EP3102710B1 - Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité - Google Patents

Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité Download PDF

Info

Publication number
EP3102710B1
EP3102710B1 EP15704947.9A EP15704947A EP3102710B1 EP 3102710 B1 EP3102710 B1 EP 3102710B1 EP 15704947 A EP15704947 A EP 15704947A EP 3102710 B1 EP3102710 B1 EP 3102710B1
Authority
EP
European Patent Office
Prior art keywords
max
alloy
alloy according
nicr20tial
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15704947.9A
Other languages
German (de)
English (en)
Other versions
EP3102710A1 (fr
Inventor
Heike Hattendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals International GmbH
Original Assignee
VDM Metals International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52477513&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3102710(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by VDM Metals International GmbH filed Critical VDM Metals International GmbH
Priority to SI201530482T priority Critical patent/SI3102710T1/sl
Publication of EP3102710A1 publication Critical patent/EP3102710A1/fr
Application granted granted Critical
Publication of EP3102710B1 publication Critical patent/EP3102710B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Definitions

  • the invention relates to a nickel-chromium-cobalt-titanium-aluminum wrought alloy with very good wear resistance, at the same time very good creep resistance, good high temperature corrosion resistance and good processability.
  • Austenitic, thermosetting nickel-chromium-titanium-aluminum alloys with different nickel, chromium, titanium and aluminum contents have long been used for exhaust valves of engines.
  • a good wear resistance, a good heat resistance / creep resistance, a good fatigue strength and a good high-temperature corrosion resistance (especially in exhaust gases) is required.
  • DIN EN 10090 specifies austenitic alloys for exhaust valves, of which nickel alloys 2.4955 and 2.4952 (NiCr20TiAl) have the highest hot and creep strengths of all alloys specified in this standard.
  • Table 1 shows the composition of the nickel alloys mentioned in DIN EN 10090
  • Tables 2 to 4 show the tensile strengths, the 0.2% proof stress and creep resistance values after 1000 h.
  • NiCr20TiAl has significantly higher tensile strengths, 0.2% yield strengths and higher creep rupture strength than NiFe25Cr20NbTi.
  • the EP 0 639 654 A2 discloses an iron nickel-chromium alloy consisting of (in weight%) up to 0.15% C, up to 1.0% Si, up to 3.0% Mn, 30 to 49% Ni, 10 to 18% Cr, 1.6 to 3.0% Al, one or more elements from the group IVa to Va with a total content of 1.5 to 8.0%, balance Fe and unavoidable impurities, wherein Al is an indispensable additional element and one or more elements of the already mentioned group IVa to Va have to satisfy the following formula in atom%: 0.45 ⁇ al / al + Ti + Zr + Hf + V + Nb + Ta ⁇ 0.75
  • the WO 2008/007190 A2 discloses a wear resistant alloy consisting of (in weight%) 0.15 to 0.35% C, up to 1.0% Si, up to 1.0% Mn,> 25 to ⁇ 40% Ni, 15 to 25 % Cr, up to 0.5% Mo, up to 0.5% W,> 1.6 to 3.5% Al,> 1.1% to 3% in the sum Nb plus Ta, up to 0.015% B, Fe and unavoidable impurities, where Mo + 0.5W ⁇ 0.75%; Ti + Nb ⁇ 4.5% and 13 ⁇ (Ti + Nb) / C ⁇ 50.
  • the alloy is particularly useful for the manufacture of exhaust valves for internal combustion engines.
  • the good wear resistance of this alloy is based on the high proportion of primary carbides that form due to the high carbon content. However, a high proportion of primary carbides causes processing problems in the production of this alloy as a wrought alloy.
  • the hot strength or creep strength is in the range of 500 ° C to 900 ° C on the additions of aluminum, titanium and / or niobium (or other elements such as Ta, ..) for excretion of ⁇ 'and / or ⁇ "phase
  • the hot strength or creep resistance also improved by high levels of solid solution strengthening elements such as chromium, aluminum, silicon, molybdenum and tungsten, as well as by a high carbon content.
  • alloys with a chromium content around 20% form a chromium oxide layer (Cr 2 O 3 ) protecting the material.
  • the content of chromium is slowly consumed in the course of use in the application area for the formation of the protective layer. Therefore, a higher chromium content improves the life of the material, because a higher content of the protective layer-forming element chromium retards the time at which the Cr content is below the critical limit and forms oxides other than Cr 2 O 3 , eg cobalt and nickel oxides.
  • the EP 1 696 108 A1 discloses a heat-resistant alloy for exhaust valves having the following composition: 0.01-0.15% C, up to 2.0% Si, up to 1.0% Mn, up to 0.02% P, up to 0.01% S, 0.1-15% Co, 15-25% Cr, 01-10% Mo and / or 0.1-5% W, the sum Mo + 1 ⁇ 2 W being 3-10%, 1.0-3, 0% Al, 2.0-3.5% Ti, where the sum of Al + Ti (in atomic%) should be 6.3-8.5% and the ratio of Ti to Al 0.4-0.8.
  • the elements B are still present in amounts of 0.001-0.01%, Fe to 3.0%, balance nickel and unavoidable impurities.
  • the EP 1 464 718 A1 relates to a high-strength heat-resistant alloy for exhaust valves having the following chemical composition: 0.01-0.2% C, up to 1.0 % Si, to 1.0% Mn, to 0.02% P, to 0.01% S, 30 to 62% Ni, 13 to 20% Cr, to 2.0% Mo, 0.01 to 3.0 % W, where the sum Mo + 0.5 W is 1.0 - 2.5%,> 0.7% - ⁇ 1.6% Al, 1.5 - 3.0% Ti, the ratio Ti to Al> 1.6 - ⁇ 2.0, 0.5 - 1.5% Nb, 0.001 - 0.01 B, balance iron and unavoidable impurities.
  • WO 2013/182178 A1 describes a nickel-chromium alloy having good processability, creep resistance and corrosion resistance, having the following composition: 29-37% Cr, 0.001-1.8% Al, 0.1-7.0% Fe, 0.001-0.5 % Si, 0.005-2.0% Mn, 0-1% Ti and / or 0-1.1% Nb, 0.0002-0.05% Mg and / or Ca, 0.005-0.12% C, respectively, 0.001-0.05% N, 0.001-0.03% P, 0.0001-0.02% O, max. 0.01% S, max. 2.0% Mo, max. 2.0% W, balance nickel and the usual process-related impurities.
  • This object is achieved by a hardening nickel-chromium-cobalt-titanium-aluminum wrought alloy with very good wear resistance, at the same time very good creep resistance, good high temperature corrosion resistance and good processability with (in% by mass)> 18 to 26% chromium, 1, 5 to 3.0% titanium, 0.6 to 2.0% aluminum, 5.0 to 40% cobalt, 0.005 to 0.10% carbon, 0.0005 to 0.050% nitrogen, 0.0005 to 0.030% phosphorus, Max. 0.010% sulfur, max. 0.020% oxygen, max. 0.70% silicon, max. 2.0% manganese, max. 0.05% magnesium, max. 0.05% calcium, max. 0.5% molybdenum, max. 0.5% tungsten, max.
  • niobium 0.2% niobium, max. 0.5% copper, max. 0.5% vanadium, if necessary 0 to 20 % Fe, if necessary 0 to 0.20% Zr, if necessary 0.0001 to 0.008% boron, wherein optionally the following elements may also be contained in the alloy: Y 0-0,20% and / or La 0-0,20% and / or Ce 0-0,20% and / or Cerium mixed metal 0-0,20% and / or Hf 0-0,20% and / or Ta 0 - 0.60%.
  • a maximum of 0.5% vanadium may be present in the alloy.
