ES2361360T3 - Material compuesto reforzado con fibra. - Google Patents
Material compuesto reforzado con fibra. Download PDFInfo
- Publication number
- ES2361360T3 ES2361360T3 ES07864978T ES07864978T ES2361360T3 ES 2361360 T3 ES2361360 T3 ES 2361360T3 ES 07864978 T ES07864978 T ES 07864978T ES 07864978 T ES07864978 T ES 07864978T ES 2361360 T3 ES2361360 T3 ES 2361360T3
- Authority
- ES
- Spain
- Prior art keywords
- fiber
- composite material
- polymer
- matrix
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 34
- 239000000835 fiber Substances 0.000 title claims description 57
- 239000011159 matrix material Substances 0.000 claims abstract description 77
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 239000002657 fibrous material Substances 0.000 claims abstract description 31
- 229920001432 poly(L-lactide) Polymers 0.000 claims abstract description 20
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims abstract description 19
- 239000003733 fiber-reinforced composite Substances 0.000 claims abstract description 13
- 229910052729 chemical element Inorganic materials 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims description 56
- 150000001875 compounds Chemical class 0.000 claims description 55
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 50
- 230000015556 catabolic process Effects 0.000 claims description 42
- 238000006731 degradation reaction Methods 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 25
- 235000010216 calcium carbonate Nutrition 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 15
- 235000002639 sodium chloride Nutrition 0.000 claims description 12
- 239000000872 buffer Substances 0.000 claims description 11
- 239000001506 calcium phosphate Substances 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 9
- 229920002959 polymer blend Polymers 0.000 claims description 9
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- 235000011010 calcium phosphates Nutrition 0.000 claims description 5
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims description 4
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical class [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 claims description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 4
- 239000001095 magnesium carbonate Substances 0.000 claims description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 4
- 235000014380 magnesium carbonate Nutrition 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 235000017550 sodium carbonate Nutrition 0.000 claims description 4
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 4
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical class [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 claims 1
- 239000011152 fibreglass Substances 0.000 description 21
- 239000000047 product Substances 0.000 description 17
- 206010017076 Fracture Diseases 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 208000010392 Bone Fractures Diseases 0.000 description 11
- 238000012360 testing method Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229920000954 Polyglycolide Polymers 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000012783 reinforcing fiber Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000007943 implant Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920000747 poly(lactic acid) Polymers 0.000 description 5
- 239000004633 polyglycolic acid Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- -1 but not limited to Chemical compound 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000008055 phosphate buffer solution Substances 0.000 description 4
- 238000013001 point bending Methods 0.000 description 4
- 229920005594 polymer fiber Polymers 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 3
- 229940038472 dicalcium phosphate Drugs 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229960001708 magnesium carbonate Drugs 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920001610 polycaprolactone Polymers 0.000 description 3
- 239000004632 polycaprolactone Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229940001593 sodium carbonate Drugs 0.000 description 3
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 3
- 229940078499 tricalcium phosphate Drugs 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- FZFYOUJTOSBFPQ-UHFFFAOYSA-M dipotassium;hydroxide Chemical compound [OH-].[K+].[K+] FZFYOUJTOSBFPQ-UHFFFAOYSA-M 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000118 poly(D-lactic acid) Polymers 0.000 description 1
- 229920000117 poly(dioxanone) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002643 polyglutamic acid Chemical class 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/125—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L31/128—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing other specific inorganic fillers not covered by A61L31/126 or A61L31/127
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/125—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L31/129—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/046—Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Vascular Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
- Materials For Medical Uses (AREA)
- Laminated Bodies (AREA)
Abstract
Un material compuesto reforzado con fibras que comprende: un material de fibra de PLLA, y un material matriz que no tiene el mismo elemento de la composición química que el material de la fibra.
Description
Esta solicitud es una solicitud internacional PCT con prioridad de una solicitud de patente de los Estados Nº 60/867,978 presentada en 30 de noviembre 2006, divulgación que se incorpora a la presente por referencia en su totalidad.
La presente divulgación se relaciona con los compuestos biorreabsorbibles y más específicamente a un polímero de material compuesto reforzado con fibrasse utiliza para hacer productos biorreabsorbibles.
Los productos metálicos se han utilizado para la fijación de fracturas debido a su alta resistencia. Mientras que estos productos funcionan bien, hay un número importante de casos en los que estos productos pueden causar problemas al paciente. En algunos casos la presencia del implante metálico puede causar irritación de los tejidos blandos alrededor del implante, en los casos graves es necesario la extracción del implante. El procedimiento para eliminar los productos de metal expone al paciente a los riesgos asociados a someterse a un procedimiento médico importante y también aumenta el costo global de la curación de la fractura original. Una posible solución para reducir sustancialmente la necesidad de remover material de fijación de fracturas es el uso de dispositivos biorreabsorbibles para fijar la fractura. Sin embargo, los materiales bioabsorbibles y productos disponibles en la actualidad no tienen la combinación necesaria de fuerza inicial y la retención de esta fuerza para que se produzca una adecuada curación de la fractura .
Los productos biorreabsorbibles que se comercializan actualmente incluyen productos fabricados a partir de polímeros de moldeado por inyección, las mezclas de polímeros y copolímeros. Estos productos se han utilizado en las áreas de implantes craniomaxilofacial e implantes que no soportan carga de fijación de la fractura, tales como pernos y tornillos, para las aplicaciones en la muñeca y el tobillo y para volver a colocar tejidos blandos, como los ligamentos y los tendones a los huesos. Además, también hay disponibles algunos productos para la columna vertebral que hacen uso de las propiedades de compresión de estos polímeros. Los productos, incluidos estos materiales, son fáciles de procesar, pero están limitados por las propiedades mecánicas de los materiales. Estos materiales tienen una resistencia a la tensión en el rango de entre cerca de 50 MPa a 100 MPa. Dependiendo de la elección de polímero o copolímero, los productos de esta categoría mantienen la mayor parte de su fuerza por menos de 12 semanas. Por lo tanto, estos materiales no son adecuados para aplicaciones de fijación de fracturas más allá de simples pasadores sin carga y tornillos.
Otros productos biorreabsorbibles que se comercializan actualmente incluyen productos auto-reforzados que han mejorado su resistencia debido a la orientación del polímero durante el procesamiento del producto. A pesar de que estos productos tienen una mayor fuerza, su resistencia a la flexión es apenas de sólo alrededor de 250 MPa. Esto limita el usos de esta tecnología a la fijación de fracturas con tornillos y pernos.
Recientemente, se han fabricado dispositivos con polímeros compuestos reforzados con fibra utilizando de compuestos con firbras de ácido poliglicólico (PGA). Estos compuestos tienen una fuerza inicial buena, pero sufren una rápida pérdida de fuerza debido a la rápida hidrólisis de estas fibras. Se han fabridaco dispositivos con fibras PLLA y PDLLA como material matriz, por ejemplo como se describe en EP0299004. Desafortunadamente, esta matriz se rompre rápidamente y da como resultado que los compuestos pierden rápidamente la fuerza. Otros intentos han utilizado co-polímeros que contienen PLLA como fibra de refuerzo, tales como copolímeros PLLA-co-PGA en una proporción de 82:18. Sin embargo, ha habido dificultades para encontrar un adecuado material con un polímero matriz que pueda ser transformado en un compuesto sin degradar o romper la fibra de refuerzo. Más recientemente, se han hecho compuestos en donde la matriz ha sido un polímero con la misma composición química que la fibra o donde la matriz era una mezcla, siendo la mayoría de la mezcla un polímero con la misma composición química que la matriz. Estos compuestos tienen una dotación inicial de flexión de entre 120 a 140 MPa, pediendo la mayor parte de su en aproximadamente 12 semanas de uso.
Los intentos de frenar la degradación de la matriz polimérica han incluido la modificación de la composición para aumentar la hidrofobicidad del polímero. Sin embargo, esto aumenta tanto la cristalinidad del polímero matriz del polímero, que no es deseable desde una perspectiva biológica, o hace que el polímero sea muy dúctil si se añade un componente de goma hidrofóbicas, tal como la policaprolactona (PCL). También se han añadido materiales amortiguación, como el carbonato de calcio, a los polímeros para reducir las tasas de degradación y mejorar las propiedades biológicas, tales como la osteoconductividad. Sin embargo, con el fin de obtener los efectos beneficiosos de carbonato de calcio se necesita su presencia en altos niveles de alrededor del 30% por peso de la composición. Puesto que un compuesto de polímero de fibra contiene al menos el 50% de fibra en volumen, se prevé que un carbonato de calcio que contiene la matriz pueda interferir negativamente con la interfaz entre el polímero matriz y las fibras de refuerzo. Esto podría resultar en que el material compuesto reforzado con fibra se debilite de forma sustancial o incluso se rompa en pedazos antes de la curación completa de una fractura.
Para poder fabricar un material adecuado con compuestos reforzados con fibra, la fibra y material de la matriz deben tener ciertos requisitos. La fibra tiene que tener tanto una alta resistencia inicial a la tensión y la capacidad de retener la mayor parte de esta fuerza para que la fractura se cure. Para tener una alta resistencia inicial, las fibras deben ser altamente orientadas y estar presentes en alrededor del 40% en volumen del compuesto. Además, las fibras también debe tener cierta cristalinidad, ya que esto da estabilidad contra la relajación de la orientación de la fibra.
El material de la matriz también debe ser capaz de retener la mayor parte de su fuerza durante un tiempo adecuado, aproximadamente entre 6 a 12 semanas, para que la fractura se cure. Para lograr esto, la matriz debe tener un alto y suficiente peso molecular inicial. A medida que se degradan los polímeros, las disminuciones de peso molecular y los polímeros se vuelven frágiles y pierden sus propiedades mecánicas. Aditivos tales como materiales de carbonato de calcio u otros materiales de amortiguación, se pueden agregar a la matriz para controlar la velocidad de degradación. La cantidad del material de amortiguamiento debe ser alrededor de 30% en peso de la matriz sin que ello interfiera con la interfaz entre la matriz polimérica y las fibras de refuerzo.
Además, el material de la matriz debe ser procesable a una temperatura que sea lo suficientemente baja para no afectar significativamente la resistencia de la fibra y para que se adhieran lo suficiente a la fibra para permitir la transferencia de la tensión de la matriz a la fibra. Para lograr esto, co-ploímeros tanto semi-cristalinos y amorfos pueden ser utilizados. Los co-polímeros semi-cristalinos están compuestos de ácido láctico y una o más unidades monoméricas adicionales cuya función es bajar el punto de fusión de los co-polímeros de matriz a un punto donde la fuerza de la fibra no se vea afectada durante la etapa de consolidación. Materiales amorfos o no cristalinos, tales como polímeros de ácido poli (D-láctico), son adecuados para el procesamiento de la fibra, ya que se ablandan a temperaturas relativamente bajas. Sin embargo, estos materiales no tienen un tiempo de retención de la fuerza largo. Esta retención de la fuerza se puede mejorar mediante la incorporación de un material de amortiguación, como el carbonato de calcio, en el material de la matriz. En este caso, el carbonato de calcio actúa tanto como un amortiguador y también como reductor la sensibilidad térmica del polímero a la ruptura durante el proceso. En conjunto, el efecto del carbonato de calcio es tanto reducir la tasa de degradación del polímero y ayudar a conservar el peso molecular durante el proceso, sin que ello interfiera con la interfaz entre la matriz polimérica y las fibras de refuerzo.
La presente divulgación incorpora estos requisitos para producir un material reabsorbible que tiene una alta resistencia inicial y conserva una parte importante de esta fuerza durante un tiempo útil.
En un aspecto, la presente divulgación se relaciona con un material compuesto reforzado con fibra incluyendo un material de fibra de PLLA, tal como un material de fibra continua PLLA, y un material matriz que no tiene el mismo elemento de la composición química que el material de la fibra. En una realización, el compuesto más futuro incluye un agente de la degradación de control dispersos en el material de la matriz. En otra realización, el control de la degradación del agente incluye un material de amortiguación seleccionados de un grupo que incluye el carbonato de calcio, carbonato de calcio de hidrógeno, fosfatos de calcio, fosfato tricálcico, fosfato dicálcico, carbonato de magnesio y carbonato de sodio. En otra realización, la degradación de control incluye un agente de sal común. En una realización, el agente de la degradación de control se selecciona de un grupo que incluye un material de amortiguación, una sal común, y sus combinaciones. En otra realización, el control de la degradación de agente está entre 0,1% a alrededor del 40% en peso del material de la matriz. En otra realización, el compuesto más futuro incluye un acelerador dispersos en la fibra o material de la matriz. En otra realización, el PLLA material de la fibra es de aproximadamente 50% en volumen del compuesto. En una realización, el material de fibra, que es bioabsorbibles, tiene una resistencia a la tensión de entre cerca de 500 MPa a 2000 MPa y un peso molecular de entre cerca de 290.000 g / mol y cerca de 516.000 g / mol.
