCR product were used. Since AscI and MluI form the same sticky end, they can adhere to each other, and after adhesion, they are no longer recognized by each enzyme. Cloning is possible. Through this method, P TDH3 - alsS -T CYC1 and P FBA1 - noxE -T FBA1 were sequentially cloned, and finally ADH2-SDN vector or delta-SDN vector was constructed.

이후, 실시예 2에서 제조한 JHY901 균주의 결손된 adh2 유전자 자리에 alsS 유전자, alsD 유전자 및 noxE 유전자로 이루어진 아세토인 관련 유전자 삽입 카세트 I를 ADH2-SDN 플라스미드로부터 SwaI 제한효소를 처리하여 얻은 후 형질전환하였고 HIS3 선별마커는 Cre 재조합효소를 발현시키는 pSH63를 이용하여 제거하여 JHY902A 균주를 제작하였다. JHY902A 균주의 경우, 세포 성장 및 포도당 섭취 저해 현상이 나타났는데, 이는 피루브산 탈탄산효소(pyruvate decarboxylase)와 경쟁하는 아세토락테이트 탈탄산효소(alsS)의 발현 부족으로 인하여 세포 내 아세트알데히드의 축적되어 발생한 것으로 관찰되었다. Then, in the defective adh2 gene locus of the JHY901 strain prepared in Example 2, an acetoin -related gene insertion cassette I consisting of the alsS gene, alsD gene and noxE gene was obtained from the ADH2-SDN plasmid by treatment with SwaI restriction enzyme and then transformed and the HIS3 selection marker was removed using pSH63 expressing Cre recombinase to prepare JHY902A strain. In the case of strain JHY902A, inhibition of cell growth and glucose uptake was observed, which was caused by the accumulation of acetaldehyde in cells due to lack of expression of acetolactate decarboxylase (alsS), which competes with pyruvate decarboxylase. was observed to be

이에 S. cerevisiae 균주 내 수백여 개 존재하는 델타 서열을 타겟하는 다중 삽입 시스템(multi-copy integration)을 통해 alsS의 발현양을 조절하고자, 카세트 양 끝에 델타 서열이 추가된 alsS 유전자, alsD 유전자 및 noxE 유전자를 포함하는 아세토인 관련 유전자 삽입 카세트 II를 Delta-SDN 플라스미드로부터 SwaI 제한효소를 처리하여 얻은 후 JHY901 균주에 형질전환하였다. 무작위로 4개의 형질전환체(D1-D4)를 선택한 후 HIS3 선별마커는 Cre 재조합효소를 발현시키는 pSH63를 이용하여 제거하였다. 그 결과, D4 균주에서 세포 성장 및 포도당 섭취 저해 현상이 회복되었음을 확인하였으며, 이를 "JHY902D" 균주로 명명하였다. Accordingly, in order to control the expression level of alsS through a multi-copy integration that targets hundreds of delta sequences present in the S. cerevisiae strain, the alsS gene, alsD gene and noxE with delta sequences added to both ends of the cassette Acetoin-related gene insertion cassette II containing the gene was obtained from Delta-SDN plasmid by treatment with SwaI restriction enzyme, and then transformed into JHY901 strain. After randomly selecting four transformants (D1-D4), the HIS3 selection marker was removed using pSH63 expressing Cre recombinase. As a result, it was confirmed that cell growth and glucose uptake inhibition were recovered in the D4 strain, and this was named "JHY902D" strain.

실시예 4. 적응진화를 통해 아세토인 생산능이 향상된Example 4. Acetoin production improved through adaptive evolution S. cerevisiae S. cerevisiae 균주(JHY903) 선별Selection of strain (JHY903)

상기 실시예 3에서 제작한 JHY902D 균주를 아세토인 농도가 4 g/L 농도에서 점진적으로 16.5 g/L 농도까지 증가된 YPD 배지에 19회 연속적으로 계대배양하여 아세토인에 대한 저항성 및 아세토인 생산능이 증대된 JHY903 균주를 선별하였다. 그 후, JHY902D 균주와 JHY903 균주를 YPD 배지 및 18 g/L의 아세토인이 첨가된 YPD 배지에서 각각 배양하여 성장 정도를 확인하였다. The JHY902D strain prepared in Example 3 was subcultured 19 times consecutively in YPD medium in which the acetoin concentration was gradually increased from the 4 g/L concentration to the 16.5 g/L concentration, and the resistance to acetoin and the acetoin-producing ability were The enhanced JHY903 strain was selected. Thereafter, the JHY902D strain and the JHY903 strain were cultured in YPD medium and YPD medium supplemented with 18 g/L of acetoin, respectively, to confirm the growth level.

그 결과, JHY903 균주의 경우 아세토인이 첨가된 배지에서도 콜로니를 형성하는 반면, JHY902D 균주는 콜로니를 잘 형성하지 못하는 것을 확인하였다(도 2). As a result, it was confirmed that the JHY903 strain forms colonies even in the acetoin-added medium, whereas the JHY902D strain does not form colonies well (FIG. 2).

JHY903 균주와 상기 실시예 3에서 제작한 JHY902A 균주, D1 내지 D3 균주 및 JHY902D 균주의 아세토인에 대한 저항성 및 아세토인 생산능을 비교하였다. 아세토인 생산 배지로는 YPD5(50 g/L 포도당, 10 g/L yeast extract, 20 g/L bacto-peptone) 또는 YPD10(100 g/L 포도당, 10 g/L yeast extract, 20 g/L bacto-peptone)이 사용되었다. 세포 배양은 진탕배양기를 이용하여 30℃에서 170 rpm으로 진행하였다. 아세토인을 생산하기 위한 배양조건은 YPD5 배지를 사용하는 실험의 경우 초기접종 세포농도는 OD600=0.5로 고정하였고, 100 ㎖ 삼각플라스크에서 10 ㎖ 배지로 진행하였다. 또한, YPD10 배지를 사용한 실험의 경우 초기접종 세포농도는 OD600=5이며 100 ㎖ 삼각플라스크에서 10 ㎖ 배지로 진행하였다.The JHY903 strain and the JHY902A strain, D1 to D3 strain and JHY902D strain prepared in Example 3 were compared to acetoin resistance and acetoin production ability. The acetoin production medium is YPD5 (50 g/L glucose, 10 g/L yeast extract, 20 g/L bacto-peptone) or YPD10 (100 g/L glucose, 10 g/L yeast extract, 20 g/L bacto). -peptone) was used. Cell culture was performed at 30° C. at 170 rpm using a shaker incubator. As for the culture conditions for producing acetoin, in the case of an experiment using YPD5 medium, the initial inoculation cell concentration was fixed at OD 600 = 0.5, and 10 ml medium was performed in a 100 ml Erlenmeyer flask. In addition, in the case of the experiment using the YPD10 medium, the initial inoculation cell concentration was OD 600 = 5, and 10 ml medium was used in a 100 ml Erlenmeyer flask.

상기 아세토인에 대한 저항성은 시간이 경과함에 따라 아세토인 농도가 증가된 아세토인 생산 배지에서 세포농도를 측정하여 확인하였으며, 상기 아세토인을 비롯한 대사산물의 생산량은 아래와 같은 방법을 통해 확인하였다. 대사산물을 분석하기 위해, 각 균주의 배양액 800 ㎕를 원심분리하여 상등액을 얻고, 이를 0.22 ㎛ 필터로 여과하여 HPLC 분석을 진행하였다. 이때, UltiMate 3000 HPLC system(Thermo fishers scientific)을 이용하였고, BioRad Aminex HPX-87H 컬럼과 굴절률검출기(RI detector)를 사용하였다. 이동상은 5 mM 황산을 사용하였고, 유속은 0.6 ㎖/분, 온도는 60℃로 설정하였다. The resistance to the acetoin was confirmed by measuring the cell concentration in the acetoin production medium in which the acetoin concentration was increased over time, and the production of metabolites including the acetoin was confirmed by the following method. In order to analyze metabolites, 800 μl of the culture medium of each strain was centrifuged to obtain a supernatant, which was filtered through a 0.22 μm filter to perform HPLC analysis. In this case, UltiMate 3000 HPLC system (Thermo fishers scientific) was used, and a BioRad Aminex HPX-87H column and a refractive index detector (RI detector) were used. As the mobile phase, 5 mM sulfuric acid was used, the flow rate was 0.6 ml/min, and the temperature was set to 60°C.

그 결과, 도 3a 및 도 3b에 나타난 바와 같이, JHY902D 균주 및 JHY903 균주의 세포농도 및 글루코스 소모량이 JHY902A 균주 및 D1 내지 D3 균주보다 유의미하게 증가하였다. 특히, JHY903 균주의 세포농도는 JHY902A 균주 및 D1 내지 D3 균주보다 2배 이상 증가하였다. As a result, as shown in FIGS. 3A and 3B , the cell concentration and glucose consumption of the JHY902D strain and the JHY903 strain were significantly increased than that of the JHY902A strain and the D1 to D3 strains. In particular, the cell concentration of the JHY903 strain was increased more than twice that of the JHY902A strain and the D1 to D3 strains.

또한, 도 4에 나타난 바와 같이, JHY902D 균주 및 JHY903 균주의 아세토인 생산량이 유의미하게 증가한 것을 확인하였다. 특히, JHY902D 균주의 경우 아세토인뿐만 아니라 2,3-부탄다이올의 생산량이 증가한 반면, JHY903 균주의 경우 아세토인 생산량이 약 24.5% 증가하였지만, 2,3-부탄다이올과 같은 부산물의 생산량 감소하였다.In addition, as shown in FIG. 4 , it was confirmed that the acetoin production of the JHY902D strain and the JHY903 strain was significantly increased. In particular, in the case of the JHY902D strain, the production of 2,3-butanediol as well as acetoin increased, whereas in the case of the JHY903 strain, the acetoin production increased by about 24.5%, but the production of by-products such as 2,3-butanediol decreased. did.

실시예 5. 적응진화된 Example 5 Adaptive Evolution S. cerevisiaeS. cerevisiae 균주(JHY903)의 유전자 돌연변이 분석 Gene mutation analysis of strain (JHY903)

상기 실시예 4에서 선별한 적응진화된 JHY903 균주의 게놈을 마크로젠에 의뢰하여 염기서열을 분석하였다. 그 결과, 유전체 내 총 4개의 유전자가 돌연변이 되었음이 확인되었으며, 돌연변이된 유전자에 대한 정보를 하기 표 3에 나타내었다.The genome of the adapted-evolved JHY903 strain selected in Example 4 was requested to Macrogen and the nucleotide sequence was analyzed. As a result, it was confirmed that a total of four genes in the genome were mutated, and information on the mutated genes is shown in Table 3 below.

유전자gene 돌연변이 종류type of mutation 아미노산 변화amino acid changes EMP46EMP46 Missense(TTG->TTT)Missense(TTG->TTT) 160Leu->Phe160Leu->Phe PEP7PEP7 Missense(CAA->AAA)Missense (CAA->AAA) 169Gln->Lys169Gln->Lys SUR1SUR1 Missense(CAT->TAT)Missense(CAT->TAT) 176His->Tyr176His->Tyr HXK2HXK2 Nonsense(GGA->TGA)Nonsense(GGA->TGA) 252Gly->Stop252Gly->Stop

실시예 6. 아라비노스 탈수소효소(ARA1) 유전자 또는 2,3-부탄다이올 생산과 관련된 유전자 추가 결손 균주(JHY903-X) 제작Example 6. arabinose dehydrogenase (ARA1) gene or 2,3-butanediol production related gene addition deletion strain (JHY903-X) production

JHY903 균주는 두가지 효소(AlsS, AlsD) 반응에 의하여 R-아세토인 타입을 주요 아세토인 입체이성질체로서 생산하였다. 한편, 2,3-부탄다이올 탈수소효소(BDH1)은 아세토인에 대해(R)-입체 특이적 알코올 환원효소 활성을 가지며 아라비노스 탈수소효소(ARA1)는 아세토인에 대해(S)-입체 특이적 알코올 환원효소 활성을 가진다는 것이 알려져 있다. 이에, 2,3-부탄다이올의 생산을 줄이기 위해, JHY903 균주에서 bdh2 유전자, gre3 유전자, yjr096w 유전자, ara1 유전자, ypr1 유전자, nre1 유전자, irc24 유전자, env9 유전자 또는 ymr226c 유전자를 추가 결손시켰다. JHY903 strain produced R-acetoin type as a major acetoin stereoisomer by two enzymes (AlsS, AlsD) reaction. On the other hand, 2,3-butanediol dehydrogenase (BDH1) has (R)-stereospecific alcohol reductase activity for acetoin, and arabinose dehydrogenase (ARA1) has (S)-stereospecific for acetoin. It is known to have red alcohol reductase activity. Accordingly, in order to reduce the production of 2,3-butanediol, the bdh2 gene, the gre3 gene , the yjr096w gene, the ara1 gene, the ypr1 gene , the nre1 gene, the irc24 gene, the env9 gene or the ymr226c gene were further deleted in the JHY903 strain.

유전자를 결손시키는 방법으로 CRISPR/Cas9 시스템으로서, Coex413-Cas9-target gene gRNA 플라스미드를 이용하였다. 이때, Coex413-Cas9-target gene gRNA 플라스미드는 실시예 3의 p413-SDN 플라스미드 제조방법과 동일하게 수행하였으며, 이때, 각각의 결손 유전자는 하기 표 4에 기재된 프라이머 세트를 이용하였다. As a method of deleting a gene, a Coex413-Cas9-target gene gRNA plasmid was used as the CRISPR/Cas9 system. At this time, the Coex413-Cas9-target gene gRNA plasmid was performed in the same manner as in Example 3 for preparing the p413-SDN plasmid, and the primer sets described in Table 4 below were used for each defective gene.

서열정보 sequence information 서열번호SEQ ID NO: ARA1 target gRNA FARA1 target gRNA F TACGAATGGCTCTGTCTCGTGTTTTAGAGCTAGAAATAGC TACGAATGGCTCTGTCTCGT GTTTTAGAGCTAGAAATAGC 5757 ARA1 target gRNA RARA1 target gRNA R ACGAGACAGAGCCATTCGTAGATCATTTATCTTTCACTGC ACGAGACAGAGCCATTCGTA GATCATTTATTCTTTCACTGC 5858 BDH2 target gRNA FBDH2 target gRNA F AAGGTAGTTGTCGAGCCCACGTTTTAGAGCTAGAAATAGC AAGGTAGTTGTCGAGCCCAC GTTTTAGAGCTAGAAATAGC 5959 BDH2 target gRNA RBDH2 target gRNA R GTGGGCTCGACAACTACCTTGATCATTTATCTTTCACTGC GTGGGCTCGACAACTACCTT GATCATTTATTCTTTCACTGC 6060 YPR1 target gRNA FYPR1 target gRNA F ATGCAAGAGTTGCCAAAGACGTTTTAGAGCTAGAAATAGC ATGCAAGAGTTGCCAAAGAC GTTTTAGAGCTAGAAATAGC 6161 YPR1 target gRNA RYPR1 target gRNA R GTCTTTGGCAACTCTTGCATGATCATTTATCTTTCACTGC GTCTTTGGCAACTCTTGCAT GATCATTTATTCTTTCACTGC 6262 GRE3 target gRNA FGRE3 target gRNA F TGGTTGTAGAATCAAGCCCGGTTTTAGAGCTAGAAATAGC TGGTTGTAGAATCAAGCCCG GTTTTAGAGCTAGAAATAGC 6363 GRE3 target gRNA RGRE3 target gRNA R CGGGCTTGATTCTACAACCAGATCATTTATCTTTCACTGCG CGGGCTTGATTCTACAACCA GATCATTTATTCTTTCACTGCG 6464 YJR096W target gRNA FYJR096W target gRNA F AGAAGCGGTTGATGAAGGATGTTTTAGAGCTAGAAATAGC AGAAGCGGTTGATGAAGGAT GTTTTAGAGCTAGAAATAGC 6565 YJR096W target gRNA RYJR096W target gRNA R ATCCTTCATCAACCGCTTCTGATCATTTATCTTTCACTGC ATCCTTCATCAACCGCTTCT GATCATTTATTCTTTCACTGC 6666 YMR226C target gRNA FYMR226C target gRNA F AGTTAGATACAGAGGTAACGGTTTTAGAGCTAGAAATAGC AGTTAGATACAGAGGTAACG GTTTTAGAGCTAGAAATAGC 6767 YMR226C target gRNA RYMR226C target gRNA R CGTTACCTCTGTATCTAACTGATCATTTATCTTTCACTGC CGTTACCTCTGTATCTAACT GATCATTTATTCTTTCACTGC 6868 NRE1 target gRNA FNRE1 target gRNA F AGGTATCGGTAAGTCCATCGGTTTTAGAGCTAGAAATAGC AGGTATCGGTAAGTCCATCG GTTTTAGAGCTAGAAATAGC 6969 NRE1 target gRNA RNRE1 target gRNA R CGATGGACTTACCGATACCTGATCATTTATCTTTCACTGCG CGATGGACTTACCGATACCT GATCATTTATTCTTTCACTGCG 7070 IRC24 target gRNA FIRC24 target gRNA F CGTCTACGGCGTAGCAAGAAGTTTTAGAGCTAGAAATAGC CGTCTACGGCGTAGCAAGAA GTTTTAGAGCTAGAAATAGC 7171 IRC24 target gRNA RIRC24 target gRNA R TTCTTGCTACGCCGTAGACGGATCATTTATCTTTCACTGCG TTCTTGCTACGCCGTAGAC GGATCATTTATTCTTTCACTGCG 7272 ENV9 target gRNA FENV9 target gRNA F AGGAAGATTGCTGTAGTAACGTTTTAGAGCTAGAAATAGC AGGAAGATTGCTGTAGTAAC GTTTTAGAGCTAGAAATAGC 7373 ENV9 target gRNA RENV9 target gRNA R GTTACTACAGCAATCTTCCTGATCATTTATCTTTCACTGCG GTTACTACAGCAATCTTCCT GATCATTTATCTTTCACTGCG 7474

이후, 하기 표 5의 프라이머 및 PCR을 이용해 각각의 해당 유전자 결손을 확인하였다. Thereafter, each corresponding gene deletion was confirmed using the primers and PCR of Table 5 below.

서열정보sequence information 서열번호SEQ ID NO: ARA1 upstream FARA1 upstream F GCCTCCACCTTAACATCTTAGCCTCCACCTTAACATCTTA 7575 ARA1 downstream RARA1 downstream R ACGTACGGCGAATGATTATAACGTACGGCGAATGATTATA 7676 BDH2 upstream FBDH2 upstream F GCATTGGTTAGCTCAGATATGCATTGGTTAGCTCAGATAT 7777 BDH2 downstream RBDH2 downstream R CTGCCCCACTTTTAT ATGTCCTGCCCCACTTTTAT ATGTC 7878 YPR1 upstream FYPR1 upstream F AGCCTATTTGGAAAAGACTGAGCCTATTTGGAAAAGACTG 7979 YPR1 downstream RYPR1 downstream R CAGTAGAAGCGCAACTAGTACAGTAGAAGCGCAACTAGTA 8080 GRE3 upstream FGRE3 upstream F TGTTTCCCAATTGTTGCTGGTGTTTCCCAATTGTTGCTGG 8181 GRE3 downstream RGRE3 downstream R TTGGGACCGCTTTGCTCTCTTTGGGACCGCTTTGCTCTCT 8282 YJR096W upstream FYJR096W upstream F TTGTCCTTATTTGAGGCTCCTTGTCCTTATTTGAGGCTCC 8383 YJR096W downstream RYJR096W downstream R ATTGCGCTTATCTTTTGGCAATTGCGCTTATCTTTTGGCA 8484 YMR226C upstream FYMR226C upstream F AACACTCGACCAGAACGATCAACACTCGACCAGAACGATC 8585 YMR226C downstream RYMR226C downstream R CAGCCTAGTTTAGCCAAATCCAGCCTAGTTTAGCCAAATC 8686 NRE1 upstream FNRE1 upstream F TCAATATCTCCGCTACAACGTCAATATCTCCGCTACAACG 8787 NRE1 downstream RNRE1 downstream R GATGTAATGTGACGGCAGCCGATGTAATGTGACGGCAGCC 8888 IRC24 upstream FIRC24 upstream F TTCTTGTCAACAGGTGCTAGTTCTTGTCAACAGGTGCTAG 8989 IRC24 downstream RIRC24 downstream R TTACCGATACCTCTGGAAACTTACCGATACCTCTGGAAAC 9090 ENV9 upstream FENV9 upstream F ATTGAGCCACAGGTCTTTCGATTGAGCCACAGGTCTTTCG 9191 ENV9 downstream RENV9 downstream R AGATCCAAGCCTGATAGACCAGATCCAAGCCTGATAGACC 9292

사용한 Coex413-Cas9-target gene gRNA 플라스미드는 YPD 배지에 약 18시간 배양하여 제거하였다. 상기 추가 결손시킨 JHY903-1 내지 JHY903-9 균주는 YPD(50 g/L 포도당, 10 g/L yeast extract, 20 g/L bacto-peptone)에서 배양하였다. Coex413-Cas9-target gene gRNA 플라스미드를 포함하는 균주의 경우 SC-HWU배지(20 g/L 포도당, 6.7 g/L YNB, 히스티딘, 트립토판, 우라실을 제외한 아미노산 첨가물)에서 배양하였다. 아세토인을 생산하기 위한 배양조건은 YPD5 또는 SC-HWU 배지를 사용하는 실험의 경우 초기접종 세포농도는 OD600=0.5으로 고정하였고, 100 ㎖ 삼각플라스크에서 10 ㎖ 배지로 진행하였다. 실시예 4와 동일한 방법으로 세포농도, 아세토인 생산량 및 2,3-부탄다이올 생산량을 측정하였다. 그 결과, 상기 JHY903-1 내지 JHY903-9 균주 중에서 JHY903-2 균주 및 JHY903-6 균주의 세포농도가 JHY903 균주에 비해 감소하였으며, 글루코스 흡수율에서는 유의미한 차이가 나타나지 않았다(도 5a 및 도 5b). 또한, 대사산물 생산량과 관련하여, JHY903-4 균주의 경우, 2,3-부탄다이올 생산량이 약 36.1% 감소하였으나, 아세토인의 생산량은 JHY903 균주에 비해 유의미하게 증가하지 않았다. 또한, JHY903-4 균주의 경우 ara1 유전자를 제거하였음에도 불구하고 여전히 2,3-부탄다이올이 생산되었고, 이를 통해, 2,3-부탄다이올 생산에 관여하는 효소가 여전히 세포 내 존재하는 것을 알 수 있었다. 또한, JHY903-2, JHY903-5 및 JHY 903-7 균주에서 2,3-부탄다이올 생산량이 감소됨을 확인하였다. 이들 균주들 중에서 JHY903-5 균주의 경우, 아세토인의 생산량이 JHY903 균주에 비해 유의미하게 증가하였다(도 6).The used Coex413-Cas9-target gene gRNA plasmid was removed by culturing in YPD medium for about 18 hours. The further deficient JHY903-1 to JHY903-9 strains were cultured in YPD (50 g/L glucose, 10 g/L yeast extract, 20 g/L bacto-peptone). In the case of the strain containing the Coex413-Cas9-target gene gRNA plasmid, it was cultured in SC-HWU medium (with amino acids added except for 20 g/L glucose, 6.7 g/L YNB, histidine, tryptophan, and uracil). In the case of an experiment using YPD5 or SC-HWU medium as the culture conditions for producing acetoin, the initial inoculation cell concentration was fixed at OD 600 = 0.5, and 10 ml medium was used in a 100 ml Erlenmeyer flask. Cell concentration, acetoin production and 2,3-butanediol production were measured in the same manner as in Example 4. As a result, among the JHY903-1 to JHY903-9 strains, the cell concentrations of the JHY903-2 strain and the JHY903-6 strain were reduced compared to the JHY903 strain, and there was no significant difference in glucose uptake ( FIGS. 5A and 5B ). In addition, with respect to metabolite production, in the case of the JHY903-4 strain, the production of 2,3-butanediol decreased by about 36.1%, but the production of acetoin did not increase significantly compared to the JHY903 strain. In addition, in the case of the JHY903-4 strain, 2,3-butanediol was still produced despite the removal of the ara1 gene, and through this, it was found that the enzyme involved in the production of 2,3-butanediol is still present in the cell. could In addition, it was confirmed that the production of 2,3-butanediol was reduced in JHY903-2, JHY903-5 and JHY 903-7 strains. Among these strains, in the case of the JHY903-5 strain, the production of acetoin was significantly increased compared to the JHY903 strain (FIG. 6).

실시예 7. Example 7. In vitroin vitro 분석을 통한 ARA1, YPR1 및 YMR226C 효소들의 아세토인에 대한 반응성 확인 Confirmation of reactivity to acetoin of ARA1, YPR1 and YMR226C enzymes through analysis

ARA1, YPR1 또는 YMR226C 효소가 아세토인을 2,3-부탄다이올로 환원시키는지 여부를 직접적으로 확인하고자, C-말단에 His6를 태그한 각 단백질을 Ni-NTA 시스템을 통해 정제한 후 라세믹 아세토인(3R/S-아세토인)과 보조인자(NADH 혹은 NADPH)를 첨가하여 반응시킨 후 반응물질을 분석하였다. In order to directly check whether ARA1, YPR1 or YMR226C enzymes reduce acetoin to 2,3-butanediol, each protein tagged with His 6 at the C-terminus was purified through Ni-NTA system and then subjected to race Mixed acetoin (3R/S-acetoin) and cofactors (NADH or NADPH) were added and reacted, and then the reactants were analyzed.

이때, C-말단에 His6가 결합된 ARA1, YPR1 또는 YMR226C 효소를 정제하기 위해, 대장균 Rogetta gami2(DE3)를 사용하였다. 각각의 효소 및 His6를 코딩하는 유전자가 적재된 플라스미드를 제작하기 위해, 하기 표 6에 기재된 프라이머를 이용하여 각각의 유전자를 확보한 후, NcoI 및 NotI의 제한효소가 처리된 pET-28b 벡터에 동일한 제한효소가 처리된 각각의 유전자를 결합시켜 C-말단에 His6를 붙인 YPR1, 또는 YMR226C 효소를 코딩하는 유전자가 적재된 pET-YPR1-His 및 pET-YMR226C-His 플라스미드를 제작하였고 PscI과 NotI의 제한효소가 처리된 ARA1 유전자를 결합시켜 pET-ARA1-His 플라스미드를 제작하였다.At this time, to purify the ARA1, YPR1 or YMR226C enzyme having His 6 bound to the C-terminus, Escherichia coli Rogetta gami2 (DE3) was used. To construct a plasmid loaded with each enzyme and a gene encoding His 6 , each gene was secured using the primers shown in Table 6 below, and then in the pET-28b vector treated with restriction enzymes of NcoI and NotI. By combining each gene treated with the same restriction enzyme, pET-YPR1-His and pET-YMR226C-His plasmids loaded with a gene encoding YPR1 or YMR226C enzyme with His 6 attached to the C-terminus were constructed. PscI and NotI A pET-ARA1-His plasmid was prepared by binding the ARA1 gene treated with a restriction enzyme.

서열정보sequence information 서열번호SEQ ID NO: ARA1 for pET PscI FARA1 for pET PscI F TCGAACATGTCCTCTTCTTCAGTAGCCTCAACTCGA ACATGT CCTCTTCTTCAGTAGCCTCAAC 9393 ARA1 for pET NotI RARA1 for pET NotI R TCGAGCGGCCGCATACTTTAAATTGTCCAAGTTTGGTCGA GCGGCCGC ATACTTTAAATTGTCCAAGTTTGG 9494 YPR1 for pET NcoI FYPR1 for pET NcoI F TCGACCATGGGTCCTGCTACGTTAAAGAATTCTCGA CCATGG GTCCTGCTACGTTAAAGAATTC 9595 YPR1 for pET NotI RYPR1 for pET NotI R TCGAGCGGCCG CTTGGAAAATTGGGAAGGATCTCGA GCGGCCG C TTGGAAAATTGGGAAGGATC 9696 YMR226C for pET NcoI FYMR226C for pET NcoI F TCGACCATGGGTTCCCAAGGTAGAAAAGCTGCTCGA CCATGG GTTCCCAAGGTAGAAAAGCTGC 9797 YMR226C for pET NotI RYMR226C for pET NotI R TCGAGCGGCCGCTCCACGGAAGATATGATGAGTCGA GCGGCCGC TCCACGGAAGATATGATGAG 9898

각각의 pET-ARA1-His, pET-YPR1-His 및 pET-YMR226C-His 플라스미드로 형질전환된 대장균은 30 ㎍/㎖ 카나마이신과 20 ㎍/㎖ 클로람페니콜이 포함된 LB 배지에 접종한 후 37℃에서 O.D600 값이 0.8 내지 1.0에 도달할 때까지 배양하였다. 1 mM IPTG를 첨가한 후 30℃에서 5시간 배양하여 단백질 발현을 유도하였다. 원심 분리를 통해 세포를 모은 후, 0.1% protease inhibitor cocktail과 1 mM PMSF(phenylmethylsulfonyl fluoride)가 포함된 결합버퍼(50 mM Tris-HCl(pH8.0) 100 mM NaCl, 5 mM imidazole, 0.1 mM EDTA)에 현탁한 후 초음파 파쇄기를 이용하여 세포를 용해(20초-on, 10초-off 주기로 30분 동안 수행)하였다. 원심분리를 통해 상등액을 얻은 후 HisPur Ni-NTA 레진과 4℃에서 1시간 30분 동안 반응시켰다. 그 후 Ni-NTA 레진을 워시 버퍼(40 mM Tris-HCl(pH 8.0), 500 mM NaCl, 50 mM imidazole, 0.1 mM EDTA)를 이용하여 세척한 후, Econo-Pac® 크로마토그래피 컬럼에 로딩하였다. 용출 버퍼(50 mM Tris-HCl(pH 8.0), 50 mM NaCl, 300 mM imidazole, 0.1 mM EDTA)를 이용하여 각각의 효소를 용리한 후, 1.2% SDS-PAGE를 이용하여 단백질 순도를 확인하였다. 순도 확인 후, 높은 순도를 가진 부분만 모아 Microcon-30kDa Centrifugal Filter Unit을 이용하여 반응 버퍼로 버퍼 교환을 수행하였다. 상기 수득한 ARA1, YPR1과 YMR226C 효소의 입체특이성과 선택성을 확인하기 위해, 125 μM의 각 효소와 5 mM(R/S)-아세토인, 5 mM NADH 또는 NADPH가 포함된 50 mM Tris-HCl(pH 7.0) 버퍼에 약 24시간 동안 반응시켰다. E. coli transformed with each of the pET-ARA1-His, pET-YPR1-His and pET-YMR226C-His plasmids was inoculated into an LB medium containing 30 μg/ml kanamycin and 20 μg/ml chloramphenicol and then OD at 37°C. Incubate until 600 values reached 0.8-1.0. Protein expression was induced by incubation at 30° C. for 5 hours after addition of 1 mM IPTG. After collecting the cells by centrifugation, a binding buffer containing 0.1% protease inhibitor cocktail and 1 mM PMSF (phenylmethylsulfonyl fluoride) (50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 5 mM imidazole, 0.1 mM EDTA) Cells were lysed (20 sec-on, 10 sec-off cycle for 30 minutes) using an ultrasonic disruptor after suspension. After obtaining the supernatant through centrifugation, it was reacted with HisPur Ni-NTA resin at 4°C for 1 hour and 30 minutes. Thereafter, the Ni-NTA resin was washed with a wash buffer (40 mM Tris-HCl (pH 8.0), 500 mM NaCl, 50 mM imidazole, 0.1 mM EDTA) and loaded onto an Econo-Pac® chromatography column. After each enzyme was eluted using an elution buffer (50 mM Tris-HCl (pH 8.0), 50 mM NaCl, 300 mM imidazole, 0.1 mM EDTA), protein purity was confirmed using 1.2% SDS-PAGE. After confirming the purity, only parts with high purity were collected and buffer exchange was performed with the reaction buffer using a Microcon-30kDa Centrifugal Filter Unit. In order to confirm the stereospecificity and selectivity of the ARA1, YPR1 and YMR226C enzymes obtained above, 50 mM Tris-HCl containing 125 μM of each enzyme, 5 mM (R/S)-acetoin, 5 mM NADH or NADPH ( pH 7.0) in the buffer for about 24 hours.

대사산물을 분석하기 위하여 배양액 800 ㎕를 원심분리하여 상등액을 얻고, 이를 0.22 μm 필터로 여과하여 HPLC 분석을 진행하였다. UltiMate 3000 HPLC system(Thermo fishers scientific)을 이용하였고, BioRad Aminex HPX-87H 컬럼과 굴절률검출기(RI detector)를 사용하였다. 그 후, 아세토인과 2,3-부탄다이올 입체이성질체를 분석하기 위해, HPLC 분석 샘플을 에틸 아세테이트를 1:1로 혼합한 후 추출하였고, GC(gas chromatography) 분석을 진행하였다. 상기 GC 분석은 β-DEXTM 120 컬럼이 장착된 450-GC(Bruker)의 FID(275℃)와 헬륨을 운반기체(25 ㎖/min)로 사용하였다. 컬럼의 온도는 75℃에서 8분 동안 유지하였고, 분당 2℃씩 증가시켜 85℃에 도달한 후 14분 동안 유지시켰다.In order to analyze metabolites, 800 μl of the culture medium was centrifuged to obtain a supernatant, which was filtered through a 0.22 μm filter to perform HPLC analysis. UltiMate 3000 HPLC system (Thermo fishers scientific) was used, and BioRad Aminex HPX-87H column and refractive index detector (RI detector) were used. Then, in order to analyze the stereoisomers of acetoin and 2,3-butanediol, the HPLC analysis sample was extracted after mixing 1:1 with ethyl acetate, and GC (gas chromatography) analysis was performed. For the GC analysis, FID (275° C.) of 450-GC (Bruker) equipped with a β-DEXTM 120 column and helium were used as carrier gases (25 ml/min). The temperature of the column was maintained at 75° C. for 8 minutes, increased by 2° C. per minute to reach 85° C., and then maintained for 14 minutes.

