EP2855724B1 - Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion - Google Patents

Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion Download PDF

Info

Publication number
EP2855724B1
EP2855724B1 EP13731274.0A EP13731274A EP2855724B1 EP 2855724 B1 EP2855724 B1 EP 2855724B1 EP 13731274 A EP13731274 A EP 13731274A EP 2855724 B1 EP2855724 B1 EP 2855724B1
Authority
EP
European Patent Office
Prior art keywords
alloy
content
alloy according
max
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13731274.0A
Other languages
German (de)
English (en)
Other versions
EP2855724A1 (fr
Inventor
Heike Hattendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals International GmbH
Original Assignee
VDM Metals International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Metals International GmbH filed Critical VDM Metals International GmbH
Publication of EP2855724A1 publication Critical patent/EP2855724A1/fr
Application granted granted Critical
Publication of EP2855724B1 publication Critical patent/EP2855724B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to a nickel-chromium alloy with good high-temperature corrosion resistance, good creep resistance and improved processability.
  • Nickel alloys with different nickel, chromium and aluminum contents have long been used in furnace construction and in the chemical and petrochemical industries. For this application, a good high-temperature corrosion resistance is required even in carburizing atmospheres and a good heat resistance / creep resistance.
  • the high temperature corrosion resistance of the alloys listed in Table 1 increases with increasing chromium content. All these alloys form a chromium oxide layer (Cr 2 O 3 ) with an underlying, more or less closed, Al 2 O 3 layer. Small additions of strongly oxygen-affinitive elements such. B. Y or Ce improve the oxidation resistance. The content of chromium is slowly consumed in the course of use in the application area for the formation of the protective layer. Therefore, a higher chromium content increases the life of the material, because a higher content of the protective layer-forming element chromium retards the time at which the Cr content is below the critical limit and forms oxides other than Cr 2 O 3 , eg ferrous and nickel containing oxides are. Further enhancement of high temperature corrosion resistance could be achieved by additions of aluminum and silicon, if required. From a certain minimum content, these elements form a closed layer below the chromium oxide layer and thus reduce the consumption of chromium.
  • High resistance to carburization is achieved by materials with low solubility for carbon and low diffusion rate of carbon.
  • Nickel alloys are therefore generally more resistant to carburization than iron-base alloys because both carbon diffusion and carbon solubility in nickel are lower than in iron.
  • An increase in chromium content results in a higher carburization resistance by forming a protective chromium oxide layer, unless the oxygen partial pressure in the gas is insufficient to form this protective chromium oxide layer.
  • materials can be used which form a layer of silicon oxide or the even more stable alumina, both of which can form protective oxide layers even at significantly lower oxygen contents.
  • Typical conditions for the occurrence of metal dusting are strongly carburizing CO, H 2 or CH 4 gas mixtures, as they occur in ammonia synthesis, in methanol plants, in metallurgical processes, but also in hardening furnaces.
  • the resistance to metal dusting tends to increase with increasing nickel content of the alloy ( Grabke, HJ, Krajak, R., Müller-Lorenz, EM, Strauss, S .: Materials and Corrosion 47 (1996), p. 495 ), however, nickel alloys are not generally resistant to metal dusting.
  • the chromium and aluminum content has a significant influence on the corrosion resistance under metal dusting conditions (see Figure 1).
  • Low chromium nickel alloys (such as alloy Alloy 600, see Table 1) show comparatively high corrosion rates under metal dusting conditions.
  • the nickel alloy Alloy 602 CA (N06025) with a chromium content of 25% and an aluminum content of 2.3% as well as Alloy 690 (N06690) with a chromium content of 30% is significantly more resistant ( Hermse, CGM and van Wortel, JC: Metal dusting: relationship between alloy composition and degradation rate. Corrosion Engineering, Science and Technology 44 (2009), p. 182 - 185 ). Resistance to metal dusting increases with the sum Cr + Al.
  • the heat resistance or creep resistance at the specified temperatures is u. a. improved by a high carbon content. But even high contents of solid solution strengthening elements such as chromium, aluminum, silicon, molybdenum and tungsten improve the heat resistance. In the range of 500 ° C to 900 ° C, additions of aluminum, titanium and / or niobium can improve strength by precipitating the y 'and / or ⁇ "phase.