En una realización, el material de la matriz es biorreabsorbibles y se selecciona de un grupo que incluye un polímero, un copolímero, y la mezcla de un polímero. En otra realización, cuando una mezcla de polímeros se utiliza como la matriz, la mezcla incluye por lo menos dos polímeros y por lo menos uno de los polímeros tiene una composición de elementos químicos que es diferente a la de la fibra. En otra realización, el polímero que tiene una composición de elementos químicos que es diferente a la de la fibra consta de al menos el 50% de la mezcla del polímero. En otra realización, el polímero que tiene una composición de elementos químicos que es diferente a la de la fibra está compuesta por más de 50% de la mezcla del polímero. En otra realización, el material de la matriz es bioabsorbibles.
En otra realización, el compuesto tiene una resistencia inicial a la tensión mínima de 250 MPa y conserva al menos el 75% de la resistencia inicial de por lo menos 8 semanas. En una realización, el material compuesto incluye una resistencia a la flexión de unos 200 MPa y una resistencia al corte de al menos 140 MPa.
La presente divulgación incluye un material compuesto reforzado con fibra de tener un material matriz, un material de fibra de vidrio, y un agente de control de la degradación. En una realización, el material de la matriz se selecciona de un grupo que incluye un polímero, un copolímero, y la mezcla de un polímero. En una realización, el material de la matriz es bioabsorbibles. En otra realización, el material de fibra de vidrio es bioabsorbibles. En otra realización, el material de fibra de vidrio incluye una resistencia a la tensión entre cerca de 300 MPa y cerca de 1.200 MPa. En otra realización, el material de fibra de vidrio incluye un material hidrofóbico. En otra realización, el material de fibra de vidrio es cerca de 50% en volumen del compuesto.
En una realización, el control de la degradación del agente se dispersa en el material de la matriz. En otra realización, el agente de control de la degradación es recubierta por una superficie del material de fibra. En otra realización, el control de la degradación del agente es de entre 0,1% a alrededor del 40% en peso del material de la matriz. En otra realización, el control de la degradación de agente incluye un material de amortiguación seleccionados de un grupo que incluye el carbonato de calcio, carbonato de calcio de hidrógeno, fosfatos de calcio, fosfato tricálcico, fosfato dicálcico, carbonato de magnesio y carbonato de sodio. En otra realización, la degradación de control incluye un agente de sal común. En una realización, el agente de la degradación de control se selecciona de un grupo que incluye un material de amortiguación, una sal común, y sus combinaciones.
En otra realización, el compuesto tiene una resistencia inicial a la tensión mínima de 250 MPa y mantiene la resistencia inicial a la tensión por lo menos 8 semanas. En una realización, el compuesto incluye una dotación inicial de flexión de entre cerca de 250 MPa y 400 MPa. En otra realización, el compuesto incluye un módulo inicial de flexión de entre 20-30 GPa. En otra encarnación, el compuesto conserva alrededor del 98% de la masa inicial de al menos 2 semanas.
La presente divulgación acceso incluye un material compuesto reforzado con fibra de tener un material de la matriz, un material de fibra, y un agente de control de la degradación.
La presente divulgación incluye un material compuesto reforzado con fibra de tener un material de la matriz y un material de fibra de vidrio, donde el material de fibra de vidrio incluye una resistencia a la tensión de entre cerca de 300 MPa MPa y cerca de 1200.
La presente divulgación incluye un material compuesto reforzado con fibra de tener un material de fibra de PLLA y una matriz
material, en donde el material de fibra incluye un peso molecular de entre cerca de 290.000 g / mol y cerca de
516.000 g / mol.
La siguiente descripción de la puesta en práctica prefente es simplemente un ejemplo, y no es hábil para limitar la divulgación, aplicación o uso de la invención.
En un aspecto, la divulgación se relaciona con un material compuesto reforzado con fibra conteniendo un material con fibra de PLLA y un material matriz que no tiene la misma composición química que el material fibroso. Una fibra continua de PLLA se saca y se dirige a proporcionar a la fibra con una resistencia a la tensión de entre cerca de 500 MPa a 2000 MPa y un peso molecular de entre cerca de 290.000 g/mol a cerca de 516.000 g mol. El proceso de extrusión y el dibujo utilizado para hacer la fibra puede ser de cualquier proceso de extrusión y dibujo conocido para un experto en la materia. El material de fibra de PLLA supone cerca del 50% del volumen de material compuesto y es bioabsorbible.
El material matriz, que es bioabsorbible y seleccionado de entre un grupo que incluye a un polímero, un copolímero, y una mezcla de polímeros, se compone entonces. A los efectos de esta descripción, un material matriz que no tiene la misma composición química que el material de la fibra se define como la siguiente: Si el material matriz es un polímero, el polímero no puede ser un material polilactida puro. Si el material matriz es un copolímero, por lo menos una de las especies monoméricas no es un monómero de lactona. Si el material matriz es una mezcla de polímeros, por lo menos uno de los polímeros tiene una composición de elementos químicos que es diferente a la de la fibra. El polímero que tiene una composición de elementos químicos diferentes a la de la fibra consta de al menos el 50% o más de la mezcla del polímero. Alternativamente, un material de la matriz que tiene la misma composición química que el material de fibra, opción que queda incluída en esta divulgación, se define como la siguiente: Si el material matriz es un polímero, el polímero es un material polilactida puro. Si el material matriz es un copolímero, entonces ambas especies monoméricas son monómeros lactona. Si el material matriz es una mezcla de polímeros, entonces, los dos polímeros son materiales puros polilactida.
El compuesto puede incluir además un agente de control de la degradación. A los efectos de esta divulgación, el agente de la degradación de control puede incluir un material de amortiguación, una sal común, y sus combinaciones. El material amortiguador se selecciona de un grupo que incluye, pero no limitado a, el carbonato de calcio, carbonato de calcio de hidrógeno, fosfatos de calcio, fosfato tricálcico, fosfato dicálcico, carbonato de magnesio y carbonato de sodio. La sal común es soluble en agua y puede ser orgánica o inorgánica. Además, la sal puede basarse, sin limitación alguna, en uno de los siguientes: un metal del Grupo I, incluyendo pero no limitado a, el litio, sodio y potasio, un metal del grupo II, incluyendo pero no limitado a, el berilio, magnesio , calcio, estroncio y bario, metales de transición, incluyendo pero no limitado a, cobre, zinc, plata, oro, hierro y titanio, un metal del grupo III, incluyendo pero no limitado a, el aluminio y el boro. Además, la sal puede incluir, sin limitación, un carbonato, un carbonato de hidrógeno, un fosfato, un fosfato de hidrógeno, silicatos, polifosfatos y polisilicatos. Por último, la sal puede ser un solo elemento, un compuesto o una mezcla de los mismos.
El agente de la degradación de control se dispersa en el material de la matriz y se utiliza como agente de amortiguamiento y para frenar la degradación del compuesto. El agente de control de la degradación supone entre el 0,1% a alrededor de un 40% del peso del material matriz. El compuesto puede incluir además un acelerador, como el ter-butil éster del ácido láurico o el éster ditertiary butílico del ácido fumárico, disperso en el material matriz o en el material fibroso. acelerantes Otros aceleradores conocidos por el experto en la materia pueden ser utilizados. El uso de estos aceleradores acelera la velocidad de degradación de la fibra o matriz.
El material compuesto tiene una resistencia inicial a la tensión mínima de 250 MPa y conserva al menos el 75% de esta resistencia por lo menos 8 semanas. A los efectos de esta divulgación, una resistencia a la tensión inicial se entiende la resistencia a la tensión del material compuesto antes de la degradación. Además, el compuesto tiene una resistencia a la flexión de 200 MPa y una resistencia al corte de al menos 140 MPa.
En otro aspecto, la presente divulgación se relaciona con un material compuesto reforzado con fibra incluyendo un material matriz, un material de fibra de vidrio, y un agente de control de la degradación.
El material matriz puede ser cualquier polímero biodegradable, mezcla del polímero, copolímero, u otro material biodegradable conocido por el experto en la materia. Ejemplos de polímeros biodegradables incluyen ácidos polihidroxilados alfa, poliglicolida (PGA), poli (L-láctico), poli (D, L-láctico), poli (. Epsilon.-caprolactona), poli (carbonato de trimetileno), polióxido de etileno (PEO), poli (.beta.hidroxibutirato) (PHB), poli (.Beta.-hidroxivalerato) (PHVA), poli (p-dioxanona) (PDS), poli (ortoésteres), policarbonatos derivados de la tirosina, polipéptidos , poliuretano, y sus combinaciones.
El material de fibra de vidrio es biobsorbible y representa alrededor del 50% en volumen del compuesto. El material de fibra de vidrio puede ser extruído y tirado por cualquier proceso de extrusión y dibujo conocido para un experto en la materia. La fibra incluye una resistencia a la tensión de entre cerca de 300 MPa y cerca de 1200 MPa. Además, el material de fibra puede incluir un material hidrofóbico para frenar la degradación del material de fibra de vidrio. El material hidrofóbico puede ser un componente de la composición del material de fibra de vidrio o recubierta por una superficie del material de fibra de vidrio. Ejemplos de materiales hidrofóbicos incluyen, sin limitación, policaprolactona, poli-para-xylylene (Parileno por ejemplo), isómeros y co-polímeros de polilactida, polipéptido, materiales cerámicos (por ejemplo, hidroxiapatita u otra forma de fosfato de calcio), y cualquier otro material orgánico o inorgánico hidrofóbico que disminuya la penetración del agua en la fibra. A los efectos de esta divulagación, las fibras de vidrio son cerca del 50 mol% de óxido de potasio (K2O), cerca de 30 mol% de óxido de calcio (CaO), cerca de 15 mol% de óxido de sodio (Na2O), y 5 mol% de óxido de hierro (Fe2O3) . En cualquier caso, fibras de vidrio con diferentes composiciones pueden ser utilizadas.
El agente de control de la degradación puede ser del mismo tipo que los descritos anteriormente y se pueden dispersar en el material matriz o recubrir la superficie del material fibroso. El agente actúa como un medio para controlar la degradación del compuesto y / o la fibra de vidrio. En concreto, en lo que respecta a las fibras de vidrio, se cree que la sal común reduce sustancialmente la liberación de iones de las fibras. Cuando el agente de control de la degradación se dispersa en el material matriz, el agente representa entre el 0,1% a alrededor del 40% en peso del material matriz.
El compuesto tiene una resistencia inicial a la tensión mínima de 250 MPa y es capaz de mantener esta resistencia a la tensión inicial por lo menos 8 semanas. Además, el compuesto incluye una dotación inicial de flexión de entre cerca de 250 MPa y 400 MPa. Además, el compuesto conserva alrededor del 98% de la masa inicial al menos 2 semanas, cuando se coloca en condiciones invivo.
Las fibras de refuerzo de los dos compuestos, como se describió anteriormente, de preferencia con propiedades mecánicas que no quedan afectadas cuando se probó en un entorno fisiológico (acuoso, 37 º C). Las fibras son preferentemente insolubles en el disolvente utilizado para disolver la matriz polimérica. Además, el agente que controla la degradación de ambos compuestos debe ser uno que reacciona con el ácido de los subproductos que se generan durante la degradación de la fibra de polímero o matriz o la fibra de vidrio, incluyendo, sin limitación, el ácido láctico, ácido glicólico, ácido caproico, y las diferentes formas de ácido fosfórico. Cuando el agente de control de la degradación es en forma de partículas, las partículas pueden tener varios tamaños, que van desde cerca de 1 mm a unos 10 nm, y diferentes geometrías tales como agujas, plaquetas cúbicas, fibras, esferas y otras geometrías conocidas por el experto en la materia. Es importante, pero no obligatorio, que las partículas tengan una forma que mejore las propiedades mecánicas de las partículas.
Los agentes biológicos, tales como células, factores de crecimiento, antibióticos, antimicrobianos, u otros factores, pueden agregarse a uno o más componentes de los materiales compuestos para promover la curación de la fractura. Más detalles se pueden derivar de los ejemplos a continuación.