그 결과, ARA1, YPR1, 및 YMR226C 효소가 아세토인을 2,3-부탄다이올로 전환하는 것을 확인하였다(도 7). 구체적으로, ARA1 효소 및 YPR1 효소의 반응물을 각각 분석한 결과, 라세믹 아세토인으로부터 S,S-2,3-부탄다이올 및 meso-2,3-부탄다이올이 생산되었고, 이는 해당 효소들이 아세토인에 대한(S)-입체특이적 알코올 형성 환원효소 활성을 가진다는 것을 의미한다. 또한, YPR1 효소의 경우 3R-아세토인에 대한 입체 선택성이 높다는 것을 확인하였다. 반면, YMR226C 효소의 경우(S)-알코올 형성 환원효소 활성뿐만 아니라(R)-알코올 형성 환원효소 활성을 가지며 3S-아세토인에 대한 입체 선택성이 높았다. ARA1 효소와 YPR1 효소는 NADH와 NADPH를 모두 조효소로 사용하지만 YMR226C 효소의 경우 NADPH만을 선택적으로 사용하여 아세토인을 2,3-부탄다이올로 환원시켰다.As a result, it was confirmed that ARA1, YPR1, and YMR226C enzymes convert acetoin to 2,3-butanediol (FIG. 7). Specifically, as a result of analyzing the reaction products of the ARA1 enzyme and the YPR1 enzyme, respectively, S,S-2,3-butanediol and meso-2,3-butanediol were produced from racemic acetoin, which It means that it has (S)-stereospecific alcohol-forming reductase activity for acetoin. In addition, it was confirmed that the YPR1 enzyme had high stereoselectivity for 3R-acetoin. On the other hand, the YMR226C enzyme had (S)-alcohol-forming reductase activity as well as (R)-alcohol-forming reductase activity and high stereoselectivity for 3S-acetoin. ARA1 enzyme and YPR1 enzyme used both NADH and NADPH as coenzymes, but YMR226C enzyme reduced acetoin to 2,3-butanediol by selectively using only NADPH.

실시예 8. 아라비노스 탈수소 효소(ARA1) 또는 NADP-의존적 알도-케도 환원 효소 (YPR1)가 과발현된 균주의 대사산물 생산능 확인Example 8. Metabolite-producing ability of strains overexpressed with arabinose dehydrogenase (ARA1) or NADP-dependent aldo-kedo reductase (YPR1)

상기 실시예 7에서 2,3-부탄다이올로의 환원 효과를 확인한 ARA1 효소 및YPR1 효소를 각각 JHY903 균주에 과발현시키는 경우 meso-2,3-부탄다이올의 생산량이 증가하는지 확인하기 위해, ARA1 효소 및 YPR1 효소를 각각 JHY903 균주에 과발현 시킨 후, 실시예 4와 동일한 방법으로 균주의 세포농도, 아세토인 생산량 및 2,3-부탄다이올 생산량을 측정하였다. In Example 7, when the ARA1 enzyme and the YPR1 enzyme, each of which confirmed the reduction effect of 2,3-butanediol, were overexpressed in the JHY903 strain, to determine whether the production of meso-2,3-butanediol was increased, ARA1 After the enzyme and YPR1 enzyme were overexpressed in the JHY903 strain, respectively, the cell concentration, acetoin production and 2,3-butanediol production of the strain were measured in the same manner as in Example 4.

먼저, 효모 세포 내 ARA1 및 YPR1 효소를 과발현하는 플라스미드를 제조하기 위해, 하기 표 7에 기재된 프라이머를 이용하여 각각의 유전자를 확보하였다. 이 후, SpeI 및 BamHI의 제한효소가 처리된 p416G 벡터에 NheI 및 BamHI의 제한효소가 처리된 ARA1 유전자를 결합시켜 p416G-ARA1을 제작하였다. 또한, SpeI 및 XhoI이 처리된 p416G 벡터에 동일한 제한효소가 처리된 YPR1 유전자를 결합시켜 p416G-YPR1을 제작하였다.First, in order to prepare a plasmid that overexpresses ARA1 and YPR1 enzymes in yeast cells, each gene was secured using the primers shown in Table 7 below. Thereafter, the ARA1 gene treated with NheI and BamHI restriction enzymes was ligated to the p416G vector treated with SpeI and BamHI restriction enzymes to construct p416G-ARA1. In addition, the YPR1 gene treated with the same restriction enzymes was bound to the p416G vector treated with SpeI and XhoI to construct p416G-YPR1.

서열정보sequence information 서열번호SEQ ID NO: ARA1 for pRS NheI FARA1 for pRS NheI F TCGAGCTAGCATGTCTTCTTCAGTAGCCTCTCGA GCTAGC ATGTCTTCTTCAGTAGCCTC 9999 ARA1 for pRS BamH1 RARA1 for pRS BamH1 R TCGAGGATCCTTAATACTTTAAATTGTCCAAGTTTGTCGA GGATCC TTAATACTTTAAATTGTCCAAGTTTG 100100 YPR1 for pRS SpeI FYPR1 for pRS SpeI F TCGAACTAGTATGCCTGCTACGTTAAAGAATCGA ACTAGT ATGCCTGCTACGTTAAAGAA 101101 YPR1 for pRS XhoI RYPR1 for pRS XhoI R TCGACTCGAGTCATTGGAAAATTGGGAAGGATCGA CTCGAG TCATTGGAAAATTGGGAAGGA 102102

리튬 아세테이트를 이용한 화학적 형질전환 방법을 이용하여 JHY903 균주에 p413G (HIS3, P TDH3, T CYC1 )(Mumberg et al., 1995), p414G (TRP1, P TDH3, T CYC1 )(Mumberg et al., 1995), 및 p416G (URA3, P TDH3, T CYC1 )(Mumberg et al., 1995) 플라스미드를 넣어 JHY903 [EV] 균주를 제조하였다. 또한, p413G, p414G, 및 p416G-ARA1 플라스미드를 넣어 ARA1 효소를 과발현하는 JHY903 균주 (이하, JHY903 [ARA1]) 및 p413G, p414G, 및 p416G-YPR1 플라스미드를 넣어 YPR1 효소를 과발현하는 JHY903 균주 (이하, JHY903 [YPR1])을 제조하였다. p413G ( HIS3 , P TDH3 , T CYC1 ) (Mumberg et al., 1995), p414G ( TRP1 , P TDH3, T CYC1 ) (Mumberg et al., 1995) using a chemical transformation method using lithium acetate. ), and p416G ( URA3 , P TDH3 , T CYC1 ) (Mumberg et al., 1995) plasmids were added to prepare JHY903 [EV] strain. In addition, the JHY903 strain containing p413G, p414G, and p416G-ARA1 plasmids to overexpress the ARA1 enzyme (hereinafter, JHY903 [ARA1]) and the JHY903 strain containing the p413G, p414G, and p416G-YPR1 plasmids to overexpress the YPR1 enzyme (hereinafter referred to as JHY903 strain) JHY903 [YPR1]) was prepared.

그 결과, JHY903 균주와 비교하여 JHY903 [ARA1] 및 JHY903 [YPR1]의 세포농도 및 글루코스 소모량에서는 유의미한 차이가 나타나지 않았다(도 8a 및 도 8b). 한편, JHY903 균주와 비교하여 JHY903 [ARA1] 균주 및 JHY903 [YPR1] 균주의 2,3-부탄다이올의 생산량이 유의미하게 증가하였다(도 9a). 또한, JHY903 균주뿐만 아니라, JHY903 [ARA1] 균주 및 JHY903 [YPR1] 균주 모두 아세토인 생산량이 높은 것을 확인하였다(도 9b).As a result, there was no significant difference in the cell concentration and glucose consumption of JHY903 [ARA1] and JHY903 [YPR1] compared to the JHY903 strain ( FIGS. 8a and 8b ). On the other hand, compared with the JHY903 strain, the production of 2,3-butanediol of the JHY903 [ARA1] strain and the JHY903 [YPR1] strain was significantly increased (FIG. 9a). In addition, it was confirmed that not only the JHY903 strain, but also the JHY903 [ARA1] strain and the JHY903 [YPR1] strain showed high acetoin production (Fig. 9b).

실시예 9.Example 9. Meso-2,3-부탄다이올 생산 경로가 차단된 최종 균주 및 이의 아세토인 생산능 확인Confirmation of the final strain in which the meso-2,3-butanediol production pathway is blocked and its acetoin-producing ability

ypr1 유전자 및 ymr226c 유전자들의 제거를 통해 Meso-2,3-부탄다이올 생산 경로가 차단시켜 아세토인 생산능이 증가된 균주를 제작하고자 하였다. 먼저, Meso-2,3-부탄다이올 생산을 줄이기 위하여 ara1 유전자 및 ypr1 유전자가 추가로 결손된 균주(JHY903-45)를 제작하였으며, 나아가, ara1 유전자, ypr1 유전자 및 ymr226c 유전자가 추가로 결손된 균주(JHY903-459)를 제작하였다. 이때, JHY903 균주, JHY903-4 균주, JHY903-45 균주 및 JHY903-459 균주는 실시예 6과 동일한 방법으로 유전자를 추가로 결손시켰으며, 실시예 4와 동일한 방법으로 세포농도 및 아세토인 및 meso-2,3-부탄다이올의 생산량을 확인하였다. 상기 균주들의 대사산물 생산량을 하기 표 8에 정리하여 나타내었다. By removing the ypr1 gene and the ymr226c gene, the Meso-2,3-butanediol production pathway was blocked to produce a strain with increased acetoin-producing ability. First, in order to reduce the production of Meso-2,3-butanediol, a strain (JHY903-45) in which the ara1 gene and the ypr1 gene were further deleted was prepared, and furthermore, the ara1 gene, the ypr1 gene and the ymr226c gene were further deleted. A strain (JHY903-459) was prepared. At this time, the JHY903 strain, the JHY903-4 strain, the JHY903-45 strain and the JHY903-459 strain were further deleted genes in the same manner as in Example 6, and the cell concentration and acetoin and meso- in the same manner as in Example 4 The production of 2,3-butanediol was confirmed. The production of metabolites of the strains is summarized in Table 8 below.

Strainstrain DescriptionDescription Fermentation time(h)Fermentation time(h) Products(g/L)Products(g/L) Productivity
of acetoin
(g/(L·h))
Productivity
of acetoin
(g/(L h))
Yield
of acetoin
(g/g glucose)
Yield
of acetoin
(g/g glucose)
GlycerolGlycerol EthanolEthanol R,R/S,S-2,3-BDOR,R/S,S-2,3-BDO Meso-2,3-BDOMeso-2,3-BDO AcetoinAcetoin Batch flask fermentation Batch flask fermentation JHY903JHY903 Evolved strain of adh1-5β gpd1,2β bdh1β delta::alsS-alsD-noxE Evolved strain of adh1-5β gpd1,2β bdh1β delta::alsS-alsD-noxE 2828 0.26±0.000.26±0.00 0.06±0.000.06±0.00 0.07±0.020.07±0.02 0.51±0.060.51±0.06 22.70±0.0522.70±0.05 0.811±0.0020.811±0.002 0.447±0.0000.447±0.000 JHY903-4JHY903-4 JHY903 ara1β JHY903 ara1β 2828 0.30±0.070.30±0.07 0.05±0.000.05±0.00 0.09±0.000.09±0.00 0.36±0.020.36±0.02 22.77±0.0722.77±0.07 0.813±0.0030.813±0.003 0.448±0.0000.448±0.000 JHY903-45JHY903-45 JHY903 ara1β ypr1β JHY903 ara1β ypr1β 2828 0.25±0.000.25±0.00 0.06±0.000.06±0.00 0.08±0.000.08±0.00 0.19±0.000.19±0.00 23.04±0.0523.04±0.05 0.823±0.0020.823±0.002 0.454±0.0000.454±0.000 JHY903-459JHY903-459 JHY903 ara1β ypr1β ymr226cβ JHY903 ara1β ypr1β ymr226cβ 2828 0.34±0.080.34±0.08 0.05±0.000.05±0.00 0.11±0.000.11±0.00 0.19±0.010.19±0.01 24.76±0.1324.76±0.13 0.884±0.0050.884±0.005 0.488±0.0010.488±0.001

그 결과, JHY903-45 균주의 경우, meso-2,3-부탄다이올의 생산량이 JHY903 균주에 비해 약 47.2% 감소되었다. JHY903-459 균주의 경우, 50.73 g/L의 포도당으로부터 약 24.76 g/L의 아세토인을 생산하였으며, 이는 이론 생산 수율의 약 99.78%에 미치는 효율인 것을 확인하였다(도 10a, 도 10b 및 도 11). As a result, in the case of the JHY903-45 strain, the production of meso-2,3-butanediol was reduced by about 47.2% compared to the JHY903 strain. In the case of the JHY903-459 strain, it was confirmed that about 24.76 g/L of acetoin was produced from 50.73 g/L of glucose, which was an efficiency of about 99.78% of the theoretical production yield ( FIGS. 10a, 10b and 11 ). ).

