JPS60181029A - Preparation of sustained release preparation - Google Patents

Preparation of sustained release preparation

Info

Publication number
JPS60181029A
JPS60181029A JP59036127A JP3612784A JPS60181029A JP S60181029 A JPS60181029 A JP S60181029A JP 59036127 A JP59036127 A JP 59036127A JP 3612784 A JP3612784 A JP 3612784A JP S60181029 A JPS60181029 A JP S60181029A
Authority
JP
Japan
Prior art keywords
lactic acid
copolymer
drug
polymer
acid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59036127A
Other languages
Japanese (ja)
Other versions
JPH0527608B2 (en
Inventor
Yoshito Ikada
義人 筏
Jiyoukiyuu Gen
丞烋 玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO MATERIARU YUNIBAASU KK
Toyo Jozo KK
Original Assignee
BIO MATERIARU YUNIBAASU KK
Toyo Jozo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO MATERIARU YUNIBAASU KK, Toyo Jozo KK filed Critical BIO MATERIARU YUNIBAASU KK
Priority to JP59036127A priority Critical patent/JPS60181029A/en
Publication of JPS60181029A publication Critical patent/JPS60181029A/en
Publication of JPH0527608B2 publication Critical patent/JPH0527608B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

PURPOSE:To prepare a sustained release preparation, by adding a drug to a specific lactic acid polymer or copolymer in the absence of a solvent at <=80 deg.C. CONSTITUTION:99.99-30pts.wt. lactic acid polymer or copolymer (e.g., L-lactic acid polymer, DL-lactic acid polymer, copolymer of L-lactic acid and glycolic acid, etc.) having 2,000-20,000mol.wt., softening at <=80 deg.C is blended with 0.01- 70pts.wt. drug (e.g., antibacterial agent, antitumor agent, etc.) in the absence of a solvent, molded, to give a sustained release preparation. The temperature in the preparation is <=80 deg.C, preferably 20-80 deg.C. The preparation causes no deterioration of the object drug, has improved sustained release effect, and can be prepared simply.

Description

【発明の詳細な説明】 本発明は徐放性製剤の製法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing sustained release preparations.

従来、乳酸ポリマーとグリコール酸ポリマーとは生体分
解性高分子として、また生体吸収性であるうえ異物反応
を殆んど起さない材料として徐放性薬剤のための保持マ
) IJワックス材して知られてきた。
Conventionally, lactic acid polymers and glycolic acid polymers have been used as biodegradable polymers and as materials that are bioabsorbable and hardly cause foreign body reactions, and have been used as retention materials for sustained-release drugs (IJ wax materials). It has become known.

また、乳酸ポリマーまたは乳酸とグリコール酸とのコポ
リマーと薬物との複合体の従来の調整法は(、)クロロ
ホルムなどの該ポリマー可溶性の有機溶媒を使用する方
法(例えば製薬工場Vo13、N1110,1983、
P2S5−553:特公昭55−44727 :特開昭
56−46822)および(b)約200℃の高温で溶
融する方法(特開昭58−216117ンが採用されて
きた。
In addition, the conventional method for preparing a complex of a lactic acid polymer or a copolymer of lactic acid and glycolic acid with a drug is a method using an organic solvent in which the polymer is soluble such as chloroform (for example, Pharmaceutical Factory Vol. 13, N1110, 1983,
P2S5-553: JP 55-44727: JP 56-46822) and (b) a method of melting at a high temperature of about 200°C (JP 58-216117) have been adopted.

従って、従来法による薬物の徐放性製剤では高沸点の有
機溶媒を用いる場合にはその有機溶媒の除去に高い温度
の加熱条件をともなう不適当な手段であシ、その他有機
溶媒に不安定な薬物でも使用できずまた溶媒が残存する
おそれの欠点があった。
Therefore, when using a high-boiling organic solvent in conventional sustained-release drug preparations, removal of the organic solvent requires unsuitable methods that involve high-temperature heating conditions, and other methods that are unstable to organic solvents. It has the disadvantage that it cannot be used even with drugs and there is a risk that solvent may remain.

また従来め溶融法では200℃近くに加熱する必要があ
るので熱に不安定な薬物については使用できなかった。
Furthermore, the conventional melting method requires heating to nearly 200°C, so it cannot be used for drugs that are unstable to heat.

また、マイクロカプセル化方法による製剤においても疎
水性の薬物にしか使用できない欠点があった。
Furthermore, formulations made by microencapsulation have the disadvantage that they can only be used for hydrophobic drugs.

本発明者らは薬物の良好かつ簡便な徐放性製剤の研究に
ついて鋭意研究の結果意外にも乳酸ポリマーおよび乳酸
とグリコール酸とのコポリコール酸とのコポリマーは8
0℃以下の軟化温度を示し、分子量20.000以上の
ものでは軟化温度が高くなる他に粘弾性が出て薬物の均
一混合が出来なくなることを見出して本発明に到達した
ものである。
The present inventors conducted intensive research into a good and simple sustained release preparation for drugs, and unexpectedly found that a copolymer of lactic acid polymer and a copolymer of lactic acid and glycolic acid with polycolic acid
The present invention was achieved based on the discovery that a polymer having a softening temperature of 0° C. or lower and a molecular weight of 20,000 or higher not only has a high softening temperature but also exhibits viscoelasticity, making it impossible to mix drugs uniformly.

本発明方法では、80℃以下の温度で乳酸ポリマーまた
はコポリマーに薬物を無溶媒下で均一に混合することが
できるので、従来使用できなかった熱安定性のわるい薬
物でも使用できるし、形態についても種々の形態が可能
である。
In the method of the present invention, drugs can be uniformly mixed into lactic acid polymers or copolymers without a solvent at a temperature of 80°C or lower, so drugs with poor thermal stability that could not be used in the past can also be used, and even drugs with poor thermal stability can be used. Various configurations are possible.

従来法では熱安定性の悪い薬物については有機溶媒を使
用する方法が採用されてきたが、これら有機溶媒は残存
するおそれがあるし、また不安定な薬物には使用できな
い欠点があったが本発明ではこれらの薬物にも使用でき
る利点がある。
Conventional methods have used organic solvents for drugs with poor thermal stability, but these organic solvents may remain and cannot be used for unstable drugs. The invention has the advantage that these drugs can also be used.