EJEMPLO 1
La fibra PLLA se hizo por primera vez tomando gránulos PLLA con una viscosidad intrínseca nominal de 3,8 extruyendo los gránulos en una fibra. Se utilizó un estirador de tornillo equipado con una bomba de engranajes y un dado hilera de 2 mm. La extrusora también disponía de un elemento para el enfriamiento del aire. La fibra fue sacada por lotes en los carretes para el paso siguiente del proceso. Posteriormente, la fibra se extendió progresivamente a temperaturas elevadas para producir un diámetro final de ca. 100 μm y un cociente de drenaje de entre 8 y 15. El peso molecular final de la fibra estaba entre cerca de 290.000 g/mol-1 a cerca de 516.000 gmol-1. La fibra resultante tenía una fuerza media de tensión de más de 800 MPa.
Se hicieron entonces compuestos con un 85:15 copolímero de PDLLA y PGA con una adición de 35% en peso de carbonato de calcio (CaCO3) como material matriz. Las fibras de poli (L-láctico) resultantes fueron heridas a continuación, en torno a un soporte con barras paralelas separadas a una distancia constante. Cada muestra de fibra fue envuelta alrededor de 75 veces en el soporte, lo que resulta en 150 fibras de cada compuesto. La matriz se disolvió en un disolvente, acetato de metilo, a un 10% peso / volumen de disolvente. Las fibras se recubrieron con la mezcla de disolvente y polímero. El compuesto fue colocado entonces en un horno de vacío a 40 ° C durante 12 horas para eliminar el disolvente.
El compuesto fue colocado entonces en un molde cilíndrico a 165 ° C. Esta temperatura se utiliza para fundir el material de la matriz y permitir que fluya, consolidando el compuesto. Una vez que se alcanza el equilibrio térmico, se aplica una ligera tensión a las fibras para alinearlas en el molde. El molde se cierra para que se complete la consolidación de las fibras y la matriz. El molde cerrado se mantiene a 165 ° C durante 5 minutos y luego se retira de la prensa caliente y se coloca entre bloques de metal frío para enfriar el compuesto a temperatura ambiente y permitir que la tensión de las fibras se libere.
Las muestras de los compuestos tenían en solución amortiguadora de fosfato (PBS) a 37 ° C. El diámetro medio de las muestras fue alrededor de 1,7 mm. Los compuestos fueron retirados de la solución de envejecimiento, secados, y probados con un test de flexión en 3 puntos. Como se muestra en la Tabla 1, las muestras fueron analizadas por su resistencia inicial a la tensión y su resistencia a la tensión a los 6, 10, 12, y 16 semanas. En comparación con la resistencia a la tensión inicial, la resistencia a la tensión del material compuesto durante las semanas siguientes se mantuvo alta.
EJEMPLO 2
5 Se realizaron compuestos con el método descrito en el ejemplo 1, con y sin mezcla de CaCO3 en la matriz, y con una gama de diferentes materiales de la misma. Los compuestos resultantes fueron probados por su resistencia a la flexión en 3 puntos. Los pines fueron de 2 mm de diámetro y probados en una horquilla de 16:1 de ratio de diámetro. Los resultados se presentan en la Tabla 2. Está claro que las propiedades mecánicas de los compuestos que contienen un agente de control de la degradación no quedan significativamente comprometidos por la presencia
10 del material.
EJEMPLO 3
15 Se realizaron compuestos que incluían fibras de ácido poli-L-láctico (PLLA) y matriz de copolímero de ácido poli-Lláctico (PLLA) y ácido poliglicólico (PGA) (PLGA 85:15) utilizando el método descrito en el ejemplo 1.
El compuesto no incluye carbonato de calcio u otros agentes de control de la degradación. Las propiedades de
20 flexión y corte de los pernos resultantes fueron probados, a través de una prueba de flexión de 3 puntos, después del envejecimiento en PBS a 37 ° C. Los resultados se presentan en la Tabla 3.
EJEMPLO 4
25 40 g de poli (D, L-láctico-co-glicólico) se disolvieron en 360 ml de CHCl3 para producir una solución clara y 61,54 g de carbonato de calcio (CaCO3) lleno de poli (D, L-láctico-co-glicólico) fueron disueltos en 360 ml de CHCl3 para producir una suspensión de partículas de CaCO3 en la solución del polímero. 1m de madejas de fibra de vidrio, con las propiedades que se muestran en la Tabla 4 y un peso de entre 4,56 gy 7,32 g, se sumergieron entonces en las soluciones y se introdujo en una campana de humo para permitir que el disolvente se evaporase. Las tiras de fibras
30 recubiertas resultantes se secaron en vacío a 80 ° C por debajo de 1 mbar hasta llegar a masa constante. Los pesos y las composiciones de las madejas secas se muestran en la Tabla 5.
Las tiras de fibra recubiertas se cortaron en tramos de 120 mm de longitud y se moldearon por compresión a 160 ° C
para producir barras de compuestos con medidas nominales de 10 x 3 x 120 mm. Las barras se miden y se pesan
con precisión para el cálculo de sus composiciones. Las propiedades mecánicas de flexión de los materiales 10 compuestos se probaron utilizando un test de flexión en 3 puntos. La relación entre longitud y distancia de los
compuestos fue de 32 y la velocidad de la prueba fue de 4,74 mm / min. Los tramos se determinan a partir de tres
mediciones y la resistencia al fallo en un especímen. Las composiciones y los resultados de las propiedades
mecánicas se muestran en la Tabla 6. El cuadro muestra que los compuestos de fibra de vidrio tiene una resistencia
a la flexión muy similar a los compuestos de polímero de fibra en la Tabla 2. A los efectos de esta divulgación, el 15 módulo es una magnitud que expresa el grado en que una sustancia posee cierta propiedad, como la elasticidad por
ejemplo.
20
EJEMPLO 5
Se preparan soluciones de 10% w/w de poli (DL-láctico-co-glicólico) 85:15 y 35% w/w (del peso del polímero) 25 CaCO3 en CH2Cl2. Aprox. Se pesan 50 cm de longitud de fibra de vidrio (50% mol de P2O5, 30-40% molar de CaO, Na2O 5.15 mol%, 5% mol de Fe2O3) con un peso entre 1,5 y 7 g, se sumerge en la solución de polímero, y se
5
10
15
20
25
30
35
40
45
introduce en una campana de humos para su secado durante una noche. Las fibras luego se secan al vacío a 80 ° C y se vuelven a pesar. Las tiras de composite se cortan en tramos de 12 mm de longitud y se mezclan.
Los compuestos se moldean por compresión en un molde de aluminio con una cavidad de 120 x 3 x 10 mm. El molde se llena de una tira de tela de vidrio impregnada de PTFE para que el producto se elimine con mayor facilidad. El moldeado se realiza a 160 º C bajo presión de 100 kN. El molde se precalienta y luego se colocan una o dos tiras en la cavidad. Una vez que el molde se llena, la presión se aplica durante unos segundos, el molde se vuelve a abrir, y se agregan más tiras. Esto se repite hasta que no quepan más tiras en el molde. El molde se enfría a temperatura ambiente bajo presión. Las barras compuestas se recortan y, a continuación se cubren con una capa de llenado de la matriz para sellar los extremos. El peso y la composición de las fibras se muestran en la Tabla 7.
Todas las muestras fueron analizadas para evaluar la rigidez a la flexión y probadas para el fracaso. Las pruebas se realizaron con un test de flexión en 3 puntos, con un período de prueba de 90 mm y el grosor y la anchura medidos para cada muestra. Para las mediciones de módulo, la desviación realiza en un desplazamiento de la cruceta de
4.74 mm / min utilizando una célula de carga 100N. La fuerza se mide utilizando una célula de carga de 10 kN. Las composiciones y los resultados de las propiedades mecánicas se muestran en la Tabla 8.
EJEMPLO 6
Se sumergen materiales compuestos de fibra de vidrio, como los preparados en el ejemplo 5, con y sin CaCO3 mezclado en la matriz en frascos de 300 ml de solución salina tampón fosfato (PBS) y se coloca en una incubadora a 37 ° C. Las muestras se retiran para su análisis después de 14 días, y se registra su masa seca. Las muestras que contienen CaCO3 habían conservado el 98% de su masa seca inicial, mientras que los que no contenían CaCO3 habían conservado sólo el 63% de su peso seco inicial.
El material de fibra de polímero de la presente descripción incluye una fibra de ácido poliláctico de alta resistencia y un material matriz que es adecuado para trabajar con esta fibra. La matriz permite una buena resistencia interfacial entre la fibra y la matriz, que proporciona al compuesto una alta resistencia mecánica y una tasa de degradación reducida. También se divulgan los materiales poliméricos y compuestos de fibra de vidrio con una concentración del tampón material que se ha demostrado que no causará perjuicio interferir con la relación entre las matrices de polímeros y los materiales de fibra. Por el contrario, los resultados de las pruebas muestran que el material de amortiguación trabaja para proporcionar al compuesto con la capacidad de retener la mayor parte de su fuerza inicial durante un largo periodo de tiempo al hacer más lenta la velocidad de degradación de la matriz del polímero y, en el material compuesto de fibra de vidrio, la tasa de degradación de la fibra de vidrio.
Un material compuesto que contiene un material matriz y una mezcla de las anteriormente descritas fibras de vidrio y de polímeros, con o sin un agente de control de la degradación, está también dentro del alcance de esta divulgación. La matriz y las fibras de vidrio y polímero pueden ser del mismo tipo y fabricadas por los mismos procesos que las matrices descritas anteriormente. Además, los agentes de control de la degradación pueden ser del mismo tipo que se describe anteriormente. Por otra parte, las condiciones de transformación para la fabricación de material compuesto pueden ser las mismas que las condiciones de transformación para hacer las anteriormente descritos compuestos de fibra de polímero.
Claims (18)
- REIVINDICACIONES
- 1.
- Un material compuesto reforzado con fibras que comprende: un material de fibra de PLLA, y un material matriz que no tiene el mismo elemento de la composición química que el material de la fibra.
-
- 2.
- El material compuesto de la reivindicación 1 que comprende además un agente de control de degradación disperso en el material de la matriz.
-
- 3.
- El material compuesto de la erivindicación 1 que comprende además un acelerador disperso en al menos uno de los materiales de la matriz o el material de fibra PLLA.
-
- 4.
- El material compuesto de la reivindicación 2 ó 3 en donde el agente de control de degradación se selecciona del grupo que incluye un material de amortiguación, una sal común o combinaciones de los mismos.
-
- 5.
- El material compuesto de la reivindicación 4 en donde el material de amortiguación es seleccionado de un grupo que consiste esencialmente de carbonato de calcio, carbonatos de hidrogeno de calcio, fosfatos de calcio, fosfatos dicálcicos, fosfatos tricálcicos, carbonato de magnesio y carbonato de sodio.
-
- 6.
- El material compuesto de cualquiera de las reivindicaciones 2 a 5 en donde el agente de control de degradación comprende entre 0,1% y un 40% de peso del material de la matriz.
-
- 7.
- El material compuesto de una reclamación anterior en donde el material de fibra de PLLA cuenta con un material continuo de fibra PLLA.
-
- 8.
- El material compuesto de una reivindicación anterior en donde el material de fibra PLLA abarca cerca de 50% en volume del compuesto.
-
- 9.
- El material compuesto de cualquiera de las anteriores reivindicaciones en donde el material de fibra comprende una resistencia a la tensión de entre 500 MPa a 2000 MPa.
-
- 10.
- El material compuesto de la reivindicación 9 en donde el material de fibra comprende una resistencia a la tensión de 800 MPa.
-
- 11.
- El material compuesto de cualquiera de las anteriores reivindicaciones en donde el material de fibra incluye un peso molecular de entre 290.000 g / mol a 516.000 g / mol.
-
- 12.
- El material compuesto de cualquiera de las anteriores reivindicaciones en donde el material de la matriz se selecciona de un grupo que consiste esencialmente en un polímero, un copolímero, y la mezcla de un polímero.
-
- 13.
- El material compuesto de la reivindicacíon 12 en donde la mezcla del polímero incluye al menos dos polímeros, en donde por lo menos un polímero de la mezcla tiene un elemento de la composición química que es diferente al de la fibra.
-
- 14.
- El material compuesto de la reivindicación 13 en donde el polímero que tiene una composición de elementos químicos que es diferente a la de la fibra constituye al menos el 50% de la mezcla del polímero.