<110> Seoul National University R&DB Foundation <120> GENETICALLY ENGINEERED YEAST HAVING ACETOIN PRODUCING ABILITY AND METHOD FOR PRODUCTING ACETOIN USING THE SAME <130> FPD/202003-0098 <160> 140 <170> KoPatentIn 3.0 <210> 1 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH1 deletion <400> 1 ttcaagctat accaagcata caatcaacta tctcatatac acagctgaag cttcgtacgc 60 60 <210> 2 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH1 deletion <400> 2 cttatttaat aataaaaatc ataaatcata agaaattcgc gcataggcca ctagtggat 59 <210> 3 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2 deletion <400> 3 tacaatcaac tatcaactat taactatatc gtaatacaca cagctgaagc ttcgtacgc 59 <210> 4 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2 deletion <400> 4 ataatgaaaa ctataaatcg taaagacata agagatccgc gcataggcca ctagtggat 59 <210> 5 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH3 deletion <400> 5 gttaaaacta ggaatagtat agtcataagt taacaccatc cagctgaagc ttcgtacgc 59 <210> 6 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH3 deletion <400> 6 acaaagactt tcataaaaag tttgggtgcg taacacgcta gcataggcca ctagtggat 59 <210> 7 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH4 deletion <400> 7 caagtttaca tttgcaacaa ctaatagtca aataagaaaa cagctgaagc ttcgtacgc 59 <210> 8 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH4 deletion <400> 8 gcacacgcat aattgacgtt tatgagttcg ttcgattttt gcataggcca ctagtggat 59 <210> 9 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH5 deletion <400> 9 agaaaattat ttaactacat atctacaaaa tcaaagcatc cagctgaagc ttcgtacgc 59 <210> 10 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH5 deletion <400> 10 taaaaagtaa aaatatattc atcaaattcg ttacaaaaga gcataggcca ctagtggat 59 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD1 deletion <400> 11 cacccccccc ctccacaaac acaaatattg ataatataaa gcagctgaag cttcgtacgc 60 60 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD1 deletion <400> 12 aagtggggga aagtatgata tgttatcttt ctccaataaa tgcataggcc actagtggat 60 60 <210> 13 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD2 deletion <400> 13 tctctttccc tttccttttc cttcgctccc cttccttatc acagctgaag cttcgtacgc 60 60 <210> 14 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD2 deletion <400> 14 ggcaacagga aagatcagag ggggaggggg ggggagagtg tgcataggcc actagtggat 60 60 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH1 deletion <400> 15 caccatatcc gcaatgac 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH1 deletion <400> 16 gtgttgtcct ctgaggac 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH2 deletion <400> 17 accgggcatc tccaactt 18 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH2 deletion <400> 18 ccatgtctac agtttagagg 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH3 deletion <400> 19 atgagcagca gccattttg 19 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH3 deletion <400> 20 tgatggtgat aatgtctctc a 21 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH4 deletion <400> 21 aagaactagt ttttagttcg cg 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH4 deletion <400> 22 agaacttccg ttcttctttt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH5 deletion <400> 23 ctgctatctg cttgtagaag 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH5 deletion <400> 24 gaaacgtttg tataggttgt 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD1 deletion <400> 25 cgccttgctt ctctcccctt 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD1 deletion <400> 26 ccgacagcct ctgaatgagt 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD2 deletion <400> 27 tacggaccta ttgccattgt 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD2 deletion <400> 28 ttaagggcta tagataacag 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for BDH1 deletion <400> 29 gatttgctca cgctactttg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for BDH1 deletion <400> 30 gccatgcttt gttttagacg 20 <210> 31 <211> 1713 <212> DNA <213> Artificial Sequence <220> <223> Bacillus subtilis alsS <400> 31 atgacaaaag caacaaaaga acaaaaatcc cttgtgaaaa acagaggggc ggagcttgtt 60 gttgattgct tagtggagca aggtgtcaca catgtatttg gcattccagg tgcaaaaatt 120 gatgcggtat ttgacgcttt acaagataaa ggacctgaaa ttatcgttgc ccggcacgaa 180 caaaacgcag cattcatggc ccaagcagtc ggccgtttaa ctggaaaacc gggagtcgtg 240 ttagtcacat caggaccggg tgcctctaac ttggcaacag gcctgctgac agcgaacact 300 gaaggagacc ctgtcgttgc gcttgctgga aacgtgatcc gtgcagatcg tttaaaacgg 360 acacatcaat ctttggataa tgcggcgcta ttccagccga ttacaaaata cagtgtagaa 420 gttcaagatg taaaaaatat accggaagct gttacaaatg catttaggat agcgtcagca 480 gggcaggctg gggccgcttt tgtgagcttt ccgcaagatg ttgtgaatga agtcacaaat 540 acgaaaaacg tgcgtgctgt tgcagcgcca aaactcggtc ctgcagcaga tgatgcaatc 600 agtgcggcca tagcaaaaat ccaaacagca aaacttcctg tcgttttggt cggcatgaaa 660 ggcggaagac cggaagcaat taaagcggtt cgcaagcttt tgaaaaaggt tcagcttcca 720 tttgttgaaa catatcaagc tgccggtacc ctttctagag atttagagga tcaatatttt 780 ggccgtatcg gtttgttccg caaccagcct ggcgatttac tgctagagca ggcagatgtt 840 gttctgacga tcggctatga cccgattgaa tatgatccga aattctggaa tatcaatgga 900 gaccggacaa ttatccattt agacgagatt atcgctgaca ttgatcatgc ttaccagcct 960 gatcttgaat tgatcggtga cattccgtcc acgatcaatc atatcgaaca cgatgctgtg 1020 aaagtggaat ttgcagagcg tgagcagaaa atcctttctg atttaaaaca atatatgcat 1080 gaaggtgagc aggtgcctgc agattggaaa tcagacagag cgcaccctct tgaaatcgtt 1140 aaagagttgc gtaatgcagt cgatgatcat gttacagtaa cttgcgatat cggttcgcac 1200 gccatttgga tgtcacgtta tttccgcagc tacgagccgt taacattaat gatcagtaac 1260 ggtatgcaaa cactcggcgt tgcgcttcct tgggcaatcg gcgcttcatt ggtgaaaccg 1320 ggagaaaaag tggtttctgt ctctggtgac ggcggtttct tattctcagc aatggaatta 1380 gagacagcag ttcgactaaa agcaccaatt gtacacattg tatggaacga cagcacatat 1440 gacatggttg cattccagca attgaaaaaa tataaccgta catctgcggt cgatttcgga 1500 aatatcgata tcgtgaaata tgcggaaagc ttcggagcaa ctggcttgcg cgtagaatca 1560 ccagaccagc tggcagatgt tctgcgtcaa ggcatgaacg ctgaaggtcc tgtcatcatc 1620 gatgtcccgg ttgactacag tgataacatt aatttagcaa gtgacaagct tccgaaagaa 1680 ttcggggaac tcatgaaaac gaaagctctc tag 1713 <210> 32 <211> 570 <212> PRT <213> Artificial Sequence <220> <223> Bacillus subtilis alsS <400> 32 Met Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg Gly 1 5 10 15 Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His Val 20 25 30 Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln 35 40 45 Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala 50 55 60 Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val 65 70 75 80 Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu 85 90 95 Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val 100 105 110 Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala 115 120 125 Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val 130 135 140 Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala 145 150 155 160 Gly Gln Ala Gly Ala Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn 165 170 175 Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu 180 185 190 Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ile Ala Lys Ile Gln 195 200 205 Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro 210 215 220 Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu Pro 225 230 235 240 Phe Val Glu Thr Tyr Gln Ala Ala Gly Thr Leu Ser Arg Asp Leu Glu 245 250 255 Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly Asp 260 265 270 Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp Pro 275 280 285 Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr Ile 290 295 300 Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln Pro 305 310 315 320 Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile Glu 325 330 335 His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile Leu 340 345 350 Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala Asp 355 360 365 Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu Arg 370 375 380 Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser His 385 390 395 400 Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr Leu 405 410 415 Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp Ala 420 425 430 Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Val Ser 435 440 445 Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala Val 450 455 460 Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr Tyr 465 470 475 480 Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser Ala 485 490 495 Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe Gly 500 505 510 Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val Leu 515 520 525 Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro Val 530 535 540 Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys Glu 545 550 555 560 Phe Gly Glu Leu Met Lys Thr Lys Ala Leu 565 570 <210> 33 <211> 768 <212> DNA <213> Artificial Sequence <220> <223> Bacillus subtilis alsD <400> 33 atgaaacgag aaagcaacat tcaagtgctc agccgtggtc aaaaagatca gcctgtgagc 60 cagatttatc aagtatcaac aatgacttct ctattagacg gagtatatga cggagatttt 120 gaactgtcag agattccgaa atatggagac ttcggtatcg gaacctttaa caagcttgac 180 ggagagctga ttgggtttga cggcgaattt taccgtcttc gctcagacgg aaccgcgaca 240 ccggtccaaa atggagaccg ttcaccgttc tgttcattta cgttctttac accggacatg 300 acgcacaaaa ttgatgcgaa aatgacacgc gaagactttg aaaaagagat caacagcatg 360 ctgccaagca gaaacttatt ttatgcaatt cgcattgacg gattgtttaa aaaggtgcag 420 acaagaacag tagaacttca agaaaaacct tacgtgccaa tggttgaagc ggtcaaaaca 480 cagccgattt tcaacttcga caacgtgaga ggaacgattg taggtttctt gacaccagct 540 tatgcaaacg gaatcgccgt ttctggctat cacctgcact tcattgacga aggacgcaat 600 tcaggcggac acgtttttga ctatgtgctt gaggattgca cggttacgat ttctcaaaaa 660 atgaacatga atctcagact tccgaacaca gcggatttct ttaatgcgaa tctggataac 720 cctgattttg cgaaagatat cgaaacaact gaaggaagcc ctgaataa 768 <210> 34 <211> 255 <212> PRT <213> Artificial Sequence <220> <223> Bacillus subtilis alsD <400> 34 Met Lys Arg Glu Ser Asn Ile Gln Val Leu Ser Arg Gly Gln Lys Asp 1 5 10 15 Gln Pro Val Ser Gln Ile Tyr Gln Val Ser Thr Met Thr Ser Leu Leu 20 25 30 Asp Gly Val Tyr Asp Gly Asp Phe Glu Leu Ser Glu Ile Pro Lys Tyr 35 40 45 Gly Asp Phe Gly Ile Gly Thr Phe Asn Lys Leu Asp Gly Glu Leu Ile 50 55 60 Gly Phe Asp Gly Glu Phe Tyr Arg Leu Arg Ser Asp Gly Thr Ala Thr 65 70 75 80 Pro Val Gln Asn Gly Asp Arg Ser Pro Phe Cys Ser Phe Thr Phe Phe 85 90 95 Thr Pro Asp Met Thr His Lys Ile Asp Ala Lys Met Thr Arg Glu Asp 100 105 110 Phe Glu Lys Glu Ile Asn Ser Met Leu Pro Ser Arg Asn Leu Phe Tyr 115 120 125 Ala Ile Arg Ile Asp Gly Leu Phe Lys Lys Val Gln Thr Arg Thr Val 130 135 140 Glu Leu Gln Glu Lys Pro Tyr Val Pro Met Val Glu Ala Val Lys Thr 145 150 155 160 Gln Pro Ile Phe Asn Phe Asp Asn Val Arg Gly Thr Ile Val Gly Phe 165 170 175 Leu Thr Pro Ala Tyr Ala Asn Gly Ile Ala Val Ser Gly Tyr His Leu 180 185 190 His Phe Ile Asp Glu Gly Arg Asn Ser Gly Gly His Val Phe Asp Tyr 195 200 205 Val Leu Glu Asp Cys Thr Val Thr Ile Ser Gln Lys Met Asn Met Asn 210 215 220 Leu Arg Leu Pro Asn Thr Ala Asp Phe Phe Asn Ala Asn Leu Asp Asn 225 230 235 240 Pro Asp Phe Ala Lys Asp Ile Glu Thr Thr Glu Gly Ser Pro Glu 245 250 255 <210> 35 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsS <400> 35 ctgaggatcc atgacaaaag caacaaaaga ac 32 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsS <400> 36 ctgactcgag ctagagagct ttcgttttca 30 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsD <400> 37 ctgaggatcc atgaaacgag aaagcaacat 30 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsD <400> 38 ctgactcgag ttattcaggg cttccttcag 30 <210> 39 <211> 644 <212> DNA <213> Artificial Sequence <220> <223> TDH3 promoter <400> 39 tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60 aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120 tagggggcgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agtttattcc 180 tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240 tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300 cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360 atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420 cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaa 480 aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540 taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600 gttagtcttt tttttagttt taaaacacca gaacttagtt tcga 644 <210> 40 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> TEF1 promoter <400> 40 atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca 60 tcgccgtacc acttcaaaac acccaagcac agcatactaa atttcccctc tttcttcctc 120 tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt 180 tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaaat 240 tttttttttg atttttttct ctttcgatga cctcccattg atatttaagt taataaacgg 300 tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt tttttacttc 360 ttgctcatta gaaagaaagc atagcaatct aatctaagtt t 401 <210> 41 <211> 248 <212> DNA <213> Artificial Sequence <220> <223> CYC1 terminator <400> 41 tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 60 aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240 taatttgc 248 <210> 42 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> GPM1 terminator <400> 42 gtctgaagaa tgaatgattt gatgatttct ttttccctcc atttttctta ctgaatatat 60 caatgatata gacttgtata gtttattatt tcaaattaag tagctatata tagtcaagat 120 aacgtttgtt tgacacgatt acattattcg tcgacatctt ttttcagcct gtcgtggtag 180 caatttgagg agtattatta attgaatagg ttcattttgc gctcgcataa acagttttcg 240 tcagggacag tatgttggaa tgagtggtaa ttaatggtga catgacatgt tatagcaata 300 accttgatgt ttacatcgta gtttaatgta caccccgcga attcgttcaa gtaggagtgc 360 accaattgca aagggaaaag ctgaatgggc agttcgaata g 401 <210> 43 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPM1 terminator <400> 43 gtcactcgag gtctgaagaa tgaatgattt g 31 <210> 44 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPM1 terminator <400> 44 gtcaggtacc tattcgaact gcccattca 29 <210> 45 <211> 1341 <212> DNA <213> Artificial Sequence <220> <223> Lactococcus lactis noxE <400> 45 atgaaaatcg tagttatcgg tacgaaccac gcaggcattg ctacagcaaa tacattaatt 60 gatcgatatc caggccatga gattgttatg attgaccgta acagtaatat gagttacttg 120 gggtgtggga cagctatttg ggtcggaaga caaattgaaa aaccagatga gctgttttat 180 gccaaagcag aagattttga aaaaaaggga gtaaagatat taacagaaac agaagtttca 240 gaaattgact ttactaataa aatgatttat gccaagtcaa aaactggaga aaagattaca 300 gaaagttatg ataaactcgt tctggcaaca ggttcacgtc caattattcc taacttgcca 360 ggaaaagatc ttaaaggcat tcatttttta aaactttttc aagaagggca agccattgac 420 gaagagtttg ctaagaatga tgtgaaacgg attgctgtga ttggtgctgg ttatattggg 480 acagaaattg ctgaagctgc caaacgtcgt ggaaaagaag tcctactttt tgatgcagaa 540 agtacttcac ttgcttcata ttatgatgaa gagtttgcta aagggatgga tgaaaatctt 600 gcccaacatg gaattgaact ccattttggg gaattagctc aagagtttaa ggcaaatgaa 660 aaaggtcatg tatcacagat tgtaactaat aaatcaactt atgatgttga cctcgttatt 720 aattgtattg gctttacagc caatagtgca ttggctggtg aacatttaga aacctttaaa 780 aatggagcaa tcaaagtgga taaacatcaa caaagtagtg acccagatgt ttctgctgta 840 ggagatgttg ccacaatcta ttctaatgct ttacaagact tcacctacat tgcccttgcc 900 tcaaacgctg ttcgctcagg gattgttgct ggtcataata ttggaggaaa atcaatagag 960 tctgttggtg tacaaggttc taatggaatc tctatttttg gttacaatat gacttctacg 1020 ggcttgtcgg ttaaagctgc gaaaaaaatc ggcctagaag tttcatttag tgattttgaa 1080 gataagcaaa aagcatggtt ccttcatgaa aataatgata gtgtgaaaat tcgtatcgtt 1140 tatgaaacaa aaaatcgcag aattattggt gctcaacttg ctagcaagag tgaaataatt 1200 gcaggaaata ttaatatgtt tagtttagct attcaagaaa agaaaacgat tgatgaatta 1260 gccttacttg atttattctt cttaccacac ttcaatagtc catataatta catgactgtt 1320 gcagctttaa atgcaaaata a 1341 <210> 46 <211> 446 <212> PRT <213> Artificial Sequence <220> <223> Lactococcus lactis noxE <400> 46 Met Lys Ile Val Val Ile Gly Thr Asn His Ala Gly Ile Ala Thr Ala 1 5 10 15 Asn Thr Leu Ile Asp Arg Tyr Pro Gly His Glu Ile Val Met Ile Asp 20 25 30 Arg Asn Ser Asn Met Ser Tyr Leu Gly Cys Gly Thr Ala Ile Trp Val 35 40 45 Gly Arg Gln Ile Glu Lys Pro Asp Glu Leu Phe Tyr Ala Lys Ala Glu 50 55 60 Asp Phe Glu Lys Lys Gly Val Lys Ile Leu Thr Glu Thr Glu Val Ser 65 70 75 80 Glu Ile Asp Phe Thr Asn Lys Met Ile Tyr Ala Lys Ser Lys Thr Gly 85 90 95 Glu Lys Ile Thr Glu Ser Tyr Asp Lys Leu Val Leu Ala Thr Gly Ser 100 105 110 Arg Pro Ile Ile Pro Asn Leu Pro Gly Lys Asp Leu Lys Gly Ile His 115 120 125 Phe Leu Lys Leu Phe Gln Glu Gly Gln Ala Ile Asp Glu Glu Phe Ala 130 135 140 Lys Asn Asp Val Lys Arg Ile Ala Val Ile Gly Ala Gly Tyr Ile Gly 145 150 155 160 Thr Glu Ile Ala Glu Ala Ala Lys Arg Arg Gly Lys Glu Val Leu Leu 165 170 175 Phe Asp Ala Glu Ser Thr Ser Leu Ala Ser Tyr Tyr Asp Glu Glu Phe 180 185 190 Ala Lys Gly Met Asp Glu Asn Leu Ala Gln His Gly Ile Glu Leu His 195 200 205 Phe Gly Glu Leu Ala Gln Glu Phe Lys Ala Asn Glu Lys Gly His Val 210 215 220 Ser Gln Ile Val Thr Asn Lys Ser Thr Tyr Asp Val Asp Leu Val Ile 225 230 235 240 Asn Cys Ile Gly Phe Thr Ala Asn Ser Ala Leu Ala Gly Glu His Leu 245 250 255 Glu Thr Phe Lys Asn Gly Ala Ile Lys Val Asp Lys His Gln Gln Ser 260 265 270 Ser Asp Pro Asp Val Ser Ala Val Gly Asp Val Ala Thr Ile Tyr Ser 275 280 285 Asn Ala Leu Gln Asp Phe Thr Tyr Ile Ala Leu Ala Ser Asn Ala Val 290 295 300 Arg Ser Gly Ile Val Ala Gly His Asn Ile Gly Gly Lys Ser Ile Glu 305 310 315 320 Ser Val Gly Val Gln Gly Ser Asn Gly Ile Ser Ile Phe Gly Tyr Asn 325 330 335 Met Thr Ser Thr Gly Leu Ser Val Lys Ala Ala Lys Lys Ile Gly Leu 340 345 350 Glu Val Ser Phe Ser Asp Phe Glu Asp Lys Gln Lys Ala Trp Phe Leu 355 360 365 His Glu Asn Asn Asp Ser Val Lys Ile Arg Ile Val Tyr Glu Thr Lys 370 375 380 Asn Arg Arg Ile Ile Gly Ala Gln Leu Ala Ser Lys Ser Glu Ile Ile 385 390 395 400 Ala Gly Asn Ile Asn Met Phe Ser Leu Ala Ile Gln Glu Lys Lys Thr 405 410 415 Ile Asp Glu Leu Ala Leu Leu Asp Leu Phe Phe Leu Pro His Phe Asn 420 425 430 Ser Pro Tyr Asn Tyr Met Thr Val Ala Ala Leu Asn Ala Lys 435 440 445 <210> 47 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for noxE <400> 47 gactaagctt atgaaaatcg tagttatcgg t 31 <210> 48 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for noxE <400> 48 gactctcgag ttattttgca tttaaagctg ca 32 <210> 49 <211> 821 <212> DNA <213> Artificial Sequence <220> <223> FBA1 pormoter <400> 49 atccaactgg caccgctggc ttgaacaaca ataccagcct tccaacttct gtaaataacg 60 gcggtacgcc agtgccacca gtaccgttac ctttcggtat acctcctttc cccatgtttc 120 caatgccctt catgcctcca acggctacta tcacaaatcc tcatcaagct gacgcaagcc 180 ctaagaaatg aataacaata ctgacagtac taaataattg cctacttggc ttcacatacg 240 ttgcatacgt cgatatagat aataatgata atgacagcag gattatcgta atacgtaata 300 gttgaaaatc tcaaaaatgt gtgggtcatt acgtaaataa tgataggaat gggattcttc 360 tatttttcct ttttccattc tagcagccgt cgggaaaacg tggcatcctc tctttcgggc 420 tcaattggag tcacgctgcc gtgagcatcc tctctttcca tatctaacaa ctgagcacgt 480 aaccaatgga aaagcatgag cttagcgttg ctccaaaaaa gtattggatg gttaatacca 540 tttgtctgtt ctcttctgac tttgactcct caaaaaaaaa aaatctacaa tcaacagatc 600 gcttcaatta cgccctcaca aaaacttttt tccttcttct tcgcccacgt taaattttat 660 ccctcatgtt gtctaacgga tttctgcact tgatttatta taaaaagaca aagacataat 720 acttctctat caatttcagt tattgttctt ccttgcgtta ttcttctgtt cttctttttc 780 ttttgtcata tataaccata accaagtaat acatattcaa a 821 <210> 50 <211> 202 <212> DNA <213> Artificial Sequence <220> <223> FBA1 terminator <400> 50 gttaattcaa attaattgat atagtttttt aatgagtatt gaatctgttt agaaataatg 60 gaatattatt tttatttatt tatttatatt attggtcggc tcttttcttc tgaaggtcaa 120 tgacaaaatg atatgaagga aataatgatt tctaaaattt tacaacgtaa gatattttta 180 caaaagccta gctcatcttt tg 202 <210> 51 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 promoter <400> 51 gtcagagctc atccaactgg caccgctg 28 <210> 52 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 promoter <400> 52 gtcagagctc atccaactgg caccgctg 28 <210> 53 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 terminator <400> 53 gtcactcgag taagttaatt caaattaatt gatatag 37 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 terminator <400> 54 gtcaggtacc caaaagatga gctaggcttt 30 <210> 55 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Universal F primer <400> 55 gactacgcgt ggaacaaaag ctggagctc 29 <210> 56 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Universal R primer <400> 56 gactacgcgt gcggccgcta atggcgcgcc atagggcgaa ttgggtacc 49 <210> 57 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ARA1 target gRNA F <400> 57 tacgaatggc tctgtctcgt gttttagagc tagaaatagc 40 <210> 58 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ARA1 target gRNA R <400> 58 acgagacaga gccattcgta gatcatttat ctttcactgc 40 <210> 59 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> BDH2 target gRNA F <400> 59 aaggtagttg tcgagcccac gttttagagc tagaaatagc 40 <210> 60 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> BDH2 target gRNA R <400> 60 gtgggctcga caactacctt gatcatttat ctttcactgc 40 <210> 61 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YPR1 target gRNA F <400> 61 atgcaagagt tgccaaagac gttttagagc tagaaatagc 40 <210> 62 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YPR1 target gRNA R <400> 62 gtctttggca actcttgcat gatcatttat ctttcactgc 40 <210> 63 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> GRE3 target gRNA F <400> 63 tggttgtaga atcaagcccg gttttagagc tagaaatagc 40 <210> 64 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> GRE3 target gRNA R <400> 64 cgggcttgat tctacaacca gatcatttat ctttcactgc g 41 <210> 65 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YJR096W target gRNA F <400> 65 agaagcggtt gatgaaggat gttttagagc tagaaatagc 40 <210> 66 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YJR096W target gRNA R <400> 66 atccttcatc aaccgcttct gatcatttat ctttcactgc 40 <210> 67 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YMR226C target gRNA F <400> 67 agttagatac agaggtaacg gttttagagc tagaaatagc 40 <210> 68 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YMR226C target gRNA R <400> 68 cgttacctct gtatctaact gatcatttat ctttcactgc 40 <210> 69 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> NRE1 target gRNA F <400> 69 aggtatcggt aagtccatcg gttttagagc tagaaatagc 40 <210> 70 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> NRE1 target gRNA R <400> 70 cgatggactt accgatacct gatcatttat ctttcactgc g 41 <210> 71 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> IRC24 target gRNA F <400> 71 cgtctacggc gtagcaagaa gttttagagc tagaaatagc 40 <210> 72 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> IRC24 target gRNA R <400> 72 ttcttgctac gccgtagacg gatcatttat ctttcactgc g 41 <210> 73 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ENV9 target gRNA F <400> 73 aggaagattg ctgtagtaac gttttagagc tagaaatagc 40 <210> 74 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> ENV9 target gRNA R <400> 74 gttactacag caatcttcct gatcatttat ctttcactgc g 41 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ARA1 upstream F <400> 75 gcctccacct taacatctta 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ARA1 downstream R <400> 76 acgtacggcg aatgattata 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BDH2 upstream F <400> 77 gcattggtta gctcagatat 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BDH2 downstream R <400> 78 ctgccccact tttatatgtc 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YPR1 upstream F <400> 79 agcctatttg gaaaagactg 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YPR1 downstream R <400> 80 cagtagaagc gcaactagta 20 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRE3 upstream F <400> 81 tgtttcccaa ttgttgctgg 20 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRE3 downstream R <400> 82 ttgggaccgc tttgctctct 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YJR096W upstream F <400> 83 ttgtccttat ttgaggctcc 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YJR096W downstream R <400> 84 attgcgctta tcttttggca 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YMR226C upstream F <400> 85 aacactcgac cagaacgatc 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YMR226C downstream R <400> 86 cagcctagtt tagccaaatc 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRE1 upstream F <400> 87 tcaatatctc cgctacaacg 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRE1 downstream R <400> 88 gatgtaatgt gacggcagcc 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IRC24 upstream F <400> 89 ttcttgtcaa caggtgctag 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IRC24 downstream R <400> 90 ttaccgatac ctctggaaac 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ENV9 upstream F <400> 91 attgagccac aggtctttcg 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ENV9 downstream R <400> 92 agatccaagc ctgatagacc 20 <210> 93 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> ARA1 for pET PscI F <400> 93 tcgaacatgt cctcttcttc agtagcctca ac 32 <210> 94 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ARA1 for pET NotI R <400> 94 tcgagcggcc gcatacttta aattgtccaa gtttgg 36 <210> 95 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YPR1 for pET NcoI F <400> 95 tcgaccatgg gtcctgctac gttaaagaat tc 32 <210> 96 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YPR1 for pET NotI R <400> 96 tcgagcggcc gcttggaaaa ttgggaagga tc 32 <210> 97 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YMR226C for pET NcoI F <400> 97 tcgaccatgg gttcccaagg tagaaaagct gc 32 <210> 98 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YMR226C for pET NotI R <400> 98 tcgagcggcc gctccacgga agatatgatg ag 32 <210> 99 <211> 348 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH1 <400> 99 Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 5 10 15 Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu 195 200 205 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 235 240 His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 260 265 270 Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 100 <211> 1047 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH1 <400> 100 atgtctatcc cagaaactca aaaaggtgtt atcttctacg aatcccacgg taagttggaa 60 tacaaagata ttccagttcc aaagccaaag gccaacgaat tgttgatcaa cgttaaatac 120 tctggtgtct gtcacactga cttgcacgct tggcacggtg actggccatt gccagttaag 180 ctaccattag tcggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca acaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ccgacttggc ccaagtcgcc cccatcttgt gtgctggtat caccgtctac 480 aaggctttga agtctgctaa cttgatggcc ggtcactggg ttgctatctc cggtgctgct 540 ggtggtctag gttctttggc tgttcaatac gccaaggcta tgggttacag agtcttgggt 600 attgacggtg gtgaaggtaa ggaagaatta ttcagatcca tcggtggtga agtcttcatt 660 gacttcacta aggaaaagga cattgtcggt gctgttctaa aggccactga cggtggtgct 720 cacggtgtca tcaacgtttc cgtttccgaa gccgctattg aagcttctac cagatacgtt 780 agagctaacg gtaccaccgt tttggtcggt atgccagctg gtgccaagtg ttgttctgat 840 gtcttcaacc aagtcgtcaa gtccatctct attgttggtt cttacgtcgg taacagagct 900 gacaccagag aagctttgga cttcttcgcc agaggtttgg tcaagtctcc aatcaaggtt 960 gtcggcttgt ctaccttgcc agaaatttac gaaaagatgg aaaagggtca aatcgttggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 101 <211> 348 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH2 <400> 101 Met Ser Ile Pro Glu Thr Gln Lys Ala Ile Ile Phe Tyr Glu Ser Asn 1 5 10 15 Gly Lys Leu Glu His Lys Asp Ile Pro Val Pro Lys Pro Lys Pro Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Thr Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Glu 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Arg Ala Gly His Trp Ala Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Pro Gly Lys Glu 195 200 205 Glu Leu Phe Thr Ser Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Ser Ala Val Val Lys Ala Thr Asn Gly Gly Ala 225 230 235 240 His Gly Ile Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Cys Arg Ala Asn Gly Thr Val Val Leu Val Gly Leu Pro 260 265 270 Ala Gly Ala Lys Cys Ser Ser Asp Val Phe Asn His Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Ser Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Ala Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 102 <211> 1047 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH2 <400> 102 atgtctattc cagaaactca aaaagccatt atcttctacg aatccaacgg caagttggag 60 cataaggata tcccagttcc aaagccaaag cccaacgaat tgttaatcaa cgtcaagtac 120 tctggtgtct gccacaccga tttgcacgct tggcatggtg actggccatt gccaactaag 180 ttaccattag ttggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca agaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ctgacttggc tgaagtcgcg ccaatcttgt gtgctggtat caccgtatac 480 aaggctttga agtctgccaa cttgagagca ggccactggg cggccatttc tggtgctgct 540 ggtggtctag gttctttggc tgttcaatat gctaaggcga tgggttacag agtcttaggt 600 attgatggtg gtccaggaaa ggaagaattg tttacctcgc tcggtggtga agtattcatc 660 gacttcacca aagagaagga cattgttagc gcagtcgtta aggctaccaa cggcggtgcc 720 cacggtatca tcaatgtttc cgtttccgaa gccgctatcg aagcttctac cagatactgt 780 agggcgaacg gtactgttgt cttggttggt ttgccagccg gtgcaaagtg ctcctctgat 840 gtcttcaacc acgttgtcaa gtctatctcc attgtcggct cttacgtggg gaacagagct 900 gataccagag aagccttaga tttctttgcc agaggtctag tcaagtctcc aataaaggta 960 gttggcttat ccagtttacc agaaatttac gaaaagatgg agaagggcca aattgctggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 103 <211> 375 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH3 <400> 103 Met Leu Arg Thr Ser Thr Leu Phe Thr Arg Arg Val Gln Pro Ser Leu 1 5 10 15 Phe Ser Arg Asn Ile Leu Arg Leu Gln Ser Thr Ala Ala Ile Pro Lys 20 25 30 Thr Gln Lys Gly Val Ile Phe Tyr Glu Asn Lys Gly Lys Leu His Tyr 35 40 45 Lys Asp Ile Pro Val Pro Glu Pro Lys Pro Asn Glu Ile Leu Ile Asn 50 55 60 Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu His Ala Trp His Gly 65 70 75 80 Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val Gly Gly His Glu Gly 85 90 95 Ala Gly Val Val Val Lys Leu Gly Ser Asn Val Lys Gly Trp Lys Val 100 105 110 Gly Asp Leu Ala Gly Ile Lys Trp Leu Asn Gly Ser Cys Met Thr Cys 115 120 125 Glu Phe Cys Glu Ser Gly His Glu Ser Asn Cys Pro Asp Ala Asp Leu 130 135 140 Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln Phe Ala Thr Ala Asp 145 150 155 160 Ala Ile Gln Ala Ala Lys Ile Gln Gln Gly Thr Asp Leu Ala Glu Val 165 170 175 Ala Pro Ile Leu Cys Ala Gly Val Thr Val Tyr Lys Ala Leu Lys Glu 180 185 190 Ala Asp Leu Lys Ala Gly Asp Trp Val Ala Ile Ser Gly Ala Ala Gly 195 200 205 Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Thr Ala Met Gly Tyr Arg 210 215 220 Val Leu Gly Ile Asp Ala Gly Glu Glu Lys Glu Lys Leu Phe Lys Lys 225 230 235 240 Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys Thr Lys Asn Met Val 245 250 255 Ser Asp Ile Gln Glu Ala Thr Lys Gly Gly Pro His Gly Val Ile Asn 260 265 270 Val Ser Val Ser Glu Ala Ala Ile Ser Leu Ser Thr Glu Tyr Val Arg 275 280 285 Pro Cys Gly Thr Val Val Leu Val Gly Leu Pro Ala Asn Ala Tyr Val 290 295 300 Lys Ser Glu Val Phe Ser His Val Val Lys Ser Ile Asn Ile Lys Gly 305 310 315 320 Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu Ala Leu Asp Phe Phe 325 330 335 Ser Arg Gly Leu Ile Lys Ser Pro Ile Lys Ile Val Gly Leu Ser Glu 340 345 350 Leu Pro Lys Val Tyr Asp Leu Met Glu Lys Gly Lys Ile Leu Gly Arg 355 360 365 Tyr Val Val Asp Thr Ser Lys 370 375 <210> 104 <211> 1128 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH3 <400> 104 atgttgagaa cgtcaacatt gttcaccagg cgtgtccaac caagcctatt ttctagaaac 60 attcttagat tgcaatccac agctgcaatc cctaagactc aaaaaggtgt catcttttat 120 gagaataagg ggaagctgca ttacaaagat atccctgtcc ccgagcctaa gccaaatgaa 180 attttaatca acgttaaata ttctggtgta tgtcacaccg atttacatgc ttggcacggc 240 gattggccat tacctgttaa actaccatta gtaggtggtc atgaaggtgc tggtgtagtt 300 gtcaaactag gttccaatgt caagggctgg aaagtcggtg atttagcagg tatcaaatgg 360 ctgaacggtt cttgtatgac atgcgaattc tgtgaatcag gtcatgaatc aaattgtcca 420 gatgctgatt tatctggtta cactcatgat ggttctttcc aacaatttgc gaccgctgat 480 gctattcaag ccgccaaaat tcaacagggt accgacttgg ccgaagtagc cccaatatta 540 tgtgctggtg ttactgtata taaagcacta aaagaggcag acttgaaagc tggtgactgg 600 gttgccatct ctggtgctgc aggtggcttg ggttccttgg ccgttcaata tgcaactgcg 660 atgggttaca gagttctagg tattgatgca ggtgaggaaa aggaaaaact tttcaagaaa 720 ttggggggtg aagtattcat cgactttact aaaacaaaga atatggtttc tgacattcaa 780 gaagctacca aaggtggccc tcatggtgtc attaacgttt ccgtttctga agccgctatt 840 tctctatcta cggaatatgt tagaccatgt ggtaccgtcg ttttggttgg tttgcccgct 900 aacgcctacg ttaaatcaga ggtattctct catgtggtga agtccatcaa tatcaagggt 960 tcttatgttg gtaacagagc tgatacgaga gaagccttag acttctttag cagaggtttg 1020 atcaaatcac caatcaaaat tgttggatta tctgaattac caaaggttta tgacttgatg 1080 gaaaagggca agattttggg tagatacgtc gtcgatacta gtaaataa 1128 <210> 105 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH4 <400> 105 Met Ser Ser Val Thr Gly Phe Tyr Ile Pro Pro Ile Ser Phe Phe Gly 1 5 10 15 Glu Gly Ala Leu Glu Glu Thr Ala Asp Tyr Ile Lys Asn Lys Asp Tyr 20 25 30 Lys Lys Ala Leu Ile Val Thr Asp Pro Gly Ile Ala Ala Ile Gly Leu 35 40 45 Ser Gly Arg Val Gln Lys Met Leu Glu Glu Arg Gly Leu Asn Val Ala 50 55 60 Ile Tyr Asp Lys Thr Gln Pro Asn Pro Asn Ile Ala Asn Val Thr Ala 65 70 75 80 Gly Leu Lys Val Leu Lys Glu Glu Asn Ser Glu Ile Val Val Ser Ile 85 90 95 Gly Gly Gly Ser Ala His Asp Asn Ala Lys Ala Ile Ala Leu Leu Ala 100 105 110 Thr Asn Gly Gly Glu Ile Gly Asp Tyr Glu Gly Val Asn Gln Ser Lys 115 120 125 Lys Ala Ala Leu Pro Leu Phe Ala Ile Asn Thr Thr Ala Gly Thr Ala 130 135 140 Ser Glu Met Thr Arg Phe Thr Ile Ile Ser Asn Glu Glu Lys Lys Ile 145 150 155 160 Lys Met Ala Ile Ile Asp Asn Asn Val Thr Pro Ala Val Ala Val Asn 165 170 175 Asp Pro Ser Thr Met Phe Gly Leu Pro Pro Ala Leu Thr Ala Ala Thr 180 185 190 Gly Leu Asp Ala Leu Thr His Cys Ile Glu Ala Tyr Val Ser Thr Ala 195 200 205 Ser Asn Pro Ile Thr Asp Ala Cys Ala Leu Lys Gly Ile Asp Leu Ile 210 215 220 Asn Glu Ser Leu Val Ala Ala Tyr Lys Asp Gly Lys Asp Lys Lys Ala 225 230 235 240 Arg Thr Asp Met Cys Tyr Ala Glu Tyr Leu Ala Gly Met Ala Phe Asn 245 250 255 Asn Ala Ser Leu Gly Tyr Val His Ala Leu Ala His Gln Leu Gly Gly 260 265 270 Phe Tyr His Leu Pro His Gly Val Cys Asn Ala Val Leu Leu Pro His 275 280 285 Val Gln Glu Ala Asn Met Gln Cys Pro Lys Ala Lys Lys Arg Leu Gly 290 295 300 Glu Ile Ala Leu His Cys Gly Ala Ser Gln Glu Asp Pro Glu Glu Thr 305 310 315 320 Ile Lys Ala Leu His Val Leu Asn Arg Thr Met Asn Ile Pro Arg Asn 325 330 335 Leu Lys Asp Leu Gly Val Lys Thr Glu Asp Phe Asp Ile Leu Ala Glu 340 345 350 His Ala Met His Asp Ala Cys His Leu Thr Asn Pro Val Gln Phe Thr 355 360 365 Lys Glu Gln Val Val Ala Ile Ile Lys Lys Ala Tyr Glu Tyr 370 375 380 <210> 106 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH4 <400> 106 atgtcttccg ttactgggtt ttacattcca ccaatctctt tctttggtga aggtgcttta 60 gaagaaaccg ctgattacat caaaaacaag gattacaaaa aggctttgat cgttactgat 120 cctggtattg cagctattgg tctctccggt agagtccaaa agatgttgga agaacgtggc 180 ttaaacgttg ctatctatga caaaactcaa ccaaacccaa atattgccaa tgtcacagct 240 ggtttgaagg ttttgaagga agaaaactct gaaattgtcg tttccattgg tggtggttct 300 gctcacgaca atgctaaggc cattgcttta ttggctacta acggtgggga aattggagat 360 tatgaaggtg tcaaccaatc taagaaggct gctttaccgc tatttgccat caacactact 420 gctggtactg cttccgagat gaccagattc actattatct ctaatgaaga aaagaaaatc 480 aagatggcca tcattgacaa caacgtcact ccagctgttg ctgtcaacga cccatctacc 540 atgtttggtt tgccacctgc tttgactgct gctactggtc tagatgcttt gactcactgt 600 atcgaagctt acgtttccac cgcctctaac ccaatcaccg atgcttgtgc tttgaagggt 660 attgatttga tcaatgaaag cttggtcgcc gcatacaaag acggtaaaga caagaaggcc 720 agaactgata tgtgttacgc agaatacttg gcaggtatgg ctttcaacaa tgcttctcta 780 ggttatgttc atgcccttgc tcatcaactt ggtggtttct accacttgcc tcatggtgtt 840 tgtaacgctg tcttgttgcc tcatgttcaa gaggccaaca tgcaatgtcc aaaggccaag 900 aagagattag gtgaaattgc cttgcattgc ggtgcttctc aagaagatcc agaagaaacc 960 atcaaggctt tgcacgtttt aaacagaacc atgaacattc caagaaactt gaaagactta 1020 ggtgttaaaa ccgaagattt tgacattttg gctgaacacg ccatgcatga tgcctgccat 1080 ttgactaacc cagttcaatt caccaaagaa caagtggttg ccattatcaa gaaagcctat 1140 gaatattaa 1149 <210> 107 <211> 351 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH5 <400> 107 Met Pro Ser Gln Val Ile Pro Glu Lys Gln Lys Ala Ile Val Phe Tyr 1 5 10 15 Glu Thr Asp Gly Lys Leu Glu Tyr Lys Asp Val Thr Val Pro Glu Pro 20 25 30 Lys Pro Asn Glu Ile Leu Val His Val Lys Tyr Ser Gly Val Cys His 35 40 45 Ser Asp Leu His Ala Trp His Gly Asp Trp Pro Phe Gln Leu Lys Phe 50 55 60 Pro Leu Ile Gly Gly His Glu Gly Ala Gly Val Val Val Lys Leu Gly 65 70 75 80 Ser Asn Val Lys Gly Trp Lys Val Gly Asp Phe Ala Gly Ile Lys Trp 85 90 95 Leu Asn Gly Thr Cys Met Ser Cys Glu Tyr Cys Glu Val Gly Asn Glu 100 105 110 Ser Gln Cys Pro Tyr Leu Asp Gly Thr Gly Phe Thr His Asp Gly Thr 115 120 125 Phe Gln Glu Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro 130 135 140 Pro Asn Val Asn Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile 145 150 155 160 Thr Val Tyr Lys Ala Leu Lys Arg Ala Asn Val Ile Pro Gly Gln Trp 165 170 175 Val Thr Ile Ser Gly Ala Cys Gly Gly Leu Gly Ser Leu Ala Ile Gln 180 185 190 Tyr Ala Leu Ala Met Gly Tyr Arg Val Ile Gly Ile Asp Gly Gly Asn 195 200 205 Ala Lys Arg Lys Leu Phe Glu Gln Leu Gly Gly Glu Ile Phe Ile Asp 210 215 220 Phe Thr Glu Glu Lys Asp Ile Val Gly Ala Ile Ile Lys Ala Thr Asn 225 230 235 240 Gly Gly Ser His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile 245 250 255 Glu Ala Ser Thr Arg Tyr Cys Arg Pro Asn Gly Thr Val Val Leu Val 260 265 270 Gly Met Pro Ala His Ala Tyr Cys Asn Ser Asp Val Phe Asn Gln Val 275 280 285 Val Lys Ser Ile Ser Ile Val Gly Ser Cys Val Gly Asn Arg Ala Asp 290 295 300 Thr Arg Glu Ala Leu Asp Phe Phe Ala Arg Gly Leu Ile Lys Ser Pro 305 310 315 320 Ile His Leu Ala Gly Leu Ser Asp Val Pro Glu Ile Phe Ala Lys Met 325 330 335 Glu Lys Gly Glu Ile Val Gly Arg Tyr Val Val Glu Thr Ser Lys 340 345 350 <210> 108 <211> 1056 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH5 <400> 108 atgccttcgc aagtcattcc tgaaaaacaa aaggctattg tcttttatga gacagatgga 60 aaattggaat ataaagacgt cacagttccg gaacctaagc ctaacgaaat tttagtccac 120 gttaaatatt ctggtgtttg tcatagtgac ttgcacgcgt ggcacggtga ttggccattt 180 caattgaaat ttccattaat cggtggtcac gaaggtgctg gtgttgttgt taagttggga 240 tctaacgtta agggctggaa agtcggtgat tttgcaggta taaaatggtt gaatgggact 300 tgcatgtcct gtgaatattg tgaagtaggt aatgaatctc aatgtcctta tttggatggt 360 actggcttca cacatgatgg tacttttcaa gaatacgcaa ctgccgatgc cgttcaagct 420 gcccatattc caccaaacgt caatcttgct gaagttgccc caatcttgtg tgcaggtatc 480 actgtttata aggcgttgaa aagagccaat gtgataccag gccaatgggt cactatatcc 540 ggtgcatgcg gtggcttggg ttctctggca atccaatacg cccttgctat gggttacagg 600 gtcattggta tcgatggtgg taatgccaag cgaaagttat ttgaacaatt aggcggagaa 660 atattcatcg atttcacgga agaaaaagac attgttggtg ctataataaa ggccactaat 720 ggcggttctc atggagttat taatgtgtct gtttctgaag cagctatcga ggcttctacg 780 aggtattgta ggcccaatgg tactgtcgtc ctggttggta tgccagctca tgcttactgc 840 aattccgatg ttttcaatca agttgtaaaa tcaatctcca