本発明は上記の知見に基づいて完成されたもので、分子
量2.000ないし20.000でしかも80℃以下で
軟化する乳酸ポリマーまたはコポリマーに無溶媒下薬物
を80℃以下の温度にて添加、混合、成形することを特
徴とする徐放性製剤の製法に関するものである。
The present invention was completed based on the above findings, and involves adding a drug without a solvent at a temperature of 80°C or lower to a lactic acid polymer or copolymer having a molecular weight of 2.000 to 20.000 and softening at 80°C or lower. The present invention relates to a method for producing a sustained release preparation, which is characterized by mixing and molding.

本発明で使用する乳酸ポリマーまたはコポリマーはL−
乳酸本4ポリマー、DL−乳酸払みポリマー、L−乳酸
とグリコール酸とのコポリマー、DL=乳酸とグリコー
ル酸とのコポリマーからなる群より選ばれるが、分子量
は2,000ないし20.000でしかも80℃以下の
軟化温度を有するものである。
The lactic acid polymer or copolymer used in the present invention is L-
It is selected from the group consisting of lactic acid main 4 polymer, DL-lactic acid removed polymer, L-lactic acid and glycolic acid copolymer, and DL=lactic acid and glycolic acid copolymer, and has a molecular weight of 2,000 to 20,000. It has a softening temperature of 80°C or less.

本発明方法により乳酸ポリマーと薬物との複合体を製造
するに際し、薬物の熱的安定性、および成形性などを考
慮して薬物を乳酸ポリマーと またはコポリマb籠溶媒下で混合、成形する温度は80
℃以下、好ましくは20℃ないし80℃である。
When producing a complex of a lactic acid polymer and a drug by the method of the present invention, the temperature at which the drug is mixed with the lactic acid polymer or copolymer B in a cage solvent and molded is determined in consideration of the thermal stability and moldability of the drug. 80
℃ or less, preferably from 20°C to 80°C.

本発明では、上記の混合、成形a度に適合した乳酸ポリ
マーおよびコポリマーが得られるよL−乳酸ポリマーの
軟化点は約80℃、分子量約8000の同ポリマーの軟
化点は約50℃、分子量約4000の同ポリマーの軟化
点は約30℃、分子量約16000のDL−乳酸ポリマ
ーの軟化点は約70℃、分子量約8000の同ポリマー
の軟化点は約40℃、分子量約4000の同ポリマーの
軟化点は約25℃、さらに分子量約16000のL−乳
酸−グリコール酸コポリマーまたはDL−乳酸−グリコ
ール酸コポリマー(コポリマーのモル比=75〜50 
: 25〜50)の軟化点は約65℃であ久同コポリマ
ー(25ニア5)の軟化点は約70℃であり、さらに同
コポリマーの分子量約8000〜4000(コポリマー
のモル比=75〜25:25〜75)の軟化点は約40
〜20℃である。乳酸ポリマーおよびコポリマーの分子
量範囲は2.000ないし20.000である。
In the present invention, lactic acid polymers and copolymers that are compatible with the above-mentioned mixing and molding a degree can be obtained. The softening point of the same polymer with a molecular weight of about 4,000 is about 30°C, the softening point of the DL-lactic acid polymer with a molecular weight of about 16,000 is about 70°C, the softening point of the same polymer with a molecular weight of about 8,000 is about 40°C, and the softening point of the same polymer with a molecular weight of about 4,000. The point is about 25°C, and the molecular weight is about 16,000 L-lactic acid-glycolic acid copolymer or DL-lactic acid-glycolic acid copolymer (copolymer molar ratio = 75 to 50
: 25-50) has a softening point of about 65°C, and the softening point of Kudo copolymer (25Nia 5) is about 70°C, and the molecular weight of the same copolymer is about 8,000-4,000 (mole ratio of copolymer = 75-25). :25-75) has a softening point of about 40
~20°C. The molecular weight range of lactic acid polymers and copolymers is 2.000 to 20.000.

分子量2,000以下では、乳酸ポリマーまたはコポリ
マーの軟化点は低温(20℃)となり、保存調整が困−
になり、一方分子量20,000以上で′は80℃J:
#)高い温度で軟化するため用いる薬物の劣化を生ずる
可能性があり、また軟化後の粘弾性が高く薬物のポリマ
ーまたはコポリマーへの混合が難くなるので上記の分子
量範囲に決定した。
If the molecular weight is less than 2,000, the softening point of the lactic acid polymer or copolymer will be low (20°C), making storage adjustment difficult.
On the other hand, when the molecular weight is 20,000 or more, ' is 80℃J:
#) The above molecular weight range was determined because the drug softens at high temperatures, which may cause deterioration of the drug used, and the viscoelasticity after softening is high, making it difficult to mix the drug into a polymer or copolymer.

乳酸コポリマーにおいて乳酸とグリコール酸との配合割
合は上記の記載より分子量、軟化温度(点)を考慮して
L−乳酸またはDL−乳酸99ないし20モル対グリコ
ール酸工ないし80モルの割合である。
In the lactic acid copolymer, the blending ratio of lactic acid and glycolic acid is 99 to 20 moles of L-lactic acid or DL-lactic acid to 80 moles of glycolic acid, taking into consideration the molecular weight and softening temperature (point) from the above description.

乳酸ポリマーまたはコポリマーと薬物との配合割合は複
合製剤が製造できれば特に制限がないが、薬物0.01
ないし70重量部当シ乳酸ポリマーまたはコポリマー9
9.99ないし30重量部である。好ましくは0.5:
99.5ないし50:50(重量比)である。
There is no particular restriction on the blending ratio of the lactic acid polymer or copolymer and the drug as long as a composite preparation can be produced, but the ratio of the drug to 0.01
9 to 70 parts by weight of the silactic acid polymer or copolymer 9
9.99 to 30 parts by weight. Preferably 0.5:
99.5 to 50:50 (weight ratio).

本発明は薬物として抗菌性薬物、抗腫瘍活性薬物、ペプ
チド系または蛋白質系薬物、ステロイド系ホルモンの医
薬を含む徐放性医薬組成物、熱に不安定な抗炎症性酵素
、繊維素溶解酵素等の酵素を含む徐放性製剤、熱に不安
定なポリペプチド系または蛋白系薬物を含む徐放性製剤
の製造に好適に使用できる。本発明の製剤で使用される
好ましい薬物の例としては、ウロキナーゼ、ヒアルウロ
ニダーゼ、その他の酵素、カルシトニン、インシュリン
、ソマトスタチン、エンドルフィンなどのポリペプチド
、種々のリンホカイン、マイトマイシンC1アドリアマ
イシン、アンピシリン、アモキーy47リン、クロキサ
シリン、ジクロキサシリン、セファレキシン、ミゾリビ
ン、ビタミンに1、ビタミンKm % 活性ビタミンD
、その他のビタミン類、エナント酸エストステロンなど
である。
The present invention relates to sustained release pharmaceutical compositions containing antibacterial drugs, antitumor active drugs, peptide or protein drugs, steroid hormones, heat-labile anti-inflammatory enzymes, fibrinolytic enzymes, etc. It can be suitably used in the production of sustained-release preparations containing enzymes, and sustained-release preparations containing heat-labile polypeptide or protein drugs. Examples of preferred drugs for use in the formulations of the invention include urokinase, hyaluronidase, other enzymes, calcitonin, insulin, somatostatin, polypeptides such as endorphins, various lymphokines, mitomycin C1 adriamycin, ampicillin, amoky y47 Phosphorus, cloxacillin, dicloxacillin, cephalexin, mizoribine, vitamin 1, vitamin Km % active vitamin D
, other vitamins, and estrogen enanthate.

