EP2956992A1 - Borne de connexion de conducteur - Google Patents

Borne de connexion de conducteur

Info

Publication number
EP2956992A1
EP2956992A1 EP14704142.0A EP14704142A EP2956992A1 EP 2956992 A1 EP2956992 A1 EP 2956992A1 EP 14704142 A EP14704142 A EP 14704142A EP 2956992 A1 EP2956992 A1 EP 2956992A1
Authority
EP
European Patent Office
Prior art keywords
spring
actuating
terminal
side wall
actuating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14704142.0A
Other languages
German (de)
English (en)
Other versions
EP2956992B1 (fr
Inventor
Hans-Josef Köllmann
Wolfgang Gerberding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wago Verwaltungs GmbH
Original Assignee
Wago Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50097687&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2956992(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wago Verwaltungs GmbH filed Critical Wago Verwaltungs GmbH
Priority to PL14704142T priority Critical patent/PL2956992T3/pl
Priority to EP16173966.9A priority patent/EP3091615A1/fr
Publication of EP2956992A1 publication Critical patent/EP2956992A1/fr
Application granted granted Critical
Publication of EP2956992B1 publication Critical patent/EP2956992B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/4828Spring-activating arrangements mounted on or integrally formed with the spring housing
    • H01R4/48365Spring-activating arrangements mounted on or integrally formed with the spring housing with integral release means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • H01R13/6275Latching arms not integral with the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/629Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
    • H01R13/62905Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances comprising a camming member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/639Additional means for holding or locking coupling parts together, after engagement, e.g. separate keylock, retainer strap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/48Clamped connections, spring connections utilising a spring, clip, or other resilient member
    • H01R4/4809Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
    • H01R4/48455Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar insertion of a wire only possible by pressing on the spring

Definitions

  • the invention relates to a conductor terminal with an insulating material housing and with at least one spring terminal connection in the insulating housing and with at least one actuating element, which is pivotally received in the insulating housing and designed to open each at least one associated spring terminal connection.
  • Conductor terminals are known in many forms, for example, as terminal blocks, PCB terminals, terminal blocks or as conductor terminals in other electrical equipment.
  • EP 1 622 224 B1 discloses a connection terminal with an actuating lever which is rotatably mounted in a bend of a busbar.
  • the clamping point between clamping spring end and busbar is below provided the axis of rotation.
  • the operating lever is disposed with an operating portion in the clamping space adjacent to the conductor insertion opening.
  • U1 shows a connection terminal with a separating lever with pivoting means for pivoting a connecting spring with respect to a busbar piece.
  • the separating lever is mounted on a recess formed by the busbar piece to form the pivot axis, so that with a by hand with a lever actuating force to be acted upon actuating finger and a contact portion for actuating the clamping spring a pivotable about the intermediate axis of rotation lever arm is formed.
  • DE 10 2010 024 809 A1 describes a connection terminal with an insulating housing, a busbar section and at least one spring terminal unit with a clamping spring.
  • the clamping spring has an outgoing from a clamping portion actuating portion which extends away from the direction of the clamping force acting on the clamping spring portion of the spring and biased to be acted upon by a pivotally mounted actuating lever, that the actuating lever to open the clamping spring acting against the spring force tensile force applying the operating section.
  • the conductor terminal is also intended, in view of the force influence of the actuating element on the insulating material housing and the transmission of power from the outside to the Betä- Lever pivoting force applied to the