tcgttggatc ttgtgttgga 900 aatagagctg atacaaggga ggctttagat ttcttcgcca gaggtttgat caaatctccg 960 atccacttag ctggcctatc ggatgttcct gaaatttttg caaagatgga gaagggtgaa 1020 attgttggta gatatgttgt tgagacttct aaatga 1056 <210> 109 <211> 391 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD1 <400> 109 Met Ser Ala Ala Ala Asp Arg Leu Asn Leu Thr Ser Gly His Leu Asn 1 5 10 15 Ala Gly Arg Lys Arg Ser Ser Ser Ser Val Ser Leu Lys Ala Ala Glu 20 25 30 Lys Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr Thr 35 40 45 Ile Ala Lys Val Val Ala Glu Asn Cys Lys Gly Tyr Pro Glu Val Phe 50 55 60 Ala Pro Ile Val Gln Met Trp Val Phe Glu Glu Glu Ile Asn Gly Glu 65 70 75 80 Lys Leu Thr Glu Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr Leu 85 90 95 Pro Gly Ile Thr Leu Pro Asp Asn Leu Val Ala Asn Pro Asp Leu Ile 100 105 110 Asp Ser Val Lys Asp Val Asp Ile Ile Val Phe Asn Ile Pro His Gln 115 120 125 Phe Leu Pro Arg Ile Cys Ser Gln Leu Lys Gly His Val Asp Ser His 130 135 140 Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Val Gly Ala Lys Gly 145 150 155 160 Val Gln Leu Leu Ser Ser Tyr Ile Thr Glu Glu Leu Gly Ile Gln Cys 165 170 175 Gly Ala Leu Ser Gly Ala Asn Ile Ala Thr Glu Val Ala Gln Glu His 180 185 190 Trp Ser Glu Thr Thr Val Ala Tyr His Ile Pro Lys Asp Phe Arg Gly 195 200 205 Glu Gly Lys Asp Val Asp His Lys Val Leu Lys Ala Leu Phe His Arg 210 215 220 Pro Tyr Phe His Val Ser Val Ile Glu Asp Val Ala Gly Ile Ser Ile 225 230 235 240 Cys Gly Ala Leu Lys Asn Val Val Ala Leu Gly Cys Gly Phe Val Glu 245 250 255 Gly Leu Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Val Gly 260 265 270 Leu Gly Glu Ile Ile Arg Phe Gly Gln Met Phe Phe Pro Glu Ser Arg 275 280 285 Glu Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile Thr 290 295 300 Thr Cys Ala Gly Gly Arg Asn Val Lys Val Ala Arg Leu Met Ala Thr 305 310 315 320 Ser Gly Lys Asp Ala Trp Glu Cys Glu Lys Glu Leu Leu Asn Gly Gln 325 330 335 Ser Ala Gln Gly Leu Ile Thr Cys Lys Glu Val His Glu Trp Leu Glu 340 345 350 Thr Cys Gly Ser Val Glu Asp Phe Pro Leu Phe Glu Ala Val Tyr Gln 355 360 365 Ile Val Tyr Asn Asn Tyr Pro Met Lys Asn Leu Pro Asp Met Ile Glu 370 375 380 Glu Leu Asp Leu His Glu Asp 385 390 <210> 110 <211> 1176 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD1 <400> 110 atgtctgctg ctgctgatag attaaactta acttccggcc acttgaatgc tggtagaaag 60 agaagttcct cttctgtttc tttgaaggct gccgaaaagc ctttcaaggt tactgtgatt 120 ggatctggta actggggtac tactattgcc aaggtggttg ccgaaaattg taagggatac 180 ccagaagttt tcgctccaat agtacaaatg tgggtgttcg aagaagagat caatggtgaa 240 aaattgactg aaatcataaa tactagacat caaaacgtga aatacttgcc tggcatcact 300 ctacccgaca atttggttgc taatccagac ttgattgatt cagtcaagga tgtcgacatc 360 atcgttttca acattccaca tcaatttttg ccccgtatct gtagccaatt gaaaggtcat 420 gttgattcac acgtcagagc tatctcctgt ctaaagggtt ttgaagttgg tgctaaaggt 480 gtccaattgc tatcctctta catcactgag gaactaggta ttcaatgtgg tgctctatct 540 ggtgctaaca ttgccaccga agtcgctcaa gaacactggt ctgaaacaac agttgcttac 600 cacattccaa aggatttcag aggcgagggc aaggacgtcg accataaggt tctaaaggcc 660 ttgttccaca gaccttactt ccacgttagt gtcatcgaag atgttgctgg tatctccatc 720 tgtggtgctt tgaagaacgt tgttgcctta ggttgtggtt tcgtcgaagg tctaggctgg 780 ggtaacaacg cttctgctgc catccaaaga gtcggtttgg gtgagatcat cagattcggt 840 caaatgtttt tcccagaatc tagagaagaa acatactacc aagagtctgc tggtgttgct 900 gatttgatca ccacctgcgc tggtggtaga aacgtcaagg ttgctaggct aatggctact 960 tctggtaagg acgcctggga atgtgaaaag gagttgttga atggccaatc cgctcaaggt 1020 ttaattacct gcaaagaagt tcacgaatgg ttggaaacat gtggctctgt cgaagacttc 1080 ccattatttg aagccgtata ccaaatcgtt tacaacaact acccaatgaa gaacctgccg 1140 gacatgattg aagaattaga tctacatgaa gattag 1176 <210> 111 <211> 440 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD2 <400> 111 Met Leu Ala Val Arg Arg Leu Thr Arg Tyr Thr Phe Leu Lys Arg Thr 1 5 10 15 His Pro Val Leu Tyr Thr Arg Arg Ala Tyr Lys Ile Leu Pro Ser Arg 20 25 30 Ser Thr Phe Leu Arg Arg Ser Leu Leu Gln Thr Gln Leu His Ser Lys 35 40 45 Met Thr Ala His Thr Asn Ile Lys Gln His Lys His Cys His Glu Asp 50 55 60 His Pro Ile Arg Arg Ser Asp Ser Ala Val Ser Ile Val His Leu Lys 65 70 75 80 Arg Ala Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr 85 90 95 Thr Ile Ala Lys Val Ile Ala Glu Asn Thr Glu Leu His Ser His Ile 100 105 110 Phe Glu Pro Glu Val Arg Met Trp Val Phe Asp Glu Lys Ile Gly Asp 115 120 125 Glu Asn Leu Thr Asp Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr 130 135 140 Leu Pro Asn Ile Asp Leu Pro His Asn Leu Val Ala Asp Pro Asp Leu 145 150 155 160 Leu His Ser Ile Lys Gly Ala Asp Ile Leu Val Phe Asn Ile Pro His 165 170 175 Gln Phe Leu Pro Asn Ile Val Lys Gln Leu Gln Gly His Val Ala Pro 180 185 190 His Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Leu Gly Ser Lys 195 200 205 Gly Val Gln Leu Leu Ser Ser Tyr Val Thr Asp Glu Leu Gly Ile Gln 210 215 220 Cys Gly Ala Leu Ser Gly Ala Asn Leu Ala Pro Glu Val Ala Lys Glu 225 230 235 240 His Trp Ser Glu Thr Thr Val Ala Tyr Gln Leu Pro Lys Asp Tyr Gln 245 250 255 Gly Asp Gly Lys Asp Val Asp His Lys Ile Leu Lys Leu Leu Phe His 260 265 270 Arg Pro Tyr Phe His Val Asn Val Ile Asp Asp Val Ala Gly Ile Ser 275 280 285 Ile Ala Gly Ala Leu Lys Asn Val Val Ala Leu Ala Cys Gly Phe Val 290 295 300 Glu Gly Met Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Leu 305 310 315 320 Gly Leu Gly Glu Ile Ile Lys Phe Gly Arg Met Phe Phe Pro Glu Ser 325 330 335 Lys Val Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile 340 345 350 Thr Thr Cys Ser Gly Gly Arg Asn Val Lys Val Ala Thr Tyr Met Ala 355 360 365 Lys Thr Gly Lys Ser Ala Leu Glu Ala Glu Lys Glu Leu Leu Asn Gly 370 375 380 Gln Ser Ala Gln Gly Ile Ile Thr Cys Arg Glu Val His Glu Trp Leu 385 390 395 400 Gln Thr Cys Glu Leu Thr Gln Glu Phe Pro Leu Phe Glu Ala Val Tyr 405 410 415 Gln Ile Val Tyr Asn Asn Val Arg Met Glu Asp Leu Pro Glu Met Ile 420 425 430 Glu Glu Leu Asp Ile Asp Asp Glu 435 440 <210> 112 <211> 1323 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD2 <400> 112 atgcttgctg tcagaagatt aacaagatac acattcctta agcgaacgca tccggtgtta 60 tatactcgtc gtgcatataa aattttgcct tcaagatcta ctttcctaag aagatcatta 120 ttacaaacac aactgcactc aaagatgact gctcatacta atatcaaaca gcacaaacac 180 tgtcatgagg accatcctat cagaagatcg gactctgccg tgtcaattgt acatttgaaa 240 cgtgcgccct tcaaggttac agtgattggt tctggtaact gggggaccac catcgccaaa 300 gtcattgcgg aaaacacaga attgcattcc catatcttcg agccagaggt gagaatgtgg 360 gtttttgatg aaaagatcgg cgacgaaaat ctgacggata tcataaatac aagacaccag 420 aacgttaaat atctacccaa tattgacctg ccccataatc tagtggccga tcctgatctt 480 ttacactcca tcaagggtgc tgacatcctt gttttcaaca tccctcatca atttttacca 540 aacatagtca aacaattgca aggccacgtg gcccctcatg taagggccat ctcgtgtcta 600 aaagggttcg agttgggctc caagggtgtg caattgctat cctcctatgt tactgatgag 660 ttaggaatcc aatgtggcgc actatctggt gcaaacttgg caccggaagt ggccaaggag 720 cattggtccg aaaccaccgt ggcttaccaa ctaccaaagg attatcaagg tgatggcaag 780 gatgtagatc ataagatttt gaaattgctg ttccacagac cttacttcca cgtcaatgtc 840 atcgatgatg ttgctggtat atccattgcc ggtgccttga agaacgtcgt ggcacttgca 900 tgtggtttcg tagaaggtat gggatggggt aacaatgcct ccgcagccat tcaaaggctg 960 ggtttaggtg aaattatcaa gttcggtaga atgtttttcc cagaatccaa agtcgagacc 1020 tactatcaag aatccgctgg tgttgcagat ctgatcacca cctgctcagg cggtagaaac 1080 gtcaaggttg ccacatacat ggccaagacc ggtaagtcag ccttggaagc agaaaaggaa 1140 ttgcttaacg gtcaatccgc ccaagggata atcacatgca gagaagttca cgagtggcta 1200 caaacatgtg agttgaccca agaattccca ttattcgagg cagtctacca gatagtctac 1260 aacaacgtcc gcatggaaga cctaccggag atgattgaag agctagacat cgatgacgaa 1320 tag 1323 <210> 113 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae BDH1 <400> 113 Met Arg Ala Leu Ala Tyr Phe Lys Lys Gly Asp Ile His Phe Thr Asn 1 5 10 15 Asp Ile Pro Arg Pro Glu Ile Gln Thr Asp Asp Glu Val Ile Ile Asp 20 25 30 Val Ser Trp Cys Gly Ile Cys Gly Ser Asp Leu His Glu Tyr Leu Asp 35 40 45 Gly Pro Ile Phe Met Pro Lys Asp Gly Glu Cys His Lys Leu Ser Asn 50 55 60 Ala Ala Leu Pro Leu Ala Met Gly His Glu Met Ser Gly Ile Val Ser 65 70 75 80 Lys Val Gly Pro Lys Val Thr Lys Val Lys Val Gly Asp His Val Val 85 90 95 Val Asp Ala Ala Ser Ser Cys Ala Asp Leu His Cys Trp Pro His Ser 100 105 110 Lys Phe Tyr Asn Ser Lys Pro Cys Asp Ala Cys Gln Arg Gly Ser Glu 115 120 125 Asn Leu Cys Thr His Ala Gly Phe Val Gly Leu Gly Val Ile Ser Gly 130 135 140 Gly Phe Ala Glu Gln Val Val Val Ser Gln His His Ile Ile Pro Val 145 150 155 160 Pro Lys Glu Ile Pro Leu Asp Val Ala Ala Leu Val Glu Pro Leu Ser 165 170 175 Val Thr Trp His Ala Val Lys Ile Ser Gly Phe Lys Lys Gly Ser Ser 180 185 190 Ala Leu Val Leu Gly Ala Gly Pro Ile Gly Leu Cys Thr Ile Leu Val 195 200 205 Leu Lys Gly Met Gly Ala Ser Lys Ile Val Val Ser Glu Ile Ala Glu 210 215 220 Arg Arg Ile Glu Met Ala Lys Lys Leu Gly Val Glu Val Phe Asn Pro 225 230 235 240 Ser Lys His Gly His Lys Ser Ile Glu Ile Leu Arg Gly Leu Thr Lys 245 250 255 Ser His Asp Gly Phe Asp Tyr Ser Tyr Asp Cys Ser Gly Ile Gln Val 260 265 270 Thr Phe Glu Thr Ser Leu Lys Ala Leu Thr Phe Lys Gly Thr Ala Thr 275 280 285 Asn Ile Ala Val Trp Gly Pro Lys Pro Val Pro Phe Gln Pro Met Asp 290 295 300 Val Thr Leu Gln Glu Lys Val Met Thr Gly Ser Ile Gly Tyr Val Val 305 310 315 320 Glu Asp Phe Glu Glu Val Val Arg Ala Ile His Asn Gly Asp Ile Ala 325 330 335 Met Glu Asp Cys Lys Gln Leu Ile Thr Gly Lys Gln Arg Ile Glu Asp 340 345 350 Gly Trp Glu Lys Gly Phe Gln Glu Leu Met Asp His Lys Glu Ser Asn 355 360 365 Val Lys Ile Leu Leu Thr Pro Asn Asn His Gly Glu Met Lys 370 375 380 <210> 114 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae BDH1 <400> 114 atgagagctt tggcatattt caagaagggt gatattcact tcactaatga tatccctagg 60 ccagaaatcc aaaccgacga tgaggttatt atcgacgtct cttggtgtgg gatttgtggc 120 tcggatcttc acgagtactt ggatggtcca atcttcatgc ctaaagatgg agagtgccat 180 aaattatcca acgctgcttt acctctggca atgggccatg agatgtcagg aattgtttcc 240 aaggttggtc ctaaagtgac aaaggtgaag gttggcgacc acgtggtcgt tgatgctgcc 300 agcagttgtg cggacctgca ttgctggcca cactccaaat tttacaattc caaaccatgt 360 gatgcttgtc agaggggcag tgaaaatcta tgtacccacg ccggttttgt aggactaggt 420 gtgatcagtg gtggctttgc tgaacaagtc gtagtctctc aacatcacat tatcccggtt 480 ccaaaggaaa ttcctctaga tgtggctgct ttagttgagc ctctttctgt cacctggcat 540 gctgttaaga tttctggttt caaaaaaggc agttcagcct tggttcttgg tgcaggtccc 600 attgggttgt gtaccatttt ggtacttaag ggaatggggg ctagtaaaat tgtagtgtct 660 gaaattgcag agagaagaat agaaatggcc aagaaactgg gcgttgaggt gttcaatccc 720 tccaagcacg gtcataaatc tatagagata ctacgtggtt tgaccaagag ccatgatggg 780 tttgattaca gttatgattg ttctggtatt caagttactt tcgaaacctc tttgaaggca 840 ttaacattca aggggacagc caccaacatt gcagtttggg gtccaaaacc tgtcccattc 900 caaccaatgg atgtgactct ccaagagaaa gttatgactg gttcgatcgg ctatgttgtc 960 gaagacttcg aagaagttgt tcgtgccatc cacaacggag acatcgccat ggaagattgt 1020 aagcaactaa tcactggtaa gcaaaggatt gaggacggtt gggaaaaggg attccaagag 1080 ttgatggatc acaaggaatc caacgttaag attctattga cgcctaacaa tcacggtgaa 1140 atgaagtaa 1149 <210> 115 <211> 444 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae EMP46 <400> 115 Met Thr Thr Arg Lys Thr Ala Ser Ser Leu Gln Leu Leu Gly Lys Ile 1 5 10 15 Thr Gly Thr Lys Ala Gly Thr Lys Gln Lys Lys Met Asn Phe Ile Asn 20 25 30 Gly Leu Ile Trp Leu Tyr Met Cys Val Trp Met Val His Gly Lys Val 35 40 45 Thr Gln Lys Asp Glu Leu Lys Trp Asn Lys Gly Tyr Ser Leu Pro Asn 50 55 60 Leu Leu Glu Val Thr Asp Gln Gln Lys Glu Leu Ser Gln Trp Thr Leu 65 70 75 80 Gly Asp Lys Val Lys Leu Glu Glu Gly Arg Phe Val Leu Thr Pro Gly 85 90 95 Lys Asn Thr Lys Gly Ser Leu Trp Leu Lys Pro Glu Tyr Ser Ile Lys 100 105 110 Asp Ala Met Thr Ile Glu Trp Thr Phe Arg Ser Phe Gly Phe Arg Gly 115 120 125 Ser Thr Lys Gly Gly Leu Ala Phe Trp Leu Lys Gln Gly Asn Glu Gly 130 135 140 Asp Ser Thr Glu Leu Phe Gly Gly Ser Ser Lys Lys Phe Asn Gly Leu 145 150 155 160 Met Ile Leu Leu Arg Leu Asp Asp Lys Leu Gly Glu Ser Val Thr Ala 165 170 175 Tyr Leu Asn Asp Gly Thr Lys Asp Leu Asp Ile Glu Ser Ser Pro Tyr 180 185 190 Phe Ala Ser Cys Leu Phe Gln Tyr Gln Asp Ser Met Val Pro Ser Thr 195 200 205 Leu Arg Leu Thr Tyr Asn Pro Leu Asp Asn His Leu Leu Lys Leu Gln 210 215 220 Met Asp Asn Arg Val Cys Phe Gln Thr Arg Lys Val Lys Phe Met Gly 225 230 235 240 Ser Ser Pro Phe Arg Ile Gly Thr Ser Ala Ile Asn Asp Ala Ser Lys 245 250 255 Glu Ser Phe Glu Ile Leu Lys Met Lys Leu Tyr Asp Gly Val Ile Glu 260 265 270 Asp Ser Leu Ile Pro Asn Val Asn Pro Met Gly Gln Pro Arg Val Val 275 280 285 Thr Lys Val Ile Asn Ser Gln Thr Gly Glu Glu Ser Phe Arg Glu Lys 290 295 300 Met Pro Phe Ser Asp Lys Glu Glu Ser Ile Thr Ser Asn Glu Leu Phe 305 310 315 320 Glu Lys Met Asn Lys Leu Glu Gly Lys Ile Met Ala Asn Asp Ile Asp 325 330 335 Pro Leu Leu Arg Lys Met Asn Lys Ile Val Glu Asn Glu Arg Glu Leu 340 345 350 Ile Gln Arg Leu Arg Pro Leu Leu Asp Leu Lys Lys Thr Ala Ile Ser 355 360 365 Asp Asp Ser Phe Gln Asp Phe Leu Ser Met Asn Ala Asn Leu Asp Arg 370 375 380 Leu Ile Lys Glu Gln Glu Lys Ile Arg Gln Asp Ala Lys Leu Tyr Gly 385 390 395 400 Lys Gln Thr Lys Gly His Asp Glu Ile Phe Ser Lys Ile Ser Val Trp 405 410 415 Leu Ala Leu Leu Ile Phe Ile Met Ile Thr Leu Ala Tyr Tyr Met Phe 420 425 430 Arg Ile Asn Gln Asp Ile Lys Lys Val Lys Leu Leu 435 440 <210> 116 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae EMP46 <400> 116 atgactacaa gaaagacagc ttcctctctt cagcttttag ggaaaatcac aggaacaaaa 60 gctggaacta agcaaaagaa gatgaatttc attaatggac tgatatggtt atatatgtgt 120 gtgtggatgg tacacggaaa agtgacgcag aaggatgaat tgaaatggaa taaaggatac 180 tcgctaccaa atttgctaga agtgacagat cagcaaaaag aactttcaca atggactttg 240 ggtgacaaag taaaacttga agaagggagg tttgttttaa ctcctggaaa gaacacaaag 300 ggttcacttt ggttgaaacc tgaatattca ataaaggatg caatgacaat agagtggacg 360 tttagaagtt tcgggttcag aggcagcaca aaggggggtc ttgcattttg gctgaagcaa 420 ggaaatgagg gagatagtac cgagttattt ggtggaagtt cgaagaagtt taatggtttg 480 atgatattgt tacgattaga cgataagttg ggagagagcg tgacagcgta tttgaatgac 540 ggaacaaaag atcttgatat tgaatcctca ccgtactttg cgtcatgtct gttccaatac 600 caggattcca tggtaccatc aacattaaga ttgacttaca atccactaga taatcacttg 660 ttaaagttgc aaatggacaa cagagtgtgt ttccagacaa ggaaagttaa atttatgggc 720 agcagcccat ttaggattgg aacaagtgct atcaacgatg catccaaaga atcgtttgaa 780 atcttgaaaa tgaagcttta tgacggagtt atagaggatt cgctaattcc taacgtgaat 840 cctatgggac aacccagagt ggttactaaa gtgatcaatt ctcaaactgg tgaagagagt 900 ttcagggaaa agatgccatt ttctgataag gaagaaagta taacgagtaa cgagcttttc 960 gaaaagatga acaagttgga ggggaaaatc atggcaaatg atatcgatcc attactccgc 1020 aagatgaaca agattgtgga gaatgaacgt gaactgattc aacgtttaag accactgtta 1080 gatctgaaga aaacagccat aagtgacgat agtttccaag attttctttc gatgaacgca 1140 aacctggaca gattgataaa agaacaagaa aaaattcgac aagatgccaa gctgtatggc 1200 aagcagacca aaggtcatga tgagatattt tccaaaataa gtgtatggtt ggcactgctg 1260 attttcatta tgatcacatt ggcgtactac atgtttagaa ttaaccaaga catcaagaag 1320 gtcaaacttc tgtaa 1335 <210> 117 <211> 515 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae PEP7 <400> 117 Met Asp Leu Glu Asn Val Ser Cys Pro Ile Cys Leu Arg Lys Phe Asp 1 5 10 15 Asn Leu Gln Ala Leu Asn Ala His Leu Asp Val Glu His Gly Phe Asn 20 25 30 Asp Asn Glu Asp Ser Leu Gly Ser Asn Asp Ser Arg Leu Val Asn Gly 35 40 45 Lys Gln Lys Lys Ala Arg Ser Val Asp Ser Ser Ala Gln Lys Leu Lys 50 55 60 Arg Ser His Trp Glu Lys Phe Lys Lys Gly Lys Ser Cys Cys His Thr 65 70 75 80 Cys Gly Arg Thr Leu Asn Asn Asn Ile Gly Ala Ile Asn Cys Arg Lys 85 90 95 Cys Gly Lys Leu Tyr Cys Arg Arg His Leu Pro Asn Met Ile Lys Leu 100 105 110 Asn Leu Ser Ala Gln Tyr Asp Pro Arg Asn Gly Lys Trp Tyr Asn Cys 115 120 125 Cys His Asp Cys Phe Val Thr Lys Pro Gly Tyr Asn Asp Tyr Gly Glu 130 135 140 Val Ile Asp Leu Thr Pro Glu Phe Phe Lys Val Arg Asn Ile Lys Arg 145 150 155 160 Glu Asp Lys Asn Leu Arg Leu Leu Gln Leu Glu Asn Arg Phe Val Arg 165 170 175 Leu Val Asp Gly Leu Ile Thr Leu Tyr Asn Thr Tyr Ser Arg Ser Ile 180 185 190 Ile His Asn Leu Lys Met Asn Ser Glu Met Ser Lys Leu Glu Arg Thr 195 200 205 Val Thr Pro Trp Arg Asp Asp Arg Ser Val Leu Phe Cys Asn Ile Cys 210 215 220 Ser Glu Pro Phe Gly Leu Leu Leu Arg Lys His His Cys Arg Leu Cys 225 230 235 240 Gly Met Val Val Cys Asp Asp Ala Asn Arg Asn Cys Ser Asn Glu Ile 245 250 255 Ser Ile Gly Tyr Leu Met Ser Ala Ala Ser Asp Leu Pro Phe Glu Tyr 260 265 270 Asn Ile Gln Lys Asp Asp Leu Leu His Ile Pro Ile Ser Ile Arg Leu 275 280 285 Cys Ser His Cys Ile Asp Met Leu Phe Ile Gly Arg Lys Phe Asn Lys 290 295 300 Asp Val Arg Met Pro Leu Ser Gly Ile Phe Ala Lys Tyr Asp Ser Met 305 310 315 320 Gln Asn Ile Ser Lys Val Ile Asp Ser Leu Leu Pro Ile Phe Glu Asp 325 330 335 Ser Leu Asn Ser Leu Lys Val Glu Thr Ala Lys Asp Ser Glu Asn Thr 340 345 350 Leu Asp Pro Lys Asn Leu Asn Asp Leu Ala Arg Leu Arg His Lys Leu 355 360 365 Leu Asn Ser Phe Asn Leu Tyr Asn Thr Leu Thr Arg Gln Leu Leu Ser 370 375 380 Val Glu Pro Gln Ser His Leu Glu Arg Gln Leu Gln Asn Ser Ile Lys 385 390 395 400 Ile Ala Ser Ala Ala Tyr Ile Asn Glu Lys Ile Leu Pro Leu Lys Ser 405 410 415 Leu Pro Ala Ile Leu Asn Pro Glu Gly His Lys Thr Asn Glu Asp Gly 420 425 430 Gln Lys Ala Glu Pro Glu Val Lys Lys Leu Ser Gln Leu Met Ile Glu 435 440 445 Asn Leu Thr Ile Lys Glu Val Lys Glu Leu Arg Glu Glu Leu Met Val 450 455 460 Leu Lys Glu Gln Ser Tyr Leu Ile Glu Ser Thr Ile Gln Asp Tyr Lys 465 470 475 480 Lys Gln Arg Arg Leu Glu Glu Ile Val Thr Leu Asn Lys Asn Leu Glu 485 490 495 Glu Leu His Ser Arg Ile His Thr Val Gln Ser Lys Leu Gly Asp His 500 505 510 Gly Phe Asn 515 <210> 118 <211> 1548 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae PEP7 <400> 118 atggatcttg aaaatgtttc atgtcccatt tgtctaagga agtttgataa cttacaagca 60 ctaaatgcac atttagatgt tgagcatggg tttaacgata atgaagattc actcggttcc 120 aatgacagtc gtttagtcaa tggtaaacaa aaaaaggcca gatctgttga tagcagtgcg 180 caaaagttga aaagaagcca ttgggaaaaa ttcaaaaaag ggaagagctg ctgtcacaca 240 tgtggaagga ctttgaataa caatattggc gccattaatt gtaggaaatg tggtaaactg 300 tattgcagaa ggcatcttcc taatatgatt aaacttaatc tttccgcaca gtatgacccc 360 agaaacggga aatggtacaa ttgctgccat gattgtttcg tcacaaaacc tggctataac 420 gattatggcg aagtaataga tttaacacca gaattcttta aggtacgaaa tataaaaaga 480 gaggacaaaa acttaaggct attacaatta gaaaatcggt ttgtccgtct agttgatggt 540 ctgattacac tctataacac atattctaga tccattattc ataatttgaa gatgaatagt 600 gaaatgtcca agttagaacg tacagttact ccatggagag atgatagaag tgtactcttt 660 tgtaacatat gttccgaacc atttgggcta ttactaagga agcatcactg cagattatgt 720 ggtatggttg tttgtgatga tgcaaacagg aactgctcaa acgaaataag cataggttat 780 ttaatgtctg cagcgtcaga tctgccattc gaatacaata tacagaagga tgatttactt 840 catattccta tatccataag attgtgctcg cactgtatcg atatgctatt tattggcagg 900 aaatttaaca aggacgttag aatgccgcta agtggaatat ttgctaaata tgatagcatg 960 caaaatatat ccaaagtaat tgatagtctc ctgcccattt ttgaagactc attgaatagc 1020 ctgaaggtgg agactgccaa ggattctgaa aatacacttg atccaaagaa tctgaatgat 1080 ctcgctcgat taagacataa attactcaat tcttttaact tgtataatac actaacaaga 1140 cagctcttaa gtgtagaacc tcaaagtcat ctagagagac aacttcaaaa ttcgatcaag 1200 atagcttccg ctgcatacat aaacgaaaaa atcctaccgt tgaagtcgct tccggcaatt 1260 ttgaacccag agggccataa aacgaatgaa gatgggcaaa aagctgaacc agaggtaaag 1320 aaattatcgc aactaatgat cgaaaacttg accataaaag aagtgaaaga gctgagagaa 1380 gaattgatgg tcctaaagga acaaagctac cttattgagt ccacaattca ggactataag 1440 aagcagcgta gattggagga gatcgtcaca cttaataaga acttagaaga attgcactca 1500 agaatacata ccgttcaatc gaagctgggt gaccatgggt ttaattaa 1548 <210> 119 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae SUR1 <400> 119 Met Arg Lys Glu Leu Lys Tyr Leu Ile Cys Phe Asn Ile Leu Leu Leu 1 5 10 15 Leu Ser Ile Ile Tyr Tyr Thr Phe Asp Leu Leu Thr Leu Cys Ile Asp 20 25 30 Asp Thr Val Lys Asp Ala Ile Leu Glu Glu Asp Leu Asn Pro Asp Ala 35 40 45 Pro Pro Lys Pro Gln Leu Ile Pro Lys Ile Ile His Gln Thr Tyr Lys 50 55 60 Thr Glu Asp Ile Pro Glu His Trp Lys Glu Gly Arg Gln Lys Cys Leu 65 70 75 80 Asp Leu His Pro Asp Tyr Lys Tyr Ile Leu Trp Thr Asp Glu Met Ala 85 90 95 Tyr Glu Phe Ile Lys Glu Glu Tyr Pro Trp Phe Leu Asp Thr Phe Glu 100 105 110 Asn Tyr Lys Tyr Pro Ile Glu Arg Ala Asp Ala Ile Arg Tyr Phe Ile 115 120 125 Leu Ser His Tyr Gly Gly Val Tyr Ile Asp Leu Asp Asp Gly Cys Glu 130 135 140 Arg Lys Leu Asp Pro Leu Leu Ala Phe Pro Ala Phe Leu Arg Lys Thr 145 150 155 160 Ser Pro Leu Gly Val Ser Asn Asp Val Met Gly Ser Val Pro Arg His 165 170 175 Pro Phe Phe Leu Lys Ala Leu Lys Ser Leu Lys His Tyr Asp Lys Tyr 180 185 190 Trp Phe Ile Pro Tyr Met Thr Ile Met Gly Ser Thr Gly Pro Leu Phe 195 200 205 Leu Ser Val Ile Trp Lys Gln Tyr Lys Arg Trp Arg Ile Pro Lys Asn 210 215 220 Gly Thr Val Arg Ile Leu Gln Pro Ala Tyr Tyr Lys Met His Ser Tyr 225 230 235 240 Ser Phe Phe Ser Ile Thr Lys Gly Ser Ser Trp His Leu Asp Asp Ala 245 250 255 Lys Leu Met Lys Ala Leu Glu Asn His Ile Leu Ser Cys Val Val Thr 260 265 270 Gly Phe Ile Phe Gly Phe Phe Ile Leu Tyr Gly Glu Phe Thr Phe Tyr 275 280 285 Cys Trp Leu Cys Ser Lys Asn Phe Ser Asn Leu Thr Lys Asn Trp Lys 290 295 300 Leu Asn Ala Ile Lys Val Arg Phe Val Thr Ile Leu Asn Ser Leu Gly 305 310 315 320 Leu Arg Leu Lys Leu Ser Lys Ser Thr Ser Asp Thr Ala Ser Ala Thr 325 330 335 Leu Leu Ala Arg Gln Gln Lys Arg Leu Arg Lys Asp Ser Asn Thr Asn 340 345 350 Ile Val Leu Leu Lys Ser Ser Arg Lys Ser Asp Val Tyr Asp Leu Glu 355 360 365 Lys Asn Asp Ser Ser Lys Tyr Ser Leu Gly Asn Asn Ser Ser 370 375 380 <210> 120 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae SUR1 <400> 120 atgagaaaag aattaaaata ccttatctgc ttcaacatac tcctcctgtt atctataata 60 tactacactt tcgatttgct aacgttgtgt attgacgata ctgttaaaga tgctatactt 120 gaggaagact taaatccaga tgcacctcca aagcctcaac taatacctaa aatcatacat 180 cagacttata aaacggaaga catccctgag cactggaaag agggtagaca aaaatgtctc 240 gatctacatc cagattacaa gtacatccta tggacggacg agatggccta tgagtttata 300 aaggaagaat acccgtggtt tctcgatact tttgagaact acaaataccc catagaacgt 360 gccgatgcca ttcgttactt tatcctgtcc cattatggtg gtgtatacat cgatttagat 420 gacggctgcg aaaggaaact agatcctttg ttagctttcc cggccttctt aagaaagact 480 tcacctttag gtgtctcaaa cgatgtcatg ggttctgtgc ctagacatcc cttcttttta 540 aaggctttaa agtctttgaa acactatgac aagtactggt ttatccctta catgactatt 600 atggggtcta ctggtccgtt gtttttaagt gttatttgga agcagtacaa aagatggcgc 660 atacctaaga acgggacagt aagaatccta caacctgctt actacaagat gcatagttat 720 tcatttttct ccattactaa aggctcttca tggcatttag atgatgcaaa attgatgaaa 780 gcactagaaa accacatctt atcctgcgtc gttaccggat ttatttttgg cttctttatc 840 ctatatggtg aattcacgtt ctattgctgg ttgtgttcca agaatttcag taatctaacc 900 aaaaattgga aacttaatgc tataaaagta agatttgtca caattctaaa ttcattaggc 960 ttaagactaa agttgagtaa aagtaccagt gatactgcca gtgccacttt gctggcaagg 1020 cagcagaaac gattgaggaa agattccaat acaaacatag tgttactaaa atcttcaagg 1080 aaaagtgatg tttacgattt agaaaagaat gattcttcta agtactcact gggaaataac 1140 agctcgtaa 1149 <210> 121 <211> 486 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae HXK2 <400> 121 Met Val His Leu Gly Pro Lys Lys Pro Gln Ala Arg Lys Gly Ser Met 1 5 10 15 Ala Asp Val Pro Lys Glu Leu Met Gln Gln Ile Glu Asn Phe Glu Lys 20 25 30 Ile Phe Thr Val Pro Thr Glu Thr Leu Gln Ala Val Thr Lys His Phe 35 40 45 Ile Ser Glu Leu Glu Lys Gly Leu Ser Lys Lys Gly Gly Asn Ile Pro 50 55 60 Met Ile Pro Gly Trp Val Met Asp Phe Pro Thr Gly Lys Glu Ser Gly 65 70 75 80 Asp Phe Leu Ala Ile Asp Leu Gly Gly Thr Asn Leu Arg Val Val Leu 85 90 95 Val Lys Leu Gly Gly Asp Arg Thr Phe Asp Thr Thr Gln Ser Lys Tyr 100 105 110 Arg Leu Pro Asp Ala Met Arg Thr Thr Gln Asn Pro Asp Glu Leu Trp 115 120 125 Glu Phe Ile Ala Asp Ser Leu Lys Ala Phe Ile Asp Glu Gln Phe Pro 130 135 140 Gln Gly Ile Ser Glu Pro Ile Pro Leu Gly Phe Thr Phe Ser Phe Pro 145 150 155 160 Ala Ser Gln Asn Lys Ile Asn Glu Gly Ile Leu Gln Arg Trp Thr Lys 165 170 175 Gly Phe Asp Ile Pro Asn Ile Glu Asn His Asp Val Val Pro Met Leu 180 185 190 Gln Lys Gln Ile Thr Lys Arg Asn Ile Pro Ile Glu Val Val Ala Leu 195 200 205 Ile Asn Asp Thr Thr Gly Thr Leu Val Ala Ser Tyr Tyr Thr Asp Pro 210 215 220 Glu Thr Lys Met Gly Val Ile Phe Gly Thr Gly Val Asn Gly Ala Tyr 225 230 235 240 Tyr Asp Val Cys Ser Asp Ile Glu Lys Leu Gln Gly Lys Leu Ser Asp 245 250 255 Asp Ile Pro Pro Ser Ala Pro Met Ala Ile Asn Cys Glu Tyr Gly Ser 260 265 270 Phe Asp Asn Glu His Val Val Leu Pro Arg Thr Lys Tyr Asp Ile Thr 275 280 285 Ile Asp Glu Glu Ser Pro Arg Pro Gly Gln Gln Thr Phe Glu Lys Met 290 295 300 Ser Ser Gly Tyr Tyr Leu Gly Glu Ile Leu Arg Leu Ala Leu Met Asp 305 310 315 320 Met Tyr Lys Gln Gly Phe Ile Phe Lys Asn Gln Asp Leu Ser Lys Phe 325 330 335 Asp Lys Pro Phe Val Met Asp Thr Ser Tyr Pro Ala Arg Ile Glu Glu 340 345 350 Asp Pro Phe Glu Asn Leu Glu Asp Thr Asp Asp Leu Phe Gln Asn Glu 355 360 365 Phe Gly Ile Asn Thr Thr Val Gln Glu Arg Lys Leu Ile Arg Arg Leu 370 375 380 Ser Glu Leu Ile Gly Ala Arg Ala Ala Arg Leu Ser Val Cys Gly Ile 385 390 395 400 Ala Ala Ile Cys Gln Lys Arg Gly Tyr Lys Thr Gly His Ile Ala Ala 405 410 415 Asp Gly Ser Val Tyr Asn Arg Tyr Pro Gly Phe Lys Glu Lys Ala Ala 420 425 430 Asn Ala Leu Lys Asp Ile Tyr Gly Trp Thr Gln Thr Ser Leu Asp Asp 435 440 445 Tyr Pro Ile Lys Ile Val Pro Ala Glu Asp Gly Ser Gly Ala Gly Ala 450 455 460 Ala Val Ile Ala Ala Leu Ala Gln Lys Arg Ile Ala Glu Gly Lys Ser 465 470 475 480 Val Gly Ile Ile Gly Ala 485 <210> 122 <211> 1461 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae HXK2 <400> 122 atggttcatt taggtccaaa aaaaccacaa gccagaaagg gttccatggc cgatgtgcca 60 aaggaattga tgcaacaaat tgagaatttt gaaaaaattt tcactgttcc aactgaaact 120 ttacaagccg ttaccaagca cttcatttcc gaattggaaa agggtttgtc caagaagggt 180 ggtaacattc caatgattcc aggttgggtt atggatttcc caactggtaa ggaatccggt 240 gatttcttgg ccattgattt gggtggtacc aacttgagag ttgtcttagt caagttgggc 300 ggtgaccgta cctttgacac cactcaatct aagtacagat taccagatgc tatgagaact 360 actcaaaatc cagacgaatt gtgggaattt attgccgact ctttgaaagc ttttattgat 420 gagcaattcc cacaaggtat ctctgagcca attccattgg gtttcacctt ttctttccca 480 gcttctcaaa acaaaatcaa tgaaggtatc ttgcaaagat ggactaaagg ttttgatatt 540 ccaaacattg aaaaccacga tgttgttcca atgttgcaaa agcaaatcac taagaggaat 600 atcccaattg aagttgttgc tttgataaac gacactaccg gtactttggt tgcttcttac 660 tacactgacc cagaaactaa gatgggtgtt atcttcggta ctggtgtcaa tggtgcttac 720 tacgatgttt gttccgatat cgaaaagcta caaggaaaac tatctgatga cattccacca 780 tctgctccaa tggccatcaa ctgtgaatac ggttccttcg ataatgaaca tgtcgttttg 840 ccaagaacta aatacgatat caccattgat gaagaatctc caagaccagg ccaacaaacc 900 tttgaaaaaa tgtcttctgg ttactactta ggtgaaattt tgcgtttggc cttgatggac 960 atgtacaaac aaggtttcat cttcaagaac caagacttgt ctaagttcga caagcctttc 1020 gtcatggaca cttcttaccc agccagaatc gaggaagatc cattcgagaa cctagaagat 1080 accgatgact tgttccaaaa tgagttcggt atcaacacta ctgttcaaga acgtaaattg 1140 atcagacgtt tatctgaatt gattggtgct agagctgcta gattgtccgt ttgtggtatt 1200 gctgctatct gtcaaaagag aggttacaag accggtcaca tcgctgcaga cggttccgtt 1260 tacaacagat acccaggttt caaagaaaag gctgccaatg ctttgaagga catttacggc 1320 tggactcaaa cctcactaga cgactaccca atcaagattg ttcctgctga agatggttcc 1380 ggtgctggtg ccgctgttat tgctgctttg gcccaaaaaa gaattgctga aggtaagtcc 1440 gttggtatca tcggtgctta a 1461 <210> 123 <211> 344 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ARA1 <400> 123 Met Ser Ser Ser Val Ala Ser Thr Glu Asn Ile Val Glu Asn Met Leu 1 5 10 15 His Pro Lys Thr Thr Glu Ile Tyr Phe Ser Leu Asn Asn Gly Val Arg 20 25 30 Ile Pro Ala Leu Gly Leu Gly Thr Ala Asn Pro His Glu Lys Leu Ala 35 40 45 Glu Thr Lys Gln Ala Val Lys Ala Ala Ile Lys Ala Gly Tyr Arg His 50 55 60 Ile Asp Thr Ala Trp Ala Tyr Glu Thr Glu Pro Phe Val Gly Glu Ala 65 70 75 80 Ile Lys Glu Leu Leu Glu Asp Gly Ser Ile Lys Arg Glu Asp Leu Phe 85 90 95 Ile Thr Thr Lys Val Trp Pro Val Leu Trp Asp Glu Val Asp Arg Ser 100 105 110 Leu Asn Glu Ser Leu Lys Ala Leu Gly Leu Glu Tyr Val Asp Leu Leu 115 120 125 Leu Gln His Trp Pro Leu Cys Phe Glu Lys Ile Lys Asp Pro Lys Gly 130 135 140 Ile Ser Gly Leu Val Lys Thr Pro Val Asp Asp Ser Gly Lys Thr Met 145 150 155 160 Tyr Ala Ala Asp Gly Asp Tyr Leu Glu Thr Tyr Lys Gln Leu Glu Lys 165 170 175 Ile Tyr Leu Asp Pro Asn Asp His Arg Val Arg Ala Ile Gly Val Ser 180 185 190 Asn Phe Ser Ile Glu Tyr Leu Glu Arg Leu Ile Lys Glu Cys Arg Val 195 200 205 Lys Pro Thr Val Asn Gln Val Glu Thr His Pro His Leu Pro Gln Met 210 215 220 Glu Leu Arg Lys Phe Cys Phe Met His Asp Ile Leu Leu Thr Ala Tyr 225 230 235 240 Ser Pro Leu Gly Ser His Gly Ala Pro Asn Leu Lys Ile Pro Leu Val 245 250 255 Lys Lys Leu Ala Glu Lys Tyr Asn Val Thr Gly Asn Asp Leu Leu Ile 260 265 270 Ser Tyr His Ile Arg Gln Gly Thr Ile Val Ile Pro Arg Ser Leu Asn 275 280 285 Pro Val Arg Ile Ser Ser Ser Ile Glu Phe Ala Ser Leu Thr Lys Asp 290 295 300 Glu Leu Gln Glu Leu Asn Asp Phe Gly Glu Lys Tyr Pro Val Arg Phe 305 310 315 320 Ile Asp Glu Pro Phe Ala Ala Ile Leu Pro Glu Phe Thr Gly Asn Gly 325 330 335 Pro Asn Leu Asp Asn Leu Lys Tyr 340 <210> 124 <211> 1035 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ARA1 <400> 124 atgtcttctt cagtagcctc aaccgaaaac atagtcgaaa atatgttgca tccaaagact 60 acagaaatat acttttcact caacaatggt gttcgtatcc cagcactggg tttggggaca 120 gcaaatcctc acgaaaagtt agctgaaaca aaacaagccg taaaagctgc aatcaaagct 180 ggatacaggc acattgatac tgcttgggcc tacgagacag agccattcgt aggtgaagcc 240 atcaaggagt tattagaaga tggatctatc aaaagggagg atcttttcat aaccacaaaa 300 gtgtggccgg ttctatggga cgaagtggac agatcattga atgaatcttt gaaagcttta 360 ggcttggaat acgtcgactt gctcttgcaa cattggccgc tatgttttga aaagattaag 420 gaccctaagg ggatcagcgg actggtgaag actccggttg atgattctgg aaaaacaatg 480 tatgctgccg acggtgacta tttagaaact tacaagcaat tggaaaaaat ttaccttgat 540 cctaacgatc atcgtgtgag agccattggt gtctcaaatt tttccattga gtatttggaa 600 cgtctcatta aggaatgcag agttaagcca acggtgaacc aagtggaaac tcaccctcac 660 ttaccacaaa tggaactaag aaagttctgc tttatgcacg acattctgtt aacagcatac 720 tcaccattag gttcccatgg cgcaccaaac ttgaaaatcc cactagtgaa aaagcttgcc 780 gaaaagtaca atgtcacagg aaatgacttg ctaatttctt accatattag acaaggcact 840 atcgtaattc cgagatcctt gaatccagtt aggatttcct cgagtattga attcgcatct 900 ttgacaaagg atgaattaca agagttgaac gacttcggtg aaaaataccc agtgagattc 960 atcgatgagc catttgcagc catccttcca gagtttactg gtaacggacc aaacttggac 1020 aatttaaagt attaa 1035 <210> 125 <211> 312 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YPR1 <400> 125 Met Pro Ala Thr Leu Lys Asn Ser Ser Ala Thr Leu Lys Leu Asn Thr 1 5 10 15 Gly Ala Ser Ile Pro Val Leu Gly Phe Gly Thr Trp Arg Ser Val Asp 20 25 30 Asn Asn Gly Tyr His Ser Val Ile Ala Ala Leu Lys Ala Gly Tyr Arg 35 40 45 His Ile Asp Ala Ala Ala Ile Tyr Leu Asn Glu Glu Glu Val Gly Arg 50 55 60 Ala Ile Lys Asp Ser Gly Val Pro Arg Glu Glu Ile Phe Ile Thr Thr 65 70 75 80 Lys Leu Trp Gly Thr Glu Gln Arg Asp Pro Glu Ala Ala Leu Asn Lys 85 90 95 Ser Leu Lys Arg Leu Gly Leu Asp Tyr Val Asp Leu Tyr Leu Met His 100 105 110 Trp Pro Val Pro Leu Lys Thr Asp Arg Val Thr Asp Gly Asn Val Leu 115 120 125 Cys Ile Pro Thr Leu Glu Asp Gly Thr Val Asp Ile Asp Thr Lys Glu 130 135 140 Trp Asn Phe Ile Lys Thr Trp Glu Leu Met Gln Glu Leu Pro Lys Thr 145 150 155 160 Gly Lys Thr Lys Ala Val Gly Val Ser Asn Phe Ser Ile Asn Asn Ile 165 170 175 Lys Glu Leu Leu Glu Ser Pro Asn Asn Lys Val Val Pro Ala Thr Asn 180 185 190 Gln Ile Glu Ile His Pro Leu Leu Pro Gln Asp Glu Leu Ile Ala Phe 195 200 205 Cys Lys Glu Lys Gly Ile Val Val Glu Ala Tyr Ser Pro Phe Gly Ser 210 215 220 Ala Asn Ala Pro Leu Leu Lys Glu Gln Ala Ile Ile Asp Met Ala Lys 225 230 235 240 Lys His Gly Val Glu Pro Ala Gln Leu Ile Ile Ser Trp Ser Ile Gln 245 250 255 Arg Gly Tyr Val Val Leu Ala Lys Ser Val Asn Pro Glu Arg Ile Val 260 265 270 Ser Asn Phe Lys Ile Phe Thr Leu Pro Glu Asp Asp Phe Lys Thr Ile 275 280 285 Ser Asn Leu Ser Lys Val His Gly Thr Lys Arg Val Val Asp Met Lys 290 295 300 Trp Gly Ser Phe Pro Ile Phe Gln 305 310 <210> 126 <211> 939 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YPR1 <400> 126 atgcctgcta cgttaaagaa ttcttctgct acattaaaac taaatactgg tgcctccatt 60 ccagtgttgg gtttcggcac ttggcgttcc gttgacaata acggttacca ttctgtaatt 120 gcagctttga aagctggata cagacacatt gatgctgcgg ctatctattt gaatgaagaa 180 gaagttggca gggctattaa agattccgga gtccctcgtg aggaaatttt tattactact 240 aagctttggg gtacggaaca acgtgatccg gaagctgctc taaacaagtc tttgaaaaga 300 ctaggcttgg attatgttga cctatatctg atgcattggc cagtgccttt gaaaaccgac 360 agagttactg atggtaacgt tctgtgcatt ccaacattag aagatggcac tgttgacatc 420 gatactaagg aatggaattt tatcaagacg tgggagttga tgcaagagtt gccaaagacg 480 ggcaaaacta aagccgttgg tgtctctaat ttttctatta acaacattaa agaattatta 540 gaatctccaa ataacaaggt ggtaccagct actaatcaaa ttgaaattca tccattgcta 600 ccacaagacg aattgattgc cttttgtaag gaaaagggta ttgttgttga agcctactca 660 ccatttggga gtgctaatgc tcctttacta aaagagcaag caattattga tatggctaaa 720 aagcacggcg ttgagccagc acagcttatt atcagttgga gtattcaaag aggctacgtt 780 gttctggcca aatcggttaa tcctgaaaga attgtatcca attttaagat tttcactctg 840 cctgaggatg atttcaagac tattagtaac ctatccaaag tgcatggtac aaagagagtc 900 gttgatatga agtggggatc cttcccaatt ttccaatga 939 <210> 127 <211> 267 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YMR226C <400> 127 Met Ser Gln Gly Arg Lys Ala Ala Glu Arg Leu Ala Lys Lys Thr Val 1 5 10 15 Leu Ile Thr Gly Ala Ser Ala Gly Ile Gly Lys Ala Thr Ala Leu Glu 20 25 30 Tyr Leu Glu Ala Ser Asn Gly Asp Met Lys Leu Ile Leu Ala Ala Arg 35 40 45 Arg Leu Glu Lys Leu Glu Glu Leu Lys Lys Thr Ile Asp Gln Glu Phe 50 55 60 Pro Asn Ala Lys Val His Val Ala Gln Leu Asp Ile Thr Gln Ala Glu 65 70 75 80 Lys Ile Lys Pro Phe Ile Glu Asn Leu Pro Gln Glu Phe Lys Asp Ile 85 90 95 Asp Ile Leu Val Asn Asn Ala Gly Lys Ala Leu Gly Ser Asp Arg Val 100 105 110 Gly Gln Ile Ala Thr Glu Asp Ile Gln Asp Val Phe Asp Thr Asn Val 115 120 125 Thr Ala Leu Ile Asn Ile Thr Gln Ala Val Leu Pro Ile Phe Gln Ala 130 135 140 Lys Asn Ser Gly Asp Ile Val Asn Leu Gly Ser Ile Ala Gly Arg Asp 145 150 155 160 Ala Tyr Pro Thr Gly Ser Ile Tyr Cys Ala Ser Lys Phe Ala Val Gly 165 170 175 Ala Phe Thr Asp Ser Leu Arg Lys Glu Leu Ile Asn Thr Lys Ile Arg 180 185 190 Val Ile Leu Ile Ala Pro Gly Leu Val Glu Thr Glu Phe Ser Leu Val 195 200 205 Arg Tyr Arg Gly Asn Glu Glu Gln Ala Lys Asn Val Tyr Lys Asp Thr 210 215 220 Thr Pro Leu Met Ala Asp Asp Val Ala Asp Leu Ile Val Tyr Ala Thr 225 230 235 240 Ser Arg Lys Gln Asn Thr Val Ile Ala Asp Thr Leu Ile Phe Pro Thr 245 250 255 Asn Gln Ala Ser Pro His His Ile Phe Arg Gly 260 265 <210> 128 <211> 804 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YMR226C <400> 128 atgtcccaag gtagaaaagc tgcagaaaga ttggctaaga agactgtcct cattacaggt 60 gcatctgctg gtattggtaa ggcgaccgca ttagagtact tggaggcatc caatggtgat 120 atgaaactga tcttggctgc tagaagatta gaaaagctcg aggaattgaa gaagaccatt 180 gatcaagagt ttccaaacgc aaaagttcat gtggcccagc tggatatcac tcaagcagaa 240 aaaatcaagc ccttcattga aaacttgcca caagagttca aggatattga cattctggtg 300 aacaatgccg gaaaggctct tggcagtgac cgtgtgggcc agatcgcaac ggaggatatc 360 caggacgtgt ttgacaccaa cgtcacggct ttaatcaata tcacacaagc tgtactgccc 420 atattccaag ccaagaattc aggagatatt gtaaatttgg gttcaatcgc tggcagagac 480 gcatacccaa caggttctat ctattgtgcc tctaagtttg ccgtgggggc gttcactgat 540 agtttgagaa aggagctcat caacactaaa attagagtca ttctaattgc accagggcta 600 gtcgagactg aattttcact agttagatac agaggtaacg aggaacaagc caagaatgtt 660 tacaaggata ctaccccatt gatggctgat gacgtggctg atctgatcgt ctatgcaact 720 tccagaaaac aaaatactgt aattgcagac actttaatct ttccaacaaa ccaagcgtca 780 cctcatcata tcttccgtgg ataa 804 <210> 129 <211> 301 <212> DNA <213> Artificial Sequence <220> <223> ADH2-1 <400> 129 ccacttcacg agactgatct cctctgccgg aacaccgggc atctccaact tataagttgg 60 agaaataaga gaatttcaga ttgagagaat gaaaaaaaaa aaaaaaaaaa aggcagagga 120 gagcatagaa atggggttca ctttttggta aagctatagc atgcctatca catataaata 180 gagtgccagt agcgactttt ttcacactcg aaatactctt actactgctc tcttgttgtt 240 tttatcactt cttgtttctt cttggtaaat agaatatcaa gctacaaaaa gcatacaatc 300 a 301 <210> 130 <211> 302 <212> DNA <213> Artificial Sequence <220> <223> ADH2-2 <400> 130 gcggatctct tatgtcttta cgatttatag ttttcattat caagtatgcc tatattagta 60 tatagcatct ttagatgaca gtgttcgaag tttcacgaat aaaagataat attctacttt 120 ttgctcccac cgcgtttgct agcacgagtg aacaccatcc ctcgcctgtg agttgtaccc 180 attcctctaa actgtagaca tggtagcttc agcagtgttc gttatgtacg gcatcctcca 240 acaaacagtc ggttatagtt tgtcctgctc ctctgaatcg tctccctcga tatttctcat 300 tt 302 <210> 131 <211> 167 <212> DNA <213> Artificial Sequence <220> <223> YARCdelta4-1 <400> 131 tgttggaata gaaatcaact atcatctact aactagtatt tacattacta gtatattatc 60 atatacggtg ttagaagatg acgcaaatga tgagaaatag tcatctaaat tagtggaagc 120 tgaaacgcaa ggattgataa tgtaatagga tcaatgaata taaacat 167 <210> 132 <211> 170 <212> DNA <213> Artificial Sequence <220> <223> YARCdelta4-2 <400> 132 ataaaacgga atgaggaata atcgtaatat tagtatgtag aaatatagat tccattttga 60 ggattcctat atcctcgagg agaacttcta gtatattctg tatacctaat attatagcct 120 ttatcaacaa tggaatccca acaattatct caacattcac ccatttctca 170 <210> 133 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2-1 <400> 133 tttccccgaa aagtgcattt aaatccactt cacgagactg atcttttccc cgaaaagtgc 60 atttaaatcc acttcacgag actgatct 88 <210> 134 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2-1 <400> 134 tcgagcggcc gcgggccctg attgtatgct ttttgtagct tg 42 <210> 135 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2-2 <400> 135 ctgagagctc ttaattaagc ggatctctta tgtctttacg 40 <210> 136 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2-2 <400> 136 catgttcttt cctgcgattt aaataaatga gaaatatcga gggagac 47 <210> 137 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> F primer for YARCdelta4-1 <400> 137 cacatttccc cgaaaagtgc atttaaattg ttggaataga aatcaactat c 51 <210> 138 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> R primer for YARCdelta4-1 <400> 138 atagcggccg catgtttata ttcattgatc ctattaca 38 <210> 139 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> F primer for YARCdelta4-2 <400> 139 atagagctca taaaacggaa tgaggaataa tcg 33 <210> 140 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> R primer for YARCdelta4-2 <400> 140 tgagaaatgg gtgaatgttg ag 22 <110> Seoul National University R&DB Foundation <120> GENETICALLY ENGINEERED YEAST HAVING ACETOIN PRODUCING ABILITY AND METHOD FOR PRODUCTING ACETOIN USING THE SAME <130> FPD/202003-0098 <160> 140 <170> KoPatentIn 3.0 <210> 1 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH1 deletion <400> 1 ttcaagctat accaagcata caatcaacta tctcatatac acagctgaag cttcgtacgc 60 60 <210> 2 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH1 deletion <400> 2 cttatttaat aataaaaatc ataaatcata agaaattcgc gcataggcca ctagtggat 59 <210> 3 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2 deletion <400> 3 tacaatcaac tatcaactat taactatatc gtaatacaca cagctgaagc ttcgtacgc 59 <210> 4 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2 deletion <400> 4 ataatgaaaa ctataaatcg taaagacata agagatccgc gcataggcca ctagtggat 59 <210> 5 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH3 