さらに詳細には、例えば抗菌性薬物である抗生物質とし
てクロルテトラサイクリン、オキシテトラサイクリン、
ドキシサイクリンおよびテトラサイクリンなどのテトラ
サイクリン類、種糧のペニシリン類、セファロスポリン
類およびさらにストレプトマイシン、ツノ々ビオシン、
ネオマイシン、スルホンアミド類、エリスロマイシン、
゛コリスチン、リンコマイシン、ナリジキシックアシツ
ド、アブラマイシン、サリノマイシン、ニゲリシン、カ
ナマイシン、キトサマイシン、タイロシン、フラルタド
ン、ノぐンコマイシン、チオストレプトン、ゲンタマイ
シン、ドブ2マイシン、スピラマイシン、リスト七チン
、ソイマイシンなどがある。エリスロマイシン、スピラ
マイシン、タイロシン、5−0−ミカミノシIVタイロ
ノリド、ネオマイシン、リンホカインyなどが挙げられ
る。
More specifically, examples of antibiotics that are antibacterial drugs include chlortetracycline, oxytetracycline,
Tetracyclines such as doxycycline and tetracycline, seed penicillins, cephalosporins and also streptomycin, horn biocin,
neomycin, sulfonamides, erythromycin,
゛Colistin, lincomycin, nalidixic acid, abramycin, salinomycin, nigericin, kanamycin, chitosamycin, tylosin, furaltadone, noguncomycin, thiostrepton, gentamicin, dov2mycin, spiramycin, listeptin, soimycin and so on. Examples include erythromycin, spiramycin, tylosin, 5-0-mikaminosi IV tylonolide, neomycin, lymphokine y, and the like.

本発明の製剤はポリマーマトリックスおよびコポリマー
マトリックスおよび活性成分のほかに医薬製剤に通常使
用される他の物質例えば固形希釈剤、担体、結合剤、賦
形剤および補助剤を含有させることができる。例えば、
トラガントゴム、アラビアゴム、トウモロコシ澱粉、ゼ
ラチン、アルギン酸、ステアリン酸マグネシウム、アル
ミニウムモノステアレート、密ろう、蔗糖、乳糖、メチ
ルパラベン、プロビルノクラペン、マンニット、プロピ
レングリコ−/L、、微品質セルローズ、珪酸カルシウ
ム、シリカ、ポリビニルピロリドン、セトステアリルア
ルコール、カカオ脂、ポリオキシエチレンソルビタンモ
ノラウレート、乳酸エチル、ンルビタントリオレエート
、ステアリン酸カルシウム、タルクなどがある。
The preparations according to the invention can contain, in addition to the polymeric and copolymer matrix and the active ingredient, other substances commonly used in pharmaceutical preparations, such as solid diluents, carriers, binders, excipients and auxiliaries. for example,
Gum tragacanth, gum arabic, corn starch, gelatin, alginic acid, magnesium stearate, aluminum monostearate, beeswax, sucrose, lactose, methylparaben, probylnocrapene, mannitol, propylene glycol/L, fine quality cellulose, silicic acid. These include calcium, silica, polyvinylpyrrolidone, cetostearyl alcohol, cocoa butter, polyoxyethylene sorbitan monolaurate, ethyl lactate, nrubitan trioleate, calcium stearate, and talc.

次いで本発明の徐放性製剤の製造例を示せば、例えば分
子量2,000〜20.000で80℃以下で軟化する
乳酸ポリマーまたはコポリマーを適宜選択し、この一定
量を容器、好ましくはステンレス製容器に加え、直接ま
たは水浴もしくは恒温槽にて加温して軟化せしめる。次
いで軟化後対象とする薬物の一定量をこれに添加し、そ
の軟化状態にて充分に混合せしめる。その後この混合物
をその軟化条件下にて直接目的の一定形状に成形、加工
してもよく、または一旦押出し成形して固化成形後さら
に加温して軟化条件下目的の形状、例えば球状形に造粒
せしめてもよい。
Next, to show an example of manufacturing the sustained release preparation of the present invention, for example, a lactic acid polymer or copolymer having a molecular weight of 2,000 to 20,000 and softening at 80°C or less is appropriately selected, and a certain amount of this is placed in a container, preferably made of stainless steel. Add to a container and soften by heating directly or in a water bath or thermostatic bath. Then, after softening, a certain amount of the target drug is added thereto, and the mixture is thoroughly mixed in the softened state. Thereafter, this mixture may be directly molded and processed into a desired shape under the softening conditions, or it may be extruded, solidified, and further heated to form the desired shape, such as a spherical shape, under the softening conditions. You can also make it grainy.

このようにして得られた製剤は、対象とする薬物の劣化
もなく、かつ良好な徐放性効果を奏し、さらに簡便に製
造し得るものである。
The preparation thus obtained does not cause any deterioration of the target drug, exhibits a good sustained release effect, and can be manufactured easily.

次に実施例を掲げて本発明を説明するが、これに限定さ
れるものではない。
Next, the present invention will be explained with reference to examples, but the present invention is not limited thereto.

実施例1゜ L−乳酸ポリマー(分子量約16,000)50Iをス
テンレス製容器に入れ、恒温槽にて80℃に加温し軟化
させた後同昌度条件下にてウロキナーせ600.000
 単位(東洋醸造製)を添加して均一に混合するまで混
捏し、次いで直径3+mを有する棒状体に押出成型した
。得られた成形品を約3mの長さに切断後コーテング/
4ンに入れた後約70℃にて加温しつつ球状にし常温ま
で冷却した。酵素活性はフィシリングレート法によシ測
定した結果酵素活性の低下は認められなかった。
Example 1 50I of L-lactic acid polymer (molecular weight about 16,000) was placed in a stainless steel container, heated to 80°C in a constant temperature bath to soften it, and then heated to 600.000°C under the same temperature conditions.
Unit (manufactured by Toyo Jojo Co., Ltd.) was added and kneaded until uniformly mixed, and then extruded into a rod-shaped body having a diameter of 3+ m. After cutting the obtained molded product into a length of approximately 3 m, coating/
After placing the mixture in a 4-inch container, it was heated at about 70°C to form a ball and cooled to room temperature. Enzyme activity was measured by the ficiling rate method, and no decrease in enzyme activity was observed.

