US6071982A - Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same - Google Patents
Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same Download PDFInfo
- Publication number
- US6071982A US6071982A US08/844,378 US84437897A US6071982A US 6071982 A US6071982 A US 6071982A US 84437897 A US84437897 A US 84437897A US 6071982 A US6071982 A US 6071982A
- Authority
- US
- United States
- Prior art keywords
- bioerodible
- bone cement
- cement system
- polymer
- bone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 37
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 35
- 239000002639 bone cement Substances 0.000 title claims description 56
- 238000000034 method Methods 0.000 title description 10
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims abstract description 71
- 229920013641 bioerodible polymer Polymers 0.000 claims abstract description 67
- 229920001299 polypropylene fumarate Polymers 0.000 claims abstract description 67
- -1 polypropylene fumarate Polymers 0.000 claims abstract description 62
- 230000002378 acidificating effect Effects 0.000 claims abstract description 24
- 230000003139 buffering effect Effects 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 24
- 239000000178 monomer Substances 0.000 claims abstract description 21
- 239000000872 buffer Substances 0.000 claims abstract description 16
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 12
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 12
- 230000015556 catabolic process Effects 0.000 claims abstract description 11
- 238000006731 degradation reaction Methods 0.000 claims abstract description 11
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 9
- 230000002787 reinforcement Effects 0.000 claims abstract description 9
- 210000000988 bone and bone Anatomy 0.000 claims description 38
- 239000004568 cement Substances 0.000 claims description 35
- 238000004132 cross linking Methods 0.000 claims description 32
- 239000013543 active substance Substances 0.000 claims description 30
- 229920000642 polymer Polymers 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 28
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 24
- 239000003999 initiator Substances 0.000 claims description 21
- 239000003814 drug Substances 0.000 claims description 20
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 14
- 239000003431 cross linking reagent Substances 0.000 claims description 14
- 239000001639 calcium acetate Substances 0.000 claims description 12
- 235000011092 calcium acetate Nutrition 0.000 claims description 12
- 229960005147 calcium acetate Drugs 0.000 claims description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 12
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 claims description 11
- 230000008439 repair process Effects 0.000 claims description 11
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 9
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 8
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 8
- 230000000278 osteoconductive effect Effects 0.000 claims description 8
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 7
- 239000001506 calcium phosphate Substances 0.000 claims description 7
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 7
- 235000011010 calcium phosphates Nutrition 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 239000003242 anti bacterial agent Substances 0.000 claims description 5
- 229940088710 antibiotic agent Drugs 0.000 claims description 5
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 claims description 5
- 239000001354 calcium citrate Substances 0.000 claims description 5
- PBUBJNYXWIDFMU-UHFFFAOYSA-L calcium;butanedioate Chemical compound [Ca+2].[O-]C(=O)CCC([O-])=O PBUBJNYXWIDFMU-UHFFFAOYSA-L 0.000 claims description 5
- 235000013337 tricalcium citrate Nutrition 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 229920002732 Polyanhydride Polymers 0.000 claims description 4
- 229920001710 Polyorthoester Polymers 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920001610 polycaprolactone Polymers 0.000 claims description 4
- 239000000622 polydioxanone Substances 0.000 claims description 4
- 102000004169 proteins and genes Human genes 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 claims description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 229920000768 polyamine Polymers 0.000 claims description 3
- 239000011253 protective coating Substances 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims 7
- 235000010216 calcium carbonate Nutrition 0.000 claims 4
- 239000000463 material Substances 0.000 description 24
- 239000000047 product Substances 0.000 description 19
- 206010017076 Fracture Diseases 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000945 filler Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 230000007062 hydrolysis Effects 0.000 description 12
- 238000006460 hydrolysis reaction Methods 0.000 description 12
- 238000004108 freeze drying Methods 0.000 description 11
- 238000009472 formulation Methods 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 8
- 239000006260 foam Substances 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 208000010392 Bone Fractures Diseases 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 6
- DFPOZTRSOAQFIK-UHFFFAOYSA-N S,S-dimethyl-beta-propiothetin Chemical compound C[S+](C)CCC([O-])=O DFPOZTRSOAQFIK-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 5
- 235000019483 Peanut oil Nutrition 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 239000000312 peanut oil Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 239000004342 Benzoyl peroxide Substances 0.000 description 4
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 description 4
- 239000004227 calcium gluconate Substances 0.000 description 4
- 229960004494 calcium gluconate Drugs 0.000 description 4
- 235000013927 calcium gluconate Nutrition 0.000 description 4
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 210000000689 upper leg Anatomy 0.000 description 4
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 210000002449 bone cell Anatomy 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 3
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 3
- 230000002138 osteoinductive effect Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000004626 polylactic acid Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 2
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 206010000269 abscess Diseases 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 230000008468 bone growth Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 210000000623 ulna Anatomy 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 208000027502 Ankle fracture Diseases 0.000 description 1
- 206010064210 Bone fissure Diseases 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010016970 Foot fracture Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241001227561 Valgus Species 0.000 description 1
- 206010054880 Vascular insufficiency Diseases 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- QJPJGXPGVSAZNX-UHFFFAOYSA-N benzoyl benzenecarboperoxoate;1-ethenylpyrrolidin-2-one Chemical compound C=CN1CCCC1=O.C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 QJPJGXPGVSAZNX-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000010072 bone remodeling Effects 0.000 description 1
- 239000000316 bone substitute Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229960004256 calcium citrate Drugs 0.000 description 1
- 229960001714 calcium phosphate Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000009519 contusion Effects 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000002436 femur neck Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002082 fibula Anatomy 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010944 pre-mature reactiony Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000002320 radius Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 210000004233 talus Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 208000023577 vascular insufficiency disease Diseases 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/866—Material or manufacture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/26—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8802—Equipment for handling bone cement or other fluid fillers
- A61B17/8833—Osteosynthesis tools specially adapted for handling bone cement or fluid fillers; Means for supplying bone cement or fluid fillers to introducing tools, e.g. cartridge handling means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2817—Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30677—Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/903—Interpenetrating network
Definitions
- the invention relates to implantible biomaterials, in particular to bioerodible polymers and more specifically to bioerodible polymers suitable for use in forming internal fixation devices (IFDs) such as bone supports, plates, and pins, and/or bone cements for bone repair.
- IFDs internal fixation devices
- the metal plate typically made of a titanium-based metal, a stainless-steel, or a cobalt-chromium metal, is attached to the bone by bone screws. It should be noted that although the immobilization device is referred to as a plate, its size and shape is dictated by the application in which it is to be used.
- plate induced osteopenia or loss of bone mass.
- the reasons for this loss of bone mass are not fully understood but appear to be related both to changes in bone stress and changes in bone blood flow. Such bone remodeling in children may lead to growth restriction, especially when plates are used in craniofacial or maxillofacial intervention to repair congenital deformities.
- bioerodible polymer i.e., one that will dissolve and be absorbed by the body as the underlying bone heals.
- a bioerodible plate With such a bioerodible plate, the necessity of a second surgical operation and its concomitant trauma is removed and the deleterious effects caused by the presence of a plate for a long period of time.
- these devices do not corrode and the modulus of the material may be more closely matched to that of bone.
- Two polymers that have been used to form bioerodible surgical plates are polylactic acid (PLA) and copolymers of lactic and glycolic acids (PLGA).
- the mechanism for bioeroding polymers of lactic acid and copolymers of lactic and glycolic acids is not completely understood.
- the polymers are probably hydrolyzed in situ to their respective monomers and the resulting monomers are excreted from the body in the urine or expired from the body as carbon dioxide without ill effect.
- the body's tolerance of these monomers probably results from the fact that lactic acid and glycolic acid are present as natural substances within tissue.
- a related matter of interest in bone repair involves ensuring that the fractured bone ends are properly stabilized when set, and maintaining this stabilization during healing.
- a bioerodible bone cement could be used to bridge the area of excised bone fragments and thus aid in healing.
- a bioerodible bone cement could additionally be used in conjunction with bone repair proteins (BRPs) to actively promote bone growth, i.e., the bone cement functions as an osteoinductive material.
- BRPs bone repair proteins
- the rate of infection following total joint replacement surgery may be as high as 11%, it would also desirable to incorporate various antibiotics into the bone cement for slow release at the surgical site to minimize infection.
- such a bone cement or "grout" should be moldable in the surgical setting, set to form a strong solid, stabilize at the implant site, and support and aid the bone healing process.
- a bioresorbable and/or osteoconductive bone cement could be used by injecting the cement into the fracture site under fluoroscopic control. This technique would help prevent complications such as repeated displacement, instability and malunion.
- the use of the cement may also warrant conservative treatment in patients with relative indications for operative management. These patients include older patients in whom long leg casting will be difficult to be mobile in, irreducible fractures, or one which has slipped in a cast, obese legs which limit the capability of casts to maintain reduction, and chronic alcohol abusers.
- patients with relative contraindications to operative treatment such as vascular insufficiency, diabetes mellitus, soft tissue blisters, abrasions, contusions or burns, could be successfully managed in a conservative fashion thus eliminating peri- and postoperative risk factors.
- patients with severe osteoporosis may benefit from the use of this osteoconductive bone cement as an adjunct to conservative treatment.
- a bioresorbable and osteoconductive cement may be applicable for the treatment of undisplaced or minimally displaced lateral tibial plateau fractures that would normally warrant conservative treatment (depression ⁇ 1 cm and valgus instability ⁇ 10 degrees).
- polymeric bioerodible materials which may be used in making bone cements which desirably have a wide range of precure viscosities (to allow injection of the cement to a bone site) and which also desirably incorporate biologically active agents.
- bioerodible bone cements containing biologically active agents for release must be able to protect the agents from damage during curing, and provide buffering capacity to obviate possible inflammatory foreign body response generated by bioerosion of the cement.
- polymeric bioerodible materials may also be used to make IFDs having dimensional stability during the critical bone setting and healing period.
- bioerodible polymeric semi-interpenetrating network (“semi-IPN”) alloys which comprise a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; a second bioerodible polymer, which, preferably via crosslinking, provides a biopolymeric scaffolding or internal reinforcement; and optionally a buffering compound that buffers the acidic products within a desired pH range.
- the second bioerodible polymer comprises polypropylene fumarate (PPF) which is cross-linked, desirably by a vinyl monomer such as vinyl pyrrolidone (VP) to form the biopolymeric scaffolding which provides the semi-IPN with the requisite dimensional and geometric stability.
- PPF polypropylene fumarate
- VP vinyl monomer
- a beneficial end use of this material is in the form of internal fixation devices (IFDs) such as bone supports, plates, and pins, and/or bone cements for bone repair which are formed from the semi-IPN alloy disclosed herein.
- Another aspect of the invention comprises a bone cement containing a bioerodible polymeric semi-IPN alloy comprising a first bioerodible polymer (such as PLGA) capable of producing acidic products upon hydrolytic degradation; and a second bioerodible polymer (such as PPF), which provides a biopolymeric scaffolding or internal reinforcement, wherein the second bioerodible polymer is polymerized in vivo to provide a hardened, semi-IPN alloy bone cement.
- a bioerodible polymeric semi-IPN alloy comprising a first bioerodible polymer (such as PLGA) capable of producing acidic products upon hydrolytic degradation; and a second bioerodible polymer (such as PPF), which provides a biopolymeric scaffolding or internal reinforcement, wherein the second bioerodible polymer is polymerized in vivo to provide a hardened, semi-IPN alloy bone cement.
- Both the bone cement and dimensionally and geometrically stable IFDs of the disclosure of the invention may advantageously also contain other agents
- FIGS. 1a and 1b are scanning electron micrographs (at 6250 ⁇ ) of a bone cement alloy according to the disclosure containing crosslinked PPF scaffolding and PLGA/calcium gluconate after one and two weeks exposure to water.
- FIG. 3 is a graph of weight fraction of vinyl pyrrolidone incorporated into crosslinked poly(propylene fumarate) as a function of PPF/VP weight ratio. (Example 2.)
- the bioerodible bone cements and internal fixation devices (IFD) made from the bioerodible polymeric semi-IPN alloy material disclosed herein may be advantageously used for surgical repair of orthopaedic and maxillofacial fractures.
- the bioerodible material is a polymeric semi-IPN alloy which comprises at least a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; and a second bioerodible polymer, which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement.
- An semi-interpenetrating polymer network is defined herein as an internecine combination of two or more polymers, at least one of which is crosslinked (sometimes in the immediate presence of the other) to form a network ("scaffolding" in the present disclosure) in which the other polymer is enclosed, trapped or retained.
- bioerodible is defined as the susceptibility of a biomaterial to degradation over time, usually months.
- Buffer is defined as any material which limits changes in the pH in the implant or cement and its near environment only slightly upon exposure to acid or base.
- acidic product is defined herein as any product that has a pH less than 7.
- the semi-IPN alloy of the invention includes a first bioerodible polymer that undergoes hydrolysis to produce acidic products when exposed to an aqueous medium.
- bioerodible polymers include poly(lactide-co-glycolide) (H[--OCHR--CO--] n OH, where R is H or CH 3 ) ("PLGA"); polydioxanone, poly( ⁇ -caprolactone); polyanhydrides; poly(ortho esters); copoly(ether-esters); polyamides; polylactones; polypropylene fumarates (H[--O--CH(CH 3 )--CH 2 --O--CO--CH ⁇ CH--CO--] n OH); and combinations thereof.
- the polymer poly(lactide-co-glycolide) H[--OCHR--CO] n OH, R ⁇ H, CH 3 (PLGA) is used.
- the PLGA polymers used according to the invention have a lactide to glycolide ratio in the range of 0:100% to 100:0%, inclusive, i.e., the PLGA polymer can consist of 100% lactide, 100% glycolide, or any combination of lactide and glycolide residues. These polymers have the property of degrading hydrolytically to form lactic and glycolic acids.
- Selection of a suitable first bioerodible polymer is based primarily on the known properties of the polymer such as polymer strength, rate of hydrolytic degradation, etc.
- properties of the polymer such as polymer strength, rate of hydrolytic degradation, etc.
- One of ordinary skill in the art may take these and/or other properties into account in selecting a particular polymer for a particular application. Thus, such a selection of a particular polymer is within the skills of the ordinary skilled practitioner.
- the second bioerodible polymer of the disclosed semi-IPN alloy may be of a type that undergoes hydrolysis to produce acidic products when exposed to an aqueous medium, such as polydioxanone, poly( ⁇ -caprolactone); polyanhydrides; poly(ortho esters); copoly(ether-esters); polyamides; polylactones; polypropylene fumarates; and combinations thereof.
- the second bioerodible polymer preferably upon crosslinking, additionally provides the biopolymeric scaffolding or internal reinforcement which gives the bioerodible polymeric semi-IPN alloy its superior mechanical properties.
- the second polymer is desirably different from the first.
- This scaffolding is desirably obtained by crosslinking the second bioerodible polymer.