  • Preferred areas can be set with Cr + Co + Fe ⁇ 26 % Cr + Co + Fe ⁇ 27 % Cr + Co + Fe ⁇ 28 % Cr + Co + Fe ⁇ 30 % Cr + Co + Fe ⁇ 35 % Cr + Co + Fe ⁇ 40 %
  • Preferred areas can be set with fh ⁇ 1 % fh ⁇ 3 % fh ⁇ 4 % fh ⁇ 5 % fh ⁇ 6 % fh ⁇ 7 %
  • impurities may still contain the elements lead, zinc and tin in amounts as follows: pb Max. 0.002% Zn Max. 0.002% sn Max. 0.002%
  • the alloy of the present invention is preferably melted in the vacuum induction furnace (VIM), but may be melted open, followed by treatment in a VOD or VLF plant. After casting in blocks or possibly as a continuous casting, the alloy is optionally annealed at temperatures between 600 ° C and 1100 ° C for 0.1 hours (h) to 100 hours, if necessary under inert gas, such. As argon or hydrogen, followed by a cooling in air or in the moving annealing atmosphere. Thereafter, a remelting by means of VAR or ESU, possibly followed by a second remelting process by means of VAR or ESU.
  • VIM vacuum induction furnace
  • the blocks are optionally annealed at temperatures between 900 ° C and 1270 ° C for 0.1 to 70 hours, then hot formed, optionally with one or more intermediate anneals between 900 ° C and 1270 ° C for 0.05 to 70 hours.
  • Hot working can be done, for example, by forging or hot rolling.
  • the surface of the material may be in the whole process if necessary (also several times) in between and / or at the end for cleaning by chemical (eg by pickling) and / or mechanically (eg by machining, by blasting or by grinding) are removed.
  • the leadership of the thermoforming process can be carried out so that the semi-finished already recrystallized with particle sizes between 5 and 100 microns, preferably between 5 and 40 microns, is present.
  • inert gas such as. As argon or hydrogen
  • a cold forming for example, rolling, drawing, hammering, embossing, pressing
  • degrees of deformation up to 98% in the desired semi-finished mold possibly with intermediate annealing between 700 ° C and 1270 ° C for 0, 1 min to 70 hours, if necessary under inert gas, such.
  • the final properties of the alloys according to the invention and the parts produced therefrom are achieved by annealing between 600 ° C. and 900 ° C. for 0.1 to 300 hours, followed by air and / or oven cooling.
  • the alloy according to the invention is cured by precipitation of a finely divided ⁇ 'phase.
  • two-stage annealing may be performed by first annealing in the range of 800 ° C to 900 ° C for 0.1 to 300 hours, followed by air cooling and / or furnace cooling and a second anneal between 600 ° C and 800 ° C ° C for 0.1 hours to 300 hours followed by air cooling.
  • the alloy according to the invention can be produced and used well in the product forms strip, sheet metal, rod wire, longitudinally welded tube and seamless tube.
  • These product forms are produced with a mean grain size of 3 ⁇ m to 600 ⁇ m.
  • the preferred range is between 5 ⁇ m and 70 ⁇ m, in particular between 5 and 40 ⁇ m.
  • the alloy of the invention can be well by means of forging, upsetting hot extrusion, hot rolling u. ⁇ . process processes. By means of these methods u. a. Manufacture components such as valves, hollow valves or bolts.
  • the alloy according to the invention should preferably be used in areas for valves, in particular exhaust valves of internal combustion engines. But also a use in components of gas turbines, as fastening bolts, in springs and in turbochargers is possible.
  • the parts produced from the alloy according to the invention in particular z.
  • As the valves or the valve seat surfaces can be subjected to further surface treatments such. As a nitration, to further increase the wear resistance.
  • the force measuring module (s) is the more accurate one.
  • the volume loss of the pin was measured and used as a measure of the wear resistance rating of the pin material.
  • the hot strength was determined in a hot tensile test according to DIN EN ISO 6892-2.
  • the yield strength R p0.2 and the tensile strength R m were determined.
  • the experiments were carried out on round samples with a diameter of 6 mm in the measuring range and an initial measuring length L 0 of 30 mm. The sampling took place transversely to the forming direction of the semifinished product.
  • the forming speed at R p0.2 was 8.33 10 -5 1 / s (0.5% / min) and at R m was 8.33 10 -4 1 / s (5% / min).
  • the sample was placed in a tensile testing machine at room temperature and heated to the desired temperature with no tensile force. After reaching the test temperature, the sample was held without load for one hour (600 ° C) or two hours (700 ° C to 1100 ° C) for temperature compensation. Thereafter, the tensile load was applied to the sample to maintain the desired strain rates and testing was begun.
  • the creep resistance of a material improves with increasing heat resistance. Therefore, the hot strength is also used to evaluate the creep resistance of the various materials.
  • the corrosion resistance at higher temperatures was determined in an oxidation test at 800 ° C in air, the test being interrupted every 96 hours and the mass changes of the samples determined by the oxidation.
  • the samples were placed in the ceramic crucible in the experiment, so that possibly spalling oxide was collected and by weighing the crucible containing the oxides, the mass of the chipped oxide can be determined.
  • the sum of the mass of the chipped oxide and the mass change of the sample is the gross mass change of the sample.
  • the specific mass change is the mass change related to the surface of the samples. These are referred to below as m net for the specific net mass change, m gross for the specific gross mass change, m spall for the specific mass change of the chipped oxides.
  • the experiments were carried out on samples with about 5 mm thickness. 3 samples were removed from each batch, the values given are the mean values of these 3 samples.
  • the occurring phases in equilibrium were calculated for the different alloy variants with the program JMatPro from Thermotech.
  • the database used for the calculations was the TTNI7 nickel base alloy database from Thermotech. This makes it possible to identify phases whose formation in the area of application embrittles the material.
  • the temperature ranges can be identified in which z. B. the thermoforming should not take place because it forms phases that strongly solidify the material and thus lead to cracking during thermoforming. For a good processability, especially in the hot forming, such. As hot rolling, forging, upsetting, hot extrusion u. Processes. a sufficiently large temperature range, in which such phases do not form, must be available.
  • the new material is said to have better wear resistance than the reference alloy NiCr20TiAl.