溶出試験は37℃の振とり機付恒温槽を用いて生理食塩
水中に球状成形品を浸漬し、280nmにおける紫外線
吸収スペクトル法(UV法)によシ外液中のウロキナー
ゼ濃度を定量して行なった。定量の結果、薬剤は1日月
で約10チ溶出し、その後徐々に溶出量が減少し、約1
ケ月で全量が溶出した。
The elution test was carried out by immersing the spherical molded product in physiological saline using a constant temperature bath with a shaker at 37°C, and quantifying the urokinase concentration in the external fluid using ultraviolet absorption spectroscopy (UV method) at 280 nm. Ta. As a result of quantitative analysis, the drug elutes approximately 10 times per day, and then the elution amount gradually decreases to approximately 1.
The entire amount was eluted within a few months.

同様に、分子量約16,000のL−乳酸ポリマーの代
りに分子量約7,800のL−乳酸ポリマーを使用し、
50℃で〃口部軟化した場合、1日月でウロキナーゼの
約20チが浴出し、2週間で全量が溶出した。分子量約
3,200のL−乳酸ポリマーを使用し25℃で加温軟
化した場合には1日月で約30チが浴出し、約1週間抜
全量が溶出した。
Similarly, using an L-lactic acid polymer with a molecular weight of about 7,800 instead of an L-lactic acid polymer with a molecular weight of about 16,000,
When the mouth part was softened at 50°C, approximately 20 units of urokinase were leached out in a day, and the entire amount was eluted in two weeks. When an L-lactic acid polymer with a molecular weight of about 3,200 was used and softened by heating at 25°C, about 30 pieces were leached out in a day, and the entire amount was eluted in about a week.

実施例2゜ DL−乳酸ポリマー(分子量約IB、ooo)50gを
ステンレス製容器に入れ、水浴上で80℃に加温、軟化
させた後アドリアマイシン(協和醗酵社製)1gを加え
均一に混合するまで混捏し、直径3mの大きさの棒状体
に押出成形した。この成形品を約3mの長さに切断した
後コーテングパンに入れ約60℃に加温下球状に仕上げ
常温まで冷却して製品を得た。
Example 2 50g of DL-lactic acid polymer (molecular weight: approximately IB, ooo) was placed in a stainless steel container, heated to 80°C on a water bath to soften it, and then 1g of Adriamycin (manufactured by Kyowa Hakko Co., Ltd.) was added and mixed uniformly. The mixture was kneaded and extruded into a rod-shaped body with a diameter of 3 m. This molded product was cut into a length of about 3 m, placed in a coating pan, heated to about 60° C., shaped into a sphere, and cooled to room temperature to obtain a product.

溶出試験゛は実施例1と同様に生理食塩水中で行なった
。外液中のアドリアマイシン濃度は290 nm にお
けるUV吸収によプ測定した。
The dissolution test was conducted in physiological saline in the same manner as in Example 1. Adriamycin concentration in the external fluid was measured by UV absorption at 290 nm.

定量の結果は1日月でアドリアマイシン約10チが溶出
し、その後徐々に溶出量が減少し、約1ケ月です1ソ全
量が溶出した。
The quantitative results showed that about 10% of adriamycin was eluted in 1 day, and then the elution amount gradually decreased, and in about 1 month, the entire amount of 1% was eluted.

実施例3゜ DL−乳酸とグリコール酸とのコポリマー(75:25
)(分子量約6.900 )50.9をステンレス製容
器に入れ、水浴上40℃に加温、軟化させた後ビタミン
に2 (東洋醸造#)100■を加え、均一に混合する
まで混捏し、直径3簡の棒状体に成形した。この成形品
を約3mの長さに切断後、コーテング/4ンに入れ、約
40℃に加温下球状品に仕上げ、常温まで冷却し製品を
得た。ビタミンに、の分解の有無を高速液体クロマトグ
ラフィー(HPLC) (254nm)によシ測定した
結果、製造過程での分解は認められなかった。溶出試験
は遮光下リン酸塩緩衝液(pf[7,0)中で実施例1
と同一条件下にて行ない、外液中のビタミンに!濃度は
261 nmにおけるUV吸収によシ足量した。
Example 3 Copolymer of DL-lactic acid and glycolic acid (75:25
) (molecular weight approximately 6.900) 50.9 was placed in a stainless steel container, heated to 40℃ on a water bath to soften it, then added 2 (Toyo Jojo #) 100■ to the vitamins and kneaded until uniformly mixed. It was molded into a rod-shaped body with a diameter of 3. This molded product was cut into a length of about 3 m, placed in a coating machine, heated to about 40° C. to form a spherical product, and cooled to room temperature to obtain a product. As a result of measuring the presence or absence of decomposition of vitamins using high performance liquid chromatography (HPLC) (254 nm), no decomposition was observed during the manufacturing process. The elution test was carried out in Example 1 in a phosphate buffer (pf[7,0) under the protection of light.
It is carried out under the same conditions as the vitamins in the external fluid! Concentrations were determined by UV absorption at 261 nm.

また、DL−乳酸とグリコール酸とのコポリマー(50
:50ン(分子量7,200)及びDL−乳酸とグリコ
ール酸とのコポリマー(25ニア5)(分子量6,50
0)をそれぞれ使用した場合、両者共40℃で軟化させ
た後実施例1と同様にして製品を得た。
In addition, a copolymer of DL-lactic acid and glycolic acid (50
: 50 N (molecular weight 7,200) and a copolymer of DL-lactic acid and glycolic acid (25 N 5) (molecular weight 6,50
0), both were softened at 40° C. and then products were obtained in the same manner as in Example 1.

溶出試験の結果DL−乳酸−グルコール酸コポリマー(
75:25)の場合、1日月でピタパンに3は約20チ
溶出し、約3週間ではソ全量が溶出した。
Elution test results DL-lactic acid-glycolic acid copolymer (
In the case of 75:25), about 20 pieces of 3 were eluted in pita bread in 1 day, and the entire amount of 3 was eluted in about 3 weeks.