  • Alloys such as Alloy 602 CA (N06025), Alloy 693 (N06693) or Alloy 603 (N06603) are superior in their corrosion resistance compared to Alloy 600 (N06600) or Alloy 601 (N06601) due to the high aluminum content of more than 1.8 % known.
  • Alloy 602 CA (N06025), Alloy 693 (N06693), Alloy 603 (N06603), and Alloy 690 (N06690) show excellent carburization resistance or metal dusting resistance due to their high chromium and / or aluminum content.
  • alloys such as Alloy 602 CA (N06025), Alloy 693 (N06693) or Alloy 603 are shown (N06603) due to the high carbon and aluminum content excellent heat resistance and creep resistance in the temperature range in which metal dusting occurs.
  • Alloy 602 CA (N06025) and Alloy 603 (N06603) have excellent heat resistance and creep resistance even at temperatures above 1000 ° C.
  • z. For example, the high aluminum content impairs processability, the higher the aluminum content (Alloy 693 - N06693). The same applies to an increased degree for silicon, which forms low-melting intermetallic phases with nickel.
  • Alloy 602 CA (N06025) or Alloy 603 (N06603) in particular the cold workability is limited by a high proportion of primary carbides.
  • the US 6623869 B1 discloses a metallic material consisting of ⁇ 0.2% C, 0.01-4% Si, 0.05-2.0% Mn, ⁇ 0.04% P, ⁇ 0.015% S, 10-35% Cr, 30 - 78% Ni, 0.005 - 4.5% Al, 0.005 - 0.2% N, and at least one element 0.015 - 3% Cu or 0.015 - 3% Co, with the remainder being 100% iron.
  • the value of 40Si + Ni + 5Al + 40N + 10 (Cu + Co) is not less than 50, the symbols of the elements meaning the content of the corresponding elements.
  • the material has excellent corrosion resistance in an environment where metal dusting can take place and therefore can be used for stovepipes, piping systems, heat exchanger tubes and the like. ⁇ . Used in petroleum refineries or petrochemical plants and can significantly improve the life and safety of the plant.
  • the EP 0 549 286 discloses a high temperature resistant Ni-Cr alloy including 55-65% Ni, 19-25%, Cr 1-4.5% Al, 0.045-0.3% Y, 0.15-1% Ti, 0.005-0, 5% C, 0.1-1.5% Si, 0-1% Mn and at least 0.005% in total of at least one of the elements of the group containing Mg, Ca, Ce, ⁇ 0.5% in total Mg + Ca, ⁇ 1% Ce, 0.0001 - 0.1% B, 0 - 0.5% Zr, 0.0001 - 0.2% N, 0 - 10% Co, 0 - 0.5% Cu, 0 - 0 , 5% Mo, 0 - 0.3% Nb, 0 - 0.1% V, 0 - 0.1% W, balance iron and impurities.
  • This object is achieved by a nickel-chromium alloy, with (in wt .-%) 29 to 37% chromium, 0.001 to 1.8% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% Silicon, 0.005 to 2.0% manganese, 0.00 to 1.00% titanium and / or 0.00 to 1.10% niobium, 0.0002 to 0.05% magnesium and / or calcium, 0.005 to 0, respectively , 12% carbon, 0.001-0.050% nitrogen, 0.001-0.030% phosphorus, 0.0001-0.020% oxygen, max. 0.010% sulfur, max. 2.0% molybdenum, max.
  • the alloy further contains oxygen in amounts between 0.0001 and 0.020%, in particular 0.0001 to 0.010%.
  • Preferred areas can be set with Cr + al ⁇ 31
  • Preferred ranges can be set with: fp ⁇ 38 . 4 fp ⁇ 36 . 6
  • the alloy may also contain from 0.001 to 0.60% tantalum
  • a maximum of 0.5% Cu may be included in the alloy as needed.
  • Preferred ranges can be set with: fa ⁇ 54
  • Preferred ranges can be set with: Fk ⁇ 45 Fk ⁇ 49
  • the alloy of the invention is preferably melted open, followed by treatment in a VOD or VLF plant. But also a melting and pouring in a vacuum is possible. Thereafter, the alloy is poured in blocks or as a continuous casting. If necessary, the block is then annealed at temperatures between 900 ° C and 1270 ° C for 0.1 h to 70 h. Furthermore, it is possible to remelt the alloy additionally with ESU and / or VAR. Thereafter, the alloy is brought into the desired semifinished product.
  • the surface of the material may optionally (also several times) be removed chemically and / or mechanically in between and / or at the end for cleaning.
  • cold forming with degrees of deformation of up to 98% into the desired semifinished product form optionally with intermediate annealing between 700 ° C. and 1250 ° C. for 0.1 min to 70 h, if necessary under inert gas, such as.
  • the alloy according to the invention can be produced and used well in the product forms strip, sheet metal, rod wire, longitudinally welded tube and seamless tube.
  • These product forms are produced with an average particle size of 5 ⁇ m to 600 ⁇ m.
  • the preferred particle size range is between 20 ⁇ m and 200 ⁇ m.
  • the alloy according to the invention should preferably be used in areas in which carburizing conditions prevail, such as. As in components, especially pipes, in the petrochemical industry. In addition, it is also suitable for furnace construction.