  • Stellite 6 was also tested for comparison. Stellite 6 is a highly wear-resistant cobalt-based casting alloy with a network of tungsten carbides consisting of approx. 28% Cr, 1% Si, 2% Fe, 6% W, 1.2% C, but the remainder is directly due to its high carbide content must be poured into the desired shape. Due to its network of tungsten carbides, Stellite 6 achieves a very high hardness of 438 HV30, which is very advantageous for wear.
  • the alloy "E” according to the invention is intended to come as close as possible to the volume loss of Stellite 6.
  • the aim is in particular to reduce the high-temperature wear between 600 and 800 ° C, which is the relevant temperature range z. B. for an application as an outlet valve. Therefore, in particular the following criteria should apply to the alloys "E” according to the invention: Mean value of volume loss alloy " e " ⁇ 0.5 ⁇ Mean value of volume loss Reference NiCr 20 TiAl at 600 ° C or 800 ° C.
  • Table 3 shows the lower end of the 0.2% yield strength spreading band for NiCr20TiAl when cured at temperatures between 500 and 800 ° C
  • Table 2 shows the lower end of the tensile strength spreading band.
  • the 0.2% yield strength of the alloy according to the invention should be at least in this range for 600 ° C or below 800 ° C this range by not more than 50 MPa to obtain sufficient strength. Ie. In particular, the following values should be achieved: 600 ° C : Yield point R p 0.2 ⁇ 650 MPa 800 ° C : Yield point R p 0.2 ⁇ 390 MPa
  • the inequalities (5a) and (5b) are achieved when the following relationship between Ti, Al, Fe, Co, Cr, and C is satisfied.
  • fh ⁇ 0 With fh 6.49 + 3.88 Ti + 1.36 al - 0.301 Fe + 0.759 - 0.0209 Co Co - 0.428 Cr - 28.2 C where Ti, Al, Fe, Co, Cr and C are the concentration of the respective elements in mass% and fh is given in%.
  • the inequality (5c) can additionally be fulfilled if it holds fh ⁇ 6 %
  • the alloy according to the invention is said to have a corrosion resistance in air similar to that of NiCr20TiAl.
  • the heat resistance or creep strength in the range of 500 ° C. to 900 ° C. is based on the addition of aluminum, titanium and / or niobium, which precipitate the ⁇ 'and / or ⁇ . " If the hot forming of these alloys is carried out in the precipitation area of these phases, there is a danger of cracking, ie the hot forming should preferably take place above the solvus temperature T s ⁇ ' (or T s ⁇ " ) of these phases. So that a sufficient temperature range for hot forming is available, the solvus temperature T s ⁇ ' (or T s ⁇ " ) should be less than 1020 ° C.
  • Tables 5a and 5b show the analyzes of laboratory scale molten batches together with some prior art large scale molten batches used for comparison (NiCr20TiAl).
  • the batches of the prior art are marked with a T, the inventive with an E.
  • the melted laboratory scale batches are marked with an L, the industrially molten batches with a G.
  • Lot 250212 is NiCr20TiAl, but melted as a laboratory batch, and serves for reference.
  • the blocks of the laboratory-scale molten alloys in Table 5a and b were annealed between 1100 ° C and 1250 ° C for 0.1 to 70 hours, and by hot rolling and further intermediate annealing between 1100 ° C and 1250 ° C for 0.1 to Hot rolled for 1 hour to a final thickness of 13 mm or 6 mm.
  • the temperature control during hot rolling was such that the sheets were recrystallized.
  • the large-scale molten comparative batches were melted by VIM and poured into blocks. These blocks were remelted ESU. These blocks were between 1100 ° C and 1250 ° C for 0.1 min to 70 h, optionally under inert gas, such as. B. argon or hydrogen, followed by cooling in air, annealed in the moving annealing atmosphere or in a water bath and by hot rolling and further intermediate annealing between 1100 ° C and 1250 ° C for 0.1 to 20 hours to a final diameter between 17 and 40 mm hot rolled. The temperature control during hot rolling was such that the sheets were recrystallized.
  • inert gas such as. B. argon or hydrogen
  • All alloy variants typically had a particle size of 21 to 52 ⁇ m (see Table 6).
  • Table 6 shows Vickers hardness HV30 before and after cure annealing.
  • the hardness HV30 in the cured state is in the range of 366 to 416 for all alloys except batch 250330.
  • the batch 250330 has a somewhat lower hardness of 346 HV30.
  • Table 7 shows the means ⁇ standard deviations of the measurements taken. If the standard deviation is missing, this is a single value.
  • the composition of the batches is roughly described in Table 7 in the column Alloy for orientation.
  • the maximum values for the volume loss of the alloys according to the invention from the inequalities (4a) for 600 or 800 ° C and (4b) for 25 ° C and 300 ° C entered
  • Figure 1 shows the volume loss of the pin of NiCr20TiAl Charge 320776 according to the prior art as a function of the test temperature measured with 20 N, sliding 1 mm, 20 Hz and with the force measuring module (a).
  • the experiments at 25 and 300 ° C were carried out for one hour and the experiments at 600 and 800 ° C were carried out for 10 hours.
  • the volume loss decreases strongly with the temperature up to 600 ° C, d. H. the wear resistance noticeably improves at higher temperatures.
  • the high temperature range at 600 and 800 ° C shows a comparatively low volume loss and thus a low wear, which is based on the formation of a so-called "glaze" layer between pin and disc.
  • This "Glaze” layer consists of compacted metal oxides and material of pen and disc.
  • the volume loss increases again slightly due to the increased oxidation.
  • Figure 2 shows the volume loss of the pin made of NiCr20TiAl Charge 320776 according to the prior art as a function of the test temperature measured with 20 N, sliding 1 mm, 20 Hz and with the force measuring module (s).
  • lot 320776 qualitatively the same behavior as with the force modulus (a) shows: the volume loss decreases strongly with temperature up to 600 ° C, whereby the values at 600 and 800 ° C are still smaller than those with the force measuring module ( a) measured.
  • Figure 4 shows the volume loss of the pen for different laboratory batches compared to NiCr20TiAl, lot 320776 and Stellite 6 at 25 ° C after 1 hour measured at 20 N, glide path 1 mm, 20 Hz with force measuring module (a) and (n).
  • the values with force measuring module (s) were systematically smaller than those with force measuring module (a).
  • NiCr20TiAl as laboratory batch 250212 and as large-scale batch 320776 had a similar volume loss within the scope of the measurement accuracy.
  • the laboratory batches can thus be compared directly with the large-scale batches in terms of wear measurements.
  • the charge 250325 with approx.
  • Figure 5 shows the volume loss of the pin for alloys with different carbon contents compared to NiCr20TiAl, lot 320776 at 25 ° C measured at 20 N, glide path 1 mm, 20 Hz with force measuring module (a) after 10 hours. Neither a reduction of carbon content to 0.01% for lot 250211 nor an increase to 0.211% for lot 250214 showed a change in volume loss as compared to lot 320776.