DL−乳酸−ゲルコール酸コポIJマー(50:50)
の場合、18目でビタミンに2は約25チ溶出し、約2
週間で全量が溶出した。同様にして、DL−、乳酸−グ
ルコール酸コポリマー(25: 75 ) ノ’yA 
合K ハ1 日月f ki タミンK 2は約30%溶
出し、約1週間で全量が溶出した。
DL-lactic acid-gelcholic acid copo IJmer (50:50)
In the case of , about 25 units of vitamin 2 are eluted at the 18th point, and about 2
The entire amount was eluted within a week. Similarly, DL-, lactic acid-glycolic acid copolymer (25:75) No'yA
Approximately 30% of Tamin K2 was eluted, and the entire amount was eluted in about one week.

実施例4゜ DL−乳酸ポリマー(分子量約4.800 )50.9
tl−ステンレス製容器に入れ、水浴上30℃で軟化さ
せた後エナ/ト酸テストステロン10gを加え均一に混
合するまで混捏し、直径3mの大きさの棒状体に押出、
成形した。この成形品を約3+mの長さに切断後コーテ
ングパンに入れ、約30℃の加温下にて球状にして製品
を得た。
Example 4 DL-lactic acid polymer (molecular weight approximately 4.800) 50.9
Place in a stainless steel container, soften on a water bath at 30°C, add 10g of ena/testosterone tolate, knead until uniformly mixed, and extrude into a rod with a diameter of 3m.
Molded. This molded product was cut into a length of about 3+ m, placed in a coating pan, and heated to about 30° C. to form a sphere to obtain a product.

エナント酸テストステロンの分解の有無についてはUV
吸収によシ測定した結果、製造過程での分解は認められ
なかった。
UV to determine whether or not testosterone enanthate is decomposed.
As a result of absorption measurements, no decomposition was observed during the manufacturing process.

溶出試験は生理食塩水中で実施例1と同様の条件下で行
ない外液中のエナント酸テストステロン濃度は241n
rnKおけるUV吸収により定量した。
The dissolution test was conducted in physiological saline under the same conditions as in Example 1, and the concentration of testosterone enanthate in the external solution was 241n.
Quantitated by UV absorption at rnK.

定量の結果、18目でエナント酸テストステロンの約2
5チが溶出し、その後徐々に溶出量が減少し、約2週間
後はy全量のエナント酸テストステロンが溶出した。
As a result of quantitative determination, the amount of testosterone enanthate was approximately 2 at 18 eyes.
After that, the elution amount gradually decreased, and after about 2 weeks, the entire amount of testosterone enanthate was eluted.

実施例5゜ L−乳酸とグリコール酸とのコポリマー(75:25)
(分子量約7.600 )509をステンレス製容器に
入れ、水浴上40℃に加温し軟化させた後エルカトニン
(@成カルシトニン誘導体、東洋醸造製)10,000
単位を加え均一に混合するまで混捏し、直径3mの大き
さの棒状体に押出成形した。この成形品を約3■の長さ
に切断後、コーチイブパンに入れ、約50℃に加温下球
状にして製品を得た。エルカトニンのカルシトニン活性
は血清カルシウムの低下作用によシ測定した結果活性の
低下は認められなかった。
Example 5 Copolymer of L-lactic acid and glycolic acid (75:25)
(Molecular weight approximately 7.600) 509 was placed in a stainless steel container and heated to 40°C on a water bath to soften it, and then 10,000 elcatonin (@ synthetic calcitonin derivative, manufactured by Toyo Jozo)
The units were added, kneaded until uniformly mixed, and extruded into a rod-shaped body with a diameter of 3 m. This molded product was cut into a length of about 3 cm, placed in a coach tube pan, and heated to about 50° C. to form a sphere to obtain a product. The calcitonin activity of elcatonin was measured by its serum calcium lowering effect, and no decrease in activity was observed.

溶出試験は生理食塩水中で実施例1と同様の条件下で行
ない、外液中のエルヵトニン濃度はEIA法により定量
した。
The dissolution test was conducted in physiological saline under the same conditions as in Example 1, and the concentration of ercatonin in the external fluid was determined by EIA method.

定量の結果、18目で約7チのエルヵトニンが溶出し、
その後徐々に溶出量が減少し、約2ケ月で全量が溶出し
た。
As a result of quantitative analysis, approximately 7 elcatonin were eluted at 18 points.
Thereafter, the elution amount gradually decreased, and the entire amount was eluted in about 2 months.

実施例6゜ L−乳酸ポリマー(分子[16,000)50gをステ
ンレス製容器に入れ、恒温槽にて80℃に加温し、軟化
させた後回温度条件下ミゾリビン(東′洋醸造製)10
.9を〃口えて均一に混合するまで混捏し、次いで直径
3咽の大きさの棒状体に押出成形した。この成形品を約
3咽の長さに切断後、コーテングパン中に入れ約70℃
にて加温下球状にして製品を得た。薬品中のミゾリビン
含量をUV吸収によシ定量した結果製造過程での分解は
認められなかった。
Example 6 50g of L-lactic acid polymer (molecules [16,000) was placed in a stainless steel container and heated to 80°C in a constant temperature bath to soften it. Mizoribine (manufactured by Toyo Jojo) under the subsequent temperature conditions 10
.. 9 and kneaded until uniformly mixed, and then extruded into a rod-shaped body with a diameter of 3 mm. After cutting this molded product into approximately 3-fold lengths, place it in a coating pan at approximately 70°C.
A product was obtained by shaping the product into spheres under heating. As a result of quantifying the mizoribine content in the drug by UV absorption, no decomposition was observed during the manufacturing process.

溶出試験は生理食塩水中で実施例1と同一条件下にて行
なった。
The dissolution test was conducted in physiological saline under the same conditions as in Example 1.

外液中のミゾルピン濃度は279 nmにおけるUV吸
収により測定した。定量の結果は18目で約25#)の
ミゾルピンが済出し、その後除徐に溶出量が減少し、約
2週間で全量が溶出した。
Mizorpine concentration in the external fluid was measured by UV absorption at 279 nm. As a result of the quantitative determination, about 25#) of misorpine was released at the 18th mark, and the amount eluted gradually decreased thereafter, and the entire amount was eluted in about 2 weeks.