deletion <400> 5 gttaaaacta ggaatagtat agtcataagt taacaccatc cagctgaagc ttcgtacgc 59 <210> 6 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH3 deletion <400> 6 acaaagactt tcataaaaag tttgggtgcg taacacgcta gcataggcca ctagtggat 59 <210> 7 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH4 deletion <400> 7 caagtttaca tttgcaacaa ctaatagtca aataagaaaa cagctgaagc ttcgtacgc 59 <210> 8 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH4 deletion <400> 8 gcacacgcat aattgacgtt tatgagttcg ttcgattttt gcataggcca ctagtggat 59 <210> 9 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH5 deletion <400> 9 agaaaattat ttaactacat atctacaaaa tcaaagcatc cagctgaagc ttcgtacgc 59 <210> 10 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH5 deletion <400> 10 taaaaagtaa aaatatattc atcaaattcg ttacaaaaga gcataggcca ctagtggat 59 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD1 deletion <400> 11 cacccccccc ctccacaaac acaaatattg ataatataaa gcagctgaag cttcgtacgc 60 60 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD1 deletion <400> 12 aagtggggga aagtatgata tgttatcttt ctccaataaa tgcataggcc actagtggat 60 60 <210> 13 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPD2 deletion <400> 13 tctctttccc tttccttttc cttcgctccc cttccttatc acagctgaag cttcgtacgc 60 60 <210> 14 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPD2 deletion <400> 14 ggcaacagga aagatcagag ggggaggggg ggggagagtg tgcataggcc actagtggat 60 60 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH1 deletion <400> 15 caccatatcc gcaatgac 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH1 deletion <400> 16 gtgttgtcct ctgaggac 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH2 deletion <400> 17 accgggcatc tccaactt 18 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH2 deletion <400> 18 ccatgtctac agtttagagg 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH3 deletion <400> 19 atgagcagca gccattttg 19 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH3 deletion <400> 20 tgatggtgat aatgtctctc a 21 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH4 deletion <400> 21 aagaactagt ttttagttcg cg 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH4 deletion <400> 22 agaacttccg ttcttctttt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of ADH5 deletion <400> 23 ctgctatctg cttgtagaag 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of ADH5 deletion <400> 24 gaaacgtttg tataggttgt 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD1 deletion <400> 25 cgccttgctt ctctcccctt 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD1 deletion <400> 26 ccgacagcct ctgaatgagt 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for identification of GPD2 deletion <400> 27 tacggaccta ttgccattgt 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for identification of GPD2 deletion <400> 28 ttaagggcta tagataacag 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for BDH1 deletion <400> 29 gatttgctca cgctactttg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for BDH1 deletion <400> 30 gccatgcttt gttttagacg 20 <210> 31 <211> 1713 <212> DNA <213> Artificial Sequence <220> <223> Bacillus subtilis alsS <400> 31 atgacaaaag caacaaaaga acaaaaatcc cttgtgaaaa acagaggggc ggagcttgtt 60 gttgattgct tagtggagca aggtgtcaca catgtatttg gcattccagg tgcaaaaatt 120 gatgcggtat ttgacgcttt acaagataaa ggacctgaaa ttatcgttgc ccggcacgaa 180 caaaacgcag cattcatggc ccaagcagtc ggccgtttaa ctggaaaacc gggagtcgtg 240 ttagtcacat caggaccggg tgcctctaac ttggcaacag gcctgctgac agcgaacact 300 gaaggagacc ctgtcgttgc gcttgctgga aacgtgatcc gtgcagatcg tttaaaacgg 360 acacatcaat ctttggataa tgcggcgcta ttccagccga ttacaaaata cagtgtagaa 420 gttcaagatg taaaaaatat accggaagct gttacaaatg catttaggat agcgtcagca 480 gggcaggctg gggccgcttt tgtgagcttt ccgcaagatg ttgtgaatga agtcacaaat 540 acgaaaaacg tgcgtgctgt tgcagcgcca aaactcggtc ctgcagcaga tgatgcaatc 600 agtgcggcca tagcaaaaat ccaaacagca aaacttcctg tcgttttggt cggcatgaaa 660 ggcggaagac cggaagcaat taaagcggtt cgcaagcttt tgaaaaaggt tcagcttcca 720 tttgttgaaa catatcaagc tgccggtacc ctttctagag atttagagga tcaatatttt 780 ggccgtatcg gtttgttccg caaccagcct ggcgatttac tgctagagca ggcagatgtt 840 gttctgacga tcggctatga cccgattgaa tatgatccga aattctggaa tatcaatgga 900 gaccggacaa ttatccattt agacgagatt atcgctgaca ttgatcatgc ttaccagcct 960 gatcttgaat tgatcggtga cattccgtcc acgatcaatc atatcgaaca cgatgctgtg 1020 aaagtggaat ttgcagagcg tgagcagaaa atcctttctg atttaaaaca atatatgcat 1080 gaaggtgagc aggtgcctgc agattggaaa tcagacagag cgcaccctct tgaaatcgtt 1140 aaagagttgc gtaatgcagt cgatgatcat gttacagtaa cttgcgatat cggttcgcac 1200 gccatttgga tgtcacgtta tttccgcagc tacgagccgt taacattaat gatcagtaac 1260 ggtatgcaaa cactcggcgt tgcgcttcct tgggcaatcg gcgcttcatt ggtgaaaccg 1320 ggagaaaaag tggtttctgt ctctggtgac ggcggtttct tattctcagc aatggaatta 1380 gagacagcag ttcgactaaa agcaccaatt gtacacattg tatggaacga cagcacatat 1440 gacatggttg cattccagca attgaaaaaa tataaccgta catctgcggt cgatttcgga 1500 aatatcgata tcgtgaaata tgcggaaagc ttcggagcaa ctggcttgcg cgtagaatca 1560 ccagaccagc tggcagatgt tctgcgtcaa ggcatgaacg ctgaaggtcc tgtcatcatc 1620 gatgtcccgg ttgactacag tgataacatt aatttagcaa gtgacaagct tccgaaagaa 1680 ttcggggaac tcatgaaaac gaaagctctc tag 1713 <210> 32 <211> 570 <212> PRT <213> Artificial Sequence <220> <223> Bacillus subtilis alsS <400> 32 Met Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg Gly 1 5 10 15 Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His Val 20 25 30 Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln 35 40 45 Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala 50 55 60 Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val 65 70 75 80 Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu 85 90 95 Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val 100 105 110 Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala 115 120 125 Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val 130 135 140 Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala 145 150 155 160 Gly Gln Ala Gly Ala Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn 165 170 175 Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu 180 185 190 Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ile Ala Lys Ile Gln 195 200 205 Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro 210 215 220 Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu Pro 225 230 235 240 Phe Val Glu Thr Tyr Gln Ala Ala Gly Thr Leu Ser Arg Asp Leu Glu 245 250 255 Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly Asp 260 265 270 Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp Pro 275 280 285 Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr Ile 290 295 300 Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln Pro 305 310 315 320 Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile Glu 325 330 335 His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile Leu 340 345 350 Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala Asp 355 360 365 Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu Arg 370 375 380 Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser His 385 390 395 400 Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr Leu 405 410 415 Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp Ala 420 425 430 Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Val Ser 435 440 445 Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala Val 450 455 460 Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr Tyr 465 470 475 480 Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser Ala 485 490 495 Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe Gly 500 505 510 Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val Leu 515 520 525 Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro Val 530 535 540 Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys Glu 545 550 555 560 Phe Gly Glu Leu Met Lys Thr Lys Ala Leu 565 570 <210> 33 <211> 768 <212> DNA <213> Artificial Sequence <220> <223> Bacillus subtilis alsD <400> 33 atgaaacgag aaagcaacat tcaagtgctc agccgtggtc aaaaagatca gcctgtgagc 60 cagatttatc aagtatcaac aatgacttct ctattagacg gagtatatga cggagatttt 120 gaactgtcag agattccgaa atatggagac ttcggtatcg gaacctttaa caagcttgac 180 ggagagctga ttgggtttga cggcgaattt taccgtcttc gctcagacgg aaccgcgaca 240 ccggtccaaa atggagaccg ttcaccgttc tgttcattta cgttctttac accggacatg 300 acgcacaaaa ttgatgcgaa aatgacacgc gaagactttg aaaaagagat caacagcatg 360 ctgccaagca gaaacttatt ttatgcaatt cgcattgacg gattgtttaa aaaggtgcag 420 acaagaacag tagaacttca agaaaaacct tacgtgccaa tggttgaagc ggtcaaaaca 480 cagccgattt tcaacttcga caacgtgaga ggaacgattg taggtttctt gacaccagct 540 tatgcaaacg gaatcgccgt ttctggctat cacctgcact tcattgacga aggacgcaat 600 tcaggcggac acgtttttga ctatgtgctt gaggattgca cggttacgat ttctcaaaaa 660 atgaacatga atctcagact tccgaacaca gcggatttct ttaatgcgaa tctggataac 720 cctgattttg cgaaagatat cgaaacaact gaaggaagcc ctgaataa 768 <210> 34 <211> 255 <212> PRT <213> Artificial Sequence <220> <223> Bacillus subtilis alsD <400> 34 Met Lys Arg Glu Ser Asn Ile Gln Val Leu Ser Arg Gly Gln Lys Asp 1 5 10 15 Gln Pro Val Ser Gln Ile Tyr Gln Val Ser Thr Met Thr Ser Leu Leu 20 25 30 Asp Gly Val Tyr Asp Gly Asp Phe Glu Leu Ser Glu Ile Pro Lys Tyr 35 40 45 Gly Asp Phe Gly Ile Gly Thr Phe Asn Lys Leu Asp Gly Glu Leu Ile 50 55 60 Gly Phe Asp Gly Glu Phe Tyr Arg Leu Arg Ser Asp Gly Thr Ala Thr 65 70 75 80 Pro Val Gln Asn Gly Asp Arg Ser Pro Phe Cys Ser Phe Thr Phe Phe 85 90 95 Thr Pro Asp Met Thr His Lys Ile Asp Ala Lys Met Thr Arg Glu Asp 100 105 110 Phe Glu Lys Glu Ile Asn Ser Met Leu Pro Ser Arg Asn Leu Phe Tyr 115 120 125 Ala Ile Arg Ile Asp Gly Leu Phe Lys Lys Val Gln Thr Arg Thr Val 130 135 140 Glu Leu Gln Glu Lys Pro Tyr Val Pro Met Val Glu Ala Val Lys Thr 145 150 155 160 Gln Pro Ile Phe Asn Phe Asp Asn Val Arg Gly Thr Ile Val Gly Phe 165 170 175 Leu Thr Pro Ala Tyr Ala Asn Gly Ile Ala Val Ser Gly Tyr His Leu 180 185 190 His Phe Ile Asp Glu Gly Arg Asn Ser Gly Gly His Val Phe Asp Tyr 195 200 205 Val Leu Glu Asp Cys Thr Val Thr Ile Ser Gln Lys Met Asn Met Asn 210 215 220 Leu Arg Leu Pro Asn Thr Ala Asp Phe Phe Asn Ala Asn Leu Asp Asn 225 230 235 240 Pro Asp Phe Ala Lys Asp Ile Glu Thr Thr Glu Gly Ser Pro Glu 245 250 255 <210> 35 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsS <400> 35 ctgaggatcc atgacaaaag caacaaaaga ac 32 <210> 36 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsS <400> 36 ctgactcgag ctagagagct ttcgttttca 30 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> F primer for alsD <400> 37 ctgaggatcc atgaaacgag aaagcaacat 30 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for alsD <400> 38 ctgactcgag ttattcaggg cttccttcag 30 <210> 39 <211> 644 <212> DNA <213> Artificial Sequence <220> <223> TDH3 promoter <400> 39 tcattatcaa tactcgccat ttcaaagaat acgtaaataa ttaatagtag tgattttcct 60 aactttattt agtcaaaaaa ttagcctttt aattctgctg taacccgtac atgcccaaaa 120 tagggggcgg gttacacaga atatataaca tcgtaggtgt ctgggtgaac agtttattcc 180 tggcatccac taaatataat ggagcccgct ttttaagctg gcatccagaa aaaaaaagaa 240 tcccagcacc aaaatattgt tttcttcacc aaccatcagt tcataggtcc attctcttag 300 cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg ggcacaacct caatggagtg 360 atgcaacctg cctggagtaa atgatgacac aaggcaattg acccacgcat gtatctatct 420 cattttctta caccttctat taccttctgc tctctctgat ttggaaaaag ctgaaaaaaa 480 aggttgaaac cagttccctg aaattattcc cctacttgac taataagtat ataaagacgg 540 taggtattga ttgtaattct gtaaatctat ttcttaaact tcttaaattc tacttttata 600 gttagtcttt tttttagttt taaaacacca gaacttagtt tcga 644 <210> 40 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> TEF1 promoter <400> 40 atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca 60 tcgccgtacc acttcaaaac acccaagcac agcatactaa atttcccctc tttcttcctc 120 tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt 180 tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaaat 240 tttttttttg atttttttt ctttcgatga cctcccattg atatttaagt taataaacgg 300 tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt tttttacttc 360 ttgctcatta gaaagaaagc atagcaatct aatctaagtt t 401 <210> 41 <211> 248 <212> DNA <213> Artificial Sequence <220> <223> CYC1 terminator <400> 41 tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 60 aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240 taatttgc 248 <210> 42 <211> 401 <212> DNA <213> Artificial Sequence <220> <223> GPM1 terminator <400> 42 gtctgaagaa tgaatgattt gatgatttct ttttccctcc atttttctta ctgaatatat 60 caatgatata gacttgtata gtttattatt tcaaattaag tagctatata tagtcaagat 120 aacgtttgtt tgacacgatt acattattcg tcgacatctt ttttcagcct gtcgtggtag 180 caatttgagg agtattatta attgaatagg ttcattttgc gctcgcataa acagttttcg 240 tcagggacag tatgttggaa tgagtggtaa ttaatggtga catgacatgt tatagcaata 300 accttgatgt ttacatcgta gtttaatgta caccccgcga attcgttcaa gtaggagtgc 360 accaattgca aagggaaaag ctgaatgggc agttcgaata g 401 <210> 43 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for GPM1 terminator <400> 43 gtcactcgag gtctgaagaa tgaatgattt g 31 <210> 44 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> R primer for GPM1 terminator <400> 44 gtcaggtacc tattcgaact gcccattca 29 <210> 45 <211> 1341 <212> DNA <213> Artificial Sequence <220> <223> Lactococcus lactis noxE <400> 45 atgaaaatcg tagttatcgg tacgaaccac gcaggcattg ctacagcaaa tacattaatt 60 gatcgatatc caggccatga gattgttatg attgaccgta acagtaatat gagttacttg 120 gggtgtggga cagctatttg ggtcggaaga caaattgaaa aaccagatga gctgttttat 180 gccaaagcag aagattttga aaaaaaggga gtaaagatat taacagaaac agaagtttca 240 gaaattgact tactaataa aatgatttat gccaagtcaa aaactggaga aaagattaca 300 gaaagttatg ataaactcgt tctggcaaca ggttcacgtc caattattcc taacttgcca 360 ggaaaagatc ttaaaggcat tcatttttta aaactttttc aagaagggca agccattgac 420 gaagagtttg ctaagaatga tgtgaaacgg attgctgtga ttggtgctgg ttatattggg 480 acagaaattg ctgaagctgc caaacgtcgt ggaaaagaag tcctactttt tgatgcagaa 540 agtacttcac ttgcttcata ttatgatgaa gagtttgcta aagggatgga tgaaaatctt 600 gcccaacatg gaattgaact ccattttggg gaattagctc aagagtttaa ggcaaatgaa 660 aaaggtcatg tatcacagat tgtaactaat aaatcaactt atgatgttga cctcgttatt 720 aattgtattg gctttacagc caatagtgca ttggctggtg aacatttaga aacctttaaa 780 aatggagcaa tcaaagtgga taaacatcaa caaagtagtg acccagatgt ttctgctgta 840 ggagatgttg ccacaatcta ttctaatgct ttacaagact tcacctacat tgcccttgcc 900 tcaaacgctg ttcgctcagg gattgttgct ggtcataata ttggaggaaa atcaatagag 960 tctgttggtg tacaaggttc taatggaatc tctatttttg gttacaatat gacttctacg 1020 ggcttgtcgg ttaaagctgc gaaaaaaatc ggcctagaag tttcatttag tgattttgaa 1080 gataagcaaa aagcatggtt ccttcatgaa aataatgata gtgtgaaaat tcgtatcgtt 1140 tatgaaacaa aaaatcgcag aattattggt gctcaacttg ctagcaagag tgaaataatt 1200 gcaggaaata ttaatatgtt tagtttagct attcaagaaa agaaaacgat tgatgaatta 1260 gccttacttg atttattctt cttaccacac ttcaatagtc catataatta catgactgtt 1320 gcagctttaa atgcaaaata a 1341 <210> 46 <211> 446 <212> PRT <213> Artificial Sequence <220> <223> Lactococcus lactis noxE <400> 46 Met Lys Ile Val Val Ile Gly Thr Asn His Ala Gly Ile Ala Thr Ala 1 5 10 15 Asn Thr Leu Ile Asp Arg Tyr Pro Gly His Glu Ile Val Met Ile Asp 20 25 30 Arg Asn Ser Asn Met Ser Tyr Leu Gly Cys Gly Thr Ala Ile Trp Val 35 40 45 Gly Arg Gln Ile Glu Lys Pro Asp Glu Leu Phe Tyr Ala Lys Ala Glu 50 55 60 Asp Phe Glu Lys Lys Gly Val Lys Ile Leu Thr Glu Thr Glu Val Ser 65 70 75 80 Glu Ile Asp Phe Thr Asn Lys Met Ile Tyr Ala Lys Ser Lys Thr Gly 85 90 95 Glu Lys Ile Thr Glu Ser Tyr Asp Lys Leu Val Leu Ala Thr Gly Ser 100 105 110 Arg Pro Ile Ile Pro Asn Leu Pro Gly Lys Asp Leu Lys Gly Ile His 115 120 125 Phe Leu Lys Leu Phe Gln Glu Gly Gln Ala Ile Asp Glu Glu Phe Ala 130 135 140 Lys Asn Asp Val Lys Arg Ile Ala Val Ile Gly Ala Gly Tyr Ile Gly 145 150 155 160 Thr Glu Ile Ala Glu Ala Ala Lys Arg Arg Gly Lys Glu Val Leu Leu 165 170 175 Phe Asp Ala Glu Ser Thr Ser Leu Ala Ser Tyr Tyr Asp Glu Glu Phe 180 185 190 Ala Lys Gly Met Asp Glu Asn Leu Ala Gln His Gly Ile Glu Leu His 195 200 205 Phe Gly Glu Leu Ala Gln Glu Phe Lys Ala Asn Glu Lys Gly His Val 210 215 220 Ser Gln Ile Val Thr Asn Lys Ser Thr Tyr Asp Val Asp Leu Val Ile 225 230 235 240 Asn Cys Ile Gly Phe Thr Ala Asn Ser Ala Leu Ala Gly Glu His Leu 245 250 255 Glu Thr Phe Lys Asn Gly Ala Ile Lys Val Asp Lys His Gln Gln Ser 260 265 270 Ser Asp Pro Asp Val Ser Ala Val Gly Asp Val Ala Thr Ile Tyr Ser 275 280 285 Asn Ala Leu Gln Asp Phe Thr Tyr Ile Ala Leu Ala Ser Asn Ala Val 290 295 300 Arg Ser Gly Ile Val Ala Gly His Asn Ile Gly Gly Lys Ser Ile Glu 305 310 315 320 Ser Val Gly Val Gln Gly Ser Asn Gly Ile Ser Ile Phe Gly Tyr Asn 325 330 335 Met Thr Ser Thr Gly Leu Ser Val Lys Ala Ala Lys Lys Ile Gly Leu 340 345 350 Glu Val Ser Phe Ser Asp Phe Glu Asp Lys Gln Lys Ala Trp Phe Leu 355 360 365 His Glu Asn Asn Asp Ser Val Lys Ile Arg Ile Val Tyr Glu Thr Lys 370 375 380 Asn Arg Arg Ile Ile Gly Ala Gln Leu Ala Ser Lys Ser Glu Ile Ile 385 390 395 400 Ala Gly Asn Ile Asn Met Phe Ser Leu Ala Ile Gln Glu Lys Lys Thr 405 410 415 Ile Asp Glu Leu Ala Leu Leu Asp Leu Phe Phe Leu Pro His Phe Asn 420 425 430 Ser Pro Tyr Asn Tyr Met Thr Val Ala Ala Leu Asn Ala Lys 435 440 445 <210> 47 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> F primer for noxE <400> 47 gactaagctt atgaaaatcg tagttatcgg t 31 <210> 48 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> R primer for noxE <400> 48 gactctcgag ttattttgca tttaaagctg ca 32 <210> 49 <211> 821 <212> DNA <213> Artificial Sequence <220> <223> FBA1 porter <400> 49 atccaactgg caccgctggc ttgaacaaca ataccagcct tccaacttct gtaaataacg 60 gcggtacgcc agtgccacca gtaccgttac ctttcggtat acctcctttc cccatgtttc 120 caatgccctt catgcctcca acggctacta tcacaaatcc tcatcaagct gacgcaagcc 180 ctaagaaatg aataacaata ctgacagtac taaataattg cctacttggc ttcacatacg 240 ttgcatacgt cgatatagat aataatgata atgacagcag gattatcgta atacgtaata 300 gttgaaaatc tcaaaaatgt gtgggtcatt acgtaaataa tgataggaat gggattcttc 360 tatttttcct ttttccattc tagcagccgt cgggaaaacg tggcatcctc tctttcgggc 420 tcaattggag tcacgctgcc gtgagcatcc tctctttcca tatctaacaa ctgagcacgt 480 aaccaatgga aaagcatgag cttagcgttg ctccaaaaaa gtattggatg gttaatacca 540 tttgtctgtt ctcttctgac tttgactcct caaaaaaaaa aaatctacaa tcaacagatc 600 gcttcaatta cgccctcaca aaaacttttt tccttcttct tcgccccacgt taaattttat 660 ccctcatgtt gtctaacgga tttctgcact tgatttatta taaaaagaca aagacataat 720 acttctctat caatttcagt tattgttctt ccttgcgtta ttcttctgtt cttctttttc 780 ttttgtcata tataaccata accaagtaat acatattcaa a 821 <210> 50 <211> 202 <212> DNA <213> Artificial Sequence <220> <223> FBA1 terminator <400> 50 gttaattcaa attaattgat atagtttttt aatgagtatt gaatctgttt agaaataatg 60 gaatattatt tttatttatt tatttatatt attggtcggc tcttttcttc tgaaggtcaa 120 tgacaaaatg atatgaagga aataatgatt tctaaaattt tacaacgtaa gatattttta 180 caaaagccta gctcatcttt tg 202 <210> 51 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 promoter <400> 51 gtcagagctc atccaactgg caccgctg 28 <210> 52 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 promoter <400> 52 gtcagagctc atccaactgg caccgctg 28 <210> 53 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> F primer for FBA1 terminator <400> 53 gtcactcgag taagttaatt caaattaatt gatatag 37 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> R primer for FBA1 terminator <400> 54 gtcaggtacc caaaagatga gctaggcttt 30 <210> 55 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Universal F primer <400> 55 gactacgcgt ggaacaaaag ctggagctc 29 <210> 56 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Universal R primer <400> 56 gactacgcgt gcggccgcta atggcgcgcc atagggcgaa ttgggtacc 49 <210> 57 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ARA1 target gRNA F <400> 57 tacgaatggc tctgtctcgt gttttagagc tagaaatagc 40 <210> 58 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ARA1 target gRNA R <400> 58 acgagacaga gccattcgta gatcatttat ctttcactgc 40 <210> 59 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> BDH2 target gRNA F <400> 59 aaggtagttg tcgagcccac gttttagagc tagaaatagc 40 <210> 60 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> BDH2 target gRNA R <400> 60 gtgggctcga caactacctt gatcatttat ctttcactgc 40 <210> 61 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YPR1 target gRNA F <400> 61 atgcaagagt tgccaaagac gttttagagc tagaaatagc 40 <210> 62 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YPR1 target gRNA R <400> 62 gtctttggca actcttgcat gatcatttat ctttcactgc 40 <210> 63 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> GRE3 target gRNA F <400> 63 tggttgtaga atcaagcccg gttttagagc tagaaatagc 40 <210> 64 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> GRE3 target gRNA R <400> 64 cgggcttgat tctacaacca gatcatttat ctttcactgc g 41 <210> 65 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YJR096W target gRNA F <400> 65 agaagcggtt gatgaaggat gttttagagc tagaaatagc 40 <210> 66 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YJR096W target gRNA R <400> 66 atccttcatc aaccgcttct gatcatttat ctttcactgc 40 <210> 67 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YMR226C target gRNA F <400> 67 agttagatac agaggtaacg gttttagagc tagaaatagc 40 <210> 68 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> YMR226C target gRNA R <400> 68 cgttacctct gtatctaact gatcatttat ctttcactgc 40 <210> 69 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> NRE1 target gRNA F <400> 69 aggtatcggt aagtccatcg gttttagagc tagaaatagc 40 <210> 70 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> NRE1 target gRNA R <400> 70 cgatggactt accgatacct gatcatttat ctttcactgc g 41 <210> 71 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> IRC24 target gRNA F <400> 71 cgtctacggc gtagcaagaa gttttagagc tagaaatagc 40 <210> 72 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> IRC24 target gRNA R <400> 72 ttcttgctac gccgtagacg gatcatttat ctttcactgc g 41 <210> 73 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ENV9 target gRNA F <400> 73 aggaagattg ctgtagtaac gttttagagc tagaaatagc 40 <210> 74 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> ENV9 target gRNA R <400> 74 gttactacag caatcttcct gatcatttat ctttcactgc g 41 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ARA1 upstream F <400> 75 gcctccacct taacatctta 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ARA1 downstream R <400> 76 acgtacggcg aatgattata 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BDH2 upstream F <400> 77 gcattggtta gctcagatat 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BDH2 downstream R <400> 78 ctgccccact tttatatgtc 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YPR1 upstream F <400> 79 agcctatttg gaaaagactg 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YPR1 downstream R <400> 80 cagtagaagc gcaactagta 20 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRE3 upstream F <400> 81 tgtttcccaa ttgttgctgg 20 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GRE3 downstream R <400> 82 ttgggaccgc tttgctctct 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YJR096W upstream F <400> 83 ttgtccttat ttgaggctcc 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YJR096W downstream R <400> 84 attgcgctta tcttttggca 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YMR226C upstream F <400> 85 aacactcgac cagaacgatc 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YMR226C downstream R <400> 86 cagcctagtt tagccaaatc 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRE1 upstream F <400> 87 tcaatatctc cgctacaacg 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRE1 downstream R <400> 88 gatgtaatgt gacggcagcc 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IRC24 upstream F <400> 89 ttcttgtcaa caggtgctag 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IRC24 downstream R <400> 90 ttaccgatac ctctggaaac 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ENV9 upstream F <400> 91 attgagccac aggtctttcg 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ENV9 downstream R <400> 92 agatccaagc ctgatagacc 20 <210> 93 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> ARA1 for pET PscI F <400> 93 tcgaacatgt cctcttcttc agtagcctca ac 32 <210> 94 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ARA1 for pET NotI R <400> 94 tcgagcggcc gcatacttta aattgtccaa gtttgg 36 <210> 95 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YPR1 for pET NcoI F <400> 95 tcgaccatgg gtcctgctac gttaaagaat tc 32 <210> 96 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YPR1 for pET NotI R <400> 96 tcgagcggcc gcttggaaaa ttgggaagga tc 32 <210> 97 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YMR226C for pET NcoI F <400> 97 tcgaccatgg gttcccaagg tagaaaagct gc 32 <210> 98 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> YMR226C for pET NotI R <400> 98 tcgagcggcc gctccacgga agatatgatg ag 32 <210> 99 <211> 348 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH1 <400> 99 Met Ser Ile Pro Glu Thr Gln Lys Gly Val Ile Phe Tyr Glu Ser His 1 5 10 15 Gly Lys Leu Glu Tyr Lys Asp Ile Pro Val Pro Lys Pro Lys Ala Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Gln Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Met Ala Gly His Trp Val Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Glu Gly Lys Glu 195 200 205 Glu Leu Phe Arg Ser Ile Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Gly Ala Val Leu Lys Ala Thr Asp Gly Gly Ala 225 230 235 240 His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Val Arg Ala Asn Gly Thr Thr Val Leu Val Gly Met Pro 260 265 270 Ala Gly Ala Lys Cys Cys Ser Asp Val Phe Asn Gln Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Thr Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Val Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 100 <211> 1047 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH1 <400> 100 atgtctatcc cagaaactca aaaaggtgtt atcttctacg aatcccacgg taagttggaa 60 tacaaagata ttccagttcc aaagccaaag gccaacgaat tgttgatcaa cgttaaatac 120 tctggtgtct gtcacactga cttgcacgct tggcacggtg actggccatt gccagttaag 180 ctaccattag tcggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca acaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ccgacttggc ccaagtcgcc cccatcttgt gtgctggtat caccgtctac 480 aaggctttga agtctgctaa cttgatggcc ggtcactggg ttgctatctc cggtgctgct 540 ggtggtctag gttctttggc tgttcaatac gccaaggcta tgggttacag agtcttgggt 600 attgacggtg gtgaaggtaa ggaagaatta ttcagatcca tcggtggtga agtcttcatt 660 gacttcacta aggaaaagga cattgtcggt gctgttctaa aggccactga cggtggtgct 720 cacggtgtca tcaacgtttc cgtttccgaa gccgctattg aagcttctac cagatacgtt 780 agagctaacg gtaccaccgt tttggtcggt atgccagctg gtgccaagtg ttgttctgat 840 gtcttcaacc aagtcgtcaa gtccatctct attgttggtt cttacgtcgg taacagagct 900 gacaccagag aagctttgga cttcttcgcc agaggtttgg tcaagtctcc aatcaaggtt 960 gtcggcttgt ctaccttgcc agaaatttac gaaaagatgg aaaagggtca aatcgttggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 101 <211> 348 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH2 <400> 101 Met Ser Ile Pro Glu Thr Gln Lys Ala Ile Ile Phe Tyr Glu Ser Asn 1 5 10 15 Gly Lys Leu Glu His Lys Asp Ile Pro Val Pro Lys Pro Lys Pro Asn 20 25 30 Glu Leu Leu Ile Asn Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu 35 40 45 His Ala Trp His Gly Asp Trp Pro Leu Pro Thr Lys Leu Pro Leu Val 50 55 60 Gly Gly His Glu Gly Ala Gly Val Val Val Gly Met Gly Glu Asn Val 65 70 75 80 Lys Gly Trp Lys Ile Gly Asp Tyr Ala Gly Ile Lys Trp Leu Asn Gly 85 90 95 Ser Cys Met Ala Cys Glu Tyr Cys Glu Leu Gly Asn Glu Ser Asn Cys 100 105 110 Pro His Ala Asp Leu Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Glu 115 120 125 Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro Gln Gly Thr 130 135 140 Asp Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile Thr Val Tyr 145 150 155 160 Lys Ala Leu Lys Ser Ala Asn Leu Arg Ala Gly His Trp Ala Ala Ile 165 170 175 Ser Gly Ala Ala Gly Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Lys 180 185 190 Ala Met Gly Tyr Arg Val Leu Gly Ile Asp Gly Gly Pro Gly Lys Glu 195 200 205 Glu Leu Phe Thr Ser Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys 210 215 220 Glu Lys Asp Ile Val Ser Ala Val Val Lys Ala Thr Asn Gly Gly Ala 225 230 235 240 His Gly Ile Ile Asn Val Ser Val Ser Glu Ala Ala Ile Glu Ala Ser 245 250 255 Thr Arg Tyr Cys Arg Ala Asn Gly Thr Val Val Leu Val Gly Leu Pro 260 265 270 Ala Gly Ala Lys Cys Ser Ser Asp Val Phe Asn His Val Val Lys Ser 275 280 285 Ile Ser Ile Val Gly Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu 290 295 300 Ala Leu Asp Phe Phe Ala Arg Gly Leu Val Lys Ser Pro Ile Lys Val 305 310 315 320 Val Gly Leu Ser Ser Leu Pro Glu Ile Tyr Glu Lys Met Glu Lys Gly 325 330 335 Gln Ile Ala Gly Arg Tyr Val Val Asp Thr Ser Lys 340 345 <210> 102 <211> 1047 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH2 <400> 102 atgtctattc cagaaactca aaaagccatt atcttctacg aatccaacgg caagttggag 60 cataaggata tcccagttcc aaagccaaag cccaacgaat tgttaatcaa cgtcaagtac 120 tctggtgtct gccacaccga tttgcacgct tggcatggtg actggccatt gccaactaag 180 ttaccattag ttggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240 aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300 tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360 acccacgacg gttctttcca agaatacgct accgctgacg ctgttcaagc cgctcacatt 420 cctcaaggta ctgacttggc tgaagtcgcg ccaatcttgt gtgctggtat caccgtatac 480 aaggctttga agtctgccaa cttgagagca ggccactggg cggccatttc tggtgctgct 540 ggtggtctag gttctttggc tgttcaatat gctaaggcga tgggttacag agtcttaggt 600 attgatggtg gtccaggaaa ggaagaattg tttacctcgc tcggtggtga agtattcatc 660 gacttcacca aagagaagga cattgttagc gcagtcgtta aggctaccaa cggcggtgcc 720 cacggtatca tcaatgtttc cgtttccgaa gccgctatcg aagcttctac cagatactgt 780 agggcgaacg gtactgttgt cttggttggt ttgccagccg gtgcaaagtg ctcctctgat 840 gtcttcaacc acgttgtcaa gtctatctcc attgtcggct cttacgtggg gaacagagct 900 gataccagag aagccttaga tttctttgcc agaggtctag tcaagtctcc aataaaggta 960 gttggcttat ccagtttacc agaaatttac gaaaagatgg agaagggcca aattgctggt 1020 agatacgttg ttgacacttc taaataa 1047 <210> 103 <211> 375 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH3 <400> 103 Met Leu Arg Thr Ser Thr Leu Phe Thr Arg Arg Val Gln Pro Ser Leu 1 5 10 15 Phe Ser Arg Asn Ile Leu Arg Leu Gln Ser Thr Ala Ala Ile Pro Lys 20 25 30 Thr Gln Lys Gly Val Ile Phe Tyr Glu Asn Lys Gly Lys Leu His Tyr 35 40 45 Lys Asp Ile Pro Val Pro Glu Pro Lys Pro Asn Glu Ile Leu Ile Asn 50 55 60 Val Lys Tyr Ser Gly Val Cys His Thr Asp Leu His Ala Trp His Gly 65 70 75 80 Asp Trp Pro Leu Pro Val Lys Leu Pro Leu Val Gly Gly His Glu Gly 85 90 95 Ala Gly Val Val Val Lys Leu Gly Ser Asn Val Lys Gly Trp Lys Val 100 105 110 Gly Asp Leu Ala Gly Ile Lys Trp Leu Asn Gly Ser Cys Met Thr Cys 115 120 125 Glu Phe Cys Glu Ser Gly His Glu Ser Asn Cys Pro Asp Ala Asp Leu 130 135 140 Ser Gly Tyr Thr His Asp Gly Ser Phe Gln Gln Phe Ala Thr Ala Asp 145 150 155 160 Ala Ile Gln Ala Ala Lys Ile Gln Gln Gly Thr Asp Leu Ala Glu Val 165 170 175 Ala Pro Ile Leu Cys Ala Gly Val Thr Val Tyr Lys Ala Leu Lys Glu 180 185 190 Ala Asp Leu Lys Ala Gly Asp Trp Val Ala Ile Ser Gly Ala Ala Gly 195 200 205 Gly Leu Gly Ser Leu Ala Val Gln Tyr Ala Thr Ala Met Gly Tyr Arg 210 215 220 Val Leu Gly Ile Asp Ala Gly Glu Glu Lys Glu Lys Leu Phe Lys Lys 225 230 235 240 Leu Gly Gly Glu Val Phe Ile Asp Phe Thr Lys Thr Lys Asn Met Val 245 250 255 Ser Asp Ile Gln Glu Ala Thr Lys Gly Gly Pro His Gly Val Ile Asn 260 265 270 Val Ser Val Ser Glu Ala Ala Ile Ser Leu Ser Thr Glu Tyr Val Arg 275 280 285 Pro Cys Gly Thr Val Val Leu Val Gly Leu Pro Ala Asn Ala Tyr Val 290 295 300 Lys Ser Glu Val Phe Ser His Val Val Lys Ser Ile Asn Ile Lys Gly 305 310 315 320 Ser Tyr Val Gly Asn Arg Ala Asp Thr Arg Glu Ala Leu Asp Phe Phe 325 330 335 Ser Arg Gly Leu Ile Lys Ser Pro Ile Lys Ile Val Gly Leu Ser Glu 340 345 350 Leu Pro Lys Val Tyr Asp Leu Met Glu Lys Gly Lys Ile Leu Gly Arg 355 360 365 Tyr Val Val Asp Thr Ser Lys 370 375 <210> 104 <211> 1128 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH3 <400> 104 atgttgagaa cgtcaacatt gttcaccagg cgtgtccaac caagcctatt ttctagaaac 60 attcttagat tgcaatccac agctgcaatc cctaagactc aaaaaggtgt catcttttat 120 gagaataagg ggaagctgca ttacaaagat atccctgtcc ccgagcctaa gccaaatgaa 180 attttaatca acgttaaata ttctggtgta tgtcacaccg atttacatgc ttggcacggc 240 gattggccat tacctgttaa actaccatta gtaggtggtc atgaaggtgc tggtgtagtt 300 gtcaaactag gttccaatgt caagggctgg aaagtcggtg atttagcagg tatcaaatgg 360 ctgaacggtt cttgtatgac atgcgaattc tgtgaatcag gtcatgaatc aaattgtcca 420 gatgctgatt tatctggtta cactcatgat ggttctttcc aacaatttgc gaccgctgat 480 gctattcaag ccgccaaaat tcaacagggt accgacttgg ccgaagtagc cccaatatta 540 tgtgctggtg ttactgtata taaagcacta aaagaggcag acttgaaagc tggtgactgg 600 gttgccatct ctggtgctgc aggtggcttg ggttccttgg ccgttcaata tgcaactgcg 660 atgggttaca gagttctagg tattgatgca ggtgaggaaa aggaaaaact tttcaagaaa 720 ttggggggtg aagtattcat cgactttact aaaacaaaga atatggtttc tgacattcaa 780 gaagctacca aaggtggccc tcatggtgtc attaacgttt ccgtttctga agccgctatt 840 tctctatcta cggaatatgt tagaccatgt ggtaccgtcg ttttggttgg tttgcccgct 900 aacgcctacg ttaaatcaga ggtattctct catgtggtga agtccatcaa tatcaagggt 960 tcttatgttg gtaacagagc tgatacgaga gaagccttag acttctttag cagaggtttg 1020 atcaaatcac caatcaaaat tgttggatta tctgaattac caaaggttta tgacttgatg 1080 gaaaagggca agattttggg tagatacgtc gtcgatacta gtaaataa 1128 <210> 105 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH4 <400> 105 Met Ser Ser Val Thr Gly Phe Tyr Ile Pro Ile Ser Phe Phe Gly 1 5 10 15 Glu Gly Ala Leu Glu Glu Thr Ala Asp Tyr Ile Lys Asn Lys Asp Tyr 20 25 30 Lys Lys Ala Leu Ile Val Thr Asp Pro Gly Ile Ala Ala Ile Gly Leu 35 40 45 Ser Gly Arg Val Gln Lys Met Leu Glu Glu Arg Gly Leu Asn Val Ala 50 55 60 Ile Tyr Asp Lys Thr Gln Pro Asn Pro Asn Ile Ala Asn Val Thr Ala 65 70 75 80 Gly Leu Lys Val Leu Lys Glu Glu Asn Ser Glu Ile Val Val Ser Ile 85 90 95 Gly Gly Gly Ser Ala His Asp Asn Ala Lys Ala Ile Ala Leu Leu Ala 100 105 110 Thr Asn Gly Gly Glu Ile Gly Asp Tyr Glu Gly Val Asn Gln Ser Lys 115 120 125 Lys Ala Ala Leu Pro Leu Phe Ala Ile Asn Thr Thr Ala Gly Thr Ala 130 135 140 Ser Glu Met Thr Arg Phe Thr Ile Ile Ser Asn Glu Glu Lys Lys Ile 145 150 155 160 Lys Met Ala Ile Ile Asp Asn Asn Val Thr Pro Ala Val Ala Val Asn 165 170 175 Asp Pro Ser Thr Met Phe Gly Leu Pro Pro Ala Leu Thr Ala Ala Thr 180 185 190 Gly Leu Asp Ala Leu Thr His Cys Ile Glu Ala Tyr Val Ser Thr Ala 195 200 205 Ser Asn Pro Ile Thr Asp Ala Cys Ala Leu Lys Gly Ile Asp Leu Ile 210 215 220 Asn Glu Ser Leu Val Ala Ala Tyr Lys Asp Gly Lys Asp Lys Lys Ala 225 230 235 240 Arg Thr Asp Met Cys Tyr Ala Glu Tyr Leu Ala Gly Met Ala Phe Asn 245 250 255 Asn Ala Ser Leu Gly Tyr Val His Ala Leu Ala His Gln Leu Gly Gly 260 265 270 Phe Tyr His Leu Pro His Gly Val Cys Asn Ala Val Leu Leu Pro His 275 280 285 Val Gln Glu Ala Asn Met Gln Cys Pro Lys Ala Lys Lys Arg Leu Gly 290 295 300 Glu Ile Ala Leu His Cys Gly Ala Ser Gln Glu Asp Pro Glu Glu Thr 305 310 315 320 Ile Lys Ala Leu His Val Leu Asn Arg Thr Met Asn Ile Pro Arg Asn 325 330 335 Leu Lys Asp Leu Gly Val Lys Thr Glu Asp Phe Asp Ile Leu Ala Glu 340 345 350 His Ala Met His Asp Ala Cys His Leu Thr Asn Pro Val Gln Phe Thr 355 360 365 Lys Glu Gln Val Val Ala Ile Ile Lys Lys Ala Tyr Glu Tyr 370 375 380 <210> 106 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH4 <400> 106 atgtcttccg ttactgggtt ttacattcca ccaatctctt tctttggtga aggtgcttta 60 gaagaaaccg ctgattacat caaaaacaag gattacaaaa aggctttgat cgttactgat 120 cctggtattg cagctattgg tctctccggt agagtccaaa agatgttgga agaacgtggc 180 ttaaacgttg ctatctatga caaaactcaa ccaaacccaa atattgccaa tgtcacagct 240 ggtttgaagg ttttgaagga agaaaactct gaaattgtcg tttccattgg tggtggttct 300 gctcacgaca atgctaaggc cattgcttta ttggctacta acggtgggga aattggagat 360 tatgaaggtg tcaaccaatc taagaaggct gctttaccgc tatttgccat caacactact 420 gctggtactg cttccgagat gaccagattc actattatct ctaatgaaga aaagaaaatc 480 aagatggcca tcattgacaa caacgtcact ccagctgttg ctgtcaacga cccatctacc 540 atgtttggtt tgccacctgc tttgactgct gctactggtc tagatgcttt gactcactgt 600 atcgaagctt acgtttccac cgcctctaac ccaatcaccg atgcttgtgc tttgaagggt 660 attgatttga tcaatgaaag cttggtcgcc gcatacaaag acggtaaaga caagaaggcc 720 agaactgata tgtgttacgc agaatacttg gcaggtatgg ctttcaacaa tgcttctcta 780 ggttatgttc atgcccttgc tcatcaactt ggtggtttct accacttgcc tcatggtgtt 840 tgtaacgctg tcttgttgcc tcatgttcaa gaggccaaca tgcaatgtcc aaaggccaag 900 aagagattag gtgaaattgc cttgcattgc ggtgcttctc aagaagatcc agaagaaacc 960 atcaaggctt tgcacgtttt aaacagaacc atgaacattc caagaaactt gaaagactta 1020 ggtgttaaaa ccgaagattt tgacattttg gctgaacacg ccatgcatga tgcctgccat 1080 ttgactaacc cagttcaatt caccaaagaa caagtggttg ccattatcaa gaaagcctat 1140 gaatattaa 1149 <210> 107 <211> 351 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH5 <400> 107 Met Pro Ser Gln Val Ile Pro Glu Lys Gln Lys Ala Ile Val Phe Tyr 1 5 10 15 Glu Thr Asp Gly Lys Leu Glu Tyr Lys Asp Val Thr Val Pro Glu Pro 20 25 30 Lys Pro Asn Glu Ile Leu Val His Val Lys Tyr Ser Gly Val Cys His 35 40 45 Ser Asp Leu His Ala Trp His Gly Asp Trp Pro Phe Gln Leu Lys Phe 50 55 60 Pro Leu Ile Gly Gly His Glu Gly Ala Gly Val Val Val Lys Leu Gly 65 70 75 80 Ser Asn Val Lys Gly Trp Lys Val Gly Asp Phe Ala Gly Ile Lys Trp 85 90 95 Leu Asn Gly Thr Cys Met Ser Cys Glu Tyr Cys Glu Val Gly Asn Glu 100 105 110 Ser Gln Cys Pro Tyr Leu Asp Gly Thr Gly Phe Thr His Asp Gly Thr 115 120 125 Phe Gln Glu Tyr Ala Thr Ala Asp Ala Val Gln Ala Ala His Ile Pro 130 135 140 Pro Asn Val Asn Leu Ala Glu Val Ala Pro Ile Leu Cys Ala Gly Ile 145 150 155 160 Thr Val Tyr Lys Ala Leu Lys Arg Ala Asn Val Ile Pro Gly Gln Trp 165 170 175 Val Thr Ile Ser Gly Ala Cys Gly Gly Leu Gly Ser Leu Ala Ile Gln 180 185 190 Tyr Ala Leu Ala Met Gly Tyr Arg Val Ile Gly Ile Asp Gly Gly Asn 195 200 205 Ala Lys Arg Lys Leu Phe Glu Gln Leu Gly Gly Glu Ile Phe Ile Asp 210 215 220 Phe Thr Glu Glu Lys Asp Ile Val Gly Ala Ile Ile Lys Ala Thr Asn 225 230 235 240 Gly Gly Ser His Gly Val Ile Asn Val Ser Val Ser Glu Ala Ala Ile 245 250 255 Glu Ala Ser Thr Arg Tyr Cys Arg Pro Asn Gly Thr Val Val Leu Val 260 265 270 Gly Met Pro Ala His Ala Tyr Cys Asn Ser Asp Val Phe Asn Gln Val 275 280 285 Val Lys Ser Ile Ser Ile Val Gly Ser Cys Val Gly Asn Arg Ala Asp 290 295 300 Thr Arg Glu Ala Leu Asp Phe Phe Ala Arg Gly Leu Ile Lys Ser Pro 305 310 315 320 Ile His Leu Ala Gly Leu Ser Asp Val Pro Glu Ile Phe Ala Lys Met 325 330 335 Glu Lys Gly Glu Ile Val Gly Arg Tyr Val Val Glu Thr Ser Lys 340 345 350 <210> 108 <211> 1056 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ADH5 <400> 108 atgccttcgc aagtcattcc tgaaaaacaa aaggctattg tcttttatga gacagatgga 60 aaattggaat ataaagacgt cacagttccg gaacctaagc ctaacgaaat tttagtccac 120 gttaaatatt ctggtgtttg tcatagtgac ttgcacgcgt ggcacggtga ttggccattt 180 caattgaaat