  • Figure 6 shows the volume loss of the pin for various alloys compared to NiCr20TiAl, lot 320776 at 300 ° C with 20N, glide path 1 mm, 20 Hz after 1 hour measured with force measuring modules (a) and (n).
  • the values with force measuring module (s) are systematically smaller than those with force measuring module (a). Taking this into account below, it can be seen that at 300 ° C Stellite 6 was worse than Charge 320776.
  • Co-containing laboratory melts 250329 and 250330 showed no reduction in wear volume as at room temperature, but this was in the range of the wear volume of NiCr20TiAl, batch 320776 and thus showed no increase as in the case of Stellite 6.
  • the volume loss of all 3 Co-containing batches 250209 according to the invention, 250329 and 250330 were well below the maximum value of criterion (4b).
  • the Fe-containing laboratory melts 250206 and 250327 showed a volume loss which decreased with the increasing Fe content, which was thus below the maximum value (4b).
  • the laboratory batch 250326 with the Cr content of 30% had a volume loss in the range of the charge NiCr20TiAl, 320776.
  • Figure 7 shows the volume loss of the pin for various alloys compared to NiCr20TiAl, lot 320776 at 600 ° C measured at 20 N, glide path 1 mm, 20 Hz and with force measuring module (a) and (n) after 10 hours.
  • the values with force measuring module (s) were systematically smaller than those with force measuring module (a).
  • the reference laboratory batch 250212 also had the high temperature range of wear to NiCr20TiAl with 0.066 ⁇ 0.02 mm 3, a similar volume loss, such as the large-scale batch 320776 with 0.053 ⁇ 0.0028 mm 3.
  • the laboratory batches can thus be compared with the large-scale batches in terms of wear measurements even in this temperature range.
  • Stellite 6 showed a volume loss of 0.009 ⁇ 0.002 mm 3 (force measuring module (s)), reduced by a factor of 3. Furthermore, it was found that neither a reduction of the carbon content to 0.01% for batch 250211 nor an increase to 0.211% for batch 250214 resulted in a change in the volume loss compared to batch 320776 and 250212 (force measuring module (a)). , Also, the addition of 1.4% manganese on Charge 250208 and 4.6% tungsten on Charge 250210 resulted in no significant change in volume loss compared to Charge 320776 and 250212.
  • Figure 8 shows the volume loss of the pin for the various alloys compared to NiCr20TiAl Charge 320776 at 800 ° C with 20 N for 2 hours followed by 100 N for 3 hours, all with 1 mm sliding path, 20 Hz measured with force measuring module (s). Even at 800 ° C, it was confirmed that in the high temperature range of wear, the reference laboratory batch 250212 to NiCr20TiAl at 0.292 ⁇ 0.016 mm 3 had a comparable volume loss as the large scale batch 320776 with 0.331 ⁇ 0.081 mm 3 . The laboratory batches could thus be compared directly with the large-scale batches in terms of wear measurements even at 800 ° C.
  • a further reduction of volume loss in comparison to the batch 320,776th showed 0.057 ⁇ 0.007 mm 3 in the 250327 29% Fe, the volume loss was 0.043 ⁇ 0.02 mm 3.
  • the volume loss of the pin in the wear test could be greatly reduced in the alloys of the invention by a Co content between> 3 and 40%, so that it at one of the two temperatures 600 or 800 ° C was less than or equal to 50% of the volume loss of NiCr20TiAl (4a).
  • the alloy according to the invention with a Co content of> 3 to 40% also fulfilled the inequalities (4b) at 25 ° C. and 300 ° C.
  • batch 250326 with 30% Cr showed a reduction in volume loss to 0.042 ⁇ 0.011 mm 3 at 800 ° C and both to 0.026 mm 3 at 600 ° C below the respective maximum value from (4a).
  • the volume loss of 0.2588 mm 3 was also below the maximum value of (4a), as well as at 25 ° C with to 1.41 ⁇ 0.18 mm 3 (force measuring module (s)), so that chromium contents between 18 and 31% are particularly beneficial for wear at higher temperatures.
  • NiCr20TiAl alloys lots 320776 and 250212, had a total Cr + Fe + Co of 20.3% and 20.2%, both less than 25%, and met criteria (4a) and (4b) for a very good wear resistance, but especially the criteria (4a) for a good high temperature wear resistance not. Also, lots 250211, 250214, 250208 and 250210, in particular, did not meet the criteria (4a) for good high-temperature wear resistance and had a total Cr + Fe + Co of 20.4%, 20.2%, 20.3% and 20, respectively , 3% all less than 25%.
  • the batches 250325, 250206, 250327, 250209, 250329, 250330 and 250326 with Fe and Co additions or an increased Cr content in particular the batches 250209, 250329 and 250330 according to the invention, in each case met the criteria (4a) for 800 ° C, sometimes even additionally for 600 ° C and had a total Cr + Fe + Co of 26.4%, 30.5%, 48.6%, 29.6%, 50.0%, 59.3%, respectively 30.3% all larger 25%. They fulfilled equation (1) for very good wear resistance.
  • Table 8 shows the yield strength R p0.2 and the tensile strength R m for room temperature (RT) at 600 ° C and at 800 ° C.
  • RT room temperature
  • the measured grain sizes and the values for fh are entered.
  • the minimum values from inequalities (5a) and (5b) are entered in the last line.
  • Figure 10 shows the yield strength R p02 and the tensile strength R m for 600 ° C
  • Figure 11 for 800 ° C.
  • Batches 321863, 321426 and 315828 smelted on an industrial scale had values between 841 and 885 MPa for the yield strength R p02 at 600 ° C. and values between 472 and 481 MPa at 800 ° C.
  • the reference batch 250212 with a similar analysis as the large-scale batches, had a slightly higher aluminum content of 1.75%, resulting in a slightly higher yield strength R p02 of 866 MPa at 600 ° C and of 491 MPa at 800 ° C ,
  • a certain amount of iron may be advantageous in the alloy for cost reasons.
  • Batch 250327 with 29% Fe barely met the inequality (5b) because, like the consideration of the laboratory batch 250212 (reference, similar to the large-scale batches Fe less than 3%) or also the large-scale batches and the batches according to the invention 250325 (6.5 % Fe), 250206 (11% Fe) and 250327 (29% Fe) showed that an increasing alloy content of Fe reduced the yield strength R p0.2 in the tensile test (see also Figure 11). Therefore, an alloy content of 20% Fe is to be regarded as an upper limit for the alloy according to the invention.
  • the laboratory batch 250326 showed that with an addition of 30% Cr, the insertion limit R p0.2 in the tensile test was reduced to 415 MPa at 800 ° C., which was still clearly above the minimum value of 390 MPa. Therefore, an alloy content of 31% Cr is to be regarded as an upper limit for the alloy according to the invention.
  • Table 9 shows the specific mass changes after an oxidation test at 800 ° C in air after 6 cycles of 96 h for a total of 576 h. Given in Table 9 is the specific gross mass change, the net specific mass change and the specific mass change of the chipped oxides after 576 hours.