実施例7゜ DL−乳酸とグリコール酸とのコポリマー(75:25
)(分子量約6,900)50gをステンレス製容器に
入れ、水浴上40 ℃に加温し軟化させた後、アンピシ
リン三水和物(東洋醸造製)10gを加え均一に混合す
るまで混捏し、直径3調の大きさの棒状体に押出成型し
た。
Example 7゜DL-lactic acid and glycolic acid copolymer (75:25
) (molecular weight approximately 6,900) was placed in a stainless steel container, heated on a water bath to 40°C to soften it, then added 10 g of ampicillin trihydrate (manufactured by Toyo Jozo) and kneaded until uniformly mixed. It was extrusion molded into a rod-shaped body with three sizes of diameter.

この成形品を約3vRの長さに切断後、コーテングパン
中に入れ、約40’CK加温下、球状にして製品を得た
This molded product was cut into a length of about 3vR, placed in a coating pan, and heated to about 40'CK to form a sphere to obtain a product.

この製品中のアンピシリン含量をUV吸収によシ定量し
た結果、製造過程での分解は認められなか7た。
As a result of quantifying the ampicillin content in this product by UV absorption, no decomposition was observed during the manufacturing process7.

溶出試験は生理食塩水中で実施例1と同様に行なった。The dissolution test was conducted in the same manner as in Example 1 in physiological saline.

外液中のアンピシリン濃度は258 nm におけるU
V吸収により測定した。定量の結果アンピシリンの溶出
は、1日月で約20チ、その後徐々に減少し、約3週間
ではy全量のアンピシリンが溶出した。
Ampicillin concentration in external fluid is U at 258 nm
Measured by V absorption. As a result of quantitative determination, the elution of ampicillin was about 20 hours per day, and then gradually decreased, and in about 3 weeks, the entire amount of ampicillin was eluted.

代理人 玉名工夫他1名 手続補正書(自発) 昭和59年3月26日 特許庁長官 若杉和夫殿 1、事件の表示 昭和59年 特 許 願WGン6127号2発明の名称
 徐放性製剤の製法 3、 補正をする者 事件との関係 特許出願人 住 所 氏 名(名船 東洋醸造株式会社(他1名)4、代 理
 人〒100 氏 名 (5930)弁理士 玉名 工夫(他1名)5
、 補正命令の日(−1自発 6、 補正により増加する発明の数 07、補正の対象 8 補−正の内容 (1) 委任状を別紙の通り補充する。
Attorney Kazuo Tamana and 1 other procedural amendment (voluntary) March 26, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi 1 Indication of the case 1981 Patent Application WG No. 6127 2 Name of the invention Sustained-release preparation Manufacturing process 3, relationship with the case of the person making the amendment Patent applicant Address Name (Meibune Toyo Jozo Co., Ltd. (1 other person) 4, Agent 100 Name (5930) Patent attorney Tamana Kousei (1 other person) )5
, Date of amendment order (-1 Voluntary 6, Number of inventions increased by amendment 07, Subject of amendment 8 Contents of amendment (1) The power of attorney shall be supplemented as shown in the attached sheet.

(2) 8A細書中特許請求の範囲の項を別紙の如く訂
正する。
(2) The scope of claims in the 8A specification shall be amended as shown in the attached sheet.

(3)同第5頁第17行の[からなる群より選ばれるが
、」を「からなる群より選ばれる1種または2種以上の
混合物として使用してもよく、また」と訂正する。
(3) On page 5, line 17 of the same page, ``[selected from the group consisting of]'' should be corrected to ``may also be used as a mixture of one or more selected from the group consisting of''.

□ (5)同第5頁下から第1行の「乳酸ポリマーと薬物」
を「乳酸プリマーまたはコポリマーと薬物」と訂正する
□ (5) “Lactic acid polymers and drugs” on page 5, line 1 from the bottom
should be corrected to "Lactic acid primer or copolymer and drug."

(6) 同第10貞第10行の「微晶」を「結晶」と訂
正する。 1 ( 特許請求の範囲 ]1) 分子量2,000ないし20,000でしかも
80℃以下で軟化する乳酸/ リマーまたはコポリマー
に無溶媒下、薬物を80℃以下の温度で添加、混合、成
形することを特徴とする徐放性製剤の製法。
(6) Correct "microcrystal" in line 10 of the same text to "crystal". 1 (Claims) 1) Adding, mixing, and molding a drug to lactic acid/limer or copolymer having a molecular weight of 2,000 to 20,000 and softening at 80°C or lower without a solvent at a temperature of 80°C or lower. A method for producing a sustained-release preparation characterized by:

2) 乳酸プリマーまたはコポリマーがL−乳酸ポリマ
ー、DL−乳酸ポリマー、L−乳酸またはDL−乳酸と
グリコール酸とのコポリマー、またはこれらの混合体で
ある特許請求の範囲第11項記載の製法。
2) The method according to claim 11, wherein the lactic acid primer or copolymer is an L-lactic acid polymer, a DL-lactic acid polymer, a copolymer of L-lactic acid or DL-lactic acid and glycolic acid, or a mixture thereof.

3) L−乳酸とグリコール酸とのコポリマーまたはD
L−乳酸とグリコール酸とのコポリマーがL−乳酸また
はDL−乳酸99ないし20モル当りグリコール酸1な
いし80モルである特許請求の範囲第1項または第2項
記載の製法。
3) Copolymer of L-lactic acid and glycolic acid or D
3. The process according to claim 1, wherein the copolymer of L-lactic acid and glycolic acid contains 1 to 80 moles of glycolic acid per 99 to 20 moles of L-lactic acid or DL-lactic acid.

4)薬物と乳酸ポリマーまたはコポリマーとの使用比率
が薬物0.01ないし70重量部対乳酸4リマーまたは
コポリマー99.99ないし30重量部である特許請求
の範囲第1項記載の製法。
4) The method according to claim 1, wherein the ratio of the drug to the lactic acid polymer or copolymer is 0.01 to 70 parts by weight of the drug to 99.99 to 30 parts by weight of the lactic acid 4-limer or copolymer.

5)薬物がペグチドまたは蛋白系薬物、抗菌性薬物また
は抗履瘍活性薬物である特許請求の範囲第1項記載の製
法。
5) The method according to claim 1, wherein the drug is a pegtide, a protein drug, an antibacterial drug, or a drug with anticancer activity.

(6)ヘグチド系薬物がペグチドホルモン、リンホカイ
ンである特許請求の範囲第5項記載の製法。
(6) The production method according to claim 5, wherein the hegtide drug is a pegtide hormone or lymphokine.

(7) 蛋白系薬物が酵素である特許請求の範囲第5項
記載の製法。
(7) The manufacturing method according to claim 5, wherein the protein drug is an enzyme.

(8) [%がスーfOイドホルモンである特許請求の
範囲第5項記載の製法。
(8) The manufacturing method according to claim 5, wherein [% is a sufOoid hormone.