  • the occurring phases in equilibrium were calculated for the different alloy variants with the program JMatPro from Thermotech.
  • the database used for the calculations was the TTNI7 nickel base alloy database from Thermotech.
  • the formability is determined in a tensile test according to DIN EN ISO 6892-1 at room temperature.
  • the yield strength R p0.2 , the tensile strength R m and the elongation A are determined until the fracture.
  • the experiments were carried out on round samples with a diameter of 6 mm in the measuring range and a measuring length L 0 of 30 mm.
  • the sampling took place transversely to the forming direction of the semifinished product.
  • the forming speed was 10 MPa / s at R p0.2 and 40% / min at R m 6.7 10 -3 .
  • the amount of elongation A in the tensile test at room temperature can be taken as a measure of the deformability.
  • a good workable material should have an elongation of at least 50%.
  • the hot strength is determined in a hot tensile test according to DIN EN ISO 6892-2.
  • the yield strength R p0.2 , the tensile strength R m and the elongation A up to the break are determined analogously to the tensile test at room temperature (DIN EN ISO 6892-1).
  • the experiments were carried out on round samples with a diameter of 6 mm in the measuring range and an initial measuring length L 0 of 30 mm. The sampling took place transversely to the forming direction of the semifinished product.
  • the forming speed at R p0.2 was 8.33 10 -5 1 / s (0.5% / min) and at R m was 8.33 10 -4 1 / s (5% / min).
  • the sample is installed at room temperature in a tensile testing machine and heated to a desired temperature without load with a tensile force. After reaching the test temperature, the sample is subjected to no load for one hour (600 ° C) or two hours (700 ° C to 1100 ° C) held for a temperature compensation. Thereafter, the sample is loaded with a tensile force to maintain the desired strain rates, and the test begins.
  • the creep resistance of a material improves with increasing heat resistance. Therefore, the hot strength is also used to evaluate the creep resistance of the various materials.
  • the corrosion resistance at higher temperatures was determined in an oxidation test at 1000 ° C in air, the test was interrupted every 96 hours and the mass changes of the samples were determined by the oxidation.
  • the samples were placed in the ceramic crucible in the experiment, so that possibly spalling oxide was collected and by weighing the crucible containing the oxides, the mass of the chipped oxide can be determined.
  • the sum of the mass of the chipped oxide and the mass change of the samples is the gross mass change of the respective sample.
  • the specific mass change is the mass change related to the surface of the samples. These are referred to below as m net for the specific net mass change, m gross for the specific gross mass change, m spall for the specific mass change of the chipped oxides.
  • the experiments were carried out on samples with about 5 mm thickness. 3 samples were removed from each batch, the values given are the mean values of these 3 samples.
  • N06690 the batch 111389, (see Table 2 typical compositions) show computationally the formation of ⁇ -chromium (BCC phase in Figure 2) below 720 ° C (T s BCC ) in large proportions.
  • This phase is formed by the fact that it is analytically very different from the basic material is difficult. However, if the formation temperature T s BCC of this phase is very high, then it may well occur, as z.
  • T s BCC of this phase is very high, then it may well occur, as z.
  • E. Slevolden, JZ Albertsen. U. Fink "Tjeldbergodden Methanol Plant: Metal Dusting Investigations," Corrosion / 2011, paper no. 11144 (Houston, TX: NACE 2011), p. 15 "is described for a variant of Alloy 693 (US 06693)
  • This phase is brittle and leads to an undesirable embrittlement of the material.
  • Figure 3 and Figure 4 show the phase diagrams of the Alloy 693 variants (out US 4,882,125 Alloy 3 or Alloy 10 from Table 2.
  • Alloy 3 has a formation temperature T s BCC of 1079 ° C, Alloy 10 of 939 ° C.
  • T s BCC formation temperature
  • Alloy 10 of 939 ° C.
  • An alloy can be hardened by several mechanisms so that it has a high heat resistance or creep resistance.
  • the alloying of another element causes a greater or lesser increase in strength (solid solution hardening). Far more effective is an increase in strength through fine particles or precipitates (particle hardening).
  • This can be z. B. by the ⁇ '-phase, resulting in additions of Al and other elements such.
  • strains A5 in the tensile test at room temperature of ⁇ 50%, but at least ⁇ 45%, are aimed for.
  • the chromium content has been set in the inventive alloy ⁇ 29%, preferably ⁇ 30% or ⁇ 31%.