-
- 15.
- El material compuesto de cualquiera de las anteriores reivindicaciones, en donde el material de la fibra o el material compuesto es bioabsorbible.
-
- 16.
- El material compuesto de cualquiera de las anteriores reivindicaciones en donde el compuesto tiene una resistencia mínima inicial a la tensión de 250 MPa.
-
- 17.
- El material compuesto de la demanda 16 en donde el compuesto conserva al menos el 75% de la resistencia inicial de por lo menos 8 semanas.
-
- 18.
- El material compuesto de cualquiera de las anteriores reivindicaciones en donde el compuesto tiene una resistencia a la flexión de 200 MPa.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86797806P | 2006-11-30 | 2006-11-30 | |
US867978P | 2006-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2361360T3 true ES2361360T3 (es) | 2011-06-16 |
Family
ID=39432887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES07864978T Active ES2361360T3 (es) | 2006-11-30 | 2007-11-30 | Material compuesto reforzado con fibra. |
Country Status (10)
Country | Link |
---|---|
US (2) | US8722783B2 (es) |
EP (1) | EP2120745B1 (es) |
JP (3) | JP2010511751A (es) |
CN (2) | CN102274552B (es) |
AT (1) | ATE493081T1 (es) |
AU (2) | AU2007325001B2 (es) |
CA (1) | CA2679365C (es) |
DE (1) | DE602007011671D1 (es) |
ES (1) | ES2361360T3 (es) |
WO (1) | WO2008067531A2 (es) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0329654D0 (en) | 2003-12-23 | 2004-01-28 | Smith & Nephew | Tunable segmented polyacetal |
US9849216B2 (en) | 2006-03-03 | 2017-12-26 | Smith & Nephew, Inc. | Systems and methods for delivering a medicament |
US8852625B2 (en) | 2006-04-26 | 2014-10-07 | Micell Technologies, Inc. | Coatings containing multiple drugs |
JP5416090B2 (ja) | 2007-04-18 | 2014-02-12 | スミス アンド ネフュー ピーエルシー | 形状記憶ポリマーの膨張成形 |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
AU2008242737B2 (en) | 2007-04-19 | 2013-09-26 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
CN102481195B (zh) | 2009-04-01 | 2015-03-25 | 米歇尔技术公司 | 涂覆支架 |
EP2243500B1 (en) | 2009-04-23 | 2012-01-04 | Vivoxid Oy | Biocompatible composite and its use |
JP5633291B2 (ja) * | 2010-10-05 | 2014-12-03 | 東洋製罐株式会社 | 生分解性樹脂組成物 |
US11058796B2 (en) | 2010-10-20 | 2021-07-13 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US11291483B2 (en) | 2010-10-20 | 2022-04-05 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
WO2015095745A1 (en) * | 2010-10-20 | 2015-06-25 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US20120101593A1 (en) | 2010-10-20 | 2012-04-26 | BIOS2 Medical, Inc. | Implantable polymer for bone and vascular lesions |
US9320601B2 (en) | 2011-10-20 | 2016-04-26 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
US10525169B2 (en) | 2010-10-20 | 2020-01-07 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US11484627B2 (en) | 2010-10-20 | 2022-11-01 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US11207109B2 (en) | 2010-10-20 | 2021-12-28 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications |
US9415440B2 (en) | 2010-11-17 | 2016-08-16 | Alcoa Inc. | Methods of making a reinforced composite and reinforced composite products |
GB201102468D0 (en) * | 2011-02-11 | 2011-03-30 | Univ Manchester | Biocompatible composite materials |
CN102247622A (zh) * | 2011-06-10 | 2011-11-23 | 东华大学 | 以可降解纤维增强的聚己内酯可降解骨钉及其溶液法制备 |
CN103796618A (zh) * | 2011-07-15 | 2014-05-14 | 史密夫和内修有限公司 | 具有嵌入式电子器件的纤维加强的复合物整形外科装置 |
KR101269127B1 (ko) * | 2011-10-18 | 2013-05-29 | 포항공과대학교 산학협력단 | 멤브레인형 인공 지지체 및 이의 제조 방법 |
ES2706149T3 (es) * | 2012-02-08 | 2019-03-27 | Toray Industries | Material sensible a estímulos y material médico que lo comprende |
CN102677304A (zh) * | 2012-05-29 | 2012-09-19 | 蔡紫林 | 一种色织布 |
WO2014165264A1 (en) | 2013-03-12 | 2014-10-09 | Micell Technologies, Inc. | Bioabsorbable biomedical implants |
KR102079613B1 (ko) * | 2013-05-15 | 2020-02-20 | 미셀 테크놀로지즈, 인코포레이티드 | 생흡수성 생체의학적 임플란트 |
US10010609B2 (en) | 2013-05-23 | 2018-07-03 | 206 Ortho, Inc. | Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants |
CN103611198B (zh) * | 2013-12-03 | 2016-09-28 | 中国科学院长春应用化学研究所 | 一种可吸收医用多孔膜及其制备方法 |
CN104857577A (zh) * | 2015-05-28 | 2015-08-26 | 上海益生源药业有限公司 | 一种可吸收骨固定材料及其制备方法 |
US10869954B2 (en) * | 2016-03-07 | 2020-12-22 | Ossio, Ltd. | Surface treated biocomposite material, medical implants comprising same and methods of treatment thereof |
CN105818492B (zh) * | 2016-03-29 | 2018-02-16 | 中材科技股份有限公司 | 一种生物活性磷酸盐基连续玻璃纤维纺织复合材料及其用途 |
CN106039424B (zh) * | 2016-05-25 | 2019-04-05 | 南京凤源新材料科技有限公司 | 一种用于骨骼固定的新型聚乳酸玻纤复合材料 |
DE102016116387A1 (de) * | 2016-09-01 | 2018-03-01 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Faserverstärktes bioresorbierbares Implantat und Verfahren zu dessen Herstellung |
JP6968887B2 (ja) | 2016-09-08 | 2021-11-17 | シェーファー・カーク・ゲーエムベーハー・ウント・コンパニー・カーゲーSchaefer Kalk Gmbh & Co. Kg | 微細構造粒子を有するカルシウム塩含有複合粉末 |
CN109661419B (zh) * | 2016-09-08 | 2022-05-27 | 谢菲尔考克有限两合公司 | 抑制性碳酸钙添加剂 |
CA3035935A1 (en) | 2016-09-08 | 2018-03-15 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles having inhibitory calcium carbonate |
US11441008B2 (en) | 2016-09-08 | 2022-09-13 | Schaefer Kalk Gmbh & Co. Kg | Composite powder containing calcium carbonate and having microstructured particles |
EP3470097B1 (en) | 2017-10-16 | 2021-03-31 | Arctic Biomaterials Oy | Orthopedic bioabsorbable implants |
CN110144064B (zh) * | 2019-05-28 | 2021-08-13 | 广东工业大学 | 一种生物基增强材料、生物基复合材料及其制备方法 |
CN112679760B (zh) * | 2020-11-19 | 2021-12-21 | 宁波宝亭生物科技有限公司 | 一种玻璃纤维增强生物降解高分子复合材料的制备方法 |
CN116036386B (zh) * | 2023-02-22 | 2024-04-30 | 天津纳博特医疗器械有限公司 | 一种可吸收玻纤增强聚乳酸复合材料及颅颌面钉板系统 |
Family Cites Families (343)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL216498A (es) | 1955-11-30 | |||
US3531561A (en) | 1965-04-20 | 1970-09-29 | Ethicon Inc | Suture preparation |
BE758156R (fr) | 1970-05-13 | 1971-04-28 | Ethicon Inc | Element de suture absorbable et sa |
US3797499A (en) | 1970-05-13 | 1974-03-19 | Ethicon Inc | Polylactide fabric graphs for surgical implantation |
US3736646A (en) | 1971-10-18 | 1973-06-05 | American Cyanamid Co | Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures |
DE2817778A1 (de) * | 1977-05-09 | 1978-11-23 | Firestone Tire & Rubber Co | Glasfaserverstaerkte polyamidzusammensetzungen |
US4137921A (en) | 1977-06-24 | 1979-02-06 | Ethicon, Inc. | Addition copolymers of lactide and glycolide and method of preparation |
US4181983A (en) | 1977-08-29 | 1980-01-08 | Kulkarni R K | Assimilable hydrophilic prosthesis |
DE2947985A1 (de) * | 1979-11-28 | 1981-09-17 | Vsesojuznyj naučno-issledovatel'skij i ispytatel'nyj institut medicinskoj techniki, Moskva | Biodestruktiver stoff fuer verbindungselemente fuer knochengewebe |
JPS56164842A (en) * | 1980-05-23 | 1981-12-18 | Toray Industries | Carbon fiber reinforced thermoplastic resin molding |
JPS5798556A (en) * | 1980-10-20 | 1982-06-18 | American Cyanamid Co | Refomation of polyglycolic acid obtaining variable vital body physical properties |
US5110852A (en) | 1982-07-16 | 1992-05-05 | Rijksuniversiteit Te Groningen | Filament material polylactide mixtures |
US4700704A (en) | 1982-10-01 | 1987-10-20 | Ethicon, Inc. | Surgical articles of copolymers of glycolide and ε-caprolactone and methods of producing the same |
US4523591A (en) | 1982-10-22 | 1985-06-18 | Kaplan Donald S | Polymers for injection molding of absorbable surgical devices |
US4539981A (en) | 1982-11-08 | 1985-09-10 | Johnson & Johnson Products, Inc. | Absorbable bone fixation device |
US4438253A (en) | 1982-11-12 | 1984-03-20 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same |
JPS6017118A (ja) * | 1983-07-06 | 1985-01-29 | Mitsubishi Mining & Cement Co Ltd | リン酸カルシウム質フアイバ− |
US4636215A (en) | 1984-01-11 | 1987-01-13 | Rei, Inc. | Combination tray and condylar prosthesis for mandibular reconstruction and the like |
US4990161A (en) | 1984-03-16 | 1991-02-05 | Kampner Stanley L | Implant with resorbable stem |
US4559945A (en) | 1984-09-21 | 1985-12-24 | Ethicon, Inc. | Absorbable crystalline alkylene malonate copolyesters and surgical devices therefrom |
US4604097A (en) * | 1985-02-19 | 1986-08-05 | University Of Dayton | Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments |
FI75493C (fi) | 1985-05-08 | 1988-07-11 | Materials Consultants Oy | Sjaelvarmerat absorberbart osteosyntesmedel. |
US6005161A (en) | 1986-01-28 | 1999-12-21 | Thm Biomedical, Inc. | Method and device for reconstruction of articular cartilage |
FI80605C (fi) * | 1986-11-03 | 1990-07-10 | Biocon Oy | Benkirurgisk biokompositmaterial. |
FI81498C (fi) * | 1987-01-13 | 1990-11-12 | Biocon Oy | Kirurgiska material och instrument. |
US4756307A (en) | 1987-02-09 | 1988-07-12 | Zimmer, Inc. | Nail device |
JPH0781204B2 (ja) * | 1987-04-21 | 1995-08-30 | 株式会社バイオマテリアルユニバ−ス | ポリ乳酸繊維 |
US5527337A (en) | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
DE8716607U1 (de) | 1987-12-14 | 1989-01-12 | Mecron Medizinische Produkte GmbH, 12277 Berlin | Implantierbare Prothese |
US4916207A (en) | 1987-12-17 | 1990-04-10 | Allied-Signal, Inc. | Polycarbonate homopolymer-based fiber compositions and method of melt-spinning same and device |
JP2561853B2 (ja) | 1988-01-28 | 1996-12-11 | 株式会社ジェイ・エム・エス | 形状記憶性を有する成形体及びその使用方法 |
GB2215209B (en) | 1988-03-14 | 1992-08-26 | Osmed Inc | Method and apparatus for biodegradable, osteogenic, bone graft substitute device |
US5444113A (en) | 1988-08-08 | 1995-08-22 | Ecopol, Llc | End use applications of biodegradable polymers |
US5502158A (en) | 1988-08-08 | 1996-03-26 | Ecopol, Llc | Degradable polymer composition |
US5250584A (en) | 1988-08-31 | 1993-10-05 | G-C Dental Industrial Corp. | Periodontium-regenerative materials |
JPH0739506B2 (ja) | 1988-09-30 | 1995-05-01 | 三菱重工業株式会社 | 形状記憶ポリマー発泡体 |
US4938763B1 (en) | 1988-10-03 | 1995-07-04 | Atrix Lab Inc | Biodegradable in-situ forming implants and method of producing the same |
US5633002A (en) | 1988-10-04 | 1997-05-27 | Boehringer Ingelheim Gmbh | Implantable, biodegradable system for releasing active substance |