(9) 上記80℃以下の温度が20℃ないし80℃で
ある特許請求の範囲第1項記載の製法。
(9) The manufacturing method according to claim 1, wherein the temperature of 80°C or less is 20°C to 80°C.

Claims (9)

【特許請求の範囲】[Claims] (1)分子量2,000ないし20.000でしかも8
0℃以下で軟化する乳酸ポリマーまたはコポリマーに無
溶媒下、薬物を80℃以下の温度で添加、混合、成形す
ることを特徴とする徐放性製剤の製法。
(1) Molecular weight 2,000 to 20,000 and 8
A method for producing a sustained-release preparation, which comprises adding a drug to a lactic acid polymer or copolymer that softens at 0°C or lower without a solvent, mixing and molding at a temperature of 80°C or lower.
(2)乳酸ポリマーまたはコポリマーがL−filポリ
マー、1)L−乳酸ポリマー、L−乳酸とグリコール酸
とのコポリマーまたはDL−乳酸トク1,1コール酸と
のコポリマーである特許請求の範囲第1項記載の製法。
(2) The lactic acid polymer or copolymer is an L-fil polymer, 1) an L-lactic acid polymer, a copolymer of L-lactic acid and glycolic acid, or a copolymer of DL-lactic acid and 1,1-cholic acid. Manufacturing method described in section.
(3)L−乳酸とグリコール酸とのコポリマーまたはD
L−乳酸とグリコール酸とのコポリマーがL−乳酸また
はDL−乳酸99ないし20モル当9ゲルコール酸1な
いし80モルである特許請求の範囲第1項または第2項
記載の製法。
(3) Copolymer of L-lactic acid and glycolic acid or D
3. The method according to claim 1, wherein the copolymer of L-lactic acid and glycolic acid contains 1 to 80 moles of 9-gelcolic acid per 99 to 20 moles of L-lactic acid or DL-lactic acid.
(4)薬物と乳酸ポリマーまたはコポリマーとの使用比
率が薬物0.01ないし70重量部対乳酸ポリマーまた
はコポリマー99.99ないし30重量部である特許請
求の範囲第1項記載の製法。
(4) The method according to claim 1, wherein the ratio of the drug to the lactic acid polymer or copolymer is 0.01 to 70 parts by weight of the drug to 99.99 to 30 parts by weight of the lactic acid polymer or copolymer.
(5)薬物がペプチドまたは蛋白系薬物、抗菌性薬物ま
たは抗腫瘍活性薬物である特許請求の範囲第1項記載の
製法。
(5) The method according to claim 1, wherein the drug is a peptide or protein drug, an antibacterial drug, or a drug with antitumor activity.
(6) −2プチド系楽物がペプチドホルモン、リンホ
カインである特許請求の範囲第5項記載の製法。
(6) The production method according to claim 5, wherein the -2 peptide compound is a peptide hormone or lymphokine.
(7) 蛋白系薬物が酵素である特許請求の範囲第5項
記載の製法。
(7) The manufacturing method according to claim 5, wherein the protein drug is an enzyme.
(8)薬物がステロイドホルモンである特許請求の範囲
第5項記載の製法。
(8) The manufacturing method according to claim 5, wherein the drug is a steroid hormone.
(9)上記80℃以下の温度が20℃ないし80℃であ
る特許請求の範囲第1項記載の製法。
(9) The manufacturing method according to claim 1, wherein the temperature below 80°C is 20°C to 80°C.
JP59036127A 1984-02-29 1984-02-29 Preparation of sustained release preparation Granted JPS60181029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036127A JPS60181029A (en) 1984-02-29 1984-02-29 Preparation of sustained release preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036127A JPS60181029A (en) 1984-02-29 1984-02-29 Preparation of sustained release preparation

Publications (2)

Publication Number Publication Date
JPS60181029A true JPS60181029A (en) 1985-09-14
JPH0527608B2 JPH0527608B2 (en) 1993-04-21

Family

ID=12461113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036127A Granted JPS60181029A (en) 1984-02-29 1984-02-29 Preparation of sustained release preparation

Country Status (1)