  • the aluminum content of ⁇ 1.8%, preferably ⁇ 1.4%, has been chosen more in the lower range.
  • the aluminum content contributes significantly to the tensile strength or creep resistance (both by solid solution hardening, as well as by ⁇ '-hardening) has the consequence that the target for the hot strength, or the creep strength, not that of Alloy 602 CA but which were taken from Alloy 601, although much higher values for heat resistance and creep resistance would of course be desirable.
  • the oxidation resistance of a good Chromoxidsentners is sufficient.
  • the alloy according to the invention is therefore said to have a corrosion resistance in air similar to that of Alloy 690 or Alloy 601.
  • Tables 3a and 3b show the laboratory scale analyzes of batches smelted together with some of the prior art large scale molten batches used for comparison of Alloy 602CA (N06025), Alloy 690 (N06690), Alloy 601 (N06601).
  • the prior art batches are marked with a T, those of the invention with an E.
  • the batches marked on the laboratory scale are marked with an L, the large-scale blown batches with a G.
  • the blocks of laboratory-scale molten alloys in Tables 3a and b were annealed between 900 ° C and 1270 ° C for 8 hours and annealed Hot rolling and further intermediate annealing between 900 ° C and 1270 ° C for 0.1 to 1 h hot rolled to a final thickness of 13 mm or 6 mm.
  • the sheets produced in this way were solution-annealed between 900 ° C. and 1270 ° C. for 1 h. From these sheets, the samples required for the measurements were taken.
  • All alloy variants typically had a particle size between 65 and 310 ⁇ m.
  • batches 2294 to 2314 and 250053 to 250150 were melted.
  • the E-labeled batches according to the invention have the formula (2a) with Cr + Al> 30 and are therefore more resistant to metal dusting than Alloy 690.
  • Batches 2298, 2299, 2303, 2304, 2305, 2308, 2314, 250063, 260065, 250066, 250067, 250068, 250079, 250139, 250140 and 250141 satisfy the formula (2b) Al + Cr ⁇ 31. They are therefore particularly good metal dusting resistant.
  • Table 4 shows the yield strength R p0.2 , the tensile strength R m and the elongation A 5 for room temperature RT and for 600 ° C, furthermore the tensile strength R m for 800 ° C.
  • the values for Fa and Fk are entered.
  • Example batches 156817 and 160483 of the prior art alloy Alloy 602 CA have in Table 4 a relatively low elongation A5 at room temperature of 36 and 42%, respectively, which are below the requirements for good formability.
  • Fa is> 60, which is above the range that indicates good formability.
  • All alloys of the invention show an elongation> 50%. They thus fulfill the requirements.
  • Fa is ⁇ 60 for all alloys according to the invention. They are therefore in the range of good formability. The elongation is particularly high when Fa is comparatively small.
  • Example Example 156658 of the prior art Alloy 601 in Table 4 is an example of the range that the yield strength and tensile strength should reach at 600 ° C and 800 ° C, respectively. This is described by the relations 7a to 7d.
  • the value of Fk is> 40.
  • the alloys 2298, 2299, 2303, 2304, 2305, 2308, 2314, 250060, 250063, 260065, 250066, 250067, 250068, 250079, 250139, 250140, 250141, 250143, 250150 satisfy the requirement in that at least 3 of the 4 relations 7a to 7d are fulfilled.
  • Fk is also greater than 40.
  • Laboratory lots 2295, 2303, 250053, 250054 and 250057 are examples of less than 3 of the 4 relations 7a to 7d being met. Then Fk ⁇ 45 is also.
  • Table 5 shows the specific mass changes after an oxidation test at 1100 ° C in air after 11 cycles of 96 h for a total of 1056 h. Given in Table 5 are the gross mass change, the net mass change and the specific mass change of the chipped oxides after 1056 h.
  • the prior art alloys Alloy 601 and Alloy 690 showed a significantly higher gross mass change than Alloy 602 CA. This is because Alloy 601 and Alloy 690 form a chromium oxide layer which grows faster than an aluminum oxide layer but has Alloy 602 CA underneath the chromium oxide layer at least partially closed alumina layer. This noticeably reduces the growth of the oxide layer and thus also the specific mass increase.
  • the alloy according to the invention should have a corrosion resistance in air similar to that of Alloy 690 or Alloy 601. Ie. the gross mass change should be below 60 g / m 2 . This is the case for all laboratory batches in Table 5, thus also for the invention.
  • a certain minimum aluminum content of 0.001% is required for the manufacturability of the alloy. Excessive Al contents, especially at very high chromium contents, affect the processability and phase stability of the alloy. Therefore, an Al content of 1.8% forms the upper limit.