DE3936188A1 (de) | 1988-11-01 | 1990-05-03 | Boehringer Ingelheim Kg | Kontinuierliches verfahren zur herstellung von resorbierbaren polyestern und deren verwendung |
FI85223C (fi) | 1988-11-10 | 1992-03-25 | Biocon Oy | Biodegraderande kirurgiska implant och medel. |
US5037178A (en) | 1988-12-22 | 1991-08-06 | Kingston Technologies, L.P. | Amorphous memory polymer alignment device |
FR2641692A1 (fr) | 1989-01-17 | 1990-07-20 | Nippon Zeon Co | Bouchon de fermeture d'une breche pour application medicale et dispositif pour bouchon de fermeture l'utilisant |
US5108755A (en) | 1989-04-27 | 1992-04-28 | Sri International | Biodegradable composites for internal medical use |
DK0401844T3 (da) | 1989-06-09 | 1996-02-19 | Aesculap Ag | Resorberbare formlegemer og fremgangsmåde til fremstilling heraf |
US5294395A (en) | 1989-09-01 | 1994-03-15 | Ethicon, Inc. | Thermal treatment of theraplastic filaments for the preparation of surgical sutures |
DE58908155D1 (de) | 1989-09-15 | 1994-09-08 | N Proizv Ob Edinenie Kompleksn | Endoprothese des hüftgelenks. |
US5053035A (en) | 1990-05-24 | 1991-10-01 | Mclaren Alexander C | Flexible intramedullary fixation rod |
US7208013B1 (en) | 1990-06-28 | 2007-04-24 | Bonutti Ip, Llc | Composite surgical devices |
IL94910A (en) | 1990-06-29 | 1994-04-12 | Technion Research Dev Foundati | Biomedical adhesive compositions |
US5047035A (en) | 1990-08-10 | 1991-09-10 | Mikhail Michael W E | System for performing hip prosthesis revision surgery |
ATE139126T1 (de) | 1990-09-10 | 1996-06-15 | Synthes Ag | Membran für knochenregenerierung |
CA2062012C (en) | 1991-03-05 | 2003-04-29 | Randall D. Ross | Bioabsorbable interference bone fixation screw |
DE4110316A1 (de) | 1991-03-28 | 1992-10-01 | Uwe Storch | Verwendung einer mischung fuer die herstellung von medizinischen implantaten |
EP0520177B1 (en) | 1991-05-24 | 1995-12-13 | Synthes AG, Chur | Resorbable tendon and bone augmentation device |
EP0523926A3 (en) | 1991-07-15 | 1993-12-01 | Smith & Nephew Richards Inc | Prosthetic implants with bioabsorbable coating |
DE4226465C2 (de) | 1991-08-10 | 2003-12-04 | Gunze Kk | Kieferknochen-reproduzierendes Material |
US5275601A (en) | 1991-09-03 | 1994-01-04 | Synthes (U.S.A) | Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment |
US5500013A (en) | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5360448A (en) | 1991-10-07 | 1994-11-01 | Thramann Jeffrey J | Porous-coated bone screw for securing prosthesis |
US5383931A (en) | 1992-01-03 | 1995-01-24 | Synthes (U.S.A.) | Resorbable implantable device for the reconstruction of the orbit of the human skull |
FI95537C (fi) | 1992-01-24 | 1996-02-26 | Biocon Oy | Kirurginen implantti |
ES2125329T3 (es) | 1992-02-14 | 1999-03-01 | Smith & Nephew Inc | Tornillos de materiales polimeros y recubrimientos para usos quirurgicos. |
US5333624A (en) | 1992-02-24 | 1994-08-02 | United States Surgical Corporation | Surgical attaching apparatus |
US5571193A (en) | 1992-03-12 | 1996-11-05 | Kampner; Stanley L. | Implant with reinforced resorbable stem |
US5407445A (en) | 1992-05-20 | 1995-04-18 | Cytrx Corporation | Gel composition for implant prosthesis and method of use |
DE4220216C1 (de) | 1992-06-20 | 1994-01-13 | S & G Implants Gmbh | Endoprothese mit einem Stiel |
US5319003A (en) * | 1992-09-30 | 1994-06-07 | Union Carbide Chemicals & Plastics Technology Corporation | Method for improving the mechanical performance of composite articles |
WO1994008078A1 (en) | 1992-10-02 | 1994-04-14 | Cargill, Incorporated | A melt-stable lactide polymer fabric and process for manufacture thereof |
US5376120A (en) | 1992-10-21 | 1994-12-27 | Biomet, Inc. | Biocompatible implant and method of using same |
US5437918A (en) | 1992-11-11 | 1995-08-01 | Mitsui Toatsu Chemicals, Inc. | Degradable non-woven fabric and preparation process thereof |
US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5716410A (en) | 1993-04-30 | 1998-02-10 | Scimed Life Systems, Inc. | Temporary stent and method of use |
FR2707477A1 (fr) | 1993-07-02 | 1995-01-20 | Cahlix Marc Andre | Obturateur de cavités osseuses. |
CA2127636C (en) | 1993-07-21 | 2009-10-20 | Cheng-Kung Liu | Plasticizers for fibers used to form surgical devices |
US6315788B1 (en) | 1994-02-10 | 2001-11-13 | United States Surgical Corporation | Composite materials and surgical articles made therefrom |
US5417712A (en) | 1994-02-17 | 1995-05-23 | Mitek Surgical Products, Inc. | Bone anchor |
US5569250A (en) | 1994-03-01 | 1996-10-29 | Sarver; David R. | Method and apparatus for securing adjacent bone portions |
AU689846B2 (en) | 1994-03-29 | 1998-04-09 | Zimmer Gmbh | Screw made of biodegradable material for bone surgery purposes, and screwdriver suitable therefor |
US5626861A (en) | 1994-04-01 | 1997-05-06 | Massachusetts Institute Of Technology | Polymeric-hydroxyapatite bone composite |
US5947893A (en) | 1994-04-27 | 1999-09-07 | Board Of Regents, The University Of Texas System | Method of making a porous prothesis with biodegradable coatings |
US6001101A (en) | 1994-07-05 | 1999-12-14 | Depuy France | Screw device with threaded head for permitting the coaptation of two bone fragments |
DE4424883A1 (de) | 1994-07-14 | 1996-01-18 | Merck Patent Gmbh | Femurprothese |
EP0696605B1 (de) | 1994-08-10 | 2000-09-20 | Peter Neuenschwander | Biokompatibles Blockcopolymer |
US5837276A (en) | 1994-09-02 | 1998-11-17 | Delab | Apparatus for the delivery of elongate solid drug compositions |
FR2725617B1 (fr) | 1994-10-12 | 1997-09-19 | Prost Didier | Tige femorale pour prothese de hanche |
US5690671A (en) | 1994-12-13 | 1997-11-25 | Micro Interventional Systems, Inc. | Embolic elements and methods and apparatus for their delivery |
US5741329A (en) | 1994-12-21 | 1998-04-21 | Board Of Regents, The University Of Texas System | Method of controlling the pH in the vicinity of biodegradable implants |
US5634936A (en) | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
ES2140828T3 (es) * | 1995-03-13 | 2000-03-01 | Rue De Int Ltd | Papel de seguridad. |
US6027742A (en) * | 1995-05-19 | 2000-02-22 | Etex Corporation | Bioresorbable ceramic composites |
US5641502A (en) | 1995-06-07 | 1997-06-24 | United States Surgical Corporation | Biodegradable moldable surgical material |
US5633343A (en) | 1995-06-30 | 1997-05-27 | Ethicon, Inc. | High strength, fast absorbing, melt processable, gycolide-rich, poly(glycolide-co-p-dioxanone) copolymers |
FI98136C (fi) | 1995-09-27 | 1997-04-25 | Biocon Oy | Kudosolosuhteissa hajoava materiaali ja menetelmä sen valmistamiseksi |
US6113624A (en) | 1995-10-02 | 2000-09-05 | Ethicon, Inc. | Absorbable elastomeric polymer |
US5716413A (en) | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US6902584B2 (en) | 1995-10-16 | 2005-06-07 | Depuy Spine, Inc. | Bone grafting matrix |
US6419945B1 (en) * | 1996-01-17 | 2002-07-16 | Cambridge Scientific, Inc. | Buffered resorbable internal fixation devices and methods for making material therefore |
US5817328A (en) | 1996-01-17 | 1998-10-06 | Cambridge Scientific, Inc. | Material for buffered resorbable internal fixation devices and method for making same |
US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
US5856288A (en) | 1996-04-26 | 1999-01-05 | Nippon Shokubai Co., Ltd. | Polyalkylene glycol-polyglyoxylate block copolymer, its production process and use |
JP3731838B2 (ja) | 1996-04-30 | 2006-01-05 | 株式会社クレハ | ポリグリコール酸配向フィルム及びその製造方法 |
EP0806283B1 (en) | 1996-05-09 | 2003-10-01 | Kureha Kagaku Kogyo Kabushiki Kaisha | Stretch blow molded container and production process thereof |
US6143948A (en) | 1996-05-10 | 2000-11-07 | Isotis B.V. | Device for incorporation and release of biologically active agents |
US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
CA2252860C (en) | 1996-05-28 | 2011-03-22 | 1218122 Ontario Inc. | Resorbable implant biomaterial made of condensed calcium phosphate particles |
US5935172A (en) | 1996-06-28 | 1999-08-10 | Johnson & Johnson Professional, Inc. | Prosthesis with variable fit and strain distribution |
US5824413A (en) * | 1996-07-15 | 1998-10-20 | Ppg Industries, Inc. | Secondary coating for fiber strands, coated strand reinforcements, reinforced polymeric composites and a method of reinforcing a polymeric material |
US5756651A (en) | 1996-07-17 | 1998-05-26 | Chronopol, Inc. | Impact modified polylactide |
US5904658A (en) | 1996-08-23 | 1999-05-18 | Osteobiologics, Inc. | Hand-held materials tester |
US7351421B2 (en) | 1996-11-05 | 2008-04-01 | Hsing-Wen Sung | Drug-eluting stent having collagen drug carrier chemically treated with genipin |
US5893850A (en) | 1996-11-12 | 1999-04-13 | Cachia; Victor V. | Bone fixation device |
US6139963A (en) * | 1996-11-28 | 2000-10-31 | Kuraray Co., Ltd. | Polyvinyl alcohol hydrogel and process for producing the same |
DE69732721T2 (de) | 1996-12-03 | 2006-05-18 | Osteobiologics, Inc., San Antonio | Biologisch abbaubare kunstoff-folien |
US5733330A (en) | 1997-01-13 | 1998-03-31 | Advanced Cardiovascular Systems, Inc. | Balloon-expandable, crush-resistant locking stent |
SE512050C2 (sv) | 1997-01-21 | 2000-01-17 | Nobel Biocare Ab | Rotationssymmetriskt benförankringselement |
US5997580A (en) | 1997-03-27 | 1999-12-07 | Johnson & Johnson Professional, Inc. | Cement restrictor including shape memory material |
US5977204A (en) | 1997-04-11 | 1999-11-02 | Osteobiologics, Inc. | Biodegradable implant material comprising bioactive ceramic |
US6071982A (en) | 1997-04-18 | 2000-06-06 | Cambridge Scientific, Inc. | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
JPH10298435A (ja) * | 1997-04-24 | 1998-11-10 | Dainippon Ink & Chem Inc | 生分解性成形物、生分解性材料及びそれらの製造方法 |
JP3503045B2 (ja) | 1997-05-13 | 2004-03-02 | タキロン株式会社 | 形状記憶生体内分解吸収性材料 |
WO1998053768A1 (en) | 1997-05-30 | 1998-12-03 | Osteobiologics, Inc. | Fiber-reinforced, porous, biodegradable implant device |
US7524335B2 (en) | 1997-05-30 | 2009-04-28 | Smith & Nephew, Inc. | Fiber-reinforced, porous, biodegradable implant device |