ttccattaat cggtggtcac gaaggtgctg gtgttgttgt taagttggga 240 tctaacgtta agggctggaa agtcggtgat tttgcaggta taaaatggtt gaatgggact 300 tgcatgtcct gtgaatattg tgaagtaggt aatgaatctc aatgtcctta tttggatggt 360 actggcttca cacatgatgg tacttttcaa gaatacgcaa ctgccgatgc cgttcaagct 420 gcccatattc caccaaacgt caatcttgct gaagttgccc caatcttgtg tgcaggtatc 480 actgtttata aggcgttgaa aagagccaat gtgataccag gccaatgggt cactatatcc 540 ggtgcatgcg gtggcttggg ttctctggca atccaatacg cccttgctat gggttacagg 600 gtcattggta tcgatggtgg taatgccaag cgaaagttat ttgaacaatt aggcggagaa 660 atattcatcg atttcacgga agaaaaagac attgttggtg ctataataaa ggccactaat 720 ggcggttctc atggagttat taatgtgtct gtttctgaag cagctatcga ggcttctacg 780 aggtattgta ggcccaatgg tactgtcgtc ctggttggta tgccagctca tgcttactgc 840 aattccgatg ttttcaatca agttgtaaaa tcaatctcca tcgttggatc ttgtgttgga 900 aatagagctg atacaaggga ggctttagat ttcttcgcca gaggtttgat caaatctccg 960 atccacttag ctggcctatc ggatgttcct gaaatttttg caaagatgga gaagggtgaa 1020 attgttggta gatatgttgt tgagacttct aaatga 1056 <210> 109 <211> 391 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD1 <400> 109 Met Ser Ala Ala Ala Asp Arg Leu Asn Leu Thr Ser Gly His Leu Asn 1 5 10 15 Ala Gly Arg Lys Arg Ser Ser Ser Ser Val Ser Leu Lys Ala Ala Glu 20 25 30 Lys Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr Thr 35 40 45 Ile Ala Lys Val Val Ala Glu Asn Cys Lys Gly Tyr Pro Glu Val Phe 50 55 60 Ala Pro Ile Val Gln Met Trp Val Phe Glu Glu Glu Ile Asn Gly Glu 65 70 75 80 Lys Leu Thr Glu Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr Leu 85 90 95 Pro Gly Ile Thr Leu Pro Asp Asn Leu Val Ala Asn Pro Asp Leu Ile 100 105 110 Asp Ser Val Lys Asp Val Asp Ile Ile Val Phe Asn Ile Pro His Gln 115 120 125 Phe Leu Pro Arg Ile Cys Ser Gln Leu Lys Gly His Val Asp Ser His 130 135 140 Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Val Gly Ala Lys Gly 145 150 155 160 Val Gln Leu Leu Ser Ser Tyr Ile Thr Glu Glu Leu Gly Ile Gln Cys 165 170 175 Gly Ala Leu Ser Gly Ala Asn Ile Ala Thr Glu Val Ala Gln Glu His 180 185 190 Trp Ser Glu Thr Thr Val Ala Tyr His Ile Pro Lys Asp Phe Arg Gly 195 200 205 Glu Gly Lys Asp Val Asp His Lys Val Leu Lys Ala Leu Phe His Arg 210 215 220 Pro Tyr Phe His Val Ser Val Ile Glu Asp Val Ala Gly Ile Ser Ile 225 230 235 240 Cys Gly Ala Leu Lys Asn Val Val Ala Leu Gly Cys Gly Phe Val Glu 245 250 255 Gly Leu Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Val Gly 260 265 270 Leu Gly Glu Ile Ile Arg Phe Gly Gln Met Phe Phe Pro Glu Ser Arg 275 280 285 Glu Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile Thr 290 295 300 Thr Cys Ala Gly Gly Arg Asn Val Lys Val Ala Arg Leu Met Ala Thr 305 310 315 320 Ser Gly Lys Asp Ala Trp Glu Cys Glu Lys Glu Leu Leu Asn Gly Gln 325 330 335 Ser Ala Gln Gly Leu Ile Thr Cys Lys Glu Val His Glu Trp Leu Glu 340 345 350 Thr Cys Gly Ser Val Glu Asp Phe Pro Leu Phe Glu Ala Val Tyr Gln 355 360 365 Ile Val Tyr Asn Asn Tyr Pro Met Lys Asn Leu Pro Asp Met Ile Glu 370 375 380 Glu Leu Asp Leu His Glu Asp 385 390 <210> 110 <211> 1176 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD1 <400> 110 atgtctgctg ctgctgatag attaaactta acttccggcc acttgaatgc tggtagaaag 60 agaagttcct cttctgtttc tttgaaggct gccgaaaagc ctttcaaggt tactgtgatt 120 ggatctggta actggggtac tactattgcc aaggtggttg ccgaaaattg taagggatac 180 ccagaagttt tcgctccaat agtacaaatg tgggtgttcg aagaagagat caatggtgaa 240 aaattgactg aaatcataaa tactagacat caaaacgtga aatacttgcc tggcatcact 300 ctacccgaca atttggttgc taatccagac ttgattgatt cagtcaagga tgtcgacatc 360 atcgttttca acattccaca tcaatttttg ccccgtatct gtagccaatt gaaaggtcat 420 gttgattcac acgtcagagc tatctcctgt ctaaagggtt ttgaagttgg tgctaaaggt 480 gtccaattgc tatcctctta catcactgag gaactaggta ttcaatgtgg tgctctatct 540 ggtgctaaca ttgccaccga agtcgctcaa gaacactggt ctgaaacaac agttgcttac 600 cacattccaa aggatttcag aggcgagggc aaggacgtcg accataaggt tctaaaggcc 660 ttgttccaca gaccttactt ccacgttagt gtcatcgaag atgttgctgg tatctccatc 720 tgtggtgctt tgaagaacgt tgttgcctta ggttgtggtt tcgtcgaagg tctaggctgg 780 ggtaacaacg cttctgctgc catccaaaga gtcggtttgg gtgagatcat cagattcggt 840 caaatgtttt tcccagaatc tagagaagaa acatactacc aagagtctgc tggtgttgct 900 gatttgatca ccacctgcgc tggtggtaga aacgtcaagg ttgctaggct aatggctact 960 tctggtaagg acgcctggga atgtgaaaag gagttgttga atggccaatc cgctcaaggt 1020 ttaattacct gcaaagaagt tcacgaatgg ttggaaacat gtggctctgt cgaagacttc 1080 ccattatttg aagccgtata ccaaatcgtt tacaacaact acccaatgaa gaacctgccg 1140 gacatgattg aagaattaga tctacatgaa gattag 1176 <210> 111 <211> 440 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD2 <400> 111 Met Leu Ala Val Arg Arg Leu Thr Arg Tyr Thr Phe Leu Lys Arg Thr 1 5 10 15 His Pro Val Leu Tyr Thr Arg Arg Ala Tyr Lys Ile Leu Pro Ser Arg 20 25 30 Ser Thr Phe Leu Arg Arg Ser Leu Leu Gln Thr Gln Leu His Ser Lys 35 40 45 Met Thr Ala His Thr Asn Ile Lys Gln His Lys His Cys His Glu Asp 50 55 60 His Pro Ile Arg Arg Ser Asp Ser Ala Val Ser Ile Val His Leu Lys 65 70 75 80 Arg Ala Pro Phe Lys Val Thr Val Ile Gly Ser Gly Asn Trp Gly Thr 85 90 95 Thr Ile Ala Lys Val Ile Ala Glu Asn Thr Glu Leu His Ser His Ile 100 105 110 Phe Glu Pro Glu Val Arg Met Trp Val Phe Asp Glu Lys Ile Gly Asp 115 120 125 Glu Asn Leu Thr Asp Ile Ile Asn Thr Arg His Gln Asn Val Lys Tyr 130 135 140 Leu Pro Asn Ile Asp Leu Pro His Asn Leu Val Ala Asp Pro Asp Leu 145 150 155 160 Leu His Ser Ile Lys Gly Ala Asp Ile Leu Val Phe Asn Ile Pro His 165 170 175 Gln Phe Leu Pro Asn Ile Val Lys Gln Leu Gln Gly His Val Ala Pro 180 185 190 His Val Arg Ala Ile Ser Cys Leu Lys Gly Phe Glu Leu Gly Ser Lys 195 200 205 Gly Val Gln Leu Leu Ser Ser Tyr Val Thr Asp Glu Leu Gly Ile Gln 210 215 220 Cys Gly Ala Leu Ser Gly Ala Asn Leu Ala Pro Glu Val Ala Lys Glu 225 230 235 240 His Trp Ser Glu Thr Thr Val Ala Tyr Gln Leu Pro Lys Asp Tyr Gln 245 250 255 Gly Asp Gly Lys Asp Val Asp His Lys Ile Leu Lys Leu Leu Phe His 260 265 270 Arg Pro Tyr Phe His Val Asn Val Ile Asp Asp Val Ala Gly Ile Ser 275 280 285 Ile Ala Gly Ala Leu Lys Asn Val Val Ala Leu Ala Cys Gly Phe Val 290 295 300 Glu Gly Met Gly Trp Gly Asn Asn Ala Ser Ala Ala Ile Gln Arg Leu 305 310 315 320 Gly Leu Gly Glu Ile Ile Lys Phe Gly Arg Met Phe Phe Pro Glu Ser 325 330 335 Lys Val Glu Thr Tyr Tyr Gln Glu Ser Ala Gly Val Ala Asp Leu Ile 340 345 350 Thr Thr Cys Ser Gly Gly Arg Asn Val Lys Val Ala Thr Tyr Met Ala 355 360 365 Lys Thr Gly Lys Ser Ala Leu Glu Ala Glu Lys Glu Leu Leu Asn Gly 370 375 380 Gln Ser Ala Gln Gly Ile Ile Thr Cys Arg Glu Val His Glu Trp Leu 385 390 395 400 Gln Thr Cys Glu Leu Thr Gln Glu Phe Pro Leu Phe Glu Ala Val Tyr 405 410 415 Gln Ile Val Tyr Asn Asn Val Arg Met Glu Asp Leu Pro Glu Met Ile 420 425 430 Glu Glu Leu Asp Ile Asp Asp Glu 435 440 <210> 112 <211> 1323 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae GPD2 <400> 112 atgcttgctg tcagaagatt aacaagatac acatcctta agcgaacgca tccggtgtta 60 tatactcgtc gtgcatataa aattttgcct tcaagatcta ctttcctaag aagatcatta 120 ttacaaacac aactgcactc aaagatgact gctcatacta atatcaaaca gcacaaacac 180 tgtcatgagg accatcctat cagaagatcg gactctgccg tgtcaattgt acatttgaaa 240 cgtgcgccct tcaaggttac agtgattggt tctggtaact gggggaccac catcgccaaa 300 gtcattgcgg aaaacacaga attgcattcc catatcttcg agccagaggt gagaatgtgg 360 gtttttgatg aaaagatcgg cgacgaaaat ctgacggata tcataaatac aagacaccag 420 aacgttaaat atctacccaa tattgacctg ccccataatc tagtggccga tcctgatctt 480 ttacactcca tcaagggtgc tgacatcctt gttttcaaca tccctcatca atttttacca 540 aacatagtca aacaattgca aggccacgtg gcccctcatg taagggccat ctcgtgtcta 600 aaagggttcg agttgggctc caagggtgtg caattgctat cctcctatgt tactgatgag 660 ttaggaatcc aatgtggcgc actatctggt gcaaacttgg caccggaagt ggccaaggag 720 cattggtccg aaaccaccgt ggcttaccaa ctaccaaagg attatcaagg tgatggcaag 780 gatgtagatc ataagatttt gaaattgctg ttccacagac cttacttcca cgtcaatgtc 840 atcgatgatg ttgctggtat atccattgcc ggtgccttga agaacgtcgt ggcacttgca 900 tgtggtttcg tagaaggtat gggatggggt aacaatgcct ccgcagccat tcaaaggctg 960 ggtttaggtg aaattatcaa gttcggtaga atgtttttcc cagaatccaa agtcgagacc 1020 tactatcaag aatccgctgg tgttgcagat ctgatcacca cctgctcagg cggtagaaac 1080 gtcaaggttg ccacatacat ggccaagacc ggtaagtcag ccttggaagc agaaaaggaa 1140 ttgcttaacg gtcaatccgc ccaagggata atcacatgca gagaagttca cgagtggcta 1200 caaacatgtg agttgaccca agaattccca ttattcgagg cagtctacca gatagtctac 1260 aacaacgtcc gcatggaaga cctaccggag atgattgaag agctagacat cgatgacgaa 1320 tag 1323 <210> 113 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae BDH1 <400> 113 Met Arg Ala Leu Ala Tyr Phe Lys Lys Gly Asp Ile His Phe Thr Asn 1 5 10 15 Asp Ile Pro Arg Pro Glu Ile Gln Thr Asp Asp Glu Val Ile Ile Asp 20 25 30 Val Ser Trp Cys Gly Ile Cys Gly Ser Asp Leu His Glu Tyr Leu Asp 35 40 45 Gly Pro Ile Phe Met Pro Lys Asp Gly Glu Cys His Lys Leu Ser Asn 50 55 60 Ala Ala Leu Pro Leu Ala Met Gly His Glu Met Ser Gly Ile Val Ser 65 70 75 80 Lys Val Gly Pro Lys Val Thr Lys Val Lys Val Gly Asp His Val Val 85 90 95 Val Asp Ala Ala Ser Ser Cys Ala Asp Leu His Cys Trp Pro His Ser 100 105 110 Lys Phe Tyr Asn Ser Lys Pro Cys Asp Ala Cys Gln Arg Gly Ser Glu 115 120 125 Asn Leu Cys Thr His Ala Gly Phe Val Gly Leu Gly Val Ile Ser Gly 130 135 140 Gly Phe Ala Glu Gln Val Val Val Ser Gln His His Ile Ile Pro Val 145 150 155 160 Pro Lys Glu Ile Pro Leu Asp Val Ala Ala Leu Val Glu Pro Leu Ser 165 170 175 Val Thr Trp His Ala Val Lys Ile Ser Gly Phe Lys Lys Gly Ser Ser 180 185 190 Ala Leu Val Leu Gly Ala Gly Pro Ile Gly Leu Cys Thr Ile Leu Val 195 200 205 Leu Lys Gly Met Gly Ala Ser Lys Ile Val Val Ser Glu Ile Ala Glu 210 215 220 Arg Arg Ile Glu Met Ala Lys Lys Leu Gly Val Glu Val Phe Asn Pro 225 230 235 240 Ser Lys His Gly His Lys Ser Ile Glu Ile Leu Arg Gly Leu Thr Lys 245 250 255 Ser His Asp Gly Phe Asp Tyr Ser Tyr Asp Cys Ser Gly Ile Gln Val 260 265 270 Thr Phe Glu Thr Ser Leu Lys Ala Leu Thr Phe Lys Gly Thr Ala Thr 275 280 285 Asn Ile Ala Val Trp Gly Pro Lys Pro Val Pro Phe Gln Pro Met Asp 290 295 300 Val Thr Leu Gln Glu Lys Val Met Thr Gly Ser Ile Gly Tyr Val Val 305 310 315 320 Glu Asp Phe Glu Glu Val Val Arg Ala Ile His Asn Gly Asp Ile Ala 325 330 335 Met Glu Asp Cys Lys Gln Leu Ile Thr Gly Lys Gln Arg Ile Glu Asp 340 345 350 Gly Trp Glu Lys Gly Phe Gln Glu Leu Met Asp His Lys Glu Ser Asn 355 360 365 Val Lys Ile Leu Leu Thr Pro Asn Asn His Gly Glu Met Lys 370 375 380 <210> 114 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae BDH1 <400> 114 atgagagctt tggcatattt caagaagggt gatattcact tcactaatga tatccctagg 60 ccagaaatcc aaaccgacga tgaggttatt atcgacgtct cttggtgtgg gatttgtggc 120 tcggatcttc acgagtactt ggatggtcca atcttcatgc ctaaagatgg agagtgccat 180 aaattatcca acgctgcttt acctctggca atgggccatg agatgtcagg aattgtttcc 240 aaggttggtc ctaaagtgac aaaggtgaag gttggcgacc acgtggtcgt tgatgctgcc 300 agcagttgtg cggacctgca ttgctggcca cactccaaat tttacaattc caaaccatgt 360 gatgcttgtc agaggggcag tgaaaatcta tgtacccacg ccggttttgt aggactaggt 420 gtgatcagtg gtggctttgc tgaacaagtc gtagtctctc aacatcacat tatcccggtt 480 ccaaaggaaa ttcctctaga tgtggctgct ttagttgagc ctctttctgt cacctggcat 540 gctgttaaga tttctggttt caaaaaaggc agttcagcct tggttcttgg tgcaggtccc 600 attgggttgt gtaccatttt ggtacttaag ggaatggggg ctagtaaaat tgtagtgtct 660 gaaattgcag agagaagaat agaaatggcc aagaaactgg gcgttgaggt gttcaatccc 720 tccaagcacg gtcataaatc tatagagata ctacgtggtt tgaccaagag ccatgatggg 780 tttgattaca gttatgattg ttctggtatt caagttactt tcgaaacctc tttgaaggca 840 ttaacattca aggggacagc caccaacatt gcagtttggg gtccaaaacc tgtcccattc 900 caaccaatgg atgtgactct ccaagagaaa gttatgactg gttcgatcgg ctatgttgtc 960 gaagacttcg aagaagttgt tcgtgccatc cacaacggag acatcgccat ggaagattgt 1020 aagcaactaa tcactggtaa gcaaaggatt gaggacggtt gggaaaaggg attccaagag 1080 ttgatggatc acaaggaatc caacgttaag attctattga cgcctaacaa tcacggtgaa 1140 atgaagtaa 1149 <210> 115 <211> 444 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae EMP46 <400> 115 Met Thr Thr Arg Lys Thr Ala Ser Ser Leu Gln Leu Leu Gly Lys Ile 1 5 10 15 Thr Gly Thr Lys Ala Gly Thr Lys Gln Lys Lys Met Asn Phe Ile Asn 20 25 30 Gly Leu Ile Trp Leu Tyr Met Cys Val Trp Met Val His Gly Lys Val 35 40 45 Thr Gln Lys Asp Glu Leu Lys Trp Asn Lys Gly Tyr Ser Leu Pro Asn 50 55 60 Leu Leu Glu Val Thr Asp Gln Gln Lys Glu Leu Ser Gln Trp Thr Leu 65 70 75 80 Gly Asp Lys Val Lys Leu Glu Glu Gly Arg Phe Val Leu Thr Pro Gly 85 90 95 Lys Asn Thr Lys Gly Ser Leu Trp Leu Lys Pro Glu Tyr Ser Ile Lys 100 105 110 Asp Ala Met Thr Ile Glu Trp Thr Phe Arg Ser Phe Gly Phe Arg Gly 115 120 125 Ser Thr Lys Gly Gly Leu Ala Phe Trp Leu Lys Gln Gly Asn Glu Gly 130 135 140 Asp Ser Thr Glu Leu Phe Gly Gly Ser Ser Lys Lys Phe Asn Gly Leu 145 150 155 160 Met Ile Leu Leu Arg Leu Asp Asp Lys Leu Gly Glu Ser Val Thr Ala 165 170 175 Tyr Leu Asn Asp Gly Thr Lys Asp Leu Asp Ile Glu Ser Ser Pro Tyr 180 185 190 Phe Ala Ser Cys Leu Phe Gln Tyr Gln Asp Ser Met Val Pro Ser Thr 195 200 205 Leu Arg Leu Thr Tyr Asn Pro Leu Asp Asn His Leu Leu Lys Leu Gln 210 215 220 Met Asp Asn Arg Val Cys Phe Gln Thr Arg Lys Val Lys Phe Met Gly 225 230 235 240 Ser Ser Pro Phe Arg Ile Gly Thr Ser Ala Ile Asn Asp Ala Ser Lys 245 250 255 Glu Ser Phe Glu Ile Leu Lys Met Lys Leu Tyr Asp Gly Val Ile Glu 260 265 270 Asp Ser Leu Ile Pro Asn Val Asn Pro Met Gly Gln Pro Arg Val Val 275 280 285 Thr Lys Val Ile Asn Ser Gln Thr Gly Glu Glu Ser Phe Arg Glu Lys 290 295 300 Met Pro Phe Ser Asp Lys Glu Glu Ser Ile Thr Ser Asn Glu Leu Phe 305 310 315 320 Glu Lys Met Asn Lys Leu Glu Gly Lys Ile Met Ala Asn Asp Ile Asp 325 330 335 Pro Leu Leu Arg Lys Met Asn Lys Ile Val Glu Asn Glu Arg Glu Leu 340 345 350 Ile Gln Arg Leu Arg Pro Leu Leu Asp Leu Lys Lys Thr Ala Ile Ser 355 360 365 Asp Asp Ser Phe Gln Asp Phe Leu Ser Met Asn Ala Asn Leu Asp Arg 370 375 380 Leu Ile Lys Glu Gln Glu Lys Ile Arg Gln Asp Ala Lys Leu Tyr Gly 385 390 395 400 Lys Gln Thr Lys Gly His Asp Glu Ile Phe Ser Lys Ile Ser Val Trp 405 410 415 Leu Ala Leu Leu Ile Phe Ile Met Ile Thr Leu Ala Tyr Tyr Met Phe 420 425 430 Arg Ile Asn Gln Asp Ile Lys Lys Val Lys Leu Leu 435 440 <210> 116 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae EMP46 <400> 116 atgactacaa gaaagacagc ttcctctctt cagcttttag ggaaaatcac aggaacaaaa 60 gctggaacta agcaaaagaa gatgaatttc attaatggac tgatatggtt atatatgtgt 120 gtgtggatgg tacacggaaa agtgacgcag aaggatgaat tgaaatggaa taaaggatac 180 tcgctaccaa atttgctaga agtgacagat cagcaaaaag aactttcaca atggactttg 240 ggtgacaaag taaaacttga agaagggagg tttgttttaa ctcctggaaa gaacacaaag 300 ggttcacttt ggttgaaacc tgaatattca ataaaggatg caatgacaat agagtggacg 360 tttagaagtt tcgggttcag aggcagcaca aaggggggtc ttgcattttg gctgaagcaa 420 ggaaatgagg gagatagtac cgagttattt ggtggaagtt cgaagaagtt taatggtttg 480 atgatattgt tacgattaga cgataagttg ggagagagcg tgacagcgta tttgaatgac 540 ggaacaaaag atcttgatat tgaatcctca ccgtactttg cgtcatgtct gttccaatac 600 caggattcca tggtaccatc aacattaaga ttgacttaca atccactaga taatcacttg 660 ttaaagttgc aaatggacaa cagagtgtgt ttccagacaa ggaaagttaa atttatgggc 720 agcagcccat ttaggattgg aacaagtgct atcaacgatg catccaaaga atcgtttgaa 780 atcttgaaaa tgaagcttta tgacggagtt atagaggatt cgctaattcc taacgtgaat 840 cctatgggac aacccagagt ggttactaaa gtgatcaatt ctcaaactgg tgaagagagt 900 ttcagggaaa agatgccatt ttctgataag gaagaaagta taacgagtaa cgagcttttc 960 gaaaagatga acaagttgga ggggaaaatc atggcaaatg atatcgatcc attactccgc 1020 aagatgaaca agattgtgga gaatgaacgt gaactgattc aacgtttaag accactgtta 1080 gatctgaaga aaacagccat aagtgacgat agtttccaag attttctttc gatgaacgca 1140 aacctggaca gattgataaa agaacaagaa aaaattcgac aagatgccaa gctgtatggc 1200 aagcagacca aaggtcatga tgagatattt tccaaaataa gtgtatggtt ggcactgctg 1260 attttcatta tgatcacatt ggcgtactac atgtttagaa ttaaccaaga catcaagaag 1320 gtcaaacttc tgtaa 1335 <210> 117 <211> 515 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae PEP7 <400> 117 Met Asp Leu Glu Asn Val Ser Cys Pro Ile Cys Leu Arg Lys Phe Asp 1 5 10 15 Asn Leu Gln Ala Leu Asn Ala His Leu Asp Val Glu His Gly Phe Asn 20 25 30 Asp Asn Glu Asp Ser Leu Gly Ser Asn Asp Ser Arg Leu Val Asn Gly 35 40 45 Lys Gln Lys Lys Ala Arg Ser Val Asp Ser Ser Ala Gln Lys Leu Lys 50 55 60 Arg Ser His Trp Glu Lys Phe Lys Lys Gly Lys Ser Cys Cys His Thr 65 70 75 80 Cys Gly Arg Thr Leu Asn Asn Asn Ile Gly Ala Ile Asn Cys Arg Lys 85 90 95 Cys Gly Lys Leu Tyr Cys Arg Arg His Leu Pro Asn Met Ile Lys Leu 100 105 110 Asn Leu Ser Ala Gln Tyr Asp Pro Arg Asn Gly Lys Trp Tyr Asn Cys 115 120 125 Cys His Asp Cys Phe Val Thr Lys Pro Gly Tyr Asn Asp Tyr Gly Glu 130 135 140 Val Ile Asp Leu Thr Pro Glu Phe Phe Lys Val Arg Asn Ile Lys Arg 145 150 155 160 Glu Asp Lys Asn Leu Arg Leu Leu Gln Leu Glu Asn Arg Phe Val Arg 165 170 175 Leu Val Asp Gly Leu Ile Thr Leu Tyr Asn Thr Tyr Ser Arg Ser Ile 180 185 190 Ile His Asn Leu Lys Met Asn Ser Glu Met Ser Lys Leu Glu Arg Thr 195 200 205 Val Thr Pro Trp Arg Asp Asp Arg Ser Val Leu Phe Cys Asn Ile Cys 210 215 220 Ser Glu Pro Phe Gly Leu Leu Leu Arg Lys His His Cys Arg Leu Cys 225 230 235 240 Gly Met Val Val Cys Asp Asp Ala Asn Arg Asn Cys Ser Asn Glu Ile 245 250 255 Ser Ile Gly Tyr Leu Met Ser Ala Ala Ser Asp Leu Pro Phe Glu Tyr 260 265 270 Asn Ile Gln Lys Asp Asp Leu Leu His Ile Pro Ile Ser Ile Arg Leu 275 280 285 Cys Ser His Cys Ile Asp Met Leu Phe Ile Gly Arg Lys Phe Asn Lys 290 295 300 Asp Val Arg Met Pro Leu Ser Gly Ile Phe Ala Lys Tyr Asp Ser Met 305 310 315 320 Gln Asn Ile Ser Lys Val Ile Asp Ser Leu Leu Pro Ile Phe Glu Asp 325 330 335 Ser Leu Asn Ser Leu Lys Val Glu Thr Ala Lys Asp Ser Glu Asn Thr 340 345 350 Leu Asp Pro Lys Asn Leu Asn Asp Leu Ala Arg Leu Arg His Lys Leu 355 360 365 Leu Asn Ser Phe Asn Leu Tyr Asn Thr Leu Thr Arg Gln Leu Leu Ser 370 375 380 Val Glu Pro Gln Ser His Leu Glu Arg Gln Leu Gln Asn Ser Ile Lys 385 390 395 400 Ile Ala Ser Ala Ala Tyr Ile Asn Glu Lys Ile Leu Pro Leu Lys Ser 405 410 415 Leu Pro Ala Ile Leu Asn Pro Glu Gly His Lys Thr Asn Glu Asp Gly 420 425 430 Gln Lys Ala Glu Pro Glu Val Lys Lys Leu Ser Gln Leu Met Ile Glu 435 440 445 Asn Leu Thr Ile Lys Glu Val Lys Glu Leu Arg Glu Glu Leu Met Val 450 455 460 Leu Lys Glu Gln Ser Tyr Leu Ile Glu Ser Thr Ile Gln Asp Tyr Lys 465 470 475 480 Lys Gln Arg Arg Leu Glu Glu Ile Val Thr Leu Asn Lys Asn Leu Glu 485 490 495 Glu Leu His Ser Arg Ile His Thr Val Gln Ser Lys Leu Gly Asp His 500 505 510 Gly Phe Asn 515 <210> 118 <211> 1548 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae PEP7 <400> 118 atggatcttg aaaatgtttc atgtcccatt tgtctaagga agtttgataa cttacaagca 60 ctaaatgcac atttagatgt tgagcatggg tttaacgata atgaagattc actcggttcc 120 aatgacagtc gtttagtcaa tggtaaacaa aaaaaggcca gatctgttga tagcagtgcg 180 caaaagttga aaagaagcca ttgggaaaaa ttcaaaaaag ggaagagctg ctgtcaccaca 240 tgtggaagga ctttgaataa caatattggc gccattaatt gtaggaaatg tggtaaactg 300 tattgcagaa ggcatcttcc taatatgatt aaacttaatc tttccgcaca gtatgacccc 360 agaaacggga aatggtacaa ttgctgccat gattgtttcg tcacaaaacc tggctataac 420 gattatggcg aagtaataga tttaacacca gaattcttta aggtacgaaa tataaaaaga 480 gaggacaaaa acttaaggct attacaatta gaaaatcggt ttgtccgtct agttgatggt 540 ctgattacac tctataacac atattctaga tccattattc ataatttgaa gatgaatagt 600 gaaatgtcca agttagaacg tacagttact ccatggagag atgatagaag tgtactcttt 660 tgtaacatat gttccgaacc atttgggcta tactaagga agcatcactg cagattatgt 720 ggtatggttg tttgtgatga tgcaaacagg aactgctcaa acgaaataag cataggttat 780 ttaatgtctg cagcgtcaga tctgccattc gaatacaata tacagaagga tgatttactt 840 catattccta tatccataag attgtgctcg cactgtatcg atatgctatt tattggcagg 900 aaatttaaca aggacgttag aatgccgcta agtggaatat ttgctaaata tgatagcatg 960 caaaatatat ccaaagtaat tgatagtctc ctgcccattt ttgaagactc attgaatagc 1020 ctgaaggtgg agactgccaa ggattctgaa aatacacttg atccaaagaa tctgaatgat 1080 ctcgctcgat taagacataa attactcaat tcttttaact tgtataatac actaacaaga 1140 cagctcttaa gtgtagaacc tcaaagtcat ctagagagac aacttcaaaa ttcgatcaag 1200 atagcttccg ctgcatacat aaacgaaaaa atcctaccgt tgaagtcgct tccggcaatt 1260 ttgaacccag agggccataa aacgaatgaa gatgggcaaa aagctgaacc agaggtaaag 1320 aaattatcgc aactaatgat cgaaaacttg accataaaag aagtgaaaga gctgagagaa 1380 gaattgatgg tcctaaagga acaaagctac cttattgagt ccacaattca ggactataag 1440 aagcagcgta gattggagga gatcgtcaca cttaataaga acttagaaga attgcactca 1500 agaatacata ccgttcaatc gaagctgggt gaccatgggt ttaattaa 1548 <210> 119 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae SUR1 <400> 119 Met Arg Lys Glu Leu Lys Tyr Leu Ile Cys Phe Asn Ile Leu Leu Leu 1 5 10 15 Leu Ser Ile Ile Tyr Tyr Thr Phe Asp Leu Leu Thr Leu Cys Ile Asp 20 25 30 Asp Thr Val Lys Asp Ala Ile Leu Glu Glu Asp Leu Asn Pro Asp Ala 35 40 45 Pro Pro Lys Pro Gln Leu Ile Pro Lys Ile Ile His Gln Thr Tyr Lys 50 55 60 Thr Glu Asp Ile Pro Glu His Trp Lys Glu Gly Arg Gln Lys Cys Leu 65 70 75 80 Asp Leu His Pro Asp Tyr Lys Tyr Ile Leu Trp Thr Asp Glu Met Ala 85 90 95 Tyr Glu Phe Ile Lys Glu Glu Tyr Pro Trp Phe Leu Asp Thr Phe Glu 100 105 110 Asn Tyr Lys Tyr Pro Ile Glu Arg Ala Asp Ala Ile Arg Tyr Phe Ile 115 120 125 Leu Ser His Tyr Gly Gly Val Tyr Ile Asp Leu Asp Asp Gly Cys Glu 130 135 140 Arg Lys Leu Asp Pro Leu Leu Ala Phe Pro Ala Phe Leu Arg Lys Thr 145 150 155 160 Ser Pro Leu Gly Val Ser Asn Asp Val Met Gly Ser Val Pro Arg His 165 170 175 Pro Phe Phe Leu Lys Ala Leu Lys Ser Leu Lys His Tyr Asp Lys Tyr 180 185 190 Trp Phe Ile Pro Tyr Met Thr Ile Met Gly Ser Thr Gly Pro Leu Phe 195 200 205 Leu Ser Val Ile Trp Lys Gln Tyr Lys Arg Trp Arg Ile Pro Lys Asn 210 215 220 Gly Thr Val Arg Ile Leu Gln Pro Ala Tyr Tyr Lys Met His Ser Tyr 225 230 235 240 Ser Phe Phe Ser Ile Thr Lys Gly Ser Ser Trp His Leu Asp Asp Ala 245 250 255 Lys Leu Met Lys Ala Leu Glu Asn His Ile Leu Ser Cys Val Val Thr 260 265 270 Gly Phe Ile Phe Gly Phe Phe Ile Leu Tyr Gly Glu Phe Thr Phe Tyr 275 280 285 Cys Trp Leu Cys Ser Lys Asn Phe Ser Asn Leu Thr Lys Asn Trp Lys 290 295 300 Leu Asn Ala Ile Lys Val Arg Phe Val Thr Ile Leu Asn Ser Leu Gly 305 310 315 320 Leu Arg Leu Lys Leu Ser Lys Ser Thr Ser Asp Thr Ala Ser Ala Thr 325 330 335 Leu Leu Ala Arg Gln Gln Lys Arg Leu Arg Lys Asp Ser Asn Thr Asn 340 345 350 Ile Val Leu Leu Lys Ser Ser Arg Lys Ser Asp Val Tyr Asp Leu Glu 355 360 365 Lys Asn Asp Ser Ser Lys Tyr Ser Leu Gly Asn Asn Ser Ser 370 375 380 <210> 120 <211> 1149 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae SUR1 <400> 120 atgagaaaag aattaaaata ccttatctgc ttcaacatac tcctcctgtt atctataata 60 tactacactt tcgatttgct aacgttgtgt attgacgata ctgttaaaga tgctatactt 120 gaggaagact taaatccaga tgcacctcca aagcctcaac taatacctaa aatcatacat 180 cagacttata aaacggaaga catccctgag cactggaaag agggtagaca aaaatgtctc 240 gatctacatc cagattacaa gtacatccta tggacggacg agatggccta tgagtttata 300 aaggaagaat acccgtggtt tctcgatact tttgagaact acaaataccc catagaacgt 360 gccgatgcca ttcgttactt tatcctgtcc cattatggtg gtgtatacat cgatttagat 420 gacggctgcg aaaggaaact agatcctttg ttagctttcc cggccttctt aagaaagact 480 tcacctttag gtgtctcaaa cgatgtcatg ggttctgtgc ctagacatcc cttcttttta 540 aaggctttaa agtctttgaa acactatgac aagtactggt ttatccctta catgactatt 600 atggggtcta ctggtccgtt gtttttaagt gttatttgga agcagtacaa aagatggcgc 660 atacctaaga acgggacagt aagaatccta caacctgctt actacaagat gcatagttat 720 tcatttttct ccattactaa aggctcttca tggcatttag atgatgcaaa attgatgaaa 780 gcactagaaa accacatctt atcctgcgtc gttaccggat ttatttttgg cttctttatc 840 ctatatggtg aattcacgtt ctattgctgg ttgtgttcca agaatttcag taatctaacc 900 aaaaattgga aacttaatgc tataaaagta agatttgtca caattctaaa ttcattaggc 960 ttaagactaa agttgagtaa aagtaccagt gatactgcca gtgccacttt gctggcaagg 1020 cagcagaaac gattgaggaa agattccaat acaaacatag tgttactaaa atcttcaagg 1080 aaaagtgatg tttacgattt agaaaagaat gattcttcta agtactcact gggaaataac 1140 agctcgtaa 1149 <210> 121 <211> 486 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae HXK2 <400> 121 Met Val His Leu Gly Pro Lys Lys Pro Gln Ala Arg Lys Gly Ser Met 1 5 10 15 Ala Asp Val Pro Lys Glu Leu Met Gln Gln Ile Glu Asn Phe Glu Lys 20 25 30 Ile Phe Thr Val Pro Thr Glu Thr Leu Gln Ala Val Thr Lys His Phe 35 40 45 Ile Ser Glu Leu Glu Lys Gly Leu Ser Lys Lys Gly Gly Asn Ile Pro 50 55 60 Met Ile Pro Gly Trp Val Met Asp Phe Pro Thr Gly Lys Glu Ser Gly 65 70 75 80 Asp Phe Leu Ala Ile Asp Leu Gly Gly Thr Asn Leu Arg Val Val Leu 85 90 95 Val Lys Leu Gly Gly Asp Arg Thr Phe Asp Thr Thr Gln Ser Lys Tyr 100 105 110 Arg Leu Pro Asp Ala Met Arg Thr Thr Gln Asn Pro Asp Glu Leu Trp 115 120 125 Glu Phe Ile Ala Asp Ser Leu Lys Ala Phe Ile Asp Glu Gln Phe Pro 130 135 140 Gln Gly Ile Ser Glu Pro Ile Pro Leu Gly Phe Thr Phe Ser Phe Pro 145 150 155 160 Ala Ser Gln Asn Lys Ile Asn Glu Gly Ile Leu Gln Arg Trp Thr Lys 165 170 175 Gly Phe Asp Ile Pro Asn Ile Glu Asn His Asp Val Val Pro Met Leu 180 185 190 Gln Lys Gln Ile Thr Lys Arg Asn Ile Pro Ile Glu Val Val Ala Leu 195 200 205 Ile Asn Asp Thr Thr Gly Thr Leu Val Ala Ser Tyr Tyr Thr Asp Pro 210 215 220 Glu Thr Lys Met Gly Val Ile Phe Gly Thr Gly Val Asn Gly Ala Tyr 225 230 235 240 Tyr Asp Val Cys Ser Asp Ile Glu Lys Leu Gln Gly Lys Leu Ser Asp 245 250 255 Asp Ile Pro Pro Ser Ala Pro Met Ala Ile Asn Cys Glu Tyr Gly Ser 260 265 270 Phe Asp Asn Glu His Val Val Leu Pro Arg Thr Lys Tyr Asp Ile Thr 275 280 285 Ile Asp Glu Glu Ser Pro Arg Pro Gly Gln Gln Thr Phe Glu Lys Met 290 295 300 Ser Ser Gly Tyr Tyr Leu Gly Glu Ile Leu Arg Leu Ala Leu Met Asp 305 310 315 320 Met Tyr Lys Gln Gly Phe Ile Phe Lys Asn Gln Asp Leu Ser Lys Phe 325 330 335 Asp Lys Pro Phe Val Met Asp Thr Ser Tyr Pro Ala Arg Ile Glu Glu 340 345 350 Asp Pro Phe Glu Asn Leu Glu Asp Thr Asp Asp Leu Phe Gln Asn Glu 355 360 365 Phe Gly Ile Asn Thr Thr Val Gln Glu Arg Lys Leu Ile Arg Arg Leu 370 375 380 Ser Glu Leu Ile Gly Ala Arg Ala Ala Arg Leu Ser Val Cys Gly Ile 385 390 395 400 Ala Ala Ile Cys Gln Lys Arg Gly Tyr Lys Thr Gly His Ile Ala Ala 405 410 415 Asp Gly Ser Val Tyr Asn Arg Tyr Pro Gly Phe Lys Glu Lys Ala Ala 420 425 430 Asn Ala Leu Lys Asp Ile Tyr Gly Trp Thr Gln Thr Ser Leu Asp Asp 435 440 445 Tyr Pro Ile Lys Ile Val Pro Ala Glu Asp Gly Ser Gly Ala Gly Ala 450 455 460 Ala Val Ile Ala Ala Leu Ala Gln Lys Arg Ile Ala Glu Gly Lys Ser 465 470 475 480 Val Gly Ile Ile Gly Ala 485 <210> 122 <211> 1461 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae HXK2 <400> 122 atggttcatt taggtccaaa aaaaccacaa gccagaaagg gttccatggc cgatgtgcca 60 aaggaattga tgcaacaaat tgagaatttt gaaaaaattt tcactgttcc aactgaaact 120 ttacaagccg ttaccaagca cttcatttcc gaattggaaa agggtttgtc caagaagggt 180 ggtaacattc caatgattcc aggttgggtt atggatttcc caactggtaa ggaatccggt 240 gatttcttgg ccattgattt gggtggtacc aacttgagag ttgtcttagt caagttgggc 300 ggtgaccgta cctttgacac cactcaatct aagtacagat taccagatgc tatgagaact 360 actcaaaatc cagacgaatt gtgggaattt attgccgact ctttgaaagc ttttattgat 420 gagcaattcc cacaaggtat ctctgagcca attccattgg gtttcacctt ttctttccca 480 gcttctcaaa acaaaatcaa tgaaggtatc ttgcaaagat ggactaaagg ttttgatatt 540 ccaaacattg aaaaccacga tgttgttcca atgttgcaaa agcaaatcac taagaggaat 600 atcccaattg aagttgttgc tttgataaac gacactaccg gtactttggt tgcttcttac 660 tacactgacc cagaaactaa gatgggtgtt atcttcggta ctggtgtcaa tggtgcttac 720 tacgatgttt gttccgatat cgaaaagcta caaggaaaac tatctgatga cattccacca 780 tctgctccaa tggccatcaa ctgtgaatac ggttccttcg ataatgaaca tgtcgttttg 840 ccaagaacta aatacgatat caccattgat gaagaatctc caagaccagg ccaacaaacc 900 tttgaaaaaa tgtcttctgg ttactactta ggtgaaattt tgcgtttggc cttgatggac 960 atgtacaaac aaggtttcat cttcaagaac caagacttgt ctaagttcga caagcctttc 1020 gtcatggaca cttcttaccc agccagaatc gaggaagatc cattcgagaa cctagaagat 1080 accgatgact tgttccaaaa tgagttcggt atcaacacta ctgttcaaga acgtaaattg 1140 atcagacgtt tatctgaatt gattggtgct agagctgcta gattgtccgt ttgtggtatt 1200 gctgctatct gtcaaaagag aggttacaag accggtcaca tcgctgcaga cggttccgtt 1260 tacaacagat acccaggttt caaagaaaag gctgccaatg ctttgaagga catttacggc 1320 tggactcaaa cctcactaga cgactaccca atcaagattg ttcctgctga agatggttcc 1380 ggtgctggtg ccgctgttat tgctgctttg gcccaaaaaa gaattgctga aggtaagtcc 1440 gttggtatca tcggtgctta a 1461 <210> 123 <211> 344 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ARA1 <400> 123 Met Ser Ser Ser Val Ala Ser Thr Glu Asn Ile Val Glu Asn Met Leu 1 5 10 15 His Pro Lys Thr Thr Glu Ile Tyr Phe Ser Leu Asn Asn Gly Val Arg 20 25 30 Ile Pro Ala Leu Gly Leu Gly Thr Ala Asn Pro His Glu Lys Leu Ala 35 40 45 Glu Thr Lys Gln Ala Val Lys Ala Ala Ile Lys Ala Gly Tyr Arg His 50 55 60 Ile Asp Thr Ala Trp Ala Tyr Glu Thr Glu Pro Phe Val Gly Glu Ala 65 70 75 80 Ile Lys Glu Leu Leu Glu Asp Gly Ser Ile Lys Arg Glu Asp Leu Phe 85 90 95 Ile Thr Thr Lys Val Trp Pro Val Leu Trp Asp Glu Val Asp Arg Ser 100 105 110 Leu Asn Glu Ser Leu Lys Ala Leu Gly Leu Glu Tyr Val Asp Leu Leu 115 120 125 Leu Gln His Trp Pro Leu Cys Phe Glu Lys Ile Lys Asp Pro Lys Gly 130 135 140 Ile Ser Gly Leu Val Lys Thr Pro Val Asp Asp Ser Gly Lys Thr Met 145 150 155 160 Tyr Ala Ala Asp Gly Asp Tyr Leu Glu Thr Tyr Lys Gln Leu Glu Lys 165 170 175 Ile Tyr Leu Asp Pro Asn Asp His Arg Val Arg Ala Ile Gly Val Ser 180 185 190 Asn Phe Ser Ile Glu Tyr Leu Glu Arg Leu Ile Lys Glu Cys Arg Val 195 200 205 Lys Pro Thr Val Asn Gln Val Glu Thr His Pro His Leu Pro Gln Met 210 215 220 Glu Leu Arg Lys Phe Cys Phe Met His Asp Ile Leu Leu Thr Ala Tyr 225 230 235 240 Ser Pro Leu Gly Ser His Gly Ala Pro Asn Leu Lys Ile Pro Leu Val 245 250 255 Lys Lys Leu Ala Glu Lys Tyr Asn Val Thr Gly Asn Asp Leu Leu Ile 260 265 270 Ser Tyr His Ile Arg Gln Gly Thr Ile Val Ile Pro Arg Ser Leu Asn 275 280 285 Pro Val Arg Ile Ser Ser Ser Ile Glu Phe Ala Ser Leu Thr Lys Asp 290 295 300 Glu Leu Gln Glu Leu Asn Asp Phe Gly Glu Lys Tyr Pro Val Arg Phe 305 310 315 320 Ile Asp Glu Pro Phe Ala Ala Ile Leu Pro Glu Phe Thr Gly Asn Gly 325 330 335 Pro Asn Leu Asp Asn Leu Lys Tyr 340 <210> 124 <211> 1035 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae ARA1 <400> 124 atgtcttctt cagtagcctc aaccgaaaac atagtcgaaa atatgttgca tccaaagact 60 acagaaatat acttttcact caacaatggt gttcgtatcc cagcactggg tttggggaca 120 gcaaatcctc acgaaaagtt agctgaaaca aaacaagccg taaaagctgc aatcaaagct 180 ggatacaggc acattgatac tgcttgggcc tacgagacag agccattcgt aggtgaagcc 240 atcaaggagt tattagaaga tggatctatc aaaagggagg atcttttcat aaccacaaaa 300 gtgtggccgg ttctatggga cgaagtggac agatcattga atgaatcttt gaaagcttta 360 ggcttggaat acgtcgactt gctcttgcaa cattggccgc tatgttttga aaagattaag 420 gaccctaagg ggatcagcgg actggtgaag actccggttg atgattctgg aaaaacaatg 480 tatgctgccg acggtgacta tttagaaact tacaagcaat tggaaaaaat ttaccttgat 540 cctaacgatc atcgtgtgag agccattggt gtctcaaatt tttccattga gtatttggaa 600 cgtctcatta aggaatgcag agttaagcca acggtgaacc aagtggaaac tcaccctcac 660 ttaccacaaa tggaactaag aaagttctgc tttatgcacg acattctgtt aacagcatac 720 tcaccattag gttcccatgg cgcaccaaac ttgaaaatcc cactagtgaa aaagcttgcc 780 gaaaagtaca atgtcacagg aaatgacttg ctaatttctt accatattag acaaggcact 840 atcgtaattc cgagatcctt gaatccagtt aggatttcct cgagtattga attcgcatct 900 ttgacaaagg atgaattaca agagttgaac gacttcggtg aaaaataccc agtgagattc 960 atcgatgagc catttgcagc catccttcca gagtttactg gtaacggacc aaacttggac 1020 aatttaaagt attaa 1035 <210> 125 <211> 312 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YPR1 <400> 125 Met Pro Ala Thr Leu Lys Asn Ser Ser Ala Thr Leu Lys Leu Asn Thr 1 5 10 15 Gly Ala Ser Ile Pro Val Leu Gly Phe Gly Thr Trp Arg Ser Val Asp 20 25 30 Asn Asn Gly Tyr His Ser Val Ile Ala Ala Leu Lys Ala Gly Tyr Arg 35 40 45 His Ile Asp Ala Ala Ala Ile Tyr Leu Asn Glu Glu Glu Val Gly Arg 50 55 60 Ala Ile Lys Asp Ser Gly Val Pro Arg Glu Glu Ile Phe Ile Thr Thr 65 70 75 80 Lys Leu Trp Gly Thr Glu Gln Arg Asp Pro Glu Ala Ala Leu Asn Lys 85 90 95 Ser Leu Lys Arg Leu Gly Leu Asp Tyr Val Asp Leu Tyr Leu Met His 100 105 110 Trp Pro Val Pro Leu Lys Thr Asp Arg Val Thr Asp Gly Asn Val Leu 115 120 125 Cys Ile Pro Thr Leu Glu Asp Gly Thr Val Asp Ile Asp Thr Lys Glu 130 135 140 Trp Asn Phe Ile Lys Thr Trp Glu Leu Met Gln Glu Leu Pro Lys Thr 145 150 155 160 Gly Lys Thr Lys Ala Val Gly Val Ser Asn Phe Ser Ile Asn Asn Ile 165 170 175 Lys Glu Leu Leu Glu Ser Pro Asn Asn Lys Val Val Pro Ala Thr Asn 180 185 190 Gln Ile Glu Ile His Pro Leu Leu Pro Gln Asp Glu Leu Ile Ala Phe 195 200 205 Cys Lys Glu Lys Gly Ile Val Val Glu Ala Tyr Ser Pro Phe Gly Ser 210 215 220 Ala Asn Ala Pro Leu Leu Lys Glu Gln Ala Ile Ile Asp Met Ala Lys 225 230 235 240 Lys His Gly Val Glu Pro Ala Gln Leu Ile Ile Ser Trp Ser Ile Gln 245 250 255 Arg Gly Tyr Val Val Leu Ala Lys Ser Val Asn Pro Glu Arg Ile Val 260 265 270 Ser Asn Phe Lys Ile Phe Thr Leu Pro Glu Asp Asp Phe Lys Thr Ile 275 280 285 Ser Asn Leu Ser Lys Val His Gly Thr Lys Arg Val Val Asp Met Lys 290 295 300 Trp Gly Ser Phe Pro Ile Phe Gln 305 310 <210> 126 <211> 939 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YPR1 <400> 126 atgcctgcta cgttaaagaa ttcttctgct acattaaaac taaatactgg tgcctccatt 60 ccagtgttgg gtttcggcac ttggcgttcc gttgacaata acggttacca ttctgtaatt 120 gcagctttga aagctggata cagacacatt gatgctgcgg ctatctattt gaatgaagaa 180 gaagttggca gggctatttaa agattccgga gtccctcgtg aggaaatttt tattactact 240 aagctttggg gtacggaaca acgtgatccg gaagctgctc taaacaagtc tttgaaaaga 300 ctaggcttgg attatgttga cctatatctg atgcattggc cagtgccttt gaaaaccgac 360 agagttactg atggtaacgt tctgtgcatt ccaacattag aagatggcac tgttgacatc 420 gatactaagg aatggaattt tatcaagacg tgggagttga tgcaagagtt gccaaagacg 480 ggcaaaacta aagccgttgg tgtctctaat ttttctatta acaacattaa agaattatta 540 gaatctccaa ataacaaggt ggtaccagct actaatcaaa ttgaaattca tccattgcta 600 ccacaagacg aattgattgc cttttgtaag gaaaagggta ttgttgttga agcctactca 660 ccatttggga gtgctaatgc tcctttacta aaagagcaag caattattga tatggctaaa 720 aagcacggcg ttgagccagc acagcttatt atcagttgga gtattcaaag aggctacgtt 780 gttctggcca aatcggttaa tcctgaaaga attgtatcca attttaagat tttcactctg 840 cctgaggatg atttcaagac tattagtaac ctatccaaag tgcatggtac aaagagagtc 900 gttgatatga agtggggatc cttcccaatt ttccaatga 939 <210> 127 <211> 267 <212> PRT <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YMR226C <400> 127 Met Ser Gln Gly Arg Lys Ala Ala Glu Arg Leu Ala Lys Lys Thr Val 1 5 10 15 Leu Ile Thr Gly Ala Ser Ala Gly Ile Gly Lys Ala Thr Ala Leu Glu 20 25 30 Tyr Leu Glu Ala Ser Asn Gly Asp Met Lys Leu Ile Leu Ala Ala Arg 35 40 45 Arg Leu Glu Lys Leu Glu Glu Leu Lys Lys Thr Ile Asp Gln Glu Phe 50 55 60 Pro Asn Ala Lys Val His Val Ala Gln Leu Asp Ile Thr Gln Ala Glu 65 70 75 80 Lys Ile Lys Pro Phe Ile Glu Asn Leu Pro Gln Glu Phe Lys Asp Ile 85 90 95 Asp Ile Leu Val Asn Asn Ala Gly Lys Ala Leu Gly Ser Asp Arg Val 100 105 110 Gly Gln Ile Ala Thr Glu Asp Ile Gln Asp Val Phe Asp Thr Asn Val 115 120 125 Thr Ala Leu Ile Asn Ile Thr Gln Ala Val Leu Pro Ile Phe Gln Ala 130 135 140 Lys Asn Ser Gly Asp Ile Val Asn Leu Gly Ser Ile Ala Gly Arg Asp 145 150 155 160 Ala Tyr Pro Thr Gly Ser Ile Tyr Cys Ala Ser Lys Phe Ala Val Gly 165 170 175 Ala Phe Thr Asp Ser Leu Arg Lys Glu Leu Ile Asn Thr Lys Ile Arg 180 185 190 Val Ile Leu Ile Ala Pro Gly Leu Val Glu Thr Glu Phe Ser Leu Val 195 200 205 Arg Tyr Arg Gly Asn Glu Glu Gln Ala Lys Asn Val Tyr Lys Asp Thr 210 215 220 Thr Pro Leu Met Ala Asp Asp Val Ala Asp Leu Ile Val Tyr Ala Thr 225 230 235 240 Ser Arg Lys Gln Asn Thr Val Ile Ala Asp Thr Leu Ile Phe Pro Thr 245 250 255 Asn Gln Ala Ser Pro His His Ile Phe Arg Gly 260 265 <210> 128 <211> 804 <212> DNA <213> Artificial Sequence <220> <223> Saccharomyces cerevisiae YMR226C <400> 128 atgtcccaag gtagaaaagc tgcagaaaga ttggctaaga agactgtcct cattacaggt 60 gcatctgctg gtattggtaa ggcgaccgca ttagagtact tggaggcatc caatggtgat 120 atgaaactga tcttggctgc tagaagatta gaaaagctcg aggaattgaa gaagaccatt 180 gatcaagagt ttccaaacgc aaaagttcat gtggcccagc tggatatcac tcaagcagaa 240 aaaatcaagc ccttcattga aaacttgcca caagagttca aggatattga cattctggtg 300 aacaatgccg gaaaggctct tggcagtgac cgtgtgggcc agatcgcaac ggaggatatc 360 caggacgtgt ttgacaccaa cgtcacggct ttaatcaata tcacacaagc tgtactgccc 420 atattccaag ccaagaattc aggagatatt gtaaatttgg gttcaatcgc tggcagagac 480 gcatacccaa caggttctat ctattgtgcc tctaagtttg ccgtgggggc gttcactgat 540 agtttgagaa aggagctcat caacactaaa attagagtca ttctaattgc accagggcta 600 gtcgagactg aattttcact agttagatac agaggtaacg aggaacaagc caagaatgtt 660 tacaaggata ctaccccatt gatggctgat gacgtggctg atctgatcgt ctatgcaact 720 tccagaaaac aaaatactgt aattgcagac actttaatct ttccaacaaa ccaagcgtca 780 cctcatcata tcttccgtgg ataa 804 <210> 129 <211> 301 <212> DNA <213> Artificial Sequence <220> <223> ADH2-1 <400> 129 ccacttcacg agactgatct cctctgccgg aacaccgggc atctccaact tataagttgg 60 agaaataaga gaatttcaga ttgagagaat gaaaaaaaaa aaaaaaaaaa aggcagagga 120 gagcatagaa atggggttca ctttttggta aagctatagc atgcctatca catataaata 180 gagtgccagt agcgactttt ttcacactcg aaatactctt actactgctc tcttgttgtt 240 tttatcactt cttgtttctt cttggtaaat agaatatcaa gctacaaaaa gcatacaatc 300 a 301 <210> 130 <211> 302 <212> DNA <213> Artificial Sequence <220> <223> ADH2-2 <400> 130 gcggatctct tatgtcttta cgatttatag ttttcattat caagtatgcc tatattagta 60 tatagcatct ttagatgaca gtgttcgaag tttcacgaat aaaagataat attctacttt 120 ttgctcccac cgcgtttgct agcacgagtg aacaccatcc ctcgcctgtg agttgtaccc 180 attcctctaa actgtagaca tggtagcttc agcagtgttc gttatgtacg gcatcctcca 240 acaaacagtc ggttatagtt tgtcctgctc ctctgaatcg tctccctcga tatttctcat 300 tt 302 <210> 131 <211> 167 <212> DNA <213> Artificial Sequence <220> <223> YARCdelta4-1 <400> 131 tgttggaata gaaatcaact atcatctact aactagtatt tacattacta gtatattatc 60 atatacggtg ttagaagatg acgcaaatga tgagaaatag tcatctaaat tagtggaagc 120 tgaaacgcaa ggattgataa tgtaatagga tcaatgaata taaacat 167 <210> 132 <211> 170 <212> DNA <213> Artificial Sequence <220> <223> YARCdelta4-2 <400> 132 ataaaacgga atgaggaata atcgtaatat tagtatgtag aaatatagat tccattttga 60 ggattcctat atcctcgagg agaacttcta gtatattctg tatacctaat attatagcct 120 ttatcaacaa tggaatccca acaattatct caacattcac ccatttctca 170 <210> 133 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2-1 <400> 133 tttccccgaa aagtgcattt aaatccactt cacgagactg atcttttccc cgaaaagtgc 60 atttaaatcc acttcaggag actgatct 88 <210> 134 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2-1 <400> 134 tcgagcggcc gcgggccctg attgtatgct ttttgtagct tg 42 <210> 135 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> F primer for ADH2-2 <400> 135 ctgagagctc ttaattaagc ggatctctta tgtctttacg 40 <210> 136 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> R primer for ADH2-2 <400> 136 catgttcttt cctgcgattt aaataaatga gaaatatcga gggagac 47 <210> 137 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> F primer for YARCdelta4-1 <400> 137 cacaatttccc cgaaaagtgc atttaaattg ttggaataga aatcaactat c 51 <210> 138 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> R primer for YARCdelta4-1 <400> 138 atagcggccg catgtttata ttcattgatc ctattaca 38 <210> 139 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> F primer for YARCdelta4-2 <400> 139 atagagctca taaaacggaa tgaggaataa tcg 33 <210> 140 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> R primer for YARCdelta4-2 <400> 140 tgagaaatgg gtgaatgttg ag 22