  • Si is needed in the production of the alloy. It is therefore necessary a minimum content of 0.001%. Too high levels, in turn, affect processability and phase stability, especially at high chromium levels. The Si content is therefore limited to 0.50%.
  • a minimum content of 0.005% Mn is required to improve processability.
  • Manganese is limited to 2.0% because this element reduces oxidation resistance.
  • Titanium increases the high-temperature strength. From 1.0%, the oxidation behavior can be severely degraded, which is why 1.0% is the maximum value.
  • Niobium like titanium, enhances high-temperature strength. Higher levels increase costs very much. The upper limit is therefore set at 1.1%.
  • Mg and / or Ca contents improve the processing by the setting of sulfur, whereby the occurrence of low-melting NiS Eutektika is avoided.
  • Mg and / or Ca therefore, a minimum content of 0.0002% each is required. If the contents are too high, intermetallic Ni-Mg phases or Ni-Ca phases may occur, which again significantly impair processability.
  • the Mg and / or Ca content is therefore limited to a maximum of 0.05%.
  • a minimum content of 0.005% C is required for good creep resistance.
  • C is limited to a maximum of 0.12%, since this element reduces the processability by the excessive formation of primary carbides from this content.
  • N A minimum content of 0.001% N is required, which improves the processability of the material. N is limited to a maximum of 0.05%, since this element reduces the processability by the formation of coarse carbonitrides.
  • the oxygen content must be ⁇ 0.020% to ensure the manufacturability of the alloy. Too low an oxygen content increases the costs. The oxygen content is therefore ⁇ 0.0001%.
  • the content of phosphorus should be ⁇ 0.030%, as this surfactant affects the oxidation resistance. Too low a P content increases costs. The P content is therefore ⁇ 0.001%.
  • the levels of sulfur should be adjusted as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.010% S set.
  • Molybdenum is reduced to max. 2.0% limited as this element reduces oxidation resistance.
  • Tungsten is limited to max. 2.0% limited as this element also reduces oxidation resistance.
  • the oxidation resistance can be further improved. They do this by incorporating them into the oxide layer and blocking the diffusion paths of the oxygen there on the grain boundaries.
  • a minimum content of 0.01% Y is necessary to obtain the oxidation resistance-enhancing effect of Y.
  • the upper limit is set at 0.20% for cost reasons.
  • a minimum content of 0.001% La is necessary to obtain the oxidation resistance enhancing effect of La.
  • the upper limit is set at 0.20% for cost reasons.
  • a minimum content of 0.001% Ce is necessary to obtain the oxidation resistance-enhancing effect of Ce.
  • the upper limit is set at 0.20% for cost reasons.
  • a minimum content of 0.001% cerium mischmetal is necessary to obtain the oxidation resistance enhancing effect of the cerium misch metal.
  • the upper limit is set at 0.20% for cost reasons.
  • the alloy can also be given Zr.
  • a minimum content of 0.01% Zr is necessary to obtain the high-temperature strength and oxidation resistance-enhancing effect of Zr.
  • the upper limit is set at 0.20% Zr for cost reasons.
  • Zr can be wholly or partially replaced by Hf, since this element, such as Zr, also increases high-temperature strength and oxidation resistance. Replacement is possible from 0.001%.
  • the upper limit is set at 0.20% Hf for cost reasons.
  • the alloy may also contain tantalum, since tantalum also increases high-temperature strength. Higher levels increase costs very much.
  • the upper limit is therefore set at 0.60%. A minimum level of 0.001% is required to have an effect.
  • boron may be added to the alloy because boron improves creep resistance. Therefore, a content of at least 0.0001% should be present. At the same time, this surfactant deteriorates the oxidation resistance. It will therefore max. 0.008% Boron set.
  • Cobalt can be contained in this alloy up to 5.0%. Higher contents considerably reduce the oxidation resistance.
  • Copper is heated to max. 0.5% limited as this element reduces the oxidation resistance.
  • Vanadium is reduced to max. 0.5% limited as this element reduces the oxidation resistance.
  • Pb is set to max. 0.002% limited because this element reduces the oxidation resistance.
  • Zn and Sn are set to max. 0.002% limited because this element reduces the oxidation resistance.
  • Zn and Sn are set to max. 0.002% limited because this element reduces the oxidation resistance.
  • the limits for Fa and the possible inclusion of further elements have been extensively substantiated in the foregoing description.
  • Table 3b Composition of laboratory batches, part 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Claims (19)