US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US6001100A (en) | 1997-08-19 | 1999-12-14 | Bionx Implants Oy | Bone block fixation implant |
GB9717433D0 (en) | 1997-08-19 | 1997-10-22 | Univ Nottingham | Biodegradable composites |
US7541049B1 (en) | 1997-09-02 | 2009-06-02 | Linvatec Biomaterials Oy | Bioactive and biodegradable composites of polymers and ceramics or glasses and method to manufacture such composites |
US7985415B2 (en) | 1997-09-10 | 2011-07-26 | Rutgers, The State University Of New Jersey | Medical devices employing novel polymers |
SE510868C2 (sv) | 1997-11-03 | 1999-07-05 | Artimplant Dev Artdev Ab | Formkroppar för användning som implantat i humanmedicin samt förfarande för framställning av sådana formkroppar |
US6168570B1 (en) | 1997-12-05 | 2001-01-02 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
CA2314963A1 (en) * | 1998-01-06 | 1999-07-15 | Bioamide, Inc. | Bioabsorbable fibers and reinforced composites produced therefrom |
US6150497A (en) | 1998-01-14 | 2000-11-21 | Sherwood Services Ag | Method for the production of polyglycolic acid |
WO1999040865A1 (fr) | 1998-02-13 | 1999-08-19 | Chugai Seiyaku Kabushikikaisha | Broche de fixation osseuse |
US6160084A (en) | 1998-02-23 | 2000-12-12 | Massachusetts Institute Of Technology | Biodegradable shape memory polymers |
CA2316945A1 (en) | 1998-02-23 | 1999-08-26 | Mnemoscience Gmbh | Shape memory polymers |
BR9908806A (pt) | 1998-03-11 | 2001-12-18 | Dow Chemical Co | Estruturas e artigos fabricados tendo memóriade formato feitos de interpolìmeros de"alfa"-olefina/vinila ou vinilideno aromático e/oude vinila ou vinilo alifático impedido |
US5997582A (en) | 1998-05-01 | 1999-12-07 | Weiss; James M. | Hip replacement methods and apparatus |
KR100569179B1 (ko) | 1998-05-28 | 2006-04-07 | 군제 가부시키가이샤 | 락티드 함유 폴리머 및 의료재료 |
US5939453A (en) | 1998-06-04 | 1999-08-17 | Advanced Polymer Systems, Inc. | PEG-POE, PEG-POE-PEG, and POE-PEG-POE block copolymers |
US20020022588A1 (en) | 1998-06-23 | 2002-02-21 | James Wilkie | Methods and compositions for sealing tissue leaks |
EP0968690A1 (de) | 1998-07-02 | 2000-01-05 | Sulzer Orthopädie AG | Sperrsystem für den Markkanal eines Röhrenknochens |
US6248430B1 (en) | 1998-08-11 | 2001-06-19 | Dainippon Ink And Chemicals, Inc. | Lactic acid-based polymer laminated product and molded product |
SE515572C2 (sv) | 1998-09-09 | 2001-09-03 | Lanka Ltd | Implantat, sätt att framställa det och användning av det |
JP2000085054A (ja) | 1998-09-14 | 2000-03-28 | Daicel Chem Ind Ltd | 崩壊性積層体およびその製造方法 |
US6248108B1 (en) | 1998-09-30 | 2001-06-19 | Bionx Implants Oy | Bioabsorbable surgical screw and washer system |
US6162225A (en) | 1998-10-26 | 2000-12-19 | Musculoskeletal Transplant Foundation | Allograft bone fixation screw method and apparatus |
US6255408B1 (en) | 1998-11-06 | 2001-07-03 | Poly-Med, Inc. | Copolyesters with minimized hydrolytic instability and crystalline absorbable copolymers thereof |
EP1000958B1 (en) | 1998-11-12 | 2004-03-17 | Takiron Co. Ltd. | Shape-memory, biodegradable and absorbable material |
US6283973B1 (en) | 1998-12-30 | 2001-09-04 | Depuy Orthopaedics, Inc. | Strength fixation device |
US6147135A (en) | 1998-12-31 | 2000-11-14 | Ethicon, Inc. | Fabrication of biocompatible polymeric composites |
US6293950B1 (en) | 1999-01-15 | 2001-09-25 | Luitpold Pharmaceuticals, Inc. | Resorbable pin systems |
AU757391B2 (en) | 1999-02-04 | 2003-02-20 | Synthes Gmbh | Bone screw |
US6299448B1 (en) | 1999-02-17 | 2001-10-09 | Ivanka J. Zdrahala | Surgical implant system for restoration and repair of body function |
US6206883B1 (en) | 1999-03-05 | 2001-03-27 | Stryker Technologies Corporation | Bioabsorbable materials and medical devices made therefrom |
AU6406700A (en) | 1999-03-16 | 2000-10-04 | Regeneration Technologies, Inc. | Molded implants for orthopedic applications |
EP1277482A3 (en) | 1999-03-19 | 2005-05-11 | The Regents of The University of Michigan | Mineralization and cellular patterning on biomaterial surfaces |
EP1867348B1 (en) | 1999-03-25 | 2012-05-16 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US6296645B1 (en) | 1999-04-09 | 2001-10-02 | Depuy Orthopaedics, Inc. | Intramedullary nail with non-metal spacers |
US7462162B2 (en) | 2001-09-04 | 2008-12-09 | Broncus Technologies, Inc. | Antiproliferative devices for maintaining patency of surgically created channels in a body organ |
US20050177144A1 (en) | 1999-08-05 | 2005-08-11 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US20050137715A1 (en) | 1999-08-05 | 2005-06-23 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US7033603B2 (en) * | 1999-08-06 | 2006-04-25 | Board Of Regents The University Of Texas | Drug releasing biodegradable fiber for delivery of therapeutics |
CA2319969A1 (en) | 1999-09-24 | 2001-03-24 | Isotis B.V. | Composites |
DE59901812D1 (de) | 1999-10-21 | 2002-07-25 | Storz Karl Gmbh & Co Kg | Interferenzschraube |
US6579533B1 (en) | 1999-11-30 | 2003-06-17 | Bioasborbable Concepts, Ltd. | Bioabsorbable drug delivery system for local treatment and prevention of infections |
CN1215231C (zh) * | 1999-12-17 | 2005-08-17 | 三井化学株式会社 | 道路增强板,增强沥青铺设路的结构及其铺设方法 |
EP1110510B1 (de) | 1999-12-23 | 2002-03-27 | Karl Storz GmbH & Co. KG | Schraube mit dezentralem Antrieb |
US6630153B2 (en) | 2001-02-23 | 2003-10-07 | Smith & Nephew, Inc. | Manufacture of bone graft substitutes |
US6425923B1 (en) | 2000-03-07 | 2002-07-30 | Zimmer, Inc. | Contourable polymer filled implant |
US20040052992A1 (en) | 2000-03-16 | 2004-03-18 | Adele Boone | Biodegradeable shrink wrap |
AU2815001A (en) | 2000-03-24 | 2001-09-27 | Ethicon Inc. | Thermoforming of absorbable medical devices |
US6468277B1 (en) | 2000-04-04 | 2002-10-22 | Ethicon, Inc. | Orthopedic screw and method |
JP2001303387A (ja) * | 2000-04-26 | 2001-10-31 | Kyowa Co Ltd | 生分解性を有する建設工事用シート |
US6869445B1 (en) | 2000-05-04 | 2005-03-22 | Phillips Plastics Corp. | Packable ceramic beads for bone repair |
CA2410637C (en) | 2000-05-31 | 2007-04-10 | Mnemoscience Gmbh | Shape memory polymers seeded with dissociated cells for tissue engineering |
US6447515B1 (en) | 2000-06-21 | 2002-09-10 | Russell Meldrum | Bioresorbable implant for fracture fixation |
CA2771263A1 (en) | 2000-07-27 | 2002-02-07 | Rutgers, The State University | Therapeutic polyesters and polyamides |
CA2418380A1 (en) | 2000-08-17 | 2002-02-21 | Tyco Healthcare Group Lp | Sutures and coatings made from therapeutic absorbable glass |
ATE377048T1 (de) | 2000-09-06 | 2007-11-15 | Ap Pharma Inc | Abbaubare polyacetal-polymere |
JP2002078790A (ja) * | 2000-09-06 | 2002-03-19 | Gunze Ltd | 骨接合医療材料及びその製造方法 |
US6605090B1 (en) | 2000-10-25 | 2003-08-12 | Sdgi Holdings, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
US6613089B1 (en) | 2000-10-25 | 2003-09-02 | Sdgi Holdings, Inc. | Laterally expanding intervertebral fusion device |
AU2002243270B2 (en) | 2000-10-25 | 2006-03-09 | Warsaw Orthopedic, Inc. | Vertically expanding intervertebral body fusion device |
US7776310B2 (en) | 2000-11-16 | 2010-08-17 | Microspherix Llc | Flexible and/or elastic brachytherapy seed or strand |
US6599323B2 (en) | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
JP2004517187A (ja) * | 2000-12-29 | 2004-06-10 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 低残存アルデヒド含量のポリエステル組成物 |
US6719935B2 (en) | 2001-01-05 | 2004-04-13 | Howmedica Osteonics Corp. | Process for forming bioabsorbable implants |
US6623487B1 (en) | 2001-02-13 | 2003-09-23 | Biomet, Inc. | Temperature sensitive surgical fastener |
US6827743B2 (en) | 2001-02-28 | 2004-12-07 | Sdgi Holdings, Inc. | Woven orthopedic implants |
JP4412901B2 (ja) | 2001-03-02 | 2010-02-10 | ウッドウェルディング・アクチェンゲゼルシャフト | 組織部、特に骨格部への接続を作製するためのインプラント、ならびにインプラントの埋込のための装置および方法 |
US6913765B2 (en) | 2001-03-21 | 2005-07-05 | Scimed Life Systems, Inc. | Controlling resorption of bioresorbable medical implant material |
AUPR408001A0 (en) | 2001-03-29 | 2001-04-26 | Cochlear Limited | Laminated electrode for a cochlear implant |
US20040265385A1 (en) | 2001-04-12 | 2004-12-30 | Therics, Inc. | Porous biostructure partially occupied by interpenetrant and method for making same |
US6726696B1 (en) | 2001-04-24 | 2004-04-27 | Advanced Catheter Engineering, Inc. | Patches and collars for medical applications and methods of use |
TWI267378B (en) * | 2001-06-08 | 2006-12-01 | Wyeth Corp | Calcium phosphate delivery vehicles for osteoinductive proteins |
GB0115320D0 (en) | 2001-06-22 | 2001-08-15 | Univ Nottingham | Matrix |
GB0116341D0 (en) * | 2001-07-04 | 2001-08-29 | Smith & Nephew | Biodegradable polymer systems |
AUPR626401A0 (en) | 2001-07-10 | 2001-08-02 | Australian Surgical Design And Manufacture Pty Limited | Surgical fixation device |
US6494916B1 (en) | 2001-07-30 | 2002-12-17 | Biomed Solutions, Llc | Apparatus for replacing musculo-skeletal parts |
US6749639B2 (en) | 2001-08-27 | 2004-06-15 | Mayo Foundation For Medical Education And Research | Coated prosthetic implant |
US6841111B2 (en) | 2001-08-31 | 2005-01-11 | Basf Corporation | Method for making a polyurea-polyurethane composite structure substantially free of volatile organic compounds |
US20050137611A1 (en) | 2001-09-04 | 2005-06-23 | Broncus Technologies, Inc. | Methods and devices for maintaining surgically created channels in a body organ |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US6916321B2 (en) | 2001-09-28 | 2005-07-12 | Ethicon, Inc. | Self-tapping resorbable two-piece bone screw |
JP2003126238A (ja) * | 2001-10-22 | 2003-05-07 | Gunze Ltd | 骨および骨軟骨再生基材 |
US20030125745A1 (en) | 2001-11-05 | 2003-07-03 | Bio One Tech Inc. | Bone-fixing device |
WO2003045460A1 (fr) | 2001-11-27 | 2003-06-05 | Takiron Co., Ltd. | Materiau d'implant et procede de realisation associe |
JP3631994B2 (ja) * | 2001-11-29 | 2005-03-23 | 旭ファイバーグラス株式会社 | 長繊維強化熱可塑性樹脂シートおよび該シートにより補強された複合成形体 |
EP1448166A1 (en) | 2001-11-30 | 2004-08-25 | Pfizer Inc. | Controlled release polymeric compositions of bone growth promoting compounds |