Claims (22)

모균주에 비해,
i) 알코올 탈수소효소(alcohol dehydrogenase), 글리세롤-3-인산 탈수소효소(glycerol-3-phosphate dehydrogenase) 및 2,3-부탄다이올 탈수소효소(2,3-butanediol dehydrogenase)의 활성이 감소되고,
ii) 아세토락테이트 신타아제(acetolactate synthase), 아세토락테이트 디카복실레이즈(acetolactate decarboxylase) 및 NADH 산화효소(NADH oxidase)의 활성이 증가되며,
iii) EMP46, PEP7, SUR1 및 HXK2가 돌연변이된, 유전적으로 조작된 효모.
Compared to the parent strain,
i) alcohol dehydrogenase, glycerol-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase activity is reduced,
ii) increases the activity of acetolactate synthase, acetolactate decarboxylase and NADH oxidase;
iii) genetically engineered yeast in which EMP46, PEP7, SUR1 and HXK2 are mutated.
제1항에 있어서,
상기 알코올 탈수소효소는 ADH1, ADH2, ADH3, ADH4, ADH5 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 유전적으로 조작된 효모.
According to claim 1,
The alcohol dehydrogenase is any one selected from the group consisting of ADH1, ADH2, ADH3, ADH4, ADH5, and combinations thereof, genetically engineered yeast.
제1항에 있어서,
상기 글리세롤-3-인산 탈수소효소는 GPD1, GPD2 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 유전적으로 조작된 효모.
According to claim 1,
The genetically engineered yeast, wherein the glycerol-3-phosphate dehydrogenase is any one selected from the group consisting of GPD1, GPD2, and combinations thereof.
제1항에 있어서,
상기 효모는 아세토락테이트 신타아제를 코딩하는 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 유전자, NADH 산화효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 외인성 유전자(exogenous gene)를 포함하는 것인, 유전적으로 조작된 효모.
According to claim 1,
The yeast is any one exogenous gene selected from the group consisting of a gene encoding acetolactate synthase, a gene encoding acetolactate decarboxylase, a gene encoding NADH oxidase, and combinations thereof A genetically engineered yeast comprising a.
제1항에 있어서,
상기 EMP46 돌연변이는 서열번호 116으로 표시되는 염기서열 중 480번째 염기인 구아닌(guanin)이 티민(thymine)으로 치환된 것인, 유전적으로 조작된 효모.
According to claim 1,
The EMP46 mutation is a genetically engineered yeast wherein guanine, which is the 480th base of the nucleotide sequence represented by SEQ ID NO: 116, is substituted with thymine.
제1항에 있어서,
상기 PEP7 돌연변이는 서열번호 118로 표시되는 염기서열 중 505번째 염기인 사이토신(cytosine)이 아데닌(adenine)으로 치환된 것인, 유전적으로 조작된 효모.
According to claim 1,
The PEP7 mutation is a genetically engineered yeast wherein cytosine, which is the 505th base in the nucleotide sequence represented by SEQ ID NO: 118, is substituted with adenine.
제1항에 있어서,
상기 SUR1 돌연변이는 서열번호 120으로 표시되는 염기서열 중 526번째 염기인 사이토신이 티민으로 치환된 것인, 유전적으로 조작된 효모.
According to claim 1,
The SUR1 mutation is a genetically engineered yeast wherein cytosine, which is the 526th base of the nucleotide sequence shown in SEQ ID NO: 120, is substituted with thymine.
제1항에 있어서,
상기 HXK2 돌연변이는 서열번호 122로 표시되는 염기서열 중 754번째 염기인 구아닌이 티민으로 치환된 것인, 유전적으로 조작된 효모.
According to claim 1,
The HXK2 mutation is a genetically engineered yeast wherein guanine, which is the 754th base, of the nucleotide sequence shown in SEQ ID NO: 122 is substituted with thymine.
제1항에 있어서,
상기 효모는 아라비노스 탈수소효소(arabinose dehydrogenase), NADP-의존적 알도-케도 환원 효소(NADPH-dependent aldo-keto reductase), NADP-의존적 3-히드록시산 탈수소효소(NADP-dependent 3-hydroxy acid dehydrogenase) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 활성이 감소된 것인, 유전적으로 조작된 효모.
According to claim 1,
The yeast is arabinose dehydrogenase, NADP-dependent aldo-keto reductase (NADPH-dependent aldo-keto reductase), NADP-dependent 3-hydroxy acid dehydrogenase (NADP-dependent 3-hydroxy acid dehydrogenase) And a genetically engineered yeast with reduced activity of any one selected from the group consisting of combinations thereof.
제9항에 있어서,
상기 효모는 아라비노스 탈수소효소를 코딩하는 유전자, NADP-의존적 알도-케도 환원 효소를 코딩하는 유전자, NADP-의존적 3-히드록시산 탈수소효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나가 결실된 것인, 유전적으로 조작된 효모.
10. The method of claim 9,
The yeast is selected from the group consisting of a gene encoding arabinose dehydrogenase, a gene encoding NADP-dependent aldo-kedo reductase, a gene encoding NADP-dependent 3-hydroxy acid dehydrogenase, and combinations thereof. A genetically engineered yeast, wherein one is deleted.
제10항에 있어서,
상기 아라비노스 탈수소효소는 서열번호 124로 표시되는 염기서열을 포함하는 ara1 유전자에 의해 코딩되는 것인, 유전적으로 조작된 효모.
11. The method of claim 10,
The arabinose dehydrogenase is The genetically engineered yeast, which is encoded by the ara1 gene comprising the nucleotide sequence shown in SEQ ID NO: 124.
제10항에 있어서,
상기 NADP-의존적 알도-케도 환원 효소는 서열번호 126으로 표시되는 염기서열을 포함하는 ypr1 유전자에 의해 코딩되는 것인, 유전적으로 조작된 효모.
11. The method of claim 10,
The NADP-dependent aldo-kedo reductase is A genetically engineered yeast that is encoded by the ypr1 gene comprising the nucleotide sequence represented by SEQ ID NO: 126.
제10항에 있어서,
상기 NADP-의존적 3-히드록시산 탈수소효소는 서열번호 128로 표시되는 염기서열을 포함하는 ymr226c 유전자에 의해 코딩되는 것인, 유전적으로 조작된 효모.
11. The method of claim 10,
The NADP-dependent 3-hydroxy acid dehydrogenase is encoded by the ymr226c gene comprising the nucleotide sequence shown in SEQ ID NO: 128, the genetically engineered yeast.
제1항에 있어서,
상기 효모 세포는 사카로마이세스(Saccharomyces) 속 균주인 것인, 유전적으로 조작된 효모.
According to claim 1,
The yeast cell is a Saccharomyces genus strain, the genetically engineered yeast.
제14항에 있어서,
상기 사카로마이세스 속 균주는 사카로마이세스 세레비지애(S. scerevisiae), 사카로마이세스 바야누스(S. bayanus), 사카로마이세스 파라독서스 (S. paradoxus), 사카로마이세스 미카테(S. mikatae), 및 사카로마이세스 쿠드리아브제비(S. kudriavzevii)로 이루어진 군으로부터 선택되는 어느 하나인 것인, 유전적으로 조작된 효모.
15. The method of claim 14,
The Saccharomyces sp. strain is Saccharomyces cerevisiae ( S. scerevisiae ), Saccharomyces bayanus ( S. bayanus ), Saccharomyces paradoxus ( S. paradoxus ), Saccharomyces US category (S. mikatae), and a saccharide as MY-ku laundry process Havre lots (S. kudriavzevii) any one of a will, a genetically manipulate the yeast is selected from the group consisting of oil.
i) 제1항 내지 제15항 중 어느 한 항의 유전적으로 조작된 효모를 배양하는 단계; 및
ii) 상기 효모로부터 생산되는 아세토인을 수득하는 단계를 포함하는, 아세토인의 생산방법.
i) culturing the genetically engineered yeast of any one of claims 1-15; and
ii) A method for producing acetoin, comprising the step of obtaining acetoin produced from the yeast.
제16항에 있어서,
상기 배양은 글루코스 존재 하에 효모를 배양하는 것을 특징으로 하는 것인, 아세토인의 생산방법.
17. The method of claim 16,
The culturing method for producing acetoin, characterized in that culturing yeast in the presence of glucose.
i) 야생형 효모의 알코올 탈수소효소를 코딩하는 유전자, 글리세롤-3-인산 탈수소효소를 코딩하는 유전자 및 2,3-부탄다이올 탈수소효소를 코딩하는 유전자를 결실시키는 단계;
ii) 아세토락테이트 신타아제를 코딩하는 유전자, 아세토락테이트 디카복실레이즈를 코딩하는 유전자 및 NADH 산화효소를 코딩하는 유전자를 도입시키는 단계; 및
iii) 상기 효모를 아세토인이 첨가된 배지에서 적어도 15회 계대배양하는 단계를 포함하는,
제1항의 아세토인 생산능이 우수한 효모를 제조하는 방법.
i) deleting a gene encoding an alcohol dehydrogenase of wild-type yeast, a gene encoding a glycerol-3-phosphate dehydrogenase and a gene encoding a 2,3-butanediol dehydrogenase;
ii) introducing a gene encoding acetolactate synthase, a gene encoding acetolactate decarboxylase and a gene encoding NADH oxidase; and
iii) subculturing the yeast in an acetoin-added medium at least 15 times,
A method for producing the yeast having excellent acetoin-producing ability according to claim 1.
제18항에 있어서,
상기 아세토인이 첨가된 배지는 적어도 4 g/L 농도의 아세토인이 첨가된 것을 특징으로 하는 것인, 방법.
19. The method of claim 18,
The method to which the acetoin is added medium is characterized in that at least 4 g / L concentration of acetoin is added.
제18항에 있어서,
ii) 단계 후, 상기 효모에 아라비노스 탈수소효소를 코딩하는 유전자, NADP-의존적 알도-케도 환원 효소를 코딩하는 유전자, NADP-의존적 3-히드록시산 탈수소효소를 코딩하는 유전자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나를 결실시키는 단계를 추가적으로 포함하는 것인, 방법.
19. The method of claim 18,
After step ii), the yeast consists of a gene encoding arabinose dehydrogenase, a gene encoding NADP-dependent aldo-kedo reductase, a gene encoding NADP-dependent 3-hydroxy acid dehydrogenase, and combinations thereof. The method further comprising the step of deleting any one selected from the group.
제18항 내지 제20항 중 어느 한 항의 방법으로 제조된, 아세토인 생산능이 우수한 효모.A yeast having excellent acetoin-producing ability, prepared by the method of any one of claims 18 to 20. i) 제21항의 아세토인 생산능이 우수한 효모를 배양하는 단계; 및
ii) 상기 효모로부터 생산되는 아세토인을 수득하는 단계를 포함하는, 아세토인의 생산방법.
i) culturing the yeast having excellent acetoin-producing ability of claim 21; and
ii) A method for producing acetoin, comprising the step of obtaining acetoin produced from the yeast.
KR1020200082364A 2020-07-03 2020-07-03 Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same KR102306725B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200082364A KR102306725B1 (en) 2020-07-03 2020-07-03 Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same
PCT/KR2020/014539 WO2022004953A1 (en) 2020-07-03 2020-10-22 Genetically engineered yeast having acetoin-producing ability and method for producing acetoin using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200082364A KR102306725B1 (en) 2020-07-03 2020-07-03 Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same