  1. Alliage nickel-chrome comprenant (en % en poids) 29 à 37 % de chrome, 0,001 à 1,8 % d'aluminium, 0,10 à 7,0 % de fer, 0,001 à 0,50 % de silicium, 0,005 à 2,0 % de manganèse, 0,00 à 1,00 % de titane et/ou 0,00 à 1,10 % de niobium, respectivement 0,0002 à 0,05 % de magnésium et/ou de calcium, 0,005 à 0,12 % de carbone, 0,001 à 0,050 % d'azote, 0,001 à 0,030 % de phosphore, 0,0001 à 0,020 % d'oxygène, max. 0,010 % de soufre, max. 2,0 % de molybdène, max. 2,0 % de tungstène, si nécessaire comprenant en outre une teneur en Y de 0,01 à 0,20 %, une teneur en La de 0,01 à 0,20 %, une teneur en cérium de 0,001 à 0,20 %, une teneur en mischmétal de cérium de 0,001 à 0,20 %, une teneur en Zr de 0,01 à 0,20 %, le Zr pouvant être complètement ou partiellement substitué par 0,001 à 0,20 % de Hf, une teneur en B de 0,0001 à 0,008 %, 0,0 à 5,0 % de Co, max. 0,5 % de Cu, max. 0,5 % de V, si nécessaire comprenant en outre un reste en nickel et les impuretés usuelles résultant de l'élaboration, les conditions suivantes devant être remplies : Cr + Al > 30
    Figure imgb0055
    et Fp 39 , 9 avec
    Figure imgb0056
    Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 1 , 26 * Nb + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
    Figure imgb0057
    dans lequel Cr, Fe, Al, Si, Ti, Nb, C, W et Mo sont les concentrations des éléments concernés en % en masse.
  2. Alliage selon la revendication 1, comprenant une teneur en chrome comprise entre 30 et 37 %.
  3. Alliage selon la revendication 1 ou la revendication 2, comprenant une teneur en chrome comprise entre > 32 et 37 %.
  4. Alliage selon l'une des revendications 1 à 3, comprenant une teneur en aluminium comprise entre 0.001 et 1,4 %.
  5. Alliage selon l'une des revendications 1 à 4, comprenant une teneur en fer comprise entre 0,1 et 4,0 %.
  6. Alliage selon l'une des revendications 1 à 5, comprenant une teneur en silicium comprise entre 0,001 et 0,2 %.
  7. Alliage selon l'une des revendications 1 à 6, comprenant une teneur en manganèse comprise entre 0,005 et 0,50 %.
  8. Alliage selon l'une des revendications 1 à 7, comprenant une teneur en titane comprise entre 0,001 et 0,60 %.
  9. Alliage selon l'une des revendications 1 à 8, comprenant une teneur en niobium comprise entre 0,00 et 1,0 %.
  10. Alliage selon l'une des revendications 1 à 9, comprenant une teneur en carbone comprise entre 0,01 et 0,12 %.
  11. Alliage selon l'une des revendications 1 à 10, comprenant maximum 0,5 % de cuivre, la formule 4a étant complétée par un terme avec Cu : Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 1 , 26 * Nb + 0 , 477 * Cu + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
    Figure imgb0058
    dans lequel Cr, Fe, Al, Si, Ti, Nb, Cu, W et Mo sont les concentrations des éléments concernés en % en masse.
  12. Alliage selon l'une des revendications 1 à 11, dans lequel les impuretés sont réglées à des teneurs en Pb de max. 0,002 %, en Zn de max. 0,002 %, en Sn de max. 0,002 %.
  13. Alliage selon l'une des revendications 1 à 12, dans lequel la formule suivante est satisfaite et une particulièrement bonne formabilité est obtenue ainsi : Fa 60
    Figure imgb0059
    avec Fa = Cr + 6 , 15 * Nb + 20 , 4 * Ti + 201 * C
    Figure imgb0060
    dans lequel Cr, Ti, Nb et C sont les concentrations des éléments concernés en % en masse.
  14. Alliage selon l'une des revendications 1 à 13, dans lequel les formules suivantes sont satisfaites et une particulièrement bonne résistance à la chaleur/résistance au fluage est obtenue ainsi : Fk 40
    Figure imgb0061
    avec Fk = Cr + 19 * Ti + 34 , 3 * Nb + 10 , 2 * Al + 12 , 5 * Si + 98 * C
    Figure imgb0062
    pour un alliage sans B,
    dans lequel Cr, Ti, Nb, Al, Si et C sont les concentrations des éléments concernés en % en masse, ou avec Fk = Cr + 19 * Ti + 34.3 * Nb + 10.2 * Al + 12.5 * Si + 98 * C + 2245 * B
    Figure imgb0063
    pour un alliage avec B, dans lequel Cr, Ti, Nb, Al, Si, C et B sont les concentrations des éléments concernés en % en masse.
  15. Utilisation de l'alliage selon l'une des revendications 1 à 14 en tant que bande, tôle, fil de fer, barre, tube à soudure longitudinale et tube sans soudure.
  16. Utilisation de l'alliage selon l'une des revendications 1 à 15 pour fabriquer des tubes sans soudure.
  17. Utilisation de l'alliage selon l'une des revendications 1 à 16 dans des atmosphères fortement carburantes.
  18. Utilisation de l'alliage selon l'une des revendications 1 à 16 en tant que pièce structurelle dans l'industrie pétrochimique.
  19. Utilisation de l'alliage selon l'une des revendications 1 à 16 dans la construction des fourneaux.
EP13731274.0A 2012-06-05 2013-05-15 Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion Active EP2855724B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012011162.2A DE102012011162B4 (de) 2012-06-05 2012-06-05 Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
PCT/DE2013/000269 WO2013182178A1 (fr) 2012-06-05 2013-05-15 Alliage nickel-chrome présentant une usinabilité, une résistance au fluage et une résistance à la corrosion élevées