US7713272B2 (en) | 2001-12-20 | 2010-05-11 | Ethicon, Inc. | Bioabsorbable coatings of surgical devices |
ATE337760T1 (de) | 2001-12-21 | 2006-09-15 | Smith & Nephew Inc | Drehbares gelenksystem |
SE524709C2 (sv) | 2002-01-11 | 2004-09-21 | Edwards Lifesciences Ag | Anordning för fördröjd omformning av ett hjärtkärl och en hjärtklaff |
EP2181670A3 (en) | 2001-12-28 | 2011-05-25 | Edwards Lifesciences AG | Device for reshaping a cardiac valve |
GB0202233D0 (en) | 2002-01-31 | 2002-03-20 | Smith & Nephew | Bioresorbable polymers |
WO2003065996A2 (en) | 2002-02-05 | 2003-08-14 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
US20030153971A1 (en) | 2002-02-14 | 2003-08-14 | Chandru Chandrasekaran | Metal reinforced biodegradable intraluminal stents |
US20030153972A1 (en) | 2002-02-14 | 2003-08-14 | Michael Helmus | Biodegradable implantable or insertable medical devices with controlled change of physical properties leading to biomechanical compatibility |
US6758862B2 (en) | 2002-03-21 | 2004-07-06 | Sdgi Holdings, Inc. | Vertebral body and disc space replacement devices |
US6843799B2 (en) | 2002-03-25 | 2005-01-18 | Edwin C. Bartlett | Suture anchor system and associated method |
WO2003080119A1 (en) | 2002-03-26 | 2003-10-02 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Responsive biomedical composites |
EP1501424B1 (en) | 2002-04-18 | 2018-06-06 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Biodegradable shape memory polymeric sutures |
DE10217350C1 (de) | 2002-04-18 | 2003-12-18 | Mnemoscience Gmbh | Polyesterurethane |
US7261734B2 (en) | 2002-04-23 | 2007-08-28 | Boston Scientific Scimed, Inc. | Resorption-controllable medical implants |
US6830575B2 (en) | 2002-05-08 | 2004-12-14 | Scimed Life Systems, Inc. | Method and device for providing full protection to a stent |
US6869985B2 (en) * | 2002-05-10 | 2005-03-22 | Awi Licensing Company | Environmentally friendly polylactide-based composite formulations |
US7166133B2 (en) | 2002-06-13 | 2007-01-23 | Kensey Nash Corporation | Devices and methods for treating defects in the tissue of a living being |
US7192448B2 (en) | 2002-06-27 | 2007-03-20 | Ferree Bret A | Arthroplasty devices with resorbable component |
US20040002770A1 (en) | 2002-06-28 | 2004-01-01 | King Richard S. | Polymer-bioceramic composite for orthopaedic applications and method of manufacture thereof |
US20050019404A1 (en) | 2003-06-30 | 2005-01-27 | Hsing-Wen Sung | Drug-eluting biodegradable stent |
ES2388623T3 (es) | 2002-09-05 | 2012-10-17 | Catherine G. Ambrose | Microesferas de antibiótico para el tratamiento de infecciones y osteomielitis |
AU2003270802A1 (en) | 2002-09-20 | 2004-04-08 | The Children's Hospital Of Philadelphia | Engineering of material surfaces |
EP1549359A2 (en) | 2002-10-08 | 2005-07-06 | Osteotech, Inc. | Coupling agents for orthopedic biomaterials |
AU2003300377B2 (en) | 2002-10-11 | 2009-04-02 | University Of Connecticut | Blends of amorphous and semicrystalline polymers having shape memory properties |
US20040078090A1 (en) * | 2002-10-18 | 2004-04-22 | Francois Binette | Biocompatible scaffolds with tissue fragments |
JP4467059B2 (ja) | 2002-11-12 | 2010-05-26 | カーモン ベン−ジオン | 組織の拡張、再生および固定のための拡張装置と方法 |
JP2006509539A (ja) | 2002-12-12 | 2006-03-23 | オステオテック,インコーポレイテッド | 形成可能かつ硬化可能なポリマー骨複合体およびその生成方法 |
US20050251267A1 (en) * | 2004-05-04 | 2005-11-10 | John Winterbottom | Cell permeable structural implant |
EP1433489A1 (en) | 2002-12-23 | 2004-06-30 | Degradable Solutions AG | Biodegradable porous bone implant with a barrier membrane sealed thereto |
US20040143221A1 (en) | 2002-12-27 | 2004-07-22 | Shadduck John H. | Biomedical implant for sustained agent release |
US20050013793A1 (en) | 2003-01-16 | 2005-01-20 | Beckman Eric J. | Biodegradable polyurethanes and use thereof |
EP1596765A2 (en) | 2003-02-10 | 2005-11-23 | Smith & Nephew, Inc. | Resorbable devices |
US20040156878A1 (en) | 2003-02-11 | 2004-08-12 | Alireza Rezania | Implantable medical device seeded with mammalian cells and methods of treatment |
US20070043376A1 (en) | 2003-02-21 | 2007-02-22 | Osteobiologics, Inc. | Bone and cartilage implant delivery device |
US20040193154A1 (en) | 2003-02-21 | 2004-09-30 | Osteobiologics, Inc. | Bone and cartilage implant delivery device |
US7314480B2 (en) | 2003-02-27 | 2008-01-01 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US20070065652A1 (en) | 2003-03-13 | 2007-03-22 | Willaim Marsh Rice University | Composite injectable and pre-fabricated bone replacement material and method for the production of such bone replacement material |
GB0307011D0 (en) | 2003-03-27 | 2003-04-30 | Regentec Ltd | Porous matrix |
US7012106B2 (en) | 2003-03-28 | 2006-03-14 | Ethicon, Inc. | Reinforced implantable medical devices |
NZ544074A (en) | 2003-06-12 | 2007-10-26 | Synthes Gmbh | Intramedullary surgical pin with transverse hole and insert |
CA2527976C (en) | 2003-06-13 | 2011-11-22 | Mnemoscience Gmbh | Stents |
US6974862B2 (en) | 2003-06-20 | 2005-12-13 | Kensey Nash Corporation | High density fibrous polymers suitable for implant |
US7300439B2 (en) | 2003-06-24 | 2007-11-27 | Depuy Mitek, Inc. | Porous resorbable graft fixation pin |
GB0317192D0 (en) | 2003-07-19 | 2003-08-27 | Smith & Nephew | High strength bioresorbable co-polymers |
US7794476B2 (en) | 2003-08-08 | 2010-09-14 | Warsaw Orthopedic, Inc. | Implants formed of shape memory polymeric material for spinal fixation |
FI120333B (fi) | 2003-08-20 | 2009-09-30 | Bioretec Oy | Huokoinen lääketieteellinen väline ja menetelmä sen valmistamiseksi |
DE10340392A1 (de) | 2003-09-02 | 2005-04-07 | Mnemoscience Gmbh | Amorphe Polyesterurethan-Netzwerke mit Form-Gedächtnis-Eigenschaften |
CA2539751C (en) * | 2003-09-05 | 2016-04-26 | Norian Corporation | Bone cement compositions having fiber-reinforcement and/or increased flowability |
US7648504B2 (en) | 2003-09-09 | 2010-01-19 | Bioretec Ltd | Bioabsorbable band system |
JP4251061B2 (ja) | 2003-10-03 | 2009-04-08 | ブリヂストンスポーツ株式会社 | ゴルフクラブヘッド |
US20050085814A1 (en) * | 2003-10-21 | 2005-04-21 | Sherman Michael C. | Dynamizable orthopedic implants and their use in treating bone defects |
US7699879B2 (en) | 2003-10-21 | 2010-04-20 | Warsaw Orthopedic, Inc. | Apparatus and method for providing dynamizable translations to orthopedic implants |
US7645292B2 (en) | 2003-10-27 | 2010-01-12 | Boston Scientific Scimed, Inc. | Vaso-occlusive devices with in-situ stiffening elements |
US7689260B2 (en) | 2003-11-06 | 2010-03-30 | The Regents Of The University Of Colorado | Shape-memory polymer coated electrodes |
US8157855B2 (en) | 2003-12-05 | 2012-04-17 | Boston Scientific Scimed, Inc. | Detachable segment stent |
US20050136764A1 (en) | 2003-12-18 | 2005-06-23 | Sherman Michael C. | Designed composite degradation for spinal implants |
GB0329654D0 (en) * | 2003-12-23 | 2004-01-28 | Smith & Nephew | Tunable segmented polyacetal |
WO2005069884A2 (en) | 2004-01-16 | 2005-08-04 | Osteobiologics, Inc. | Bone-tendon-bone implant |
US20050177245A1 (en) | 2004-02-05 | 2005-08-11 | Leatherbury Neil C. | Absorbable orthopedic implants |
US7378144B2 (en) | 2004-02-17 | 2008-05-27 | Kensey Nash Corporation | Oriented polymer implantable device and process for making same |
US8882786B2 (en) | 2004-02-17 | 2014-11-11 | Lawrence Livermore National Security, Llc. | System for closure of a physical anomaly |
US7744619B2 (en) | 2004-02-24 | 2010-06-29 | Boston Scientific Scimed, Inc. | Rotatable catheter assembly |
US8729202B2 (en) | 2004-03-03 | 2014-05-20 | Polynovo Biomaterials Pty Limited | Biocompatible polymer compositions for dual or multi staged curing |
CN1942498A (zh) | 2004-03-03 | 2007-04-04 | 联邦科学和工业研究组织 | 用于二阶段或多阶段固化的聚合物组合物 |
CA2555586A1 (en) | 2004-03-09 | 2005-09-22 | Osteobiologics, Inc. | Implant scaffold combined with autologous or allogenic tissue |
CN1263519C (zh) * | 2004-03-17 | 2006-07-12 | 武汉理工大学 | 复合材料人工颅骨的制备和表面改性方法 |
JP5496457B2 (ja) | 2004-03-24 | 2014-05-21 | ポリィノボ バイオマテリアルズ ピーティワイ リミテッド | 生分解性ポリウレタン及びポリウレタン尿素 |
CN100471912C (zh) * | 2004-04-06 | 2009-03-25 | 石宗利 | 一种可控降解吸收性生物活性复合材料及其制备方法 |
US7285130B2 (en) | 2004-04-27 | 2007-10-23 | Boston Scientific Scimed, Inc. | Stent delivery system |
ATE481044T1 (de) | 2004-05-21 | 2010-10-15 | Myers Surgical Solutions Llc | Frakturfixations- und situsstabilisationssystem |
US7824434B2 (en) | 2004-06-07 | 2010-11-02 | Degima Gmbh | Self foreshortening fastener |
US20080249633A1 (en) | 2006-08-22 | 2008-10-09 | Tim Wu | Biodegradable Materials and Methods of Use |
EP1604693A1 (en) | 2004-06-09 | 2005-12-14 | Scil Technology GmbH | In situ forming scaffold, its manufacturing and use |
US7285087B2 (en) | 2004-07-15 | 2007-10-23 | Micardia Corporation | Shape memory devices and methods for reshaping heart anatomy |
CA2574933C (en) | 2004-07-26 | 2015-05-19 | Synthes (U.S.A.) | Biocompatible, biodegradable polyurethane materials with controlled hydrophobic to hydrophilic ratio |
CA2576007A1 (en) | 2004-07-30 | 2006-02-09 | University Of Nebraska | Bioresorbable composites and method of formation thereof |
CN101018512B (zh) * | 2004-08-13 | 2011-05-18 | 马斯特生物外科股份公司 | 具有可生物降解区和不可生物降解区的外科手术假体 |
US20060067971A1 (en) | 2004-09-27 | 2006-03-30 | Story Brooks J | Bone void filler |
US20060120994A1 (en) * | 2004-10-29 | 2006-06-08 | Cotton Nicholas J | Bioabsorbable polymers |
US20080267963A1 (en) * | 2004-11-02 | 2008-10-30 | Biomedical Research Model, Inc. | Methods of Cancer Treatment/Prevention Using Cancer Cell-Specific Surface Antigens |
WO2006055261A2 (en) | 2004-11-05 | 2006-05-26 | Carnegie Mellon University | Degradable polyurethane foams |
FI122108B (fi) | 2004-11-17 | 2011-08-31 | Jvs Polymers Oy | Silloittuva biopolymeeri |
JP2008521560A (ja) | 2004-11-30 | 2008-06-26 | オステオバイオロジクス・インコーポレーテッド | 関節面の欠損を治療するためのインプラント及びそのデリバリーシステム |
US20060121087A1 (en) | 2004-12-06 | 2006-06-08 | Williams Michael S | Polymeric endoprostheses with modified erosion rates and methods of manufacture |
EP1819375A2 (en) | 2004-12-08 | 2007-08-22 | Interpore Spine Ltd. | Continuous phase composite for musculoskeletal repair |