- Crosslinking may take place, e.g., in a bone cement shortly before or after the cement ingredients have been introduced to the bone fissure or junction.
- crosslinking may be effected: a) with the first and second bioerodible polymers in cosolution via chemical crosslinking or by irradiation (e.g., ⁇ -irradiation); b) by melt mixing the first and second bioerodible polymers, then irradiating to crosslink the second bioerodible polymer; or c) by forming the biopolymeric scaffolding first via chemical crosslinking or by irradiation, then impregnating the scaffolding with the first bioerodible polymer.
- irradiation e.g., ⁇ -irradiation
- the second bioerodible polymer comprises polypropylene fumarate, which may be desirably crosslinked using vinyl monomers such as vinyl pyrrolidone (VP).
- vinyl monomers such as vinyl pyrrolidone (VP).
- VP crosslinking of PPF is that the crosslinks terminate at hydrolytically labile fumarate ester bonds, making the crosslinked network hydrolytically degradable.
- the hydrolysis products are highly soluble and hence the scaffolding (and thus the entire alloy) is truly resorbable.
- the crosslinking reaction should preferably seek to minimize homopolymer formation.
- Other crosslinking monomers such as methyl methacrylate (MMA) may also be used as long as bioerodibility is not compromised.
- a high PPF:VP ratio favors crosslinking; because the crosslinking reaction is carried out in solution, low concentrations of VP may be used.
- the degree of crosslinking necessary to form the scaffolding will depend on the particular application, i.e., the relative hardness or rigidity desired, but generally crosslinking of about 5% to 50% of the available crosslinking sites is acceptable, more particularly 5% to 30%.
- the bioerodible material of the invention may include a buffering compound which may be a base or base-containing material capable of reacting with the acidic products generated upon hydrolysis of the bioerodible polymer. Since the bioerodible polymers undergo hydrolysis in the body and generate acidic products that cause irritation, inflammation, and swelling (sterile abscess formation) in the treated area, the inclusion of buffer in the bioerodible material counteracts this effect by neutralizing the acidic degradation products and thereby reducing the sterile abscess reaction.
- the buffer included in the bioerodible material of the invention maintains the pH surrounding the area of surgery to approximately neutrality (i.e., pH 7), or any other pH chosen by the surgeon. Preferably, the pH is maintained in the range of 6-8, and more preferably in the range of 6.8-7.4.
- Exemplary buffering materials include inorganic acid salts, organic acid salts, or polymeric organic acid salts.
- the calcium salts of weak acids are used, such as calcium carbonate, although calcium phosphate, calcium acetate, calcium citrate, calcium succinate, and calcium gluconate may also be used.
- Polymeric buffers may also be used as buffering compounds according to the invention. Suitable polymeric buffers preferably include basic groups which neutralize the acidic products generated upon hydrolysis of the bioerodible polymer.
- Such polymeric buffers include hydrolytically stable polymers, such as polyamines, poly(N-vinyl carbazole), poly(N-vinyl pyrrolidone), poly(acrylic acid), poly(acrylamide), or a copolymer based on acrylic acid.
- buffering compounds useful in the materials and methods of the invention are compounds which, on exposure to water, hydrolyze to form a base as one reaction product.
- the generated base is free to neutralize the acidic products produced upon hydrolysis of the bioerodible polymer.
- Compounds of this type include aryl or alkyl carbamic acids and imines.
- the base-generating compounds used according to the invention offer the advantage that the rate of hydrolysis of the base generator may be selected to correlate to the rate of hydrolysis of the bioerodible polymer.
- soluble buffering materials such as those disclosed herein (such as a combination of citric acid and sodium bicarbonate; calcium acetate, and calcium gluconate) also have an important second function in vivo. Upon exposure to aqueous media such as tissue fluids these compounds dissolve almost immediately, leaving pores in the material, whether it be a cement or IFD. (In the case of the citric acid and sodium bicarbonate combination, upon exposure to water in vivo form CO 2 and water, leaving holes in place of the solid chemical.) These pores facilitate bone cell migration into the device or cement, and thus serve as osteoconductive pathways for bone healing. Pore size may be controlled by controlling the size of the soluble material introduced to the alloy, i.e., by grinding and sieving the filler to select the appropriate particle size range.
- FIGS. 1A and 1B are SEM (Amray AMR-1000 SEM at 6250 ⁇ ) of a bone cement alloy containing crosslinked PPF scaffolding and PLGA/calcium gluconate after one and two weeks exposure to water.
- the alloy was subjected to conditions similar to placement in vivo, over a period of weeks.
- the development of pores in the alloy, where none were detectable at the start of the experiment, is seen.
- the holes measure about 3-6 microns on average, but larger holes of 10-15 microns were also seen.
- fillers may be included in the alloy (preferably protected by the first bioerodible polymer, as disclosed herein) as alternatives to fillers like calcium carbonate and hydroxyapatite, such as ground, demineralized bone and/or unprocessed cadaver allogenic bone.
- the buffering compound preferably has an acid dissociation constant (K a ) that is smaller than the acid dissociation constant of the acidic products generated upon hydrolysis of the bioerodible polymer.
- the buffering compound preferably has a hydrolysis constant that is greater than the hydrolysis constant of the acidic products.
- the buffering compound preferably is only partially soluble in an aqueous medium. In general, buffers of lower solubility are preferred because buffer loss from the polymer by diffusion will be minimized. Details of determining appropriate buffers, methods and amounts of addition, etc., are disclosed in further detail in pending U.S. patent application Ser. No. 08/626,521, the disclosure of which is incorporated herein by reference.
- the semi-IPN alloy of the invention has mechanical properties comparable to human bone, as set forth in Table 1.
- first and second bioerodible polymers are dissolved in solvent and mixed to homogeneity, after which the second bioerodible polymer is treated to create the biopolymeric scaffolding, e.g., by crosslinking.
- the resulting mixture is cast into a desired form, e.g., a sheet, film, plate, screw, etc., and the solvent is evaporated to produce a (buffered) bioerodible implantable material in film form.
- the product may be further processed, for example, compacted under pressure, extruded through a die, injection molded, or shaped into a form useful for bone repair.
- Techniques such as compression molding may be used to form end-use configurations such as screws, plates, etc.; or stock from which IFDs may be machined.
- a constant pressure hydraulic press such as the Compac Model MPC-40 may be used for molding.
- the alloy may be prepared similar to methods disclosed in U.S. Pat. No. 5,456,917 to Wise et al., the text of which is incorporated by reference herein, wherein a bioerodible polymer foam scaffolding is prepared by lyophilization of solutions of the polymer in a suitable solvent, such as glacial acetic acid or benzene. A solution containing the first bioerodible polymer and other ingredients such as active agents, buffers, etc. are then forced into the void volume of the scaffolding by cycles of evacuation (degassing) and repressurization.
- a bioerodible polymer foam scaffolding is prepared by lyophilization of solutions of the polymer in a suitable solvent, such as glacial acetic acid or benzene.
- a solution containing the first bioerodible polymer and other ingredients such as active agents, buffers, etc. are then forced into the void volume of the scaffolding by cycles of evacuation (degassing) and repressurization.
- Solvents for the first bioerodible polymer and active agent include water and other solvents which do not dissolve the first bioerodible polymer or change its structure or morphology, such as the lower alcohols. The solvent is then removed by a second lyophilization, and the resulting alloy may be further processed.
- the invention also relates to bioerodible bone cements for both orthopaedic repair and for controlled release of a biologically active agent in, if necessary, a protecting polymeric envelope.
- the bone cement and method of making it encompasses a range of cement materials, the properties of which depend upon the concentration of components to enable preparation of cements of initial (precure) low viscosities which can be delivered by injection to its intended site or cements of higher viscosity which may be molded, e.g., as a putty, to fractures or surgical sites of complex topography.
- the first bioerodible polymer may be loaded with an active agent to provide a controlled release of the active agent as the alloy is resorbed. Control of the release rate is achieved by incorporating the active agent in a protecting envelope of the first bioerodible polymer. In addition, further control of the release rate is achieved by incorporating non reactive fillers of varying solubility (such as hydroxyapatite) into the alloy. Any type of active agent may be incorporated into the first bioerodible polymer, including without limitation drugs, hormones, antibiotics, cells etc.
- the bone cement of the invention comprises the first and second bioerodible polymers as set forth herein.
- Other desirable components of the cement include biologically active or therapeutic agent(s), cross linking agent (such as a vinyl monomer); an initiator for the cross linking reaction between the second bioerodible polymer and the crosslinking agent; and accelerator(s) and inhibitor(s) to control the cure kinetics.
- Further components of the material of the invention include biologically inert solid fillers, liquid (aqueous or non-aqueous) diluents for viscosity control and for solubilization of components, and wetting agents (surface active agents or detergents) to facilitate mixing of components and contact of the mixed components with tissue.
- the cement may be advantageously prepared as a two or three part formulation, in which the initiator and accelerator, or initiator and components for forming the scaffolding, e.g., second bioerodible polymer and crosslinker, are kept separate until the parts are combined.
- the combined parts are allowed to cure in situ (at the surgical or fracture site) to aid in maintaining fracture reduction or to fill defects or other openings in bone following surgery. Keeping the system parts separate prior to use ensures against premature reaction, to increase pre-use stability and shelf life.
- the second bioerodible polymer is PPF, which is crosslinked polymerization between PPF and a vinyl monomer such as vinyl pyrrolidone or methyl methacrylate.
- the vinyl polymerization employs an initiator such as benzoyl peroxide; other initiators may be used.
- Accelerators such as N,N-dimethyl-p-toluidine (DMPT) and inhibitors such as hydroquinone (HQ) or t-butylhydroquinone (TBHQ) may also be included to control cure reaction kinetics.
- Other components such as detergents and water may be included as processing aids to adjust viscosity and to improve workability of the cement.
- composition of the cement may be varied according to requirements of cure time, viscosity, loading of biologically active or therapeutic agent(s), and degradation rates.
- This two part formulation 1) separates the polymerizable components from the initiator; and 2) separates the protected biologically active or therapeutic agent(s) from the liquid components, which prevents premature release of the biologically active or therapeutic agent(s) from the first bioerodible polymer.
- An advantage of the three part formulation is that it separates the biologically active or therapeutic agent(s) from the initiator, which is the least thermally stable component of the cement.
- the first bioerodible polymer functions as a protective coating to prevent the biologically active or therapeutic agent(s) from reacting with the components of the cement.
- the first bioerodible polymer functions as a protective coating to prevent the biologically active or therapeutic agent(s) from reacting with the components of the cement.
- the first bioerodible polymer also functions to moderate the release of the biologically active or therapeutic agent(s).
- VP (1-vinyl-2-pyrrolidone, Aldrich lot 07401BQ) contained 1% inhibitor of NaOH. Separation of NaOH from the VP was accomplished by a vacuum distillation of the VP/NaOH solution. The distilled VP was collected by condensing VP vapor with cold water, while the NaOH was left in the distillation flask.
- Impregnation of X-PPF Foam Scaffolding with PLGA: PLGA-85:15 was introduced by immersing the foam in a solution of PLGA in GlHAc, evacuating to remove air from the foam and repressurizing to force the PLGA solution into the foam scaffolding. A second lyophilization was used to remove the GlHAc, leaving the PLGA in the scaffolding. The ratio of PLGA deposited to the foam was 52.4 w/w %.
- IFDs may be formed from the material as disclosed herein.
- High viscosity cements or putties according to the disclosure using VP crosslinker were prepared as a two part formulation of variable composition, as shown in Table 4, which presents the weights of the components and the weight fractions of the PPF, calcium phosphate and VP.
- the ratio of VP incorporated into the crosslinks varied linearly with the PPF/VP ratio. These results are summarized in Table 5 and presented graphically in FIGS. 2 and 3. The significance of these results can be appreciated if we define two quantities.
- dcl)(lcl) (mole of VP/mole of PPF).
- control of the product (dcl)(lcl) can be exercised.
- Varying the PPF/monomer ratio will also vary the viscosity of the cement if the crosslinking monomer is the only liquid component.
- the viscosity may be controlled independently as described by various diluents which may be liquid to reduce viscosity or solid fillers, such as tribasic calcium phosphate (hydroxyapatite), to increase viscosity.
- a low viscosity injectable cement may be formulated using VP both for cross linking PPF, and to control the initial viscosity.
- the cement can also be reformulated by substituting one of several acceptable solvents for part of the VP.
- this change is in Part B, which contains no monomer (VP).
- Acceptable solvents include propylene glycol, poly(ethylene glycol), and peanut oil. Cure rate and hardness are not compromised by this substitution. The advantages of this substitution are threefold. First, VP is miscible with these solvents as well as with water. By creating a more lipophilic environment the rate at which VP diffuses from the injection site is diminished, thus allowing a greater portion to be incorporated into the scaffolding. Minimizing diffusion into surrounding tissue is expected to diminish inflammatory response.
- a second advantage is that being more dilute, the probability of crosslinking with PPF is increased and that of homopolymer formation is reduced.
- a third advantage is increased stability.
- the initiator, included in Part B is now dissolved in PO rather than in the monomer VP thus eliminating premature polymerization in that part.
- the formulations are given in Table 6.
- peanut oil has been used to replace a portion of the VP, and accounts for 50% by weight of the liquid components.
- Shore D hardness of IC's formulated with PO were measured as 45-50. This is comparable to polystyrene, 65; poly(ethylene), 40; and PTFE, 50.
- the initial (precure) viscosity of the reformulated cement is determined by both the solids to liquid ratio and the viscosities of the fluid components (VP and PO). More important than the actual viscosity value is the force a surgeon must exert on the piston of a syringe containing the cement in order to expel it. To evaluate this flow rates of glycerol, peanut oil, and the injectable cement through a syringe equipped with a 15 gauge (0.137 cm i.d.) by 1.5" (3.81 cm) length were measured. Pressure on the piston was applied with weights of 0.5, 1.0, and 2.0 kg and flow of a given volume was timed. Mean flow rates under a given force are indicated in Table 7.
- Example 3 The effect of temperature and accelerator on cure time in injectable bone cements in accordance with the invention was studied.
- the mixture of Example 3 was used with the following changes.
- VP may be used as an alternative to the crosslinking agent methyl methacrylate (MMA) and propylene glycol may be used as a solvent for PPF or as a diluent.
- Calcium phosphate tribasic (hydroxyapatite, "HA") is used as an relatively insoluble filler.
- the initiator is benzoyl peroxide and was used without an accelerator. In this example, reaction at room temperature is slow, but increases when heat is applied. In all cases the formulations are sufficiently liquid for injection.
- Table 8 The data are shown in Table 8.
- the formulations may also be varied by including an accelerator in either part A or part B, and an initiator in the other part.
- a soluble filler may also be included.
- no non-reacting solvent is used.
- Liquid monomer (MMA or VP) but no PG is used in these formulations.
- the soluble filler calcium acetate (CaAc2) is used in place of HA. Cure proceeds rapidly at room temperature with VP but more slowly when MMA is substituted for VP.