Country Link
JP (1) JPS60181029A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172813A (en) * 1985-01-28 1986-08-04 Japan Atom Energy Res Inst Sustained release composite containing polylactic acid as carrier and production thereof
JPS62207227A (en) * 1986-03-06 1987-09-11 Japan Atom Energy Res Inst Production of sustained release drug complex consisting of polylactone
JPS63218632A (en) * 1987-03-06 1988-09-12 Japan Atom Energy Res Inst Production of biodegradable copoly(glycolic/l-lactic acid) complex which can gradually release hormons
DE4023134A1 (en) * 1989-07-28 1991-01-31 Debiopharm Sa METHOD FOR PRODUCING A PHARMACEUTICAL PREPARATION IN THE FORM OF MICROPARTICLES
US5075115A (en) * 1990-04-02 1991-12-24 Fmc Corporation Process for polymerizing poly(lactic acid)
JPH0527608B2 (en) * 1984-02-29 1993-04-21 Baio Materiaru Yunibaasu Kk
US5225205A (en) * 1989-07-28 1993-07-06 Debiopharm S.A. Pharmaceutical composition in the form of microparticles
GB2265311A (en) * 1989-07-07 1993-09-29 Sandoz Ltd Sustained release formulations of water-soluble peptides
US5439688A (en) * 1989-07-28 1995-08-08 Debio Recherche Pharmaceutique S.A. Process for preparing a pharmaceutical composition
EP0693923A1 (en) * 1993-04-12 1996-01-31 Cambridge Scientific, Inc. Method for making a bioerodible material for the substained release of a medicament and the material made from the method
US5855915A (en) * 1995-06-30 1999-01-05 Baylor University Tablets or biologically acceptable implants for long-term antiinflammatory drug release
US6071982A (en) * 1997-04-18 2000-06-06 Cambridge Scientific, Inc. Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same
US7342048B2 (en) 2005-04-28 2008-03-11 Nipro Corporation Bioabsorbable pharmaceutical formulation
JP2015534952A (en) * 2012-10-19 2015-12-07 胡幼圃 Long-acting analgesic / PLGA sustained-release agent of dinalbuphine sebacate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011312A (en) * 1975-06-25 1977-03-08 American Home Products Corporation Prolonged release drug form for the treatment of bovine mastitis
JPS5646823A (en) * 1979-09-12 1981-04-28 Lilly Co Eli Releaseecontrolled parasiticide
JPS57150609A (en) * 1981-02-16 1982-09-17 Ici Ltd Pharmaceutical composition, heterogeneous copolymer comprising lactic acid and glycolic acid units and manufacture
JPH0527608A (en) * 1991-07-24 1993-02-05 Fuji Xerox Co Ltd Form feeder for image transfer device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181029A (en) * 1984-02-29 1985-09-14 Toyo Jozo Co Ltd Preparation of sustained release preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011312A (en) * 1975-06-25 1977-03-08 American Home Products Corporation Prolonged release drug form for the treatment of bovine mastitis
JPS5646823A (en) * 1979-09-12 1981-04-28 Lilly Co Eli Releaseecontrolled parasiticide
JPS57150609A (en) * 1981-02-16 1982-09-17 Ici Ltd Pharmaceutical composition, heterogeneous copolymer comprising lactic acid and glycolic acid units and manufacture
JPH0527608A (en) * 1991-07-24 1993-02-05 Fuji Xerox Co Ltd Form feeder for image transfer device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527608B2 (en) * 1984-02-29 1993-04-21 Baio Materiaru Yunibaasu Kk
JPH0513130B2 (en) * 1985-01-28 1993-02-19 Japan Atomic Energy Res Inst
JPS61172813A (en) * 1985-01-28 1986-08-04 Japan Atom Energy Res Inst Sustained release composite containing polylactic acid as carrier and production thereof
JPS62207227A (en) * 1986-03-06 1987-09-11 Japan Atom Energy Res Inst Production of sustained release drug complex consisting of polylactone
JPS63218632A (en) * 1987-03-06 1988-09-12 Japan Atom Energy Res Inst Production of biodegradable copoly(glycolic/l-lactic acid) complex which can gradually release hormons
GB2265311B (en) * 1989-07-07 1994-02-09 Sandoz Ltd Sustained release formulations of water soluble peptides
GB2265311A (en) * 1989-07-07 1993-09-29 Sandoz Ltd Sustained release formulations of water-soluble peptides
BE1003093A3 (en) * 1989-07-28 1991-11-19 Debio Rech Pharma Sa PROCESS FOR THE PREPARATION OF A PHARMACEUTICAL COMPOSITION IN THE FORM OF MICROPARTICLES.
US5439688A (en) * 1989-07-28 1995-08-08 Debio Recherche Pharmaceutique S.A. Process for preparing a pharmaceutical composition
US5134122A (en) * 1989-07-28 1992-07-28 Debiopharm S.A. Method for preparing a pharmaceutical composition in the form of microparticles
GR900100568A (en) * 1989-07-28 1991-12-10 Debiopharm Sa A method for preparing a composition in the form of microparticles
US5225205A (en) * 1989-07-28 1993-07-06 Debiopharm S.A. Pharmaceutical composition in the form of microparticles
FR2650182A1 (en) * 1989-07-28 1991-02-01 Debiopharm Sa PROCESS FOR THE PREPARATION OF A PHARMACEUTICAL COMPOSITION IN THE FORM OF MICROPARTICLES
DE4023134A1 (en) * 1989-07-28 1991-01-31 Debiopharm Sa METHOD FOR PRODUCING A PHARMACEUTICAL PREPARATION IN THE FORM OF MICROPARTICLES
US5075115A (en) * 1990-04-02 1991-12-24 Fmc Corporation Process for polymerizing poly(lactic acid)
EP0693923A1 (en) * 1993-04-12 1996-01-31 Cambridge Scientific, Inc. Method for making a bioerodible material for the substained release of a medicament and the material made from the method
EP0693923A4 (en) * 1993-04-12 1996-08-21 Cambridge Scient Inc Method for making a bioerodible material for the substained release of a medicament and the material made from the method
US5855915A (en) * 1995-06-30 1999-01-05 Baylor University Tablets or biologically acceptable implants for long-term antiinflammatory drug release
US6280772B1 (en) 1995-06-30 2001-08-28 Baylor University Polyester/carboxylic acid composite materials
US6071982A (en) * 1997-04-18 2000-06-06 Cambridge Scientific, Inc. Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same
US7342048B2 (en) 2005-04-28 2008-03-11 Nipro Corporation Bioabsorbable pharmaceutical formulation
JP2015534952A (en) * 2012-10-19 2015-12-07 胡幼圃 Long-acting analgesic / PLGA sustained-release agent of dinalbuphine sebacate

Also Published As

Publication number Publication date
JPH0527608B2 (en) 1993-04-21

Similar Documents

Publication Publication Date Title
JPS60181029A (en) Preparation of sustained release preparation
US4351337A (en) Biodegradable, implantable drug delivery device, and process for preparing and using the same
US6284273B1 (en) Cross-linked high amylose starch resistant to amylase as a matrix for the slow release of biologically active compounds
EP1014941B1 (en) Hot-melt extrudable pharmaceutical formulation
CN1193740C (en) Fast dispersing dosage forms free of gelatin
US20020034542A1 (en) Rapidly disintegrating and fast-dissolving solid dosage form
JPS62294626A (en) Controlled continuous release medicine blend, improved unit vehicle and many unit dosage
JPH11508250A (en) Composition comprising active substance dissolved in glass-forming carrier and method for producing the same
GB1592830A (en) Absorbable pharmaceutical compositions based on isomorphic copolyoxalates
JPH0198617A (en) Copolymer due to polymerization of glycolic acid and lactic acid
JP2000505429A (en) Method for producing soluble delivery system using volatile salt
CN1258221A (en) Biodegradable compositions comprising poly (cycloaliphatic phosphoester_ compounds, articles, and methods for using same
JP2001527087A (en) Carbohydrates useful in solid transport systems
JPH05504947A (en) Delayed release formulation
JP2021523948A (en) Aripiprazole Sustained Release Microspheres and Their Manufacturing Methods
EP1638534B1 (en) Use of ethanol as plasticizer for preparing subcutaneous implants containing thermolabile active principles dispersed in a plga matrix
JP2002542276A (en) Method for producing a water-insoluble amorphous or partially amorphous controlled release substrate
US20060099254A1 (en) Sustained release drug delivery system and method
WO2023116517A1 (en) Continuous delivery preparation capable of being stably released and preparation method therefor
CN116459220A (en) Pramipexole xinafoate slow release microsphere, preparation method and application thereof
AU600812B2 (en) Binder-free granules with delayed release of the active compound
CN103156805A (en) Ciprofloxacin thermo-sensitive type in-situ gel composition and preparing method thereof
JPH09169641A (en) Loxoprofen preparation
AU671651B2 (en) A drug delivery device and a method of making such device
JPH05139974A (en) Production of easily soluble solid dispersion containing dihydropyridine a substance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term