Publications (1)

Publication Number Publication Date
KR102306725B1 true KR102306725B1 (en) 2021-09-30

Family

ID=77920405

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200082364A KR102306725B1 (en) 2020-07-03 2020-07-03 Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same

Country Status (2)

Country Link
KR (1) KR102306725B1 (en)
WO (1) WO2022004953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115820688A (en) * 2022-11-28 2023-03-21 天津大学 Shewanella strain for synthesizing acetoin and bioelectricity by using glycerol and construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129953A (en) * 2010-02-12 2012-11-28 캘리포니아 인스티튜트 오브 테크놀로지 Yeast microorganisms with reduced by-product accumulation for improved production of fuels, chemicals, and amino acids
JP2014039533A (en) * 2012-03-15 2014-03-06 Toyota Central R&D Labs Inc Production method of expression product of exogenous gene in yeast, expression control agent in yeast and its use
KR20150081821A (en) 2014-01-07 2015-07-15 최종성 Millennium Queen
KR20160006582A (en) 2014-07-09 2016-01-19 한국전자통신연구원 Apparatus and method for processing audio signal inserted location of user
KR20170065242A (en) * 2015-12-03 2017-06-13 서울대학교산학협력단 Genetically engineered yeast cell producing acetoin and method of producing acetoin using the same
KR20190008805A (en) * 2017-07-17 2019-01-25 서울대학교산학협력단 Recombinant sur1 gene involved in increasing productivity of lactic acid and microorganism transformed with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812097B2 (en) * 2015-11-04 2021-01-13 Eneos株式会社 Yeast that produces ethanol from xylose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129953A (en) * 2010-02-12 2012-11-28 캘리포니아 인스티튜트 오브 테크놀로지 Yeast microorganisms with reduced by-product accumulation for improved production of fuels, chemicals, and amino acids
JP2014039533A (en) * 2012-03-15 2014-03-06 Toyota Central R&D Labs Inc Production method of expression product of exogenous gene in yeast, expression control agent in yeast and its use
KR20150081821A (en) 2014-01-07 2015-07-15 최종성 Millennium Queen
KR20160006582A (en) 2014-07-09 2016-01-19 한국전자통신연구원 Apparatus and method for processing audio signal inserted location of user
KR20170065242A (en) * 2015-12-03 2017-06-13 서울대학교산학협력단 Genetically engineered yeast cell producing acetoin and method of producing acetoin using the same
KR20190008805A (en) * 2017-07-17 2019-01-25 서울대학교산학협력단 Recombinant sur1 gene involved in increasing productivity of lactic acid and microorganism transformed with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115820688A (en) * 2022-11-28 2023-03-21 天津大学 Shewanella strain for synthesizing acetoin and bioelectricity by using glycerol and construction method
CN115820688B (en) * 2022-11-28 2024-05-31 天津大学 Shewanella strain for synthesizing acetoin and bioelectricity by utilizing glycerol and construction method

Also Published As

Publication number Publication date
WO2022004953A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6537534B2 (en) Production of xylitol from glucose by recombinant strains
US7109010B2 (en) Methods and materials for the synthesis of organic products
CN110914435B (en) Yeast for producing Exidocrine
CN110878261B (en) Construction method of recombinant yarrowia lipolytica for synthesizing xylitol and strain thereof
CN111363759B (en) Construction method of recombinant yarrowia lipolytica for synthesizing erythritol and bacterial strain thereof
KR102351059B1 (en) Microorganism for Producing Mycosporine-like Amino Acid and Method for Preparing Mycosporine-like Amino Acid Using the Same
RU2736362C1 (en) Microorganism for producing mycosporine-like amino acid and a method of obtaining mycosporine-like amino acid using it
CN112292452B (en) Microorganism producing mycosporine-like amino acid and method for producing mycosporine-like amino acid using the same
KR101759673B1 (en) Genetically engineered yeast cell having enhanced growth rate and method of producing target materials using the same
KR20210128742A (en) Recombinant Acid Resistant Yeast Inhibited Glycerol Production and Method for Preparing Lactic Acid Using The Same
KR20200040017A (en) Recombinant Acid Resistant Yeast Inhibited alcohol production and Method for Preparing Lactic Acid Using The Same
KR102306725B1 (en) Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same
KR101819189B1 (en) Genetically engineered yeast cell producing acetoin and method of producing acetoin using the same
KR101773123B1 (en) Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same
JP2008283917A (en) Method for producing lactic acid
KR102605543B1 (en) Methionine-producing yeast
KR102277907B1 (en) Microorganism having increased α-ketoglutarate decarboxylase activity and method for producing 1,4-butanediol using same
CN117460821A (en) Recombinant cell for producing hyaluronic acid
KR101863239B1 (en) Microorganism Capable of Using Acetic Acid as Sole Carbon Source
EP1231266B1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
KR102637622B1 (en) Composition and method for producing shinorine
KR102255175B1 (en) Recombinant yeasts of simultaneously producing ethanol and C4-organic acids
EP1291417B1 (en) Novel (r)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
KR101494386B1 (en) 3-hydroxyaldehyde and/or 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxyaldehyde and/or 3-hydroxypropionic acid using the same
CN116601300A (en) Bioconversion of ferulic acid to vanillin

Legal Events

Date Code Title Description
GRNT Written decision to grant