- the location of the initiator may be in either Part A or Part B as long as the accelerator is in the other part, with no effect on stability (when stored cold) or reaction rates. Table 9 describes these formulations. All pre-cure viscosities are sufficiently low for injection.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Materials Engineering (AREA)
- Neurology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Composite Materials (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
- Prostheses (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
A bioerodible polymeric semi-IPN alloy which comprises a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; a second bioerodible polymer, which provides a biopolymeric scaffolding or internal reinforcement; and optionally a buffering compound that buffers the acidic products within a desired pH range. In a preferred embodiment, the second bioerodible polymer comprises polypropylene fumarate (PPF), which is cross-linked, desirably by a vinyl monomer such as vinyl pyrrolidone (VP) to form the biopolymeric scaffolding which provides the semi-IPN with dimensional and geometric stability.
Description
The invention relates to implantible biomaterials, in particular to bioerodible polymers and more specifically to bioerodible polymers suitable for use in forming internal fixation devices (IFDs) such as bone supports, plates, and pins, and/or bone cements for bone repair.
A study in the mid-1980's estimated that about four and a half million people suffer fractures each year in the United States alone. In adults, fractures of the radius and/or ulna of the forearm, and fibula or ankle bone are frequently treated by immobilizing the fracture by the surgical attachment of a metal plate adjacent the fracture. Similarly, in some adults and most children, fractures of the neck of the femur or hip are frequently treated by immobilizing the fracture with a metal plate. In addition to its use in treating fractures of the radius, ulna and femur, a metal plate may also used to immobilize other bones in both the treatment of fractures and in corrective surgery. The metal plate, typically made of a titanium-based metal, a stainless-steel, or a cobalt-chromium metal, is attached to the bone by bone screws. It should be noted that although the immobilization device is referred to as a plate, its size and shape is dictated by the application in which it is to be used.
As the bone heals it is necessary to remove the metal plate by means of a second surgical intervention. The reason for this is that the presence of the metal plate adjacent the bone ultimately results in what is referred to as "plate induced osteopenia" or loss of bone mass. The reasons for this loss of bone mass are not fully understood but appear to be related both to changes in bone stress and changes in bone blood flow. Such bone remodeling in children may lead to growth restriction, especially when plates are used in craniofacial or maxillofacial intervention to repair congenital deformities.
Thus it is desirable to replace metallic surgical plates presently used in surgical procedures with a bioerodible polymer, i.e., one that will dissolve and be absorbed by the body as the underlying bone heals. With such a bioerodible plate, the necessity of a second surgical operation and its concomitant trauma is removed and the deleterious effects caused by the presence of a plate for a long period of time. Furthermore, unlike metals, these devices do not corrode and the modulus of the material may be more closely matched to that of bone. Two polymers that have been used to form bioerodible surgical plates are polylactic acid (PLA) and copolymers of lactic and glycolic acids (PLGA).
The mechanism for bioeroding polymers of lactic acid and copolymers of lactic and glycolic acids is not completely understood. The polymers are probably hydrolyzed in situ to their respective monomers and the resulting monomers are excreted from the body in the urine or expired from the body as carbon dioxide without ill effect. The body's tolerance of these monomers probably results from the fact that lactic acid and glycolic acid are present as natural substances within tissue.
Although polymers of, e.g., PLA degrade as desired, plates constructed of PLA have a tendency to "bow" in bone applications and thereby fail to appropriately immobilize fractures with respect to bending movements. This bowing apparently occurs because the side of the plate immediately adjacent the bone is exposed to a different aqueous environment than the side of the plate adjacent soft tissue. As water is adsorbed into the polymer, the polymer swells. Thus the difference in the aqueous environment of the two surfaces of the plate causes a differential in the amount of water entering the plate through each surface. This differential water adsorption results in turn in the differential swelling of the two sides of the plate, with bowing therefore occurring. Thus it is desirable to form a surgical plate from a bioerodible polymer which is dimensionally and geometrically stable.
A related matter of interest in bone repair involves ensuring that the fractured bone ends are properly stabilized when set, and maintaining this stabilization during healing. A bioerodible bone cement could be used to bridge the area of excised bone fragments and thus aid in healing. Secondly, a bioerodible bone cement could additionally be used in conjunction with bone repair proteins (BRPs) to actively promote bone growth, i.e., the bone cement functions as an osteoinductive material. Also, because the rate of infection following total joint replacement surgery may be as high as 11%, it would also desirable to incorporate various antibiotics into the bone cement for slow release at the surgical site to minimize infection. Ideally, therefore, such a bone cement or "grout" should be moldable in the surgical setting, set to form a strong solid, stabilize at the implant site, and support and aid the bone healing process.
With the use of minimally invasive techniques, a bioresorbable and/or osteoconductive bone cement could be used by injecting the cement into the fracture site under fluoroscopic control. This technique would help prevent complications such as repeated displacement, instability and malunion. The use of the cement may also warrant conservative treatment in patients with relative indications for operative management. These patients include older patients in whom long leg casting will be difficult to be mobile in, irreducible fractures, or one which has slipped in a cast, obese legs which limit the capability of casts to maintain reduction, and chronic alcohol abusers. In addition, patients with relative contraindications to operative treatment, such as vascular insufficiency, diabetes mellitus, soft tissue blisters, abrasions, contusions or burns, could be successfully managed in a conservative fashion thus eliminating peri- and postoperative risk factors. Finally, patients with severe osteoporosis may benefit from the use of this osteoconductive bone cement as an adjunct to conservative treatment. Aside from its use in the treatment of ankle and foot fractures, a bioresorbable and osteoconductive cement may be applicable for the treatment of undisplaced or minimally displaced lateral tibial plateau fractures that would normally warrant conservative treatment (depression <1 cm and valgus instability <10 degrees).
Other potential applications include use in spinal fusions, where autologous bone grafting is often necessary and allogeneic bone is used when autologous bone stocks are insufficient. In these cases, an osteoinductive bioresorbable bone cement could serve as a bone substitute.
Thus a need exists for polymeric bioerodible materials which may be used in making bone cements which desirably have a wide range of precure viscosities (to allow injection of the cement to a bone site) and which also desirably incorporate biologically active agents. Such bioerodible bone cements containing biologically active agents for release must be able to protect the agents from damage during curing, and provide buffering capacity to obviate possible inflammatory foreign body response generated by bioerosion of the cement. Lastly, such polymeric bioerodible materials may also be used to make IFDs having dimensional stability during the critical bone setting and healing period.
The disclosure relates to bioerodible polymeric semi-interpenetrating network ("semi-IPN") alloys which comprise a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; a second bioerodible polymer, which, preferably via crosslinking, provides a biopolymeric scaffolding or internal reinforcement; and optionally a buffering compound that buffers the acidic products within a desired pH range. In a preferred embodiment, the second bioerodible polymer comprises polypropylene fumarate (PPF) which is cross-linked, desirably by a vinyl monomer such as vinyl pyrrolidone (VP) to form the biopolymeric scaffolding which provides the semi-IPN with the requisite dimensional and geometric stability. A beneficial end use of this material is in the form of internal fixation devices (IFDs) such as bone supports, plates, and pins, and/or bone cements for bone repair which are formed from the semi-IPN alloy disclosed herein.
Another aspect of the invention comprises a bone cement containing a bioerodible polymeric semi-IPN alloy comprising a first bioerodible polymer (such as PLGA) capable of producing acidic products upon hydrolytic degradation; and a second bioerodible polymer (such as PPF), which provides a biopolymeric scaffolding or internal reinforcement, wherein the second bioerodible polymer is polymerized in vivo to provide a hardened, semi-IPN alloy bone cement. Both the bone cement and dimensionally and geometrically stable IFDs of the disclosure of the invention may advantageously also contain other agents such as bone repair proteins (BRPs) and antibiotics, to, e.g., actively promote bone growth and prevent infection while the bone cement or IFD is in place.
The invention will be more fully understood by reference to the following Detailed Description Of The Invention in conjunction with the following Drawings, of which:
FIGS. 1a and 1b are scanning electron micrographs (at 6250×) of a bone cement alloy according to the disclosure containing crosslinked PPF scaffolding and PLGA/calcium gluconate after one and two weeks exposure to water.
FIG. 2 is a graph of distribution of vinyl pyrrolidone between crosslinked poly(propylene fumarate) and poly(vinyl pyrolidone). Linear regression analysis: intercept=-0.082; slope=1.084; correlation coefficient=0.9686. (Example 2.)
FIG. 3 is a graph of weight fraction of vinyl pyrrolidone incorporated into crosslinked poly(propylene fumarate) as a function of PPF/VP weight ratio. (Example 2.)
The bioerodible bone cements and internal fixation devices (IFD) made from the bioerodible polymeric semi-IPN alloy material disclosed herein may be advantageously used for surgical repair of orthopaedic and maxillofacial fractures. The bioerodible material is a polymeric semi-IPN alloy which comprises at least a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation; and a second bioerodible polymer, which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement.
An semi-interpenetrating polymer network (semi-IPN) is defined herein as an internecine combination of two or more polymers, at least one of which is crosslinked (sometimes in the immediate presence of the other) to form a network ("scaffolding" in the present disclosure) in which the other polymer is enclosed, trapped or retained.
As used herein, the term "bioerodible" is defined as the susceptibility of a biomaterial to degradation over time, usually months. "Buffer" is defined as any material which limits changes in the pH in the implant or cement and its near environment only slightly upon exposure to acid or base. "Acidic product" is defined herein as any product that has a pH less than 7.
The semi-IPN alloy of the invention includes a first bioerodible polymer that undergoes hydrolysis to produce acidic products when exposed to an aqueous medium. Examples of such bioerodible polymers include poly(lactide-co-glycolide) (H[--OCHR--CO--]n OH, where R is H or CH3) ("PLGA"); polydioxanone, poly(ε-caprolactone); polyanhydrides; poly(ortho esters); copoly(ether-esters); polyamides; polylactones; polypropylene fumarates (H[--O--CH(CH3)--CH2 --O--CO--CH═CH--CO--]n OH); and combinations thereof. In a preferred embodiment, the polymer poly(lactide-co-glycolide) H[--OCHR--CO]n OH, R═H, CH3 (PLGA) is used. The PLGA polymers used according to the invention have a lactide to glycolide ratio in the range of 0:100% to 100:0%, inclusive, i.e., the PLGA polymer can consist of 100% lactide, 100% glycolide, or any combination of lactide and glycolide residues. These polymers have the property of degrading hydrolytically to form lactic and glycolic acids.
Selection of a suitable first bioerodible polymer is based primarily on the known properties of the polymer such as polymer strength, rate of hydrolytic degradation, etc. One of ordinary skill in the art may take these and/or other properties into account in selecting a particular polymer for a particular application. Thus, such a selection of a particular polymer is within the skills of the ordinary skilled practitioner.
The second bioerodible polymer of the disclosed semi-IPN alloy may be of a type that undergoes hydrolysis to produce acidic products when exposed to an aqueous medium, such as polydioxanone, poly(ε-caprolactone); polyanhydrides; poly(ortho esters); copoly(ether-esters); polyamides; polylactones; polypropylene fumarates; and combinations thereof. However, the second bioerodible polymer, preferably upon crosslinking, additionally provides the biopolymeric scaffolding or internal reinforcement which gives the bioerodible polymeric semi-IPN alloy its superior mechanical properties. (As such, the second polymer is desirably different from the first.) This scaffolding is desirably obtained by crosslinking the second bioerodible polymer. Crosslinking may take place, e.g., in a bone cement shortly before or after the cement ingredients have been introduced to the bone fissure or junction. When making an alloy material for IFDs crosslinking may be effected: a) with the first and second bioerodible polymers in cosolution via chemical crosslinking or by irradiation (e.g., γ-irradiation); b) by melt mixing the first and second bioerodible polymers, then irradiating to crosslink the second bioerodible polymer; or c) by forming the biopolymeric scaffolding first via chemical crosslinking or by irradiation, then impregnating the scaffolding with the first bioerodible polymer.
In an advantageous embodiment the second bioerodible polymer comprises polypropylene fumarate, which may be desirably crosslinked using vinyl monomers such as vinyl pyrrolidone (VP). An advantage of VP crosslinking of PPF is that the crosslinks terminate at hydrolytically labile fumarate ester bonds, making the crosslinked network hydrolytically degradable. Furthermore, the hydrolysis products are highly soluble and hence the scaffolding (and thus the entire alloy) is truly resorbable. The crosslinking reaction should preferably seek to minimize homopolymer formation. Other crosslinking monomers such as methyl methacrylate (MMA) may also be used as long as bioerodibility is not compromised. A high PPF:VP ratio favors crosslinking; because the crosslinking reaction is carried out in solution, low concentrations of VP may be used. The degree of crosslinking necessary to form the scaffolding will depend on the particular application, i.e., the relative hardness or rigidity desired, but generally crosslinking of about 5% to 50% of the available crosslinking sites is acceptable, more particularly 5% to 30%.
The bioerodible material of the invention may include a buffering compound which may be a base or base-containing material capable of reacting with the acidic products generated upon hydrolysis of the bioerodible polymer. Since the bioerodible polymers undergo hydrolysis in the body and generate acidic products that cause irritation, inflammation, and swelling (sterile abscess formation) in the treated area, the inclusion of buffer in the bioerodible material counteracts this effect by neutralizing the acidic degradation products and thereby reducing the sterile abscess reaction. The buffer included in the bioerodible material of the invention maintains the pH surrounding the area of surgery to approximately neutrality (i.e., pH 7), or any other pH chosen by the surgeon. Preferably, the pH is maintained in the range of 6-8, and more preferably in the range of 6.8-7.4.
Exemplary buffering materials include inorganic acid salts, organic acid salts, or polymeric organic acid salts. Preferably, the calcium salts of weak acids are used, such as calcium carbonate, although calcium phosphate, calcium acetate, calcium citrate, calcium succinate, and calcium gluconate may also be used. Polymeric buffers may also be used as buffering compounds according to the invention. Suitable polymeric buffers preferably include basic groups which neutralize the acidic products generated upon hydrolysis of the bioerodible polymer. Such polymeric buffers include hydrolytically stable polymers, such as polyamines, poly(N-vinyl carbazole), poly(N-vinyl pyrrolidone), poly(acrylic acid), poly(acrylamide), or a copolymer based on acrylic acid. Another class of buffering compounds useful in the materials and methods of the invention are compounds which, on exposure to water, hydrolyze to form a base as one reaction product. The generated base is free to neutralize the acidic products produced upon hydrolysis of the bioerodible polymer. Compounds of this type include aryl or alkyl carbamic acids and imines. The base-generating compounds used according to the invention offer the advantage that the rate of hydrolysis of the base generator may be selected to correlate to the rate of hydrolysis of the bioerodible polymer.