  • the example batches of the prior art alloys NiCr20TiAl, lots 321426 and 250212 showed a specific gross mass change of 9.69 and 10.84 g / m 2 and a net specific mass change of 7.81 and 10.54 g, respectively / m 2 . Lot 321426 showed minor flakes.
  • Lots 250209 (Co 9.8%) and 250329 (Co 30%) of the present invention had a specific gross mass change of 10.05 and 9.91 g / m 2 and a net specific mass change of 9.81 and 9, respectively , 71g / m 2 , which were within the range of NiCr20TiAl reference alloys and, as required, were no worse than these.
  • batch 250330 of the invention (29% Co, 10% Fe) behaved with a specific gross mass change of 9.32 g / m 2 and a net specific mass change of 8.98 g / m 2 .
  • a Co content of> 3 to 40% thus does not adversely affect the oxidation resistance.
  • Batch 250326 with an increased Cr content of 30% had a specific gross mass change of 6.74 g / m 2 and a specific net change in mass of 6.84 g / m 2, the reference alloys were below the range of NiCr20TiAl. A Cr content of 30% improved the oxidation resistance.
  • All of the alloys shown in Table 5b contain Zr, which contributes as a reactive element to improve corrosion resistance.
  • further reactive elements such as Y, La, Ce, cerium mischmetal, Hf can be added, which exhibit a Zr-like activity.
  • Titanium enhances the high temperature strength at temperatures in the range up to 900 ° C by promoting the formation of the ⁇ 'phase. At least 1.0% is necessary to obtain sufficient strength. Too high titanium contents increase the solvus temperature T s ⁇ ' too much, so that the workability deteriorates significantly. Therefore, 3.0% is considered the upper limit.
  • Aluminum increases the high temperature strength at temperatures in the range up to 900 ° C by promoting the formation of the ⁇ 'phase. At least 0.6% is necessary to obtain sufficient strength. Too high aluminum contents increase the solvus temperature T s ⁇ ' too much, so that the workability deteriorates significantly. Therefore, 2.0% is considered the upper limit.
  • Carbon improves creep resistance. A minimum content of 0.005% C is required for good creep resistance. Carbon is limited to a maximum of 0.10%, since this element reduces the processability due to the excessive formation of primary carbides.
  • N is limited to a maximum of 0.050%, since this element reduces the processability by the formation of coarse carbonitrides.
  • the content of phosphorus should be less than or equal to 0.030%, since this surfactant affects the oxidation resistance. Too low a phosphorus content increases the costs. The phosphorus content is therefore ⁇ 0.0005%.
  • the levels of sulfur should be adjusted as low as possible, since this surfactant affects oxidation resistance and processability. It will therefore max. 0.010% S set.
  • the oxygen content must be less than or equal to 0.020% to ensure the manufacturability of the alloy.
  • Si content is therefore limited to 0.70%.
  • Mg contents and / or Ca contents improve the processing by the setting of sulfur, whereby the occurrence of low-melting NiS Eutektika is avoided. If the contents are too high, intermetallic Ni-Mg phases or Ni-Ca phases may occur, which again significantly impair processability.
  • the Mg content or the Ca content is therefore limited to a maximum of 0.05%.
  • Molybdenum is reduced to max. 2.0% limited as this element reduces oxidation resistance.
  • Tungsten is limited to max. 2.0%, since this element also reduces oxidation resistance and has no measurable positive effect on wear resistance at the carbon contents possible in wrought alloys.
  • Niobium increases the high-temperature strength. Higher levels increase costs very much. The upper limit is therefore set at 0.5%.
  • Copper is heated to max. 0.5% limited as this element reduces the oxidation resistance.
  • Vanadium is reduced to max. 0.5% limited as this element reduces the oxidation resistance.
  • Iron increases wear resistance, especially in the high temperature range. Also, it reduces the cost. It may therefore optionally be between 0 and 20% in the alloy. Excessive iron content reduces the yield strength too much, especially at 800 ° C. Therefore, 20% is to be considered as the upper limit.
  • the alloy may also contain Zr to improve high temperature strength and oxidation resistance.
  • the upper limit is set at 0.20% Zr for cost reasons because Zr is a rare element.
  • boron may be added to the alloy because boron improves creep resistance. Therefore, a content of at least 0.0001% should be present. At the same time, this surfactant deteriorates the oxidation resistance. It will therefore max. 0.008% Boron set.
  • Nickel stabilizes the austenitic matrix and is required to form the ⁇ 'phase, which is the hot strength / creep resistance. At a nickel content below 35% the hot strength / creep strength is reduced too much, which is why 35% is the lower limit.
  • the oxidation resistance can be further improved by adding oxygen-affine elements such as yttrium, lanthanum, cerium, hafnium. They do this by incorporating them into the oxide layer and blocking the diffusion paths of the oxygen there on the grain boundaries.
  • the upper limit of yttrium is set at 0.20% for cost reasons, since yttrium is a rare element.
  • the upper limit of lanthanum is set at 0.20% for cost reasons, since lanthanum is a rare element.
  • cerium is a rare element.
  • cerium mischmetal instead of Ce and or La also cerium mischmetal can be used.
  • the upper limit of cerium mischmetal is set at 0.20% for cost reasons.
  • the upper limit of hafnium is set at 0.20% for cost reasons, since hafnium is a rare element.
  • the alloy may also contain tantalum, since tantalum also increases high-temperature strength by promoting ⁇ 'phase formation. Higher levels increase costs very much as tantalum is a rare element. The upper limit is therefore set at 0.60%.
  • Pb is set to max. 0.002% limited because this element reduces the oxidation resistance and the high temperature strength. The same applies to Zn and Sn.
  • Table 1 Composition of the nickel alloys for exhaust valves mentioned in DIN EN 10090. All data in mass%, description Chemical composition, mass fraction in% short name Material number C Si Mn P max. S max. Cr Not a word Ni Fe al Ti other NiFe25Cr20NbTi 2,4955 0.04 -0.10 Max. 1.0 Max. 1.0 0,030 0,015 18.00 - 21.00 rest 23.00 - 28.00 0.30 - 1.00 1,00- 2,00 Nb + Ta: 1.00-2.00 B: max 0.008 NiCr20TiAl 2.4952 0.04 -0.10 Max. 1.0 Max. 1.0 0,020 0,015 18.00 - 21.00 minute 65 max 3,00 1.00 - 1.80 1.80 - 2.70 Cu: max.
  • NiCr20TiAl 443 9.69 7.81 1.88 T L 250212 NiCr20TiAl (Ref) 443 10.84 10.54 0.30 L 250325 NiCr20Tl2.5Al2 Fe7 443 10.86 10.61 0.25 L 250206 NiCr20Tl2.5Al2 Fe10 443 9.26 9.05 0.21 L 250327 NiCr20Tl2.5Al2 Fe30 443 10.92 11,50 -0.57 e L 250209 NiCr20Tl2.5Al2 Co10 443 10.05 9.81 0.24 e L 250329 NiCr20Tl2.4Al1.5 Co30 443 9.91 9.71 0.19 e L 250330 NiCr20Tl2.4Al1.5 Fe10Co30 443 9.32 8.98 0.34 L 250326 NiCr30Tl2.4Al1.5 443 6.74 6.84 -0.10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)
  • Powder Metallurgy (AREA)