US7772352B2 (en) | 2005-01-28 | 2010-08-10 | Bezwada Biomedical Llc | Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices |
AU2006210847A1 (en) | 2005-02-01 | 2006-08-10 | Osteobiologics, Inc. | Method and device for selective addition of a bioactive agent to a multi-phase implant |
US20060177480A1 (en) | 2005-02-10 | 2006-08-10 | Hsing-Wen Sung | Drug-eluting biodegradable stent |
US20060200150A1 (en) * | 2005-03-01 | 2006-09-07 | Jouko Ilomaki | Bone screw and driver system |
CA2603081C (en) | 2005-04-04 | 2013-09-03 | Sinexus, Inc. | Device and methods for treating paranasal sinus conditions |
FI20055194A (fi) * | 2005-04-27 | 2006-10-28 | Bioretec Oy | Bioabsorboituva ja bioaktiivinen komposiittimateriaali ja menetelmä komposiitin valmistamiseksi |
US7963287B2 (en) | 2005-04-28 | 2011-06-21 | Boston Scientific Scimed, Inc. | Tissue-treatment methods |
CN100400114C (zh) | 2005-04-30 | 2008-07-09 | 中国科学院金属研究所 | 可控降解速率的生物医用植入材料及其应用 |
US7824433B2 (en) | 2005-05-03 | 2010-11-02 | Williams Lytton A | Bone anchored surgical mesh |
WO2006130796A2 (en) | 2005-06-02 | 2006-12-07 | Zimmer Spine, Inc. | Interbody fusion ring and method of using the same |
US20070014831A1 (en) | 2005-07-12 | 2007-01-18 | Hsing-Wen Sung | Biodegradable occlusive device with moisture memory |
FI122342B (fi) | 2005-07-18 | 2011-12-15 | Bioretec Oy | Bioabsorboituva nauhajärjestelmä, bioabsorboituva nauha ja menetelmä bioabsorboituvan nauhan valmistamiseksi. |
CA2619552A1 (en) | 2005-08-18 | 2007-02-22 | Smith & Nephew, Plc | Multimodal high strength devices and composites |
JP2009504929A (ja) | 2005-08-18 | 2009-02-05 | スミス アンド ネフュー ピーエルシー | 高強度デバイス及び複合材料 |
US20070048383A1 (en) | 2005-08-25 | 2007-03-01 | Helmus Michael N | Self-assembled endovascular structures |
GB0517499D0 (en) | 2005-08-26 | 2005-10-05 | West Hertfordshire Hospitals N | Surgical scaffold |
US20070050018A1 (en) | 2005-09-01 | 2007-03-01 | John Wainwright | Biodegradable stents |
US20070067043A1 (en) | 2005-09-19 | 2007-03-22 | Dericks Gerard H | "Cement and bone graft absorbable & implantable detachable sac," a delivery system |
JP4499013B2 (ja) * | 2005-09-30 | 2010-07-07 | トヨタ紡織株式会社 | 木質系繊維成形体の製造方法 |
US20070100449A1 (en) | 2005-10-31 | 2007-05-03 | O'neil Michael | Injectable soft tissue fixation technique |
US7858078B2 (en) | 2005-12-06 | 2010-12-28 | Tyco Healthcare Group Lp | Bioabsorbable surgical composition |
EP1957695B1 (en) | 2005-12-07 | 2011-02-09 | Ramot at Tel-Aviv University Ltd. | Drug-delivering composite structures |
BRPI0620047A2 (pt) | 2005-12-21 | 2011-11-01 | Synthes Gmbh | conjunto de placa óssea |
EP1976460A4 (en) | 2006-01-19 | 2012-06-20 | Warsaw Orthopedic Inc | INJECTABLE AND FORMABLE BONE REPLACEMENT MATERIALS |
AU2007212501B2 (en) | 2006-02-07 | 2011-03-31 | Tepha, Inc. | Polymeric, degradable drug-eluting stents and coatings |
JP5538881B2 (ja) * | 2006-04-25 | 2014-07-02 | テレフレックス・メディカル・インコーポレイテッド | リン酸カルシウムポリマー複合材料および方法 |
US20070260324A1 (en) | 2006-05-05 | 2007-11-08 | Joshi Ashok V | Fully or Partially Bioresorbable Orthopedic Implant |
FI119177B (fi) | 2006-05-05 | 2008-08-29 | Bioretec Oy | Bioabsorboituva, muotoutuva fiksaatiomateriaali ja -implantti |
JP2007302718A (ja) * | 2006-05-08 | 2007-11-22 | Osaka Univ | 繊維強化複合材料 |
US8221468B2 (en) | 2006-05-11 | 2012-07-17 | Gaines Jr Robert W | Use of bioabsorbable materials for anterior extradiscal correction of thoracolumbar pathologies |
US7914806B2 (en) | 2006-06-01 | 2011-03-29 | Boston Scientific Scimed, Inc. | Medical devices having improved performance |
FI20065385L (fi) | 2006-06-06 | 2007-12-27 | Bioretec Oy | Luunkiinnitysväline |
US20090171064A1 (en) | 2006-06-28 | 2009-07-02 | Gunze Limited | Bio-degradable/ absorbable polymer having reduced metal catalyst content, and process for production thereof |
FI124017B (fi) | 2006-06-30 | 2014-01-31 | Stick Tech Oy | Kovettavat kuitulujitetut komposiitit ja menetelmä aplikaatio-orientuneiden kuitulujitettujen komposiittien valmistamiseksi |
US20080015578A1 (en) | 2006-07-12 | 2008-01-17 | Dave Erickson | Orthopedic implants comprising bioabsorbable metal |
WO2008039476A1 (en) | 2006-09-27 | 2008-04-03 | Osman Said G | Biologic intramedullary fixation device and methods of use |
US8828419B2 (en) | 2006-10-06 | 2014-09-09 | Cordis Corporation | Bioabsorbable device having encapsulated additives for accelerating degradation |
US8394488B2 (en) | 2006-10-06 | 2013-03-12 | Cordis Corporation | Bioabsorbable device having composite structure for accelerating degradation |
US7771476B2 (en) | 2006-12-21 | 2010-08-10 | Warsaw Orthopedic Inc. | Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion |
US8480718B2 (en) | 2006-12-21 | 2013-07-09 | Warsaw Orthopedic, Inc. | Curable orthopedic implant devices configured to be hardened after placement in vivo |
US8870871B2 (en) | 2007-01-17 | 2014-10-28 | University Of Massachusetts Lowell | Biodegradable bone plates and bonding systems |
US20080206297A1 (en) | 2007-02-28 | 2008-08-28 | Roeder Ryan K | Porous composite biomaterials and related methods |
US20080234762A1 (en) | 2007-03-06 | 2008-09-25 | Zimmer Technology, Inc. | Self-tapping screw with resorbable tip |
CA2681940A1 (en) | 2007-03-27 | 2008-10-02 | University Of Southern California | Device which enhances the biological activity of locally applied growth factors with particular emphasis on those used for bone repair |
AU2008242737B2 (en) | 2007-04-19 | 2013-09-26 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
ZA200905442B (en) | 2007-04-27 | 2010-10-27 | Synthes Gmbh | Implant devices constructed with metallic and polymeric components |
EP2195361B1 (en) | 2007-10-03 | 2014-11-26 | Polynovo Biomaterials Limited | High modulus polyurethane and polyurethane/urea compositions |
US8323322B2 (en) | 2007-10-05 | 2012-12-04 | Zimmer Spine, Inc. | Medical implant formed from porous metal and method |
FI124190B (fi) | 2007-12-05 | 2014-04-30 | Bioretec Oy | Lääketieteellinen väline ja sen valmistus |
US8507614B2 (en) | 2008-02-07 | 2013-08-13 | Poly-Med, Inc. | Multiphasic absorbable compositions of segmented l-lactide copolymers |
-
2007
- 2007-11-30 WO PCT/US2007/086067 patent/WO2008067531A2/en active Application Filing
- 2007-11-30 JP JP2009539508A patent/JP2010511751A/ja active Pending
- 2007-11-30 CA CA2679365A patent/CA2679365C/en not_active Expired - Fee Related
- 2007-11-30 AU AU2007325001A patent/AU2007325001B2/en not_active Ceased
- 2007-11-30 AT AT07864978T patent/ATE493081T1/de not_active IP Right Cessation
- 2007-11-30 CN CN201110118592.3A patent/CN102274552B/zh not_active Expired - Fee Related
- 2007-11-30 CN CN2007800438419A patent/CN101594831B/zh not_active Expired - Fee Related
- 2007-11-30 ES ES07864978T patent/ES2361360T3/es active Active
- 2007-11-30 DE DE602007011671T patent/DE602007011671D1/de active Active
- 2007-11-30 EP EP07864978A patent/EP2120745B1/en not_active Not-in-force
- 2007-11-30 US US12/516,573 patent/US8722783B2/en not_active Expired - Fee Related
-
2014
- 2014-04-25 US US14/262,018 patent/US20140235754A1/en not_active Abandoned
- 2014-07-02 AU AU2014203617A patent/AU2014203617A1/en not_active Abandoned
- 2014-10-02 JP JP2014203910A patent/JP2015006514A/ja not_active Ceased
-
2017
- 2017-07-18 JP JP2017139051A patent/JP2017190462A/ja not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
DE602007011671D1 (de) | 2011-02-10 |
EP2120745B1 (en) | 2010-12-29 |
JP2010511751A (ja) | 2010-04-15 |
CN102274552A (zh) | 2011-12-14 |
AU2007325001B2 (en) | 2014-04-10 |
JP2015006514A (ja) | 2015-01-15 |
US20140235754A1 (en) | 2014-08-21 |
US8722783B2 (en) | 2014-05-13 |
ATE493081T1 (de) | 2011-01-15 |
EP2120745A2 (en) | 2009-11-25 |
AU2014203617A1 (en) | 2014-07-17 |
CN101594831A (zh) | 2009-12-02 |
WO2008067531A2 (en) | 2008-06-05 |
CA2679365A1 (en) | 2008-06-05 |
WO2008067531A3 (en) | 2008-10-02 |
JP2017190462A (ja) | 2017-10-19 |
AU2007325001A1 (en) | 2008-06-05 |
CA2679365C (en) | 2016-05-03 |
CN101594831B (zh) | 2011-09-14 |
US20100137491A1 (en) | 2010-06-03 |
CN102274552B (zh) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2361360T3 (es) | Material compuesto reforzado con fibra. | |
KR101742017B1 (ko) | 재흡수성이고 생체적합성인 섬유 유리 조성물과 이를 사용하는 방법 | |
ES2379676T3 (es) | Material compuesto biocompatible y su uso | |
Tan et al. | Biodegradable materials for bone repairs: a review | |
Cheung et al. | Biodegradation of a silkworm silk/PLA composite | |
Andriano et al. | Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices | |
CA1340354C (en) | Periodontium-regenerative materials | |
KR20170051409A (ko) | 이방성 생체복합재료 물질, 이를 포함하는 의학적 이식물 및 이의 치료방법 | |
ES2822000T3 (es) | Composiciones biocerámicas reabsorbibles de poli-4-hidroxibutirato y copolímeros | |
ES2198729T3 (es) | Nuevo material compuesto basado en plastico y su uso. | |
Rödel et al. | Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement | |
Demina et al. | Biodegradable nanostructured composites for surgery and regenerative medicine | |
ES2329329B1 (es) | Pasta termoplastica para la reparacion tejidos vivos. | |
Kharazi et al. | Partially resorbable composite bone plate with controlled degradation rate, desired mechanical properties and bioactivity | |
WO2000018443A1 (en) | Melt-mouldable composites | |
ES2317195T3 (es) | Sustrato implantable bioabsorbible. | |
Parsons et al. | Mechanical and degradation properties of phosphate based glass fibre/PLA composites with different fibre treatment regimes | |
Khan et al. | Fabrication and in vitro evaluation of polyvinyl alcohol/bio-glass composite for potential wound healing applications. | |
US9078954B2 (en) | Multifunctional filler granule | |
JP3141088B2 (ja) | 生体内分解吸収性の外科用材料の製造法 | |
Felfel | Manufacture and characterisation of bioresorbable fibre reinforced composite rods and screws for bone fracture fixation applications | |
Steckel | Physio-mechanical properties of absorbable composites: CSM short fiber reinforced PDS and PGA | |
GUILLÉN et al. | JULIO SAN ROMÁN |