The inclusion of soluble buffering materials such as those disclosed herein (such as a combination of citric acid and sodium bicarbonate; calcium acetate, and calcium gluconate) also have an important second function in vivo. Upon exposure to aqueous media such as tissue fluids these compounds dissolve almost immediately, leaving pores in the material, whether it be a cement or IFD. (In the case of the citric acid and sodium bicarbonate combination, upon exposure to water in vivo form CO2 and water, leaving holes in place of the solid chemical.) These pores facilitate bone cell migration into the device or cement, and thus serve as osteoconductive pathways for bone healing. Pore size may be controlled by controlling the size of the soluble material introduced to the alloy, i.e., by grinding and sieving the filler to select the appropriate particle size range.
The development of such pores is illustrated in FIGS. 1A and 1B, which are SEM (Amray AMR-1000 SEM at 6250×) of a bone cement alloy containing crosslinked PPF scaffolding and PLGA/calcium gluconate after one and two weeks exposure to water. The alloy was subjected to conditions similar to placement in vivo, over a period of weeks. The development of pores in the alloy, where none were detectable at the start of the experiment, is seen. The holes measure about 3-6 microns on average, but larger holes of 10-15 microns were also seen.
It has been surprisingly found that a combination of a calcium carbonate and hydroxyapatite has been found to support osteoconductivity and osteoinductivity, i.e., providing a pathway for bone cells to penetrate, as well as inducing movement of bone cells into those pathways, as a way of promoting bony ingrowth as resorption of the alloy progresses.
Other fillers may be included in the alloy (preferably protected by the first bioerodible polymer, as disclosed herein) as alternatives to fillers like calcium carbonate and hydroxyapatite, such as ground, demineralized bone and/or unprocessed cadaver allogenic bone.
The buffering compound preferably has an acid dissociation constant (Ka) that is smaller than the acid dissociation constant of the acidic products generated upon hydrolysis of the bioerodible polymer. Alternatively, the buffering compound preferably has a hydrolysis constant that is greater than the hydrolysis constant of the acidic products. Further, the buffering compound preferably is only partially soluble in an aqueous medium. In general, buffers of lower solubility are preferred because buffer loss from the polymer by diffusion will be minimized. Details of determining appropriate buffers, methods and amounts of addition, etc., are disclosed in further detail in pending U.S. patent application Ser. No. 08/626,521, the disclosure of which is incorporated herein by reference.
The semi-IPN alloy of the invention has mechanical properties comparable to human bone, as set forth in Table 1.
TABLE 1
______________________________________
Stiffness, GPa 1-30
______________________________________
Bending: Modulus Strength,
GPa 6-30.sup.(1)
MPa 160
Torsion: Modulus Strength,
GPa 3.2 (femur)
MPa 54.1 (femur)
Tension: Modulus Strength,
GPa 14.9-18.9
MPa 124-174
Compression:
Modulus Strength,
GPa 8-9.sup.(2)
MPa 170 (femur)
______________________________________
.sup.(1) Poly(Llactide) and Poly(D,Llactide) reinforced with calcium
phosphate fibers
.sup.(2) Equine long bones
Methods of making a bioerodible material for implantation into a surgical site are further contemplated by the inventors. In one embodiment, the first and second bioerodible polymers (and optional components such as biologically active agents for release into surrounding bone tissue and buffering compounds) are dissolved in solvent and mixed to homogeneity, after which the second bioerodible polymer is treated to create the biopolymeric scaffolding, e.g., by crosslinking. The resulting mixture is cast into a desired form, e.g., a sheet, film, plate, screw, etc., and the solvent is evaporated to produce a (buffered) bioerodible implantable material in film form. The product may be further processed, for example, compacted under pressure, extruded through a die, injection molded, or shaped into a form useful for bone repair. Techniques such as compression molding may be used to form end-use configurations such as screws, plates, etc.; or stock from which IFDs may be machined. A constant pressure hydraulic press such as the Compac Model MPC-40 may be used for molding.
In another embodiment the alloy may be prepared similar to methods disclosed in U.S. Pat. No. 5,456,917 to Wise et al., the text of which is incorporated by reference herein, wherein a bioerodible polymer foam scaffolding is prepared by lyophilization of solutions of the polymer in a suitable solvent, such as glacial acetic acid or benzene. A solution containing the first bioerodible polymer and other ingredients such as active agents, buffers, etc. are then forced into the void volume of the scaffolding by cycles of evacuation (degassing) and repressurization. Solvents for the first bioerodible polymer and active agent include water and other solvents which do not dissolve the first bioerodible polymer or change its structure or morphology, such as the lower alcohols. The solvent is then removed by a second lyophilization, and the resulting alloy may be further processed.
The invention also relates to bioerodible bone cements for both orthopaedic repair and for controlled release of a biologically active agent in, if necessary, a protecting polymeric envelope. The bone cement and method of making it encompasses a range of cement materials, the properties of which depend upon the concentration of components to enable preparation of cements of initial (precure) low viscosities which can be delivered by injection to its intended site or cements of higher viscosity which may be molded, e.g., as a putty, to fractures or surgical sites of complex topography.
The first bioerodible polymer, as noted above, may be loaded with an active agent to provide a controlled release of the active agent as the alloy is resorbed. Control of the release rate is achieved by incorporating the active agent in a protecting envelope of the first bioerodible polymer. In addition, further control of the release rate is achieved by incorporating non reactive fillers of varying solubility (such as hydroxyapatite) into the alloy. Any type of active agent may be incorporated into the first bioerodible polymer, including without limitation drugs, hormones, antibiotics, cells etc.
The bone cement of the invention comprises the first and second bioerodible polymers as set forth herein. Other desirable components of the cement include biologically active or therapeutic agent(s), cross linking agent (such as a vinyl monomer); an initiator for the cross linking reaction between the second bioerodible polymer and the crosslinking agent; and accelerator(s) and inhibitor(s) to control the cure kinetics. Further components of the material of the invention include biologically inert solid fillers, liquid (aqueous or non-aqueous) diluents for viscosity control and for solubilization of components, and wetting agents (surface active agents or detergents) to facilitate mixing of components and contact of the mixed components with tissue.
The cement may be advantageously prepared as a two or three part formulation, in which the initiator and accelerator, or initiator and components for forming the scaffolding, e.g., second bioerodible polymer and crosslinker, are kept separate until the parts are combined. The combined parts are allowed to cure in situ (at the surgical or fracture site) to aid in maintaining fracture reduction or to fill defects or other openings in bone following surgery. Keeping the system parts separate prior to use ensures against premature reaction, to increase pre-use stability and shelf life.
In a preferred embodiment the second bioerodible polymer is PPF, which is crosslinked polymerization between PPF and a vinyl monomer such as vinyl pyrrolidone or methyl methacrylate. The vinyl polymerization employs an initiator such as benzoyl peroxide; other initiators may be used. Accelerators such as N,N-dimethyl-p-toluidine (DMPT) and inhibitors such as hydroquinone (HQ) or t-butylhydroquinone (TBHQ) may also be included to control cure reaction kinetics. Other components such as detergents and water may be included as processing aids to adjust viscosity and to improve workability of the cement.
The composition of the cement may be varied according to requirements of cure time, viscosity, loading of biologically active or therapeutic agent(s), and degradation rates. Component ranges (range 2=particularly preferred range) are given in Table 2.
TABLE 2
______________________________________
Component Range 1 (% wt)
Range 2 (wt %)
______________________________________
First bioerodible polymer
0-50 3-15
Second bioerodible polymer
5-60 30-50
Cross linking agent
5-50 8-12
Therapeutically inert liquid
0-50 10-20
diluent
Active agent protected by first
1-50
bioerodible polymer
Initiator 0-5 0.5-1.5
Inhibitor 0-5
Accelerator 0-5
Water 0-1
Detergent 0-1
Soluble buffering material
-- 3-12
Less soluble buffering
-- 5-20
material/osteoinductive agent
______________________________________
One embodiment of a two part system is comprised as follows:
______________________________________
Part A Part B
______________________________________
PPF Inert Fillers
Vinyl Monomer PLGA/biologically active or therapeutic
agent(s)
Accelerator Initiator
Diluents Inhibitor
______________________________________
This two part formulation 1) separates the polymerizable components from the initiator; and 2) separates the protected biologically active or therapeutic agent(s) from the liquid components, which prevents premature release of the biologically active or therapeutic agent(s) from the first bioerodible polymer.
A typical embodiment of a three part system is shown below.
______________________________________
Part A Part B Part C
______________________________________
PPF Initiator Inert Fillers
Vinyl Monomer
Diluents Accelerator
Inhibitor PLGA/biologically active or
therapeutic agent(s)
______________________________________
An advantage of the three part formulation is that it separates the biologically active or therapeutic agent(s) from the initiator, which is the least thermally stable component of the cement.
Incorporation of biologically active or therapeutic agent(s) into the first bioerodible polymer provides several advantages for the controlled release feature of the invention. The first bioerodible polymer, such as PLGA, functions as a protective coating to prevent the biologically active or therapeutic agent(s) from reacting with the components of the cement. Thus it is possible to maintain the full potency of the biologically active or therapeutic agent(s) during the cure process. In addition, possible reactions of the biologically active or therapeutic agent(s) with the free radicals generated during the curing process is minimized because the time during which the cement changes from a fluid or viscous putty to a hard mass is short (about ten minutes). The first bioerodible polymer also functions to moderate the release of the biologically active or therapeutic agent(s).
Several experiments were conducted to demonstrate PPF crosslinking with vinyl pyrrolidone (VP) in glacial acetic acid (gl HAc) solution in the presence of PLGA-85:15. gl HAc is a suitable solvent for several reasons: 1) traces remaining in the product will not be toxic; 2) its vapor pressure at its freezing point is high (FP=16.7° C.; VP at 17.5° C.=10 mm Hg). This property allows formation of alloys of the disclosure by lyophilization to remove the solvent.
The following samples were prepared as shown in Table 3.
TABLE 3 ______________________________________ -- 39-1 39-2 40-1 40-2 40-3 41-1 ______________________________________ PLGA, g -- -- -- -- -- 0.350 PPF, g 0.979 0.999 0.979 0.998 0.956 0.954 VP, g 2.267 2.000 2.165 2.165 2.190 2.167 B P, 0.134 1.381 0.136 0.139 0.134 0.139 g(1) gl HAc, 10 10 10 10 10 10 ml R x 90 90 RT 70 60 70 T° C.(2) R x t 25 10 6 mos 31 100 30-40 min(2) ______________________________________ (1)BP = benzoyl peroxide (2)Rx T° C.; Rx t min = reaction temperature and time
Prior to heating, all samples were completely dissolved in gl HAc. After heating at the temperature and for the time indicated, a continuous solid phase had formed in all samples. Solubility tests on these samples indicated that crosslinking preferentially occurred over PVP homopolymer formation. Lyophilization of PPF/VP/BP and PLGA/PPF/VP/BP crosslinked in gl HAc results in porous solids.
The following describes an exemplary procedure for preparing a bioerodible semi-IPN alloy in accordance with the invention.
(a) Removal of NaOH Inhibitor from VP. VP (1-vinyl-2-pyrrolidone, Aldrich lot 07401BQ) contained 1% inhibitor of NaOH. Separation of NaOH from the VP was accomplished by a vacuum distillation of the VP/NaOH solution. The distilled VP was collected by condensing VP vapor with cold water, while the NaOH was left in the distillation flask.
(b) Crosslinking of PPF (X-PPF) with VP in Glacial Acetic Acid. At room temperature, 1.0 g PPF [CSI, lot 48-86-2, Mw. 7277] and 1.1 g DVP were co-dissolved in 10 ml gl HAc (Fisher lot 905039) in a lyophilization flask. 0.13 g of a preground BP powder (Aldrich lot 06428CW) was then added to the solution in the flask. After the BP dissolved completely, the solution showed a clear amber color. The lyophilization flask was placed in a preheated silicon oil bath with a temperature of 773° C. After 15 minutes in the bath, the solution started turning white and cloudy, indicating crosslinking. After another 5 minutes in the bath, the solution became a pale yellow "jelly." The flask was then removed from the bath to a freezer with a temperature of -10° C. The flask was stored in the freezer for over 12 hours before it was lyophilized.
(c) Lyophilization of X-PPF/GlHAc Solution. The lyophilization flask, now containing the frozen X-PPF/GlHAc solution, was placed in an ice bath and was connected to a lyophilization setup which consisted of a solvent trap and a reduced pressure at 1 mm Hg. The lyophilization proceeded until all the GlHAc was collected in the trap.
(d) Removal of Unreacted VP and PVP. The removal of unreacted compounds was accomplished by impregnating the foam with water by successive cycles of evacuation and admission of air. The washed foam was dried in an oven with a temperature set at 50° C.
(e) Impregnation of X-PPF Foam Scaffolding with PLGA: PLGA-85:15 (PLGA-85:15, B.I. lot 25024, Mw 11500.) was introduced by immersing the foam in a solution of PLGA in GlHAc, evacuating to remove air from the foam and repressurizing to force the PLGA solution into the foam scaffolding. A second lyophilization was used to remove the GlHAc, leaving the PLGA in the scaffolding. The ratio of PLGA deposited to the foam was 52.4 w/w %.
The product was desirably washed with water to extract any PVP that has been formed. IFDs may be formed from the material as disclosed herein.
High viscosity cements or putties according to the disclosure using VP crosslinker were prepared as a two part formulation of variable composition, as shown in Table 4, which presents the weights of the components and the weight fractions of the PPF, calcium phosphate and VP.