Claims (17)

  1. Alliage de corroyage nickel-chrome-cobalt-titane-aluminium durcissant comprenant une résistance à l'usure très élevée avec simultanément une résistance au fluage très élevée, une bonne résistance à la corrosion aux températures élevées et une bonne maniabilité comprenant (en % en masse) > 18 à 26 % de chrome, 1,5 à 3,0 % de titane, 0,6 à 2,0 % d'aluminium, 5,0 à 40 % de cobalt, 0,005 à 0,10 % de carbone, 0,0005 à 0,050 % d'azote, 0,0005 à 0,030 % de phosphore, max. 0,010 % de soufre, max. 0,020 % d'oxygène, max 0,70 % de silicium, max. 2,0 % de manganèse, max. 0,05 % de magnésium, max. 0,05 % de calcium, max. 0,5 % de molybdène, max. 0,5 % de tungstène, max. 0,2 % de niobium, max. 0,5 % de cuivre, max. 0,5 % de vanadium, en cas de besoin 0 à 20 % de Fe, en cas de besoin 0 à 0,20 % de Zr, en cas de besoin 0,0001 à 0,008 % de bore, dans lequel les éléments suivants peuvent aussi être facultativement contenus dans l'alliage : Y 0 - 0,20 % et/ou La 0 - 0,20 % et/ou Ce 0 - 0,20 % et/ou mischmetall de cérium 0 - 0,20 % et/ou Hf 0 - 0,20 % et/ou Ta 0 - 0,60 %,
    le reste étant du nickel et des impuretés usuelles résultant du procédé, les teneurs en Pb de max. 0,002 %, les teneurs en Zn de max. 0,002 %, les teneurs en Sn de max. 0,002 % étant réglées, la teneur en nickel étant supérieure à 35 % et les relations suivantes devant être satisfaites : Cr + Fe + Co 25 %
    Figure imgb0056
    pour obtenir une bonne résistance à l'usure et fh 0 avec
    Figure imgb0057
    fh = 6,49 + 3,88 Ti + 1,36 Al 0,301 Fe + 0,759 0,0209 Co Co 0,428 Cr 28,2 C
    Figure imgb0058
    pour qu'une solidité suffisante soit obtenue aux températures élevées, Ti, Al, Fe, Co, Cr et C étant les concentrations des éléments concernés en % en masse et fh étant indiqué en %.
  2. Alliage selon la revendication 1 comprenant une teneur en aluminium comprise entre 0,9 et 2,0 %.
  3. Alliage selon l'une des revendications 1 ou 2, comprenant une teneur en cobalt comprise entre > 3,0 et 35 %.
  4. Alliage selon l'une des revendications 1 à 3, comprenant une teneur en cobalt comprise entre 5,0 et 35 %.
  5. Alliage selon l'une des revendications 1 à 4, comprenant une teneur en cobalt comprise entre 9,0 et 35 %.
  6. Alliage selon l'une des revendications 1 à 5, comprenant une teneur en carbone comprise entre 0,01 et 0,10 %.
  7. Alliage selon l'une des revendications 1 à 6, qui comprend, en cas de besoin, une teneur en fer comprise entre > 0 et 15,0 %.
  8. Alliage selon l'une des revendications 1 à 7, comprenant une teneur en bore comprise entre 0,0005 et 0,006 %.
  9. Alliage selon l'une des revendications 1 à 8, dans lequel la teneur en nickel est supérieure à 40 %.
  10. Alliage selon l'une des revendications 1 à 9, dans lequel la teneur en nickel est supérieure à 45 %.
  11. Alliage selon l'une des revendications 1 à 10, dans lequel la teneur en nickel est supérieure à 50 %.
  12. Alliage selon l'une des revendications 1 à 11 avec Cr + Fe + Co 26 %
    Figure imgb0059
    Cr, Fe et Co étant les concentrations des éléments concernés en % en masse.
  13. Alliage selon l'une des revendications 1 à 12 avec fh 1 avec
    Figure imgb0060
    fh = 6,49 + 3,88 Ti + 1,36 Al 0,301 Fe + 0,759 0,0209 Co Co 0,428 Cr 28,2 C
    Figure imgb0061
    Cr, Fe, Co et C étant les concentrations des éléments concernés en % en masse et fh étant indiqué en %.
  14. Alliage selon l'une des revendications 1 à 13, dans lequel la relation suivante entre Cr, Mo, W, Fe, Co, Ti, Al et Nb doit être facultativement satisfaite, pour qu'une maniabilité suffisante soit obtenue ; fver = 7 avec
    Figure imgb0062
    fver = 32,77 + 0,5932 Cr + 0,3642 Mo + 0,513 W + 0,3123 0,0076 Fe Fe + 0,3351 0,003745 Co 0,0109 Fe Co + 40,67 Ti * Al + 33,28 Al 2 13,6 Ti Al 2 22,99 Ti 92,7 Al + 2,94 Nb
    Figure imgb0063
    Cr, Mo, W, Fe, Co, Ti, Al et Nb étant les concentrations des éléments concernés en % en masse et fver étant indiqué en %.
  15. Utilisation de l'alliage selon l'une des revendications 1 à 14 comme une bande, une tôle, un fil de fer, une tige, un tube à soudure longitudinale et un tube sans soudure.
  16. Utilisation de l'alliage selon l'une des revendications 1 à 15 pour des soupapes, notamment des soupapes d'échappement des moteurs à combustion interne.
  17. Utilisation de l'alliage selon l'une des revendications 1 à 15 en tant que des composants de turbines à gaz, des boulons de fixation, dans des ressorts, dans des turbocompresseurs.
EP15704947.9A 2014-02-04 2015-01-12 Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité Active EP3102710B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201530482T SI3102710T1 (sl) 2014-02-04 2015-01-12 Utrjena nikelj-krom-kobalt-titan-aluminijeva zlitina z dobro obrabno obstojnostjo, obstojnostjo proti lezenju, korozijsko obstojnostjo in obdelovalnostjo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014001330.8A DE102014001330B4 (de) 2014-02-04 2014-02-04 Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
PCT/DE2015/000007 WO2015117583A1 (fr) 2014-02-04 2015-01-12 Alliage thermodurcissable de nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion et une aptitude au façonnage satisfaisantes