Publications (2)

Publication Number Publication Date
EP2855724A1 EP2855724A1 (fr) 2015-04-08
EP2855724B1 true EP2855724B1 (fr) 2016-09-14

Family

ID=48698849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13731274.0A Active EP2855724B1 (fr) 2012-06-05 2013-05-15 Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion

Country Status (11)

Country Link
US (1) US9650698B2 (fr)
EP (1) EP2855724B1 (fr)
JP (1) JP6177317B2 (fr)
KR (1) KR101698075B1 (fr)
CN (1) CN104245977B (fr)
BR (1) BR112014023691B1 (fr)
DE (1) DE102012011162B4 (fr)
ES (1) ES2605949T3 (fr)
MX (1) MX369312B (fr)
RU (1) RU2605022C1 (fr)
WO (1) WO2013182178A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671669B1 (fr) * 2011-02-01 2021-06-23 MITSUBISHI HEAVY INDUSTRIES, Ltd. FIL EN ALLIAGE À BASE DE Ni ET À HAUTE TENEUR EN CR POUR LE SOUDAGE, BAGUETTE POUR SOUDAGE À L'ARC À L'ÉLECTRODE ENROBÉE ET MÉTAL POUR SOUDAGE À L'ARC À L'ÉLECTRODE ENROBÉE
DE102014001329B4 (de) * 2014-02-04 2016-04-28 VDM Metals GmbH Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE102014001328B4 (de) * 2014-02-04 2016-04-21 VDM Metals GmbH Aushärtende Nickel-Chrom-Eisen-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE102014001330B4 (de) * 2014-02-04 2016-05-12 VDM Metals GmbH Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
US11130201B2 (en) * 2014-09-05 2021-09-28 Ametek, Inc. Nickel-chromium alloy and method of making the same
DE102015008322A1 (de) * 2015-06-30 2017-01-05 Vdm Metals International Gmbh Verfahren zur Herstellung einer Nickel-Eisen-Chrom-Aluminium-Knetlegierung mit einer erhöhten Dehnung im Zugversuch
US10487377B2 (en) * 2015-12-18 2019-11-26 Heraeus Deutschland GmbH & Co. KG Cr, Ni, Mo and Co alloy for use in medical devices
CN105714152B (zh) * 2016-02-29 2017-06-23 钢铁研究总院 一种镍基耐蚀合金及制备方法
ITUA20161551A1 (it) 2016-03-10 2017-09-10 Nuovo Pignone Tecnologie Srl Lega avente elevata resistenza all’ossidazione ed applicazioni di turbine a gas che la impiegano
CN107042370B (zh) * 2017-03-16 2019-04-02 南京航空航天大学 一种高Cr含量Ni基耐高温合金焊丝及制备工艺
CN110079702B (zh) * 2019-05-31 2020-09-04 东北大学 一种Ni-Cr基合金及其制备方法
DE102020132219A1 (de) 2019-12-06 2021-06-10 Vdm Metals International Gmbh Verwendung einer Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
US11697869B2 (en) 2020-01-22 2023-07-11 Heraeus Deutschland GmbH & Co. KG Method for manufacturing a biocompatible wire
JP7437240B2 (ja) 2020-06-04 2024-02-22 レンゴー株式会社 包装箱
CN114318059B (zh) * 2020-09-29 2022-07-15 宝武特种冶金有限公司 镍铬钨钼钴铁中间合金及其制备方法和应用
CN113106298B (zh) * 2021-04-16 2022-02-25 江苏兄弟合金有限公司 一种高精度直径0.03mm电热丝圆丝及其制备方法
CN113481419A (zh) * 2021-06-30 2021-10-08 南京欣灿奇冶金设备有限公司 一种永不脱落的步进式加热炉装出料悬臂辊及其加工工艺
CN114635062A (zh) * 2022-03-18 2022-06-17 西安聚能高温合金材料科技有限公司 一种镍铬中间合金
CN115161502A (zh) * 2022-07-14 2022-10-11 江苏以豪合金有限公司 一种电热元件用镍基高电阻电热合金丝的制备工艺