TABLE 4
__________________________________________________________________________
Composition of Cement Formulations
Composition (g) Weight Fraction
Sample
PPF*
CP VP BP DMPT/VP.sup.†
f(PPF)
f(CP)
f(VP)
__________________________________________________________________________
45-75-1
1.0012
0.0000
1.0006
0.0604
0.0000
0.4855
0.0000
0.4852
45-75-2
1.0000
0.0000
0.6004
0.0604
0.0000
0.6022
0.0000
0.3616
45-75-3
1.0000
0.0000
1.0070
0.0000
0.0026
0.4831
0.0000
0.4877
45-87-2A
1.0000
1.0007
1.0012
0.0605
0.0028
0.3262
0.3265
0.3275
45-87-2B
1.0007
0.9997
1.0009
0.0607 0.3261
0.3276
45-110-1
1.0003
1.0001
0.5029
0.0605 0.3893
0.1978
45-110-2
1.0000
1.0004
2.0024
0.0606 0.2460
0.4932
45-110-3
1.0000
1.0001
2.9996
0.0603 0.1974
0.5933
45-132-1
1.0005
1.0000
1.5049
0.0605 0.2801
0.4227
45-132-2
1.0000
1.0001
2.4998
0.0600 0.2190
0.5489
45-123-3
1.0000
1.0007
3.0005
0.0605 0.1976
0.5930
__________________________________________________________________________
*PPF sample 4886-2, M.sub.φ = 6651; M.sub.n = 2587, polydispersity
.sup.† Concentration of DMPT in VP = 0.48% (w/w)
Components of Parts A and B are summarized below:
______________________________________
Part A: PPF (Wt. Avg. Mol. Wt. = 6650, polydispersity =
2.57)
Tribasic calcium phosphate (hydroxyapatite)
(approximately Ca.sub.10 (OH).sub.2 (PO.sub.4).sub.6)
Vinyl pyrrolidone (cross linking vinyl monomer)
N,N-Dimethyl-p-toluidine (accelerator)
Part B: Vinyl Pyrrolidone
Benzoyl peroxide (initiator)
hydroquinone (inhibitor)
______________________________________
Samples were cured in sealed vials. After curing the samples were ground, weighed, washed with water to extract soluble components, and dried to constant weight. The remaining insoluble material was then extracted with tetrahydrofuran to remove uncrosslinked PPF. In all cases almost all of the PPF was crosslinked: >98% in 6 out of 9 samples, and >86% in the remaining three samples. Further, the percent of PPF crosslinked was independent of composition, i.e., independent of filler, accelerator, initiator, or monomer. On the other hand, the fraction of VP which was incorporated into the scaffolding depended strongly on the ratio of PPF/VP, increasing with increasing PPF/VP ratio. The ratio of VP incorporated into the crosslinks varied linearly with the PPF/VP ratio. These results are summarized in Table 5 and presented graphically in FIGS. 2 and 3. The significance of these results can be appreciated if we define two quantities. The density of crosslinks between PPF chains can be defined as dcl=(moles of crosslinks/mole of PPF) and the average length of crosslinks can be defined as lcl=(moles of VP/mole of PPF). Thus (dcl)(lcl)=(mole of VP/mole of PPF). Thus by varying the PPF/monomer ratio, control of the product (dcl)(lcl) can be exercised.
TABLE 5
__________________________________________________________________________
Fraction of VP and PPF Incorporated into Crosslinked PPF
and Distribution of VP between XL-PPF and PVP
Sample
PPF/VP
Ff Fρ.sup.↑
F. Mean ± SD.sup.‡
Fppf.sub.§
Fρρ.sub.|
__________________________________________________________________________
45-75-1
1.0006
0.5554
0.5007
0.5281 ± 0.0387
0.9941
1.0038
2 1.6656
0.7097
0.6332
0.6715 ± 0.0541
0.9858
1.7260
2 0.9905
0.5725
0.5127
0.5426 ± 0.0423
1.0519
87-2A
0.9960
0.4649
0.5463
0.5056 ± 0.0576
0.8571
1.2042
87-2B
0.9966
0.4727
0.4349
0.4538 ± 0.0267
0.9773
0.7695
110-1
1.9693 0.4970
0.4970
2 0.4985
0.2206
0.2472
0.2314 ± 0.0153
0.9937
0.3196
3 0.3326
0.2222
0.2449
0.2336 ± 0.0161
0.8714
0.3243
132-1
0.56630
0.3272
0.3764
0.3518 ± 0.0348
0.8656
0.6035
2 0.3989
0.2893
0.2747
0.2820 ± 0.0103
0.9812
0.3787
3 0.3330
0.2238
0.2634
0.2486 ± 0.0209
0.9953
0.3297
__________________________________________________________________________
Fraction of VP in XLPPF calculated by material balance based on PPF.
.sup.↑ Frace of VP in XLPPF calculated by material balance based on
VP.
.sup.‡ F = mean ± standard deviation of F | and
Fρ (mean Fρρf = 0.9469 ± 0.0619).
.sub.§ Fraction of PPF which is crosslinked.
.sub.| Distribution of VP between XLPPF and PVP.
Varying the PPF/monomer ratio will also vary the viscosity of the cement if the crosslinking monomer is the only liquid component. However, the viscosity may be controlled independently as described by various diluents which may be liquid to reduce viscosity or solid fillers, such as tribasic calcium phosphate (hydroxyapatite), to increase viscosity.
A low viscosity injectable cement may be formulated using VP both for cross linking PPF, and to control the initial viscosity. The cement can also be reformulated by substituting one of several acceptable solvents for part of the VP. In this example, this change is in Part B, which contains no monomer (VP). Acceptable solvents include propylene glycol, poly(ethylene glycol), and peanut oil. Cure rate and hardness are not compromised by this substitution. The advantages of this substitution are threefold. First, VP is miscible with these solvents as well as with water. By creating a more lipophilic environment the rate at which VP diffuses from the injection site is diminished, thus allowing a greater portion to be incorporated into the scaffolding. Minimizing diffusion into surrounding tissue is expected to diminish inflammatory response. A second advantage is that being more dilute, the probability of crosslinking with PPF is increased and that of homopolymer formation is reduced. A third advantage is increased stability. The initiator, included in Part B is now dissolved in PO rather than in the monomer VP thus eliminating premature polymerization in that part. The formulations are given in Table 6.
In this example peanut oil has been used to replace a portion of the VP, and accounts for 50% by weight of the liquid components. The Shore D hardness of IC's formulated with PO were measured as 45-50. This is comparable to polystyrene, 65; poly(ethylene), 40; and PTFE, 50.
TABLE 6
______________________________________
COMPOSITION OF REFORMULATED INJECTABLE
BONE CEMENT (Weight %)
Part A Part B
______________________________________
PPF 37.1 PO 25.1
VP 25.0 BP 0.6
CaAc2 12.0
DMPT 0.2
______________________________________
PPF = poly(propylene fumarate)
VP = vinyl pyrrolidone (crosslinking agent)
CaAc2 = calcium acetate (soluble filler)
DMPT = dimethylp-toluidine (accelerator)
BP = benzoyl peroxide (initiator)
PO = peanut oil (diluent)
The initial (precure) viscosity of the reformulated cement is determined by both the solids to liquid ratio and the viscosities of the fluid components (VP and PO). More important than the actual viscosity value is the force a surgeon must exert on the piston of a syringe containing the cement in order to expel it. To evaluate this flow rates of glycerol, peanut oil, and the injectable cement through a syringe equipped with a 15 gauge (0.137 cm i.d.) by 1.5" (3.81 cm) length were measured. Pressure on the piston was applied with weights of 0.5, 1.0, and 2.0 kg and flow of a given volume was timed. Mean flow rates under a given force are indicated in Table 7.
TABLE 7
______________________________________
MEAN FLOW RATES (cm.sup.3 /sec)
Weight on
Pressure
Piston (gram/ Flow Rates, cm.sup.3 /sec
(kg) cm.sup.2)
Glycerol Cement Peanut Oil
______________________________________
0.5 283 0.001 0.001 --
1.0 566 0.054 + 0.003
0.169 + 0.034
--
2.0 1132 0.145 + 0.008
0.342 + 0.012
2.59 + 0.22
______________________________________
The pressure exerted by these weights, calculated by dividing the weight by the cross sectional area of the syringe barrel, are easily achieved by normal thumb pressure. The slow flow rates observed at 0.5 kg is due to the frictional resistance of the piston. Exerting the highest pressure (1132 g/cm2), 5 cc of cement can be delivered in less than 15 seconds.
The effect of temperature and accelerator on cure time in injectable bone cements in accordance with the invention was studied. The mixture of Example 3 was used with the following changes. VP may be used as an alternative to the crosslinking agent methyl methacrylate (MMA) and propylene glycol may be used as a solvent for PPF or as a diluent. Calcium phosphate tribasic (hydroxyapatite, "HA") is used as an relatively insoluble filler. The initiator is benzoyl peroxide and was used without an accelerator. In this example, reaction at room temperature is slow, but increases when heat is applied. In all cases the formulations are sufficiently liquid for injection. The data are shown in Table 8.
The formulations may also be varied by including an accelerator in either part A or part B, and an initiator in the other part. A soluble filler may also be included. In the examples given in Table 9 no non-reacting solvent is used. Liquid monomer (MMA or VP) but no PG is used in these formulations. The soluble filler calcium acetate (CaAc2) is used in place of HA. Cure proceeds rapidly at room temperature with VP but more slowly when MMA is substituted for VP. The location of the initiator may be in either Part A or Part B as long as the accelerator is in the other part, with no effect on stability (when stored cold) or reaction rates. Table 9 describes these formulations. All pre-cure viscosities are sufficiently low for injection.
TABLE 8
______________________________________
Injectable Cements Using Propylene Glycol as a Non-Reacting Solvent:
No Accelerator
Experiment
1 2 3 4 5 6
______________________________________
Part A
PPF:PG = 1:1*, ml
1.0 1.0 1.0 1.0 1.0 0.30
HA, gram 0.2 0.2 0.4 0.4 0.6 0.25
Part B
VP:BP = 1.0:0.5**, ml
1.0 0.5 0.5 0.5 0.4 0.12
Temperature, ° C.
71 71 71 36 71 71
Cure Time, min.
2 2 1 19 2.5 2.5
(hr)
______________________________________
*1.0 gram PPF/1.0 ml PG
**1.0 ml VP/0.5 gram BP
TABLE 9
______________________________________
Injectable Cements with Accelerator and Soluble
Filler: No Solvent or Diluent
Experiment A B 1 2
______________________________________
Part A
PPF*, gram 1.50 1.00 1.50 1.50
VP, gram 1.00 -- -- 1.00
MMA, gram -- 1.78 1.00 --
CaAc2, gram 0.10 1.60 0.10 0.50
BP, gram -- 0.15 -- --
DMPT, gram 0.01 -- 0.01 0.01
Part B
VP, gram 0.50 -- -- 0.50
MMA, gram -- 0.34 0.50 --
BP, gram 0.025 -- 0.025 0.025
DMPT, gram -- 0.016 -- --
Cure time, minutes
0.3-0.5 >10 >10 0.5
______________________________________
Having disclosed the preferred embodiments, those skilled in the art will realize many variations are possible which will still be within the spirit and scope of the claimed invention. Therefore, it is the intention to limit the invention only as indicated by the scope of the claims.
Claims (30)
1. A two part bioerodible bone cement system which, upon mixing of the system parts, forms a bioerodible polymeric semi-IPN alloy, said two part cement system consisting of
a) a first part comprising a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation, crosslinking initiator, and a therapeutically effective amount of a biologically active or therapeutic agent, wherein said biologically active or therapeutic agent is in a protective coating of said first bioerodible polymer; and
b) a second part comprising a second bioerodible scaffolding polymer, which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement for said semi-IPN alloy, and crosslinking agent for said second bioerodible scaffolding polymer.
2. The bone cement system of claim 1 further comprising in one of said parts a buffering compound in sufficiently high concentration so as to buffer said acidic products within a desired pH range.
3. The bone cement system of claim 1 wherein said second bioerodible polymer comprises polypropylene fumarate (PPF).
4. The bone cement system of claim 3 wherein said crosslinking agent is a vinyl monomer.
5. The bone cement system of claim 4 herein said crosslinking agent is vinyl pyrrolidone.
6. The bone cement system of claim 3 wherein said crosslinking agent is methyl methacrylate (MMA).
7. The bone cement system of claim 1 wherein said biologically active or therapeutic agent is selected from the group consisting of bone repair proteins, antibiotics, cells, and mixtures thereof.
8. The bone cement system of claim 1 wherein said first bioerodible polymer is different from said second bioerodible polymer.
9. The bone cement system of claim 1 wherein said first bioerodible polymer is selected from the group consisting of poly(lactide-co-glycolide) (PLGA); polydioxanone; poly(ε-caprolactone); polyanhydrides; poly(ortho esters); copoly(ether-esters); polyamides; polylactones; polypropylene fumarates (H(--O--CH(CH3)--CH2 --O--CO--CH═CH--CO--)n OH); and combinations thereof.
10. The bone cement system of claim 2 wherein said buffering compound that buffers said acidic products within a desired pH range is selected from the group consisting of inorganic acid salts; organic acid salts; and polymeric organic acid salts.
11. The bone cement system of claim 2 wherein said buffering compound is selected from the group consisting of calcium carbonate, calcium phosphate, calcium acetate, calcium citrate, calcium succinate, hydrolyzable polyamines, poly(N-vinyl carbazole), poly(acrylic acid), poly(acrylamide), and mixtures thereof.
12. The bone cement system of claim 2 wherein said buffering compound is selected from the group consisting of calcium carbonate, calcium phosphate, calcium acetate, calcium citrate, calcium succinate, and mixtures thereof; said alloy further comprising an osteoconductive composition.
13. The bone cement system of claim 2 wherein the particle size of said buffering compound is from about 5μ to 500μ.
14. The bone cement system of claim 12 wherein said osteoconductive composition comprises hydroxyapatite.
15. A three part bioerodible bone cement system which, upon mixing of the system parts, forms a bioerodible polymeric semi-IPN alloy, said three part cement system consisting of
a) a first part comprising a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation and a therapeutically effective amount of a biologically active or therapeutic agent, wherein said biologically active or therapeutic agent is in a protective coating of said first bioerodible polymer;
b) a second part comprising a second bioerodible scaffolding polymer, which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement for said semi-IPN alloy, and crosslinking agent for said second bioerodible scaffolding polymer; and
c) a third part comprising crosslinking initiator.
16. The bone cement system of claim 15 further comprising in one of said parts a buffering compound in sufficiently high concentration so as to buffer said acidic products within a desired pH range.
17. The bone cement system of claim 15 wherein said second bioerodible polymer comprises polypropylene fumarate (PPF).
18. The bone cement system of claim 15 wherein said slinking agent is a vinyl monomer.
19. The bone cement system of claim 18 wherein said crosslinking agent is vinyl pyrrolidone.
20. The bone cement system of claim 18 wherein said crosslinking agent is methyl methacrylate (MMA).
21. The bone cement system of claim 15 wherein said biologically active or therapeutic agent is selected from the group consisting of bone repair proteins, antibiotics, cells, and mixtures thereof.
22. The bone cement system of claim 15 wherein said first bioerodible polymer is different from said second bioerodible polymer.
23. The bone cement system of claim 15 wherein said first bioerodible polymer is selected from the group consisting of poly(lactide-co-glycolide) (PLGA); polydioxanone; poly(ε-caprolactone); polyanhydrides; poly(ortho esters); copoly(ether-esters); polyamides; polylactones; polypropylene fumarates (H(--O--CH(CH3)--CH2 --O--CO--CH═CH--CO--)n OH); and combinations thereof.
24. The bone cement system of claim 16 wherein said buffering compound that buffers said acidic products within a desired pH range is selected from the group consisting of inorganic acid salts; organic acid salts; and polymeric organic acid salts.
25. The bone cement system of claim 16 wherein said buffering compound is selected from the group consisting of calcium carbonate, calcium phosphate, calcium acetate, calcium citrate, calcium succinate, hydrolyzable polyamines, poly(N-vinyl carbazole), poly(acrylic acid), poly(acrylamide), and mixtures thereof.