Publications (2)

Publication Number Publication Date
EP3102710A1 EP3102710A1 (fr) 2016-12-14
EP3102710B1 true EP3102710B1 (fr) 2018-08-29

Family

ID=52477513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15704947.9A Active EP3102710B1 (fr) 2014-02-04 2015-01-12 Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité

Country Status (9)

Country Link
US (1) US10870908B2 (fr)
EP (1) EP3102710B1 (fr)
JP (1) JP2017508884A (fr)
KR (1) KR101824867B1 (fr)
CN (1) CN105899693B (fr)
BR (1) BR112016011895B1 (fr)
DE (1) DE102014001330B4 (fr)
SI (1) SI3102710T1 (fr)
WO (1) WO2015117583A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001329B4 (de) * 2014-02-04 2016-04-28 VDM Metals GmbH Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
EP3390677B1 (fr) * 2015-12-18 2023-01-25 BorgWarner Inc. Composants de soupape de décharge comprenant alliage nouveau
DE102015016729B4 (de) * 2015-12-22 2018-10-31 Vdm Metals International Gmbh Verfahren zur Herstellung einer Nickel-Basislegierung
ITUA20161551A1 (it) 2016-03-10 2017-09-10 Nuovo Pignone Tecnologie Srl Lega avente elevata resistenza all’ossidazione ed applicazioni di turbine a gas che la impiegano
KR101836713B1 (ko) * 2016-10-12 2018-03-09 현대자동차주식회사 배기계 부품용 니켈 합금
KR102016384B1 (ko) 2016-10-24 2019-08-30 다이도 토쿠슈코 카부시키가이샤 석출 경화형 고 Ni 내열합금
CN108359876A (zh) * 2017-03-17 2018-08-03 黄河科技学院 制备高韧性高强度高导电性铝合金导线材料的混合物及其制备方法
CN106987755A (zh) * 2017-06-05 2017-07-28 北京普瑞新材科技有限公司 一种MCrAlY合金及其制备方法
CN107513656A (zh) * 2017-09-29 2017-12-26 徐州九鼎机电总厂 一种应用在叶轮上的高韧性耐磨材料
US10392938B1 (en) * 2018-08-09 2019-08-27 Siemens Energy, Inc. Pre-sintered preform for repair of service run gas turbine components
DE102020106433A1 (de) * 2019-03-18 2020-09-24 Vdm Metals International Gmbh Nickel-Legierung mit guter Korrosionsbeständigkeit und hoher Zugfestigkeit sowie Verfahren zur Herstellung von Halbzeugen
CN110109337A (zh) * 2019-05-08 2019-08-09 东莞得利钟表有限公司 一种新型钴合金手表及其钴合金材料
CN110093532B (zh) * 2019-06-14 2020-04-21 中国华能集团有限公司 一种析出强化型镍基高铬高温合金及其制备方法
CN110484841B (zh) * 2019-09-29 2020-09-29 北京钢研高纳科技股份有限公司 一种gh4780合金锻件的热处理方法
CN110747377B (zh) * 2019-11-15 2020-11-10 清华大学 一种高铬镍基高温合金及其制备方法与应用
CN114058903B (zh) * 2020-07-30 2022-06-14 宝武特种冶金有限公司 一种镍铁基合金大口径厚壁管及其制造方法
CN113502427B (zh) * 2021-06-23 2022-06-28 沈阳航空航天大学 2.3GPa强度级别Co-Ni-Cr基合金及其制备方法
CN115537603B (zh) * 2021-06-30 2023-08-11 宝武特种冶金有限公司 一种耐高温镍基合金、其制造方法及应用
CN114107777A (zh) * 2021-11-19 2022-03-01 钢铁研究总院 一种高强度耐热高熵合金及锻/轧成型方法
CN114774738B (zh) * 2022-03-22 2023-03-31 中国科学院上海应用物理研究所 一种耐熔盐Te腐蚀镍基变形高温合金及其制备方法
CN115383028B (zh) * 2022-09-14 2023-10-24 北京钢研高纳科技股份有限公司 提高gh4780合金锻件高温持久性能的方法及得到的锻件
CN118006968B (zh) * 2024-04-08 2024-06-18 无锡市雪浪合金科技有限公司 一种镍基高温合金及其制备方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810695B1 (fr) * 1969-10-11 1973-04-06
JPS4720813U (fr) 1971-03-16 1972-11-09
JPS50109812A (fr) 1974-02-09 1975-08-29
JPS58117848A (ja) * 1982-01-06 1983-07-13 Mitsubishi Metal Corp 燃焼雰囲気ですぐれた高温耐食性および高温耐酸化性を示す高強度ni基鋳造合金
JPS6070155A (ja) 1983-09-28 1985-04-20 Hitachi Metals Ltd 排気弁用Νi基合金
JPS60211028A (ja) 1984-04-03 1985-10-23 Daido Steel Co Ltd 排気バルブ用合金
JPS61284558A (ja) * 1985-06-10 1986-12-15 Sumitomo Metal Ind Ltd 耐水素割れ性にすぐれたNi基合金の製造法
US4882125A (en) 1988-04-22 1989-11-21 Inco Alloys International, Inc. Sulfidation/oxidation resistant alloys
DE4111821C1 (fr) 1991-04-11 1991-11-28 Vdm Nickel-Technologie Ag, 5980 Werdohl, De
JP3132602B2 (ja) 1991-09-28 2001-02-05 大同特殊鋼株式会社 摩擦圧接バルブの製造方法
DE69202965T2 (de) * 1991-12-20 1996-03-14 Inco Alloys Ltd Gegen hohe Temperatur beständige Ni-Cr-Legierung.
JPH0711366A (ja) 1993-06-24 1995-01-13 Sumitomo Metal Ind Ltd 熱間加工性および高温水中の耐食性に優れた合金
JP3058794B2 (ja) * 1993-08-19 2000-07-04 日立金属株式会社 Fe−Ni−Cr基超耐熱合金、エンジンバルブおよび排ガス触媒用ニットメッシュ
JPH07216511A (ja) 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH08127848A (ja) 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
DE19524234C1 (de) 1995-07-04 1997-08-28 Krupp Vdm Gmbh Knetbare Nickellegierung
JPH108924A (ja) 1996-06-21 1998-01-13 Daido Steel Co Ltd 大型ディーゼルエンジン用バルブの製造方法
RU2125110C1 (ru) 1996-12-17 1999-01-20 Байдуганов Александр Меркурьевич Жаропрочный сплав
JPH10219377A (ja) 1997-02-07 1998-08-18 Daido Steel Co Ltd ディーゼルエンジンの高耐食性吸排気バルブ用合金及び吸排気バルブの製造方法
JPH1122427A (ja) 1997-07-03 1999-01-26 Daido Steel Co Ltd ディーゼルエンジンバルブの製造方法
US6761854B1 (en) * 1998-09-04 2004-07-13 Huntington Alloys Corporation Advanced high temperature corrosion resistant alloy
US5997809A (en) 1998-12-08 1999-12-07 Inco Alloys International, Inc. Alloys for high temperature service in aggressive environments
JP2000328163A (ja) 1999-05-21 2000-11-28 Daido Steel Co Ltd ディーゼルエンジン用排気バルブ合金及び排気バルブの製造方法
KR100372482B1 (ko) 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금
DE19957646A1 (de) 1999-11-30 2001-05-31 Krupp Vdm Gmbh Verfahren zur Herstellung einer warmfesten Legierung mit guter Hochtemperaturoxidationsbeständigkeit
JP5052724B2 (ja) * 2000-01-24 2012-10-17 ハンチントン、アロイス、コーポレーション Ni‐Co‐Cr高温強度および耐蝕性合金
JP3965869B2 (ja) 2000-06-14 2007-08-29 住友金属工業株式会社 Ni基耐熱合金
JP3952861B2 (ja) 2001-06-19 2007-08-01 住友金属工業株式会社 耐メタルダスティング性を有する金属材料
JP2003138334A (ja) 2001-11-01 2003-05-14 Hitachi Metals Ltd 高温耐酸化性及び高温延性に優れたNi基合金
DE60206464T2 (de) 2001-12-21 2006-07-13 Hitachi Metals, Ltd. Ni-Legierung mit verbesserter Oxidations- Resistenz, Warmfestigkeit and Warmbearbeitbarkeit
JP4277113B2 (ja) 2002-02-27 2009-06-10 大同特殊鋼株式会社 耐熱ばね用Ni基合金
DE10302989B4 (de) 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung
JP3951943B2 (ja) 2003-03-18 2007-08-01 本田技研工業株式会社 耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金
JP4830466B2 (ja) * 2005-01-19 2011-12-07 大同特殊鋼株式会社 900℃での使用に耐える排気バルブ用耐熱合金およびその合金を用いた排気バルブ
JP2006274443A (ja) 2005-03-03 2006-10-12 Daido Steel Co Ltd 非磁性高硬度合金
US7651575B2 (en) 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
US8568901B2 (en) 2006-11-21 2013-10-29 Huntington Alloys Corporation Filler metal composition and method for overlaying low NOx power boiler tubes
FR2910912B1 (fr) 2006-12-29 2009-02-13 Areva Np Sas Procede de traitement thermique de desensibilisation a la fissuration assistee par l'environnement d'un alliage a base nickel, et piece realisee en cet alliage ainsi traitee
JP4978790B2 (ja) 2007-08-27 2012-07-18 三菱マテリアル株式会社 樹脂成形用金型部材
DE102007062414B4 (de) 2007-12-20 2009-12-24 Ecoloop Gmbh Autothermes Verfahren zur kontinuierlichen Vergasung von kohlenstoffreichen Substanzen
DE102007062417B4 (de) 2007-12-20 2011-07-14 ThyssenKrupp VDM GmbH, 58791 Austenitische warmfeste Nickel-Basis-Legierung
CH699716A1 (de) 2008-10-13 2010-04-15 Alstom Technology Ltd Bauteil für eine hochtemperaturdampfturbine sowie hochtemperaturdampfturbine.
DE102008051014A1 (de) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-Chrom-Legierung
JP4780189B2 (ja) 2008-12-25 2011-09-28 住友金属工業株式会社 オーステナイト系耐熱合金
JP5284252B2 (ja) 2009-12-10 2013-09-11 株式会社神戸製鋼所 耐割れ性に優れたNi−Cr−Fe合金系溶接金属
DE102011013091A1 (de) 2010-03-16 2011-12-22 Thyssenkrupp Vdm Gmbh Nickel-Chrom-Kobalt-Molybdän-Legierung
DE102012011162B4 (de) 2012-06-05 2014-05-22 Outokumpu Vdm Gmbh Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102012011161B4 (de) 2012-06-05 2014-06-18 Outokumpu Vdm Gmbh Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102014001328B4 (de) 2014-02-04 2016-04-21 VDM Metals GmbH Aushärtende Nickel-Chrom-Eisen-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit

Also Published As

Publication number Publication date
BR112016011895A2 (pt) 2017-09-19
SI3102710T1 (sl) 2018-12-31
EP3102710A1 (fr) 2016-12-14
DE102014001330B4 (de) 2016-05-12
KR20160137511A (ko) 2016-11-30
BR112016011895B1 (pt) 2021-02-23
US20160319402A1 (en) 2016-11-03
WO2015117583A1 (fr) 2015-08-13
CN105899693B (zh) 2018-04-10
US10870908B2 (en) 2020-12-22
JP2017508884A (ja) 2017-03-30
CN105899693A (zh) 2016-08-24
KR101824867B1 (ko) 2018-02-02
DE102014001330A1 (de) 2015-08-06

Similar Documents

Publication Publication Date Title
EP3102710B1 (fr) Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité
EP3102711B1 (fr) Alliage nickel-chrome-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité
EP3102712B1 (fr) Alliage nickel-chrome-titane-aluminium durcissant par trempe et présentant une bonne résistance à l'usure, au fluage et à la corrosion, et une bonne usinabilité
EP2855724B1 (fr) Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion
EP2855723B1 (fr) Alliage nickel-chrome-aluminium avec bonne formabilité, la résistance au fluage et à la corrosion
EP2956562B1 (fr) Alliage nickel-cobalt
EP2678458B1 (fr) Alliage nickel-chrome-fer-aluminium présentant une bonne aptitude à la transformation
EP2882881B1 (fr) Utilisation d'un alliage de nickel-chrome-aluminium-fer ayant une bonne usinabilité
EP2283167B1 (fr) Alliage fer-chrome-aluminium présentant une plus grande durabilité et de plus faibles variations de résistance à la chaleur
EP3775308B1 (fr) Utilisation d'un allaige de nickel-chrome-fer-aluminum
EP2162558B1 (fr) Alliage fer-nickel-chrome-silicium
WO2017000932A1 (fr) Procédé pour la production d'un alliage forgeable à base de nickel-fer-chrome-aluminium présentant un allongement augmenté dans un essai de traction
DE112016005830B4 (de) Metalldichtung und Verfahren zu ihrer Herstellung
DE2253148C3 (de) Verfahren zur Herstellung eines ferritischen, korrosionsbeständigen Stahls und dessen Verwendung
DE102020132193A1 (de) Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
CH606457A5 (en) Precision resistance nickel alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005663

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005663

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240119

Year of fee payment: 10

Ref country code: DE

Payment date: 20240119

Year of fee payment: 10

Ref country code: GB

Payment date: 20240119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240104

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240119

Year of fee payment: 10

Ref country code: IT

Payment date: 20240129

Year of fee payment: 10

Ref country code: FR

Payment date: 20240124

Year of fee payment: 10