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882125A (en) 1988-04-22 1989-11-21 Inco Alloys International, Inc. Sulfidation/oxidation resistant alloys
DE4111821C1 (fr) 1991-04-11 1991-11-28 Vdm Nickel-Technologie Ag, 5980 Werdohl, De
DE69202965T2 (de) * 1991-12-20 1996-03-14 Inco Alloys Ltd Gegen hohe Temperatur beständige Ni-Cr-Legierung.
JPH0711366A (ja) 1993-06-24 1995-01-13 Sumitomo Metal Ind Ltd 熱間加工性および高温水中の耐食性に優れた合金
JPH07216511A (ja) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
JPH08127848A (ja) * 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd 高温強度に優れた高クロムオーステナイト耐熱合金
RU2125110C1 (ru) * 1996-12-17 1999-01-20 Байдуганов Александр Меркурьевич Жаропрочный сплав
US5997809A (en) 1998-12-08 1999-12-07 Inco Alloys International, Inc. Alloys for high temperature service in aggressive environments
KR100372482B1 (ko) 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금
JP3965869B2 (ja) 2000-06-14 2007-08-29 住友金属工業株式会社 Ni基耐熱合金
JP3952861B2 (ja) * 2001-06-19 2007-08-01 住友金属工業株式会社 耐メタルダスティング性を有する金属材料
JP2003138334A (ja) 2001-11-01 2003-05-14 Hitachi Metals Ltd 高温耐酸化性及び高温延性に優れたNi基合金
EP1325965B1 (fr) * 2001-12-21 2005-10-05 Hitachi Metals, Ltd. Alliage à base de Ni amelioree en resistence a l'oxydation, haute résistance thermique et deformation a chaud
DE10302989B4 (de) 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung
JP2006274443A (ja) * 2005-03-03 2006-10-12 Daido Steel Co Ltd 非磁性高硬度合金
US8568901B2 (en) 2006-11-21 2013-10-29 Huntington Alloys Corporation Filler metal composition and method for overlaying low NOx power boiler tubes
FR2910912B1 (fr) 2006-12-29 2009-02-13 Areva Np Sas Procede de traitement thermique de desensibilisation a la fissuration assistee par l'environnement d'un alliage a base nickel, et piece realisee en cet alliage ainsi traitee
JP4978790B2 (ja) 2007-08-27 2012-07-18 三菱マテリアル株式会社 樹脂成形用金型部材
DE102008051014A1 (de) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-Chrom-Legierung
JP4780189B2 (ja) * 2008-12-25 2011-09-28 住友金属工業株式会社 オーステナイト系耐熱合金
JP5284252B2 (ja) * 2009-12-10 2013-09-11 株式会社神戸製鋼所 耐割れ性に優れたNi−Cr−Fe合金系溶接金属

Also Published As

Publication number Publication date
MX369312B (es) 2019-11-05
WO2013182178A1 (fr) 2013-12-12
RU2014153533A (ru) 2016-08-10
US9650698B2 (en) 2017-05-16
CN104245977B (zh) 2016-07-06
KR20150006871A (ko) 2015-01-19
DE102012011162A1 (de) 2013-12-05
BR112014023691B1 (pt) 2019-06-25
DE102012011162B4 (de) 2014-05-22
US20150093288A1 (en) 2015-04-02
CN104245977A (zh) 2014-12-24
MX2014014555A (es) 2015-07-06
ES2605949T3 (es) 2017-03-17
EP2855724A1 (fr) 2015-04-08
KR101698075B1 (ko) 2017-01-19
RU2605022C1 (ru) 2016-12-20
JP6177317B2 (ja) 2017-08-09
JP2015520300A (ja) 2015-07-16

Similar Documents

Publication Publication Date Title
EP2855724B1 (fr) Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion
EP2855723B1 (fr) Alliage nickel-chrome-aluminium avec bonne formabilité, la résistance au fluage et à la corrosion
EP3102710B1 (fr) Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité
EP3102711B1 (fr) Alliage nickel-chrome-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité
EP2678458B1 (fr) Alliage nickel-chrome-fer-aluminium présentant une bonne aptitude à la transformation
EP2882881B1 (fr) Utilisation d'un alliage de nickel-chrome-aluminium-fer ayant une bonne usinabilité
EP2162558B1 (fr) Alliage fer-nickel-chrome-silicium
EP3102712B1 (fr) Alliage nickel-chrome-titane-aluminium durcissant par trempe et présentant une bonne résistance à l'usure, au fluage et à la corrosion, et une bonne usinabilité
WO2017000932A1 (fr) Procédé pour la production d'un alliage forgeable à base de nickel-fer-chrome-aluminium présentant un allongement augmenté dans un essai de traction
WO2019185082A1 (fr) Utilisation d'un alliage de nickel-chrome-fer-aluminium
EP2632628B1 (fr) Alliage ni-fe-cr-mo
DE2253148C3 (de) Verfahren zur Herstellung eines ferritischen, korrosionsbeständigen Stahls und dessen Verwendung
DE102020132193A1 (de) Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
AT414341B (de) Stahl für chemie - anlagen - komponenten
DE102022110383A1 (de) Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in aufkohlenden und sulfidierenden und chlorierenden Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit
DE102022110384A1 (de) Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in hoch korrosiven Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160324

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160509

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160527

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20160610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDM METALS INTERNATIONAL GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 829070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004559

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2605949

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004559

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

26N No opposition filed

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 11

Ref country code: FR

Payment date: 20230526

Year of fee payment: 11

Ref country code: DE

Payment date: 20230519

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230519

Year of fee payment: 11

Ref country code: AT

Payment date: 20230522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 11

Ref country code: ES

Payment date: 20230725

Year of fee payment: 11