26. The bone cement system of claim 16 wherein said buffering compound is selected from the group consisting of calcium carbonate, calcium phosphate, calcium acetate, calcium citrate, calcium succinate, and mixtures thereof; said alloy further comprising an osteoconductive composition.
27. The bone cement system of claim 16 wherein the particle size of said buffering compound is from about 5μ to 500μ.
28. The bone cement system of claim 26 wherein said osteoconductive composition comprises hydroxyapatite.
29. A two part bioerodible bone cement system which, upon mixing of the system parts, forms a bioerodible polymeric semi-IPN alloy, said two part cement system consisting of
a) a first part comprising a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation, crosslinking initiator, a therapeutically effective amount of a biologically active or therapeutic agent and a combination of citric acid and sodium bicarbonate; and
b) a second part comprising a second bioerodible scaffolding polymer, which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement for said semi-IPN alloy, and crosslinking agent for said second bioerodible scaffolding polymer.
30. A three part bioerodible bone cement system which, upon mixing of the system parts, forms a bioerodible polymeric semi-IPN alloy, said three part cement system consisting of
a) a first part comprising a first bioerodible polymer capable of producing acidic products upon hydrolytic degradation, and a combination of citric acid and sodium bicarbonate;
b) a second part comprising a second bioerodible scaffolding polymer, which upon crosslinking provides a biopolymeric scaffolding or internal reinforcement for said semi-IPN alloy, and crosslinking agent for said second bioerodible scaffolding polymer; and
c) a third part comprising crosslinking initiator.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/844,378 US6071982A (en) | 1997-04-18 | 1997-04-18 | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
| JP54614898A JP2001523999A (en) | 1997-04-18 | 1998-04-16 | Biologically degradable polymerizable semi-penetrating network alloy for orthopedic plates and bone cement and method of making same |
| EP98918232A EP1003441A4 (en) | 1997-04-18 | 1998-04-16 | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
| CA002288661A CA2288661A1 (en) | 1997-04-18 | 1998-04-16 | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
| PCT/US1998/007569 WO1998047445A1 (en) | 1997-04-18 | 1998-04-16 | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
| US09/168,129 US6153664A (en) | 1997-04-18 | 1998-10-07 | Bioerodible polymeric semi-interpenetrating network alloys and internal fixation devices made therefrom |
| US09/663,612 US6486232B1 (en) | 1997-04-18 | 2000-09-18 | Bioerodible polymeric semi-interpenetrating network alloys for internal fixation devices and bone cements |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/844,378 US6071982A (en) | 1997-04-18 | 1997-04-18 | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/168,129 Division US6153664A (en) | 1997-04-18 | 1998-10-07 | Bioerodible polymeric semi-interpenetrating network alloys and internal fixation devices made therefrom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6071982A true US6071982A (en) | 2000-06-06 |
Family
ID=25292572
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/844,378 Expired - Lifetime US6071982A (en) | 1997-04-18 | 1997-04-18 | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same |
| US09/168,129 Expired - Lifetime US6153664A (en) | 1997-04-18 | 1998-10-07 | Bioerodible polymeric semi-interpenetrating network alloys and internal fixation devices made therefrom |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/168,129 Expired - Lifetime US6153664A (en) | 1997-04-18 | 1998-10-07 | Bioerodible polymeric semi-interpenetrating network alloys and internal fixation devices made therefrom |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US6071982A (en) |
| EP (1) | EP1003441A4 (en) |
| JP (1) | JP2001523999A (en) |
| CA (1) | CA2288661A1 (en) |
| WO (1) | WO1998047445A1 (en) |
Cited By (72)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000063268A1 (en) * | 1999-04-16 | 2000-10-26 | Wm. Marsh Rice University | Poly(propylene fumarate) cross linked with poly(ethylene glycol) |
| US6355755B1 (en) | 1998-04-10 | 2002-03-12 | Wm. Marsh Rice University | Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger |
| US20020171178A1 (en) * | 2001-04-19 | 2002-11-21 | David Dean | Fabrication of a polymeric prosthetic implant |
| US6486232B1 (en) * | 1997-04-18 | 2002-11-26 | Cambridge Scientific, Inc. | Bioerodible polymeric semi-interpenetrating network alloys for internal fixation devices and bone cements |
| US6605090B1 (en) | 2000-10-25 | 2003-08-12 | Sdgi Holdings, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US20030152548A1 (en) * | 2001-11-20 | 2003-08-14 | William Marsh Rice University | Synthesis and characterization of biodegradable cationic poly ( propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion |
| US20030161858A1 (en) * | 2000-04-11 | 2003-08-28 | Lars Lidgren | Injectable bone mineral substitute material |
| US6613089B1 (en) | 2000-10-25 | 2003-09-02 | Sdgi Holdings, Inc. | Laterally expanding intervertebral fusion device |
| US20030180344A1 (en) * | 2002-02-05 | 2003-09-25 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
| US20040048947A1 (en) * | 2000-07-17 | 2004-03-11 | Lars Lidgren | Composition for an injectable bone mineral substitute material |
| US6758863B2 (en) | 2000-10-25 | 2004-07-06 | Sdgi Holdings, Inc. | Vertically expanding intervertebral body fusion device |
| US20040180072A1 (en) * | 2003-03-12 | 2004-09-16 | Howmedica Osteonics Corp. | Prosthesis with sustained release analgesic |
| US20040230309A1 (en) * | 2003-02-14 | 2004-11-18 | Depuy Spine, Inc. | In-situ formed intervertebral fusion device and method |
| US20050084542A1 (en) * | 2003-04-11 | 2005-04-21 | Rosenberg Aron D. | Osteoinductive bone material |
| US20050119746A1 (en) * | 2001-12-20 | 2005-06-02 | Lars Lidgren | Bone mineral substitute |
| US20060246150A1 (en) * | 2000-12-22 | 2006-11-02 | Thorne Kevin J | Composition and Process for Bone Growth and Repair |
| US20070041906A1 (en) * | 2003-03-05 | 2007-02-22 | Lars Lidgren | Bone substitute composition |
| WO2005117919A3 (en) * | 2004-04-15 | 2007-06-07 | Etex Corp | Delayed-setting calcium phosphate pastes |
| US20070161943A1 (en) * | 2003-11-11 | 2007-07-12 | Lars Lidgren | Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method |
| US20070217282A1 (en) * | 2004-06-22 | 2007-09-20 | Bone Support Ab | Device for Producing a Hardenable Mass |
| US20080102097A1 (en) * | 2006-10-31 | 2008-05-01 | Zanella John M | Device and method for treating osteolysis using a drug depot to deliver an anti-inflammatory agent |
| US20090012615A1 (en) * | 2006-01-13 | 2009-01-08 | Fell Barry M | Surgically implantable prosthesis with active component |
| US20090043008A1 (en) * | 2005-10-20 | 2009-02-12 | Klee Joachim E | Dental adhesive |
| WO2009129316A3 (en) * | 2008-04-15 | 2010-01-07 | Etex Corporation | Minimally invasive treatment of vertebra (mitv) using a calcium phosphate combination bone cement |
| US7674296B2 (en) | 2005-04-21 | 2010-03-09 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US20100136648A1 (en) * | 2007-04-18 | 2010-06-03 | Smith & Nephew, Plc | Expansion Moulding of Shape Memory Polymers |
| US8147860B2 (en) | 2005-12-06 | 2012-04-03 | Etex Corporation | Porous calcium phosphate bone material |
| US8282683B2 (en) | 2010-04-12 | 2012-10-09 | Globus Medical, Inc. | Expandable vertebral implant |
| US8613938B2 (en) | 2010-11-15 | 2013-12-24 | Zimmer Orthobiologics, Inc. | Bone void fillers |
| US8721723B2 (en) | 2009-01-12 | 2014-05-13 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US8722783B2 (en) | 2006-11-30 | 2014-05-13 | Smith & Nephew, Inc. | Fiber reinforced composite material |
| US8742072B2 (en) | 2006-12-21 | 2014-06-03 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
| US9000066B2 (en) | 2007-04-19 | 2015-04-07 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
| US9120919B2 (en) | 2003-12-23 | 2015-09-01 | Smith & Nephew, Inc. | Tunable segmented polyacetal |
| US9180137B2 (en) | 2010-02-09 | 2015-11-10 | Bone Support Ab | Preparation of bone cement compositions |
| US9320614B2 (en) | 2006-07-31 | 2016-04-26 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US9688023B2 (en) | 2010-08-20 | 2017-06-27 | H. David Dean | Continuous digital light processing additive manufacturing of implants |
| US9707091B2 (en) | 2010-04-12 | 2017-07-18 | Globus Medical, Inc. | Expandable vertebral implant |
| US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
| US9801725B2 (en) | 2009-12-09 | 2017-10-31 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
| US9913735B2 (en) | 2010-04-12 | 2018-03-13 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
| US10130489B2 (en) | 2010-04-12 | 2018-11-20 | Globus Medical, Inc. | Expandable vertebral implant |
| US10238500B2 (en) | 2002-06-27 | 2019-03-26 | DePuy Synthes Products, Inc. | Intervertebral disc |
| US10294107B2 (en) | 2013-02-20 | 2019-05-21 | Bone Support Ab | Setting of hardenable bone substitute |
| US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
| US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
| US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
| US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
| US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
| US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
| US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
| US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
| US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
| US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
| US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
| US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
| US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
| US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
| US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
| US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
| US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
| US11865785B2 (en) | 2010-08-20 | 2024-01-09 | H. David Dean | Continuous digital light processing additive manufacturing of implants |
| US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
| WO2025097130A1 (en) * | 2023-11-03 | 2025-05-08 | The Brigham And Women's Hospital, Inc. | Injectable in situ cross-linked depots for ultra-long-term delivery of hydrophilic drugs |
| US12440346B2 (en) | 2023-03-31 | 2025-10-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
Families Citing this family (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837752A (en) * | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
| US5980564A (en) * | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
| US6241771B1 (en) * | 1997-08-13 | 2001-06-05 | Cambridge Scientific, Inc. | Resorbable interbody spinal fusion devices |
| DE10032220A1 (en) | 2000-07-03 | 2002-01-24 | Sanatis Gmbh | Magnesium ammonium phosphate cements, their manufacture and use |
| ATE393183T1 (en) * | 2001-06-28 | 2008-05-15 | Univ Wm Marsh Rice | PHOTOCROSS-LINKING OF BIOLOGICAL MATERIALS FROM FUMARIC ACID DIETHYL ESTER/POLY(PROPYLENE FUMARATE) |
| KR20040063981A (en) * | 2001-11-30 | 2004-07-15 | 화이자 프로덕츠 인크. | Pharmaceutical Compositions and Methods for Administering EP2 Receptor Selective Agonists |
| US7273523B2 (en) * | 2002-06-07 | 2007-09-25 | Kyphon Inc. | Strontium-apatite-cement-preparations, cements formed therefrom, and uses thereof |
| US7067169B2 (en) * | 2003-06-04 | 2006-06-27 | Chemat Technology Inc. | Coated implants and methods of coating |
| AU2004255225A1 (en) * | 2003-07-01 | 2005-01-20 | Mayo Foundation For Medical Education And Research | Self-crosslinkable poly(caprolactone fumarate) |
| US8529625B2 (en) | 2003-08-22 | 2013-09-10 | Smith & Nephew, Inc. | Tissue repair and replacement |
| US7988986B2 (en) * | 2003-12-30 | 2011-08-02 | Beisang Arthur A | Implant filling material and method |
| US8084513B2 (en) * | 2003-12-30 | 2011-12-27 | Beisang Arthur A | Implant filling material and method |
| US20060241754A1 (en) * | 2003-12-30 | 2006-10-26 | Beisang Arthur A | Implant filling material and method |
| US20050143816A1 (en) * | 2003-12-30 | 2005-06-30 | Intellectual Property International, Inc. | Implant filling material and method |
| WO2005105170A1 (en) | 2004-04-27 | 2005-11-10 | Kyphon Inc. | Bone substitute compositions and method of use |
| AU2005304567B2 (en) * | 2004-11-12 | 2011-10-27 | Mayo Foundation For Medical Education And Research | Photocrosslinkable poly(caprolactone fumarate) |
| WO2006055940A2 (en) * | 2004-11-18 | 2006-05-26 | Mayo Foundation For Medical Education And Research | Block copolymers of polycaprolactone and poly (propylene fumarate) |
| US8912247B2 (en) * | 2005-04-29 | 2014-12-16 | Mayo Foundation For Medical Education And Research | Hydrophilic/hydrophobic polymer networks based on poly(caprolactone fumarate), poly(ethylene glycol fumarate), and copolymers thereof |
| US7651701B2 (en) * | 2005-08-29 | 2010-01-26 | Sanatis Gmbh | Bone cement composition and method of making the same |
| JP5523709B2 (en) | 2005-11-14 | 2014-06-18 | バイオメット・3アイ・エルエルシー | Method of depositing discrete nanoparticles on an implant surface |
| US8263103B2 (en) * | 2006-01-31 | 2012-09-11 | Boston Scientific Scimed, Inc. | Medical articles containing biodegradable polymers and acid-neutralizing cationic species |
| US7754005B2 (en) * | 2006-05-02 | 2010-07-13 | Kyphon Sarl | Bone cement compositions comprising an indicator agent and related methods thereof |
| US7507286B2 (en) * | 2006-06-08 | 2009-03-24 | Sanatis Gmbh | Self-foaming cement for void filling and/or delivery systems |
| EP2068950B1 (en) * | 2006-09-21 | 2012-06-20 | Kyphon SÀRL | Diammonium phosphate and other ammonium salts and their use in preventing clotting |
| DK2022446T3 (en) * | 2007-07-30 | 2012-07-23 | Purzer Pharmaceutical Co Ltd | Biodegradable bone cement and process for its preparation |
| US20090259280A1 (en) * | 2007-10-15 | 2009-10-15 | Kevin Wilkin | Electrical stimulation lead with bioerodible anchors and anchor straps |
| US20090099612A1 (en) * | 2007-10-15 | 2009-04-16 | Armstrong Julie S | Electrical conductor having a bioerodible coating |
| WO2009097218A1 (en) | 2008-01-28 | 2009-08-06 | Biomet 3I, Llc | Implant surface with increased hydrophilicity |
| US7968616B2 (en) * | 2008-04-22 | 2011-06-28 | Kyphon Sarl | Bone cement composition and method |
| US8641418B2 (en) | 2010-03-29 | 2014-02-04 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
| EP2828100B1 (en) | 2012-03-20 | 2018-05-16 | Biomet 3i, LLC | Surface treatment for an implant surface |
| US9579133B2 (en) | 2013-02-01 | 2017-02-28 | James Guthlein | Internal fixation device |
| EP3153187B1 (en) * | 2015-10-09 | 2018-02-14 | Yeditepe Universitesi | A tissue scaffold production method |
| US10537661B2 (en) | 2017-03-28 | 2020-01-21 | DePuy Synthes Products, Inc. | Orthopedic implant having a crystalline calcium phosphate coating and methods for making the same |
| US10537658B2 (en) | 2017-03-28 | 2020-01-21 | DePuy Synthes Products, Inc. | Orthopedic implant having a crystalline gallium-containing hydroxyapatite coating and methods for making the same |
| US11065461B2 (en) | 2019-07-08 | 2021-07-20 | Bioness Inc. | Implantable power adapter |
Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3887699A (en) * | 1969-03-24 | 1975-06-03 | Seymour Yolles | Biodegradable polymeric article for dispensing drugs |
| US4450150A (en) * | 1973-05-17 | 1984-05-22 | Arthur D. Little, Inc. | Biodegradable, implantable drug delivery depots, and method for preparing and using the same |
| JPS60181029A (en) * | 1984-02-29 | 1985-09-14 | Toyo Jozo Co Ltd | Preparation of sustained release preparation |
| US4568559A (en) * | 1984-02-06 | 1986-02-04 | Biotek, Inc. | Composite core coated microparticles and process of preparing same |
| US4591496A (en) * | 1984-01-16 | 1986-05-27 | Massachusetts Institute Of Technology | Process for making systems for the controlled release of macromolecules |
| US4623588A (en) * | 1984-02-06 | 1986-11-18 | Biotek, Inc. | Controlled release composite core coated microparticles |
| US4637931A (en) * | 1984-10-09 | 1987-01-20 | The United States Of America As Represented By The Secretary Of The Army | Polyactic-polyglycolic acid copolymer combined with decalcified freeze-dried bone for use as a bone repair material |
| US4722948A (en) * | 1984-03-16 | 1988-02-02 | Dynatech Corporation | Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone |
| US4767628A (en) * | 1981-02-16 | 1988-08-30 | Imperial Chemical Industries Plc | Continuous release pharmaceutical compositions |
| US4780319A (en) * | 1985-07-08 | 1988-10-25 | Merck & Co., Inc. | Organic acids as catalysts for the erosion of polymers |
| US4818542A (en) * | 1983-11-14 | 1989-04-04 | The University Of Kentucky Research Foundation | Porous microspheres for drug delivery and methods for making same |
| US4843112A (en) * | 1987-03-12 | 1989-06-27 | The Beth Israel Hospital Association | Bioerodable implant composition |
| US4975280A (en) * | 1989-01-23 | 1990-12-04 | Ethyl Corporation | Bioerodable sustained release implants |
| US5134122A (en) * | 1989-07-28 | 1992-07-28 | Debiopharm S.A. | Method for preparing a pharmaceutical composition in the form of microparticles |
| US5248700A (en) * | 1982-05-14 | 1993-09-28 | Akzo Nv | Active agent containing solid structures for prolonged release of active agents |
| US5286763A (en) * | 1983-03-22 | 1994-02-15 | Massachusetts Institute Of Technology | Bioerodible polymers for drug delivery in bone |
| US5336505A (en) * | 1989-08-28 | 1994-08-09 | Pharmaceutical Delivery Systems | Bioerodible polymers useful for the controlled release of therapeutic agents |
| US5385887A (en) * | 1993-09-10 | 1995-01-31 | Genetics Institute, Inc. | Formulations for delivery of osteogenic proteins |
| US5397572A (en) * | 1990-03-05 | 1995-03-14 | Board Of Regents, The University Of Texas System | Resorbable materials based on independently gelling polymers of a single enantiomeric lactide |
| US5439688A (en) * | 1989-07-28 | 1995-08-08 | Debio Recherche Pharmaceutique S.A. | Process for preparing a pharmaceutical composition |
| US5456917A (en) * | 1993-04-12 | 1995-10-10 | Cambridge Scientific, Inc. | Method for making a bioerodible material for the sustained release of a medicament and the material made from the method |
| US5502092A (en) * | 1994-02-18 | 1996-03-26 | Minnesota Mining And Manufacturing Company | Biocompatible porous matrix of bioabsorbable material |
| US5645592A (en) * | 1992-05-20 | 1997-07-08 | M.u.r.s.t. Italian Ministry for Universities and Scientific and Technological Research | Use of hydrogels to fix bone replacements |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1260154B (en) * | 1992-07-03 | 1996-03-28 | Lanfranco Callegaro | HYALURONIC ACID AND ITS DERIVATIVES IN INTERPENETRATING POLYMERS (IPN) |
| US5681873A (en) * | 1993-10-14 | 1997-10-28 | Atrix Laboratories, Inc. | Biodegradable polymeric composition |
-
1997
- 1997-04-18 US US08/844,378 patent/US6071982A/en not_active Expired - Lifetime
-
1998
- 1998-04-16 EP EP98918232A patent/EP1003441A4/en not_active Withdrawn
- 1998-04-16 CA CA002288661A patent/CA2288661A1/en not_active Abandoned
- 1998-04-16 JP JP54614898A patent/JP2001523999A/en active Pending
- 1998-04-16 WO PCT/US1998/007569 patent/WO1998047445A1/en active Application Filing
- 1998-10-07 US US09/168,129 patent/US6153664A/en not_active Expired - Lifetime
Patent Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3887699A (en) * | 1969-03-24 | 1975-06-03 | Seymour Yolles | Biodegradable polymeric article for dispensing drugs |
| US4450150A (en) * | 1973-05-17 | 1984-05-22 | Arthur D. Little, Inc. | Biodegradable, implantable drug delivery depots, and method for preparing and using the same |
| US4767628B1 (en) * | 1981-02-16 | 1990-07-17 | Ici Plc | |
| US4767628A (en) * | 1981-02-16 | 1988-08-30 | Imperial Chemical Industries Plc | Continuous release pharmaceutical compositions |
| US5248700A (en) * | 1982-05-14 | 1993-09-28 | Akzo Nv | Active agent containing solid structures for prolonged release of active agents |
| US5286763A (en) * | 1983-03-22 | 1994-02-15 | Massachusetts Institute Of Technology | Bioerodible polymers for drug delivery in bone |
| US4818542A (en) * | 1983-11-14 | 1989-04-04 | The University Of Kentucky Research Foundation | Porous microspheres for drug delivery and methods for making same |
| US4591496A (en) * | 1984-01-16 | 1986-05-27 | Massachusetts Institute Of Technology | Process for making systems for the controlled release of macromolecules |
| US4568559A (en) * | 1984-02-06 | 1986-02-04 | Biotek, Inc. | Composite core coated microparticles and process of preparing same |
| US4623588A (en) * | 1984-02-06 | 1986-11-18 | Biotek, Inc. | Controlled release composite core coated microparticles |
| JPS60181029A (en) * | 1984-02-29 | 1985-09-14 | Toyo Jozo Co Ltd | Preparation of sustained release preparation |
| US4722948A (en) * | 1984-03-16 | 1988-02-02 | Dynatech Corporation | Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone |
| US4637931A (en) * | 1984-10-09 | 1987-01-20 | The United States Of America As Represented By The Secretary Of The Army | Polyactic-polyglycolic acid copolymer combined with decalcified freeze-dried bone for use as a bone repair material |
| US4780319A (en) * | 1985-07-08 | 1988-10-25 | Merck & Co., Inc. | Organic acids as catalysts for the erosion of polymers |
| US4843112A (en) * | 1987-03-12 | 1989-06-27 | The Beth Israel Hospital Association | Bioerodable implant composition |
| US4975280A (en) * | 1989-01-23 | 1990-12-04 | Ethyl Corporation | Bioerodable sustained release implants |
| US5134122A (en) * | 1989-07-28 | 1992-07-28 | Debiopharm S.A. | Method for preparing a pharmaceutical composition in the form of microparticles |
| US5439688A (en) * | 1989-07-28 | 1995-08-08 | Debio Recherche Pharmaceutique S.A. | Process for preparing a pharmaceutical composition |
| US5336505A (en) * | 1989-08-28 | 1994-08-09 | Pharmaceutical Delivery Systems | Bioerodible polymers useful for the controlled release of therapeutic agents |
| US5397572A (en) * | 1990-03-05 | 1995-03-14 | Board Of Regents, The University Of Texas System | Resorbable materials based on independently gelling polymers of a single enantiomeric lactide |
| US5645592A (en) * | 1992-05-20 | 1997-07-08 | M.u.r.s.t. Italian Ministry for Universities and Scientific and Technological Research | Use of hydrogels to fix bone replacements |
| US5456917A (en) * | 1993-04-12 | 1995-10-10 | Cambridge Scientific, Inc. | Method for making a bioerodible material for the sustained release of a medicament and the material made from the method |
| US5385887A (en) * | 1993-09-10 | 1995-01-31 | Genetics Institute, Inc. | Formulations for delivery of osteogenic proteins |
| US5502092A (en) * | 1994-02-18 | 1996-03-26 | Minnesota Mining And Manufacturing Company | Biocompatible porous matrix of bioabsorbable material |
Non-Patent Citations (8)
| Title |
|---|
| Gresser, "Preliminary Testing of an Implantable System for Sustained Delivery of Disulfiram for the Treatment of Alcoholism", Biopolymeric Controlled Release Systems, vol. II:67-75, 1989. |
| Gresser, Preliminary Testing of an Implantable System for Sustained Delivery of Disulfiram for the Treatment of Alcoholism , Biopolymeric Controlled Release Systems , vol. II:67 75, 1989. * |
| Kitchell et al., "Preparation of Biodegradable Levonorgestrel Rods", Long-Acting Contraceptive Delivery System pp. 164-168, 1984. |
| Kitchell et al., Preparation of Biodegradable Levonorgestrel Rods , Long Acting Contraceptive Delivery System pp. 164 168, 1984. * |
| Marcotte et al., "Delayed Release of Water-Soluble Macromolecules From Polylactide Pellets", J. of Controlled Release, 9:75-85, 1989. |
| Marcotte et al., Delayed Release of Water Soluble Macromolecules From Polylactide Pellets , J. of Controlled Release, 9:75 85, 1989. * |
| Phillips et al., "Sustained-Release Characteristics of a New Implantable Formulation of Disulfiram", J. of Pharmaceutical Sciences, 73:1718-1720, 1984. |
| Phillips et al., Sustained Release Characteristics of a New Implantable Formulation of Disulfiram , J. of Pharmaceutical Sciences , 73:1718 1720, 1984. * |
Cited By (176)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6486232B1 (en) * | 1997-04-18 | 2002-11-26 | Cambridge Scientific, Inc. | Bioerodible polymeric semi-interpenetrating network alloys for internal fixation devices and bone cements |
| US6355755B1 (en) | 1998-04-10 | 2002-03-12 | Wm. Marsh Rice University | Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger |
| AU770579B2 (en) * | 1999-04-16 | 2004-02-26 | Wm. Marsh Rice University | Poly(propylene fumarate) cross linked with poly(ethylene glycol) |
| US6384105B1 (en) * | 1999-04-16 | 2002-05-07 | William Marsh Rice University | Poly(Propylene Fumarate) cross linked with Poly(Ethylene Glycol) |
| WO2000063268A1 (en) * | 1999-04-16 | 2000-10-26 | Wm. Marsh Rice University | Poly(propylene fumarate) cross linked with poly(ethylene glycol) |
| US6759485B2 (en) | 1999-04-16 | 2004-07-06 | William Marsh Rice University | Biodegradable poly (propylene fumarate) networks cross linked with poly (propylene fumarate) -diacrylate macromers |
| US7972630B2 (en) * | 2000-04-11 | 2011-07-05 | Bone Support Ab | Injectable bone mineral substitute material |
| US20030161858A1 (en) * | 2000-04-11 | 2003-08-28 | Lars Lidgren | Injectable bone mineral substitute material |
| US20080286331A1 (en) * | 2000-07-17 | 2008-11-20 | Bone Support Ab | Composition for an injectable bone mineral substitute material |
| US7417077B2 (en) | 2000-07-17 | 2008-08-26 | Bone Support Ab | Composition for an injectable bone mineral substitute material |
| US20040048947A1 (en) * | 2000-07-17 | 2004-03-11 | Lars Lidgren | Composition for an injectable bone mineral substitute material |
| US7951177B2 (en) | 2000-10-25 | 2011-05-31 | Warsaw Orthopedic, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US7172593B2 (en) | 2000-10-25 | 2007-02-06 | Sdgi Holdings, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US20080167717A9 (en) * | 2000-10-25 | 2008-07-10 | Trieu Hai H | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US6758863B2 (en) | 2000-10-25 | 2004-07-06 | Sdgi Holdings, Inc. | Vertically expanding intervertebral body fusion device |
| US6613089B1 (en) | 2000-10-25 | 2003-09-02 | Sdgi Holdings, Inc. | Laterally expanding intervertebral fusion device |
| US6605090B1 (en) | 2000-10-25 | 2003-08-12 | Sdgi Holdings, Inc. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US20040030342A1 (en) * | 2000-10-25 | 2004-02-12 | Trieu Hai H. | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US20070213828A1 (en) * | 2000-10-25 | 2007-09-13 | Trieu Hai H | Non-metallic implant devices and intra-operative methods for assembly and fixation |
| US20050080489A1 (en) * | 2000-10-25 | 2005-04-14 | Estes Bradley T. | Laterally expanding intervertebral fusion device |
| US7828845B2 (en) | 2000-10-25 | 2010-11-09 | Warsaw Orthopedic, Inc. | Laterally expanding intervertebral fusion device |
| US20060246150A1 (en) * | 2000-12-22 | 2006-11-02 | Thorne Kevin J | Composition and Process for Bone Growth and Repair |
| US8690874B2 (en) | 2000-12-22 | 2014-04-08 | Zimmer Orthobiologics, Inc. | Composition and process for bone growth and repair |
| WO2002085246A3 (en) * | 2001-04-19 | 2002-12-19 | Univ Case Western Reserve | Fabrication of a polymeric prosthetic implant |
| US20020171178A1 (en) * | 2001-04-19 | 2002-11-21 | David Dean | Fabrication of a polymeric prosthetic implant |
| US6849223B2 (en) | 2001-04-19 | 2005-02-01 | Case Western Reserve University | Fabrication of a polymeric prosthetic implant |
| US20030152548A1 (en) * | 2001-11-20 | 2003-08-14 | William Marsh Rice University | Synthesis and characterization of biodegradable cationic poly ( propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion |
| US7629388B2 (en) | 2001-11-20 | 2009-12-08 | William Marsh Rice University | Synthesis and characterization of biodegradable cationic poly(propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion |
| US20050119746A1 (en) * | 2001-12-20 | 2005-06-02 | Lars Lidgren | Bone mineral substitute |
| US8586101B2 (en) | 2001-12-20 | 2013-11-19 | Bone Support Ab | Bioresorbable bone mineral substitute comprising water-soluble X-ray contrast agent |
| US20030180344A1 (en) * | 2002-02-05 | 2003-09-25 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
| US10238500B2 (en) | 2002-06-27 | 2019-03-26 | DePuy Synthes Products, Inc. | Intervertebral disc |
| US9925060B2 (en) | 2003-02-14 | 2018-03-27 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US11207187B2 (en) | 2003-02-14 | 2021-12-28 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10085843B2 (en) | 2003-02-14 | 2018-10-02 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10433971B2 (en) | 2003-02-14 | 2019-10-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10492918B2 (en) | 2003-02-14 | 2019-12-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10420651B2 (en) | 2003-02-14 | 2019-09-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10405986B2 (en) | 2003-02-14 | 2019-09-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10555817B2 (en) | 2003-02-14 | 2020-02-11 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9814589B2 (en) | 2003-02-14 | 2017-11-14 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10376372B2 (en) | 2003-02-14 | 2019-08-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9814590B2 (en) | 2003-02-14 | 2017-11-14 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9439776B2 (en) | 2003-02-14 | 2016-09-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9808351B2 (en) | 2003-02-14 | 2017-11-07 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10575959B2 (en) | 2003-02-14 | 2020-03-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9801729B2 (en) | 2003-02-14 | 2017-10-31 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9439777B2 (en) | 2003-02-14 | 2016-09-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US11096794B2 (en) | 2003-02-14 | 2021-08-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10786361B2 (en) | 2003-02-14 | 2020-09-29 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9788963B2 (en) | 2003-02-14 | 2017-10-17 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10583013B2 (en) | 2003-02-14 | 2020-03-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9730803B2 (en) | 2003-02-14 | 2017-08-15 | DePuy Synthes Products, Inc. | Method of in-situ formation of an intervertebral fusion device |
| US9333091B2 (en) | 2003-02-14 | 2016-05-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US9724207B2 (en) | 2003-02-14 | 2017-08-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US10639164B2 (en) | 2003-02-14 | 2020-05-05 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
| US20040230309A1 (en) * | 2003-02-14 | 2004-11-18 | Depuy Spine, Inc. | In-situ formed intervertebral fusion device and method |
| US11432938B2 (en) | 2003-02-14 | 2022-09-06 | DePuy Synthes Products, Inc. | In-situ intervertebral fusion device and method |
| US8420127B2 (en) | 2003-03-05 | 2013-04-16 | Bone Support Ab | Bone substitute composition |
| US20070041906A1 (en) * | 2003-03-05 | 2007-02-22 | Lars Lidgren | Bone substitute composition |
| US9445901B2 (en) * | 2003-03-12 | 2016-09-20 | Deger C. Tunc | Prosthesis with sustained release analgesic |
| US20040180072A1 (en) * | 2003-03-12 | 2004-09-16 | Howmedica Osteonics Corp. | Prosthesis with sustained release analgesic |
| US8454988B2 (en) | 2003-04-11 | 2013-06-04 | Etex Corporation | Osteoinductive bone material |
| US20080188946A1 (en) * | 2003-04-11 | 2008-08-07 | Etex Corporation | Osteoinductive bone material |
| US8221781B2 (en) | 2003-04-11 | 2012-07-17 | Etex Corporation | Osteoinductive bone material |
| US20050084542A1 (en) * | 2003-04-11 | 2005-04-21 | Rosenberg Aron D. | Osteoinductive bone material |
| US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
| US20070161943A1 (en) * | 2003-11-11 | 2007-07-12 | Lars Lidgren | Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method |
| US20110087161A1 (en) * | 2003-11-11 | 2011-04-14 | Bone Support Ab | Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method |
| US7935121B2 (en) | 2003-11-11 | 2011-05-03 | Bone Support Ab | Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method |
| US9120919B2 (en) | 2003-12-23 | 2015-09-01 | Smith & Nephew, Inc. | Tunable segmented polyacetal |
| US8216359B2 (en) | 2004-04-15 | 2012-07-10 | Etex Corporation | Delayed-setting calcium phosphate pastes |
| WO2005117919A3 (en) * | 2004-04-15 | 2007-06-07 | Etex Corp | Delayed-setting calcium phosphate pastes |
| US20080028992A1 (en) * | 2004-04-15 | 2008-02-07 | Lee Dosuk D | Delayed-Setting Calcium Phosphate Pastes |
| AU2005249365B2 (en) * | 2004-04-15 | 2011-04-07 | Etex Corporation | Delayed-setting calcium phosphate pastes |
| US20070217282A1 (en) * | 2004-06-22 | 2007-09-20 | Bone Support Ab | Device for Producing a Hardenable Mass |
| US8662737B2 (en) | 2004-06-22 | 2014-03-04 | Bone Support Ab | Device for producing a hardenable mass |
| US7938572B2 (en) | 2004-06-22 | 2011-05-10 | Bone Support Ab | Device for producing a hardenable mass |
| US8297831B2 (en) | 2004-06-22 | 2012-10-30 | Bone Support Ab | Device for producing a hardenable mass |
| US7674296B2 (en) | 2005-04-21 | 2010-03-09 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US9775786B2 (en) | 2005-10-20 | 2017-10-03 | Dentsply International Inc. | Dental adhesive |
| US20090043008A1 (en) * | 2005-10-20 | 2009-02-12 | Klee Joachim E | Dental adhesive |
| US8147860B2 (en) | 2005-12-06 | 2012-04-03 | Etex Corporation | Porous calcium phosphate bone material |
| US8545858B2 (en) | 2005-12-06 | 2013-10-01 | Etex Corporation | Porous calcium phosphate bone material |
| US20090012615A1 (en) * | 2006-01-13 | 2009-01-08 | Fell Barry M | Surgically implantable prosthesis with active component |
| US8080059B2 (en) | 2006-01-13 | 2011-12-20 | Fell Barry M | Surgically implantable prosthesis with active component |
| US10695191B2 (en) | 2006-07-31 | 2020-06-30 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US9320614B2 (en) | 2006-07-31 | 2016-04-26 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US9713538B2 (en) | 2006-07-31 | 2017-07-25 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US9387091B2 (en) | 2006-07-31 | 2016-07-12 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US10010428B2 (en) | 2006-07-31 | 2018-07-03 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US9737413B2 (en) | 2006-07-31 | 2017-08-22 | DePuy Synthes Products, Inc. | Spinal fusion implant |
| US20080102097A1 (en) * | 2006-10-31 | 2008-05-01 | Zanella John M | Device and method for treating osteolysis using a drug depot to deliver an anti-inflammatory agent |
| US8722783B2 (en) | 2006-11-30 | 2014-05-13 | Smith & Nephew, Inc. | Fiber reinforced composite material |
| US11642229B2 (en) | 2006-12-07 | 2023-05-09 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11712345B2 (en) | 2006-12-07 | 2023-08-01 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11660206B2 (en) | 2006-12-07 | 2023-05-30 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11497618B2 (en) | 2006-12-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US8742072B2 (en) | 2006-12-21 | 2014-06-03 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
| US9815240B2 (en) | 2007-04-18 | 2017-11-14 | Smith & Nephew, Inc. | Expansion moulding of shape memory polymers |
| US20100136648A1 (en) * | 2007-04-18 | 2010-06-03 | Smith & Nephew, Plc | Expansion Moulding of Shape Memory Polymers |
| US9000066B2 (en) | 2007-04-19 | 2015-04-07 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
| US9308293B2 (en) | 2007-04-19 | 2016-04-12 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
| US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
| US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
| US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
| US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
| US11707359B2 (en) | 2008-04-05 | 2023-07-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US12011361B2 (en) | 2008-04-05 | 2024-06-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US12023255B2 (en) | 2008-04-05 | 2024-07-02 | DePuy Synthes Products, Inc. | Expandable inter vertebral implant |
| US11712342B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11701234B2 (en) | 2008-04-05 | 2023-07-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11712341B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US11617655B2 (en) | 2008-04-05 | 2023-04-04 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| US20110224675A1 (en) * | 2008-04-15 | 2011-09-15 | Tofighi Aliassghar N | Minimally invasive treatment of vertebra (mitv) using a calcium phosphate combination bone cement |
| US9314545B2 (en) | 2008-04-15 | 2016-04-19 | Life Science Enterprises, Inc. | Minimally invasive treatment of vertebra (MITV) using a calcium phosphate combination bone cement |
| WO2009129316A3 (en) * | 2008-04-15 | 2010-01-07 | Etex Corporation | Minimally invasive treatment of vertebra (mitv) using a calcium phosphate combination bone cement |
| CN102065914A (en) * | 2008-04-15 | 2011-05-18 | 埃泰克斯公司 | Minimal Invasive Treatment of the Spine (MITV) Using Calcium Phosphate Combination Bone Cement |
| US9956313B2 (en) | 2008-04-15 | 2018-05-01 | Life Science Enterprises, Inc. | Minimally invasive treatment of vertebra (MITV) using a calcium phosphate combination bone cement |
| US9962268B2 (en) | 2009-01-12 | 2018-05-08 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US10314717B2 (en) | 2009-01-12 | 2019-06-11 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US12220324B2 (en) | 2009-01-12 | 2025-02-11 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US8721723B2 (en) | 2009-01-12 | 2014-05-13 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US11399951B2 (en) | 2009-01-12 | 2022-08-02 | Globus Medical, Inc. | Expandable vertebral prosthesis |
| US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US12097124B2 (en) | 2009-03-30 | 2024-09-24 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US10342662B2 (en) | 2009-12-09 | 2019-07-09 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
| US9801725B2 (en) | 2009-12-09 | 2017-10-31 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
| US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
| US9180137B2 (en) | 2010-02-09 | 2015-11-10 | Bone Support Ab | Preparation of bone cement compositions |
| US12279971B2 (en) | 2010-04-12 | 2025-04-22 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
| US11298243B2 (en) | 2010-04-12 | 2022-04-12 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
| US8282683B2 (en) | 2010-04-12 | 2012-10-09 | Globus Medical, Inc. | Expandable vertebral implant |
| US10130489B2 (en) | 2010-04-12 | 2018-11-20 | Globus Medical, Inc. | Expandable vertebral implant |
| US10492928B2 (en) | 2010-04-12 | 2019-12-03 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
| US9913735B2 (en) | 2010-04-12 | 2018-03-13 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
| US9707091B2 (en) | 2010-04-12 | 2017-07-18 | Globus Medical, Inc. | Expandable vertebral implant |
| US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
| US12318304B2 (en) | 2010-06-24 | 2025-06-03 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
| US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
| US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
| US10183477B2 (en) | 2010-08-20 | 2019-01-22 | H. David Dean | Absorbant and reflecting biocompatible dyes for highly accurate medical implants |
| US11865785B2 (en) | 2010-08-20 | 2024-01-09 | H. David Dean | Continuous digital light processing additive manufacturing of implants |
| US9688023B2 (en) | 2010-08-20 | 2017-06-27 | H. David Dean | Continuous digital light processing additive manufacturing of implants |
| US12220870B2 (en) | 2010-08-20 | 2025-02-11 | H. David Dean | Continuous digital light processing additive manufacturing of implants |
| US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
| US8613938B2 (en) | 2010-11-15 | 2013-12-24 | Zimmer Orthobiologics, Inc. | Bone void fillers |
| US10994998B2 (en) | 2013-02-20 | 2021-05-04 | Bone Support Ab | Setting of hardenable bone substitute |
| US10294107B2 (en) | 2013-02-20 | 2019-05-21 | Bone Support Ab | Setting of hardenable bone substitute |
| USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
| US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
| US12433757B2 (en) | 2016-06-28 | 2025-10-07 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable and articulating intervertebral cages |
| US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
| US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
| US12390343B2 (en) | 2016-06-28 | 2025-08-19 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
| US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
| US12427031B2 (en) | 2017-05-08 | 2025-09-30 | Medos International Sarl | Expandable cage |
| US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
| US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
| US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
| US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
| US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
| US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
| US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
| US12023258B2 (en) | 2021-04-06 | 2024-07-02 | Medos International Sarl | Expandable intervertebral fusion cage |
| US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
| US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
| US12440346B2 (en) | 2023-03-31 | 2025-10-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
| WO2025097130A1 (en) * | 2023-11-03 | 2025-05-08 | The Brigham And Women's Hospital, Inc. | Injectable in situ cross-linked depots for ultra-long-term delivery of hydrophilic drugs |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2288661A1 (en) | 1998-10-29 |
| EP1003441A4 (en) | 2009-05-13 |
| JP2001523999A (en) | 2001-11-27 |
| EP1003441A1 (en) | 2000-05-31 |
| US6153664A (en) | 2000-11-28 |
| WO1998047445A1 (en) | 1998-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6071982A (en) | Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same | |
| US6486232B1 (en) | Bioerodible polymeric semi-interpenetrating network alloys for internal fixation devices and bone cements | |
| US5085861A (en) | Bioerodable implant composition comprising crosslinked biodegradable polyesters | |
| US4843112A (en) | Bioerodable implant composition | |
| US11850323B2 (en) | Implantable polymer for bone and vascular lesions | |
| Yaszemski et al. | In vitro degradation of a poly (propylene fumarate)-based composite material | |
| Temenoff et al. | Injectable biodegradable materials for orthopedic tissue engineering | |
| Burkoth et al. | A review of photocrosslinked polyanhydrides:: in situ forming degradable networks | |
| Muggli et al. | Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics | |
| US6417247B1 (en) | Polymer/ceramic composites | |
| CA2175285C (en) | Biodegradable moldable surgical material | |
| EP1005378B1 (en) | Semi-interpenetrating polymer networks | |
| EP1901788B1 (en) | Bone cement composition | |
| US4192021A (en) | Bone replacement or prosthesis anchoring material | |
| US6419945B1 (en) | Buffered resorbable internal fixation devices and methods for making material therefore | |
| Lewandrowski et al. | Developing porosity of poly (propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats | |
| JP2009540982A (en) | Biomaterials containing degradation stabilizing polymers | |
| Poshusta et al. | Histocompatibility of photocrosslinked polyanhydrides: A novel in situ forming orthopaedic biomaterial | |
| Cervantes-Uc et al. | Bone cements: Formulation, modification, and characterization | |
| Hablee et al. | Recent developments on injectable calcium phosphate bone cement | |
| Trantolo et al. | Injectable and bioresorbable poly (propylene glycol-co-fumaric acid) bone cement | |
| Temenoff et al. | Injectable biodegradable materials for orthopaedic tissue engineering | |
| Jabbari et al. | POLY (CAPROLACTONE)-BASED DEGRADABLE AND INJECTABLE SCAFFOLDS FOR BONE REGENERATION | |
| Vázquez et al. | Key-properties and recent advances in Bone cements Technology | |
| Weiner | Photocrosslinked poly (anhydrides) for spinal fusion: characterization and controlled release studies. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CAMBRIDGE SCIENTIFIC, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WISE, DONALD L.;GRESSER, JOSEPH D.;TRANTOLO, DEBRA J.;AND OTHERS;REEL/FRAME:008765/0405 Effective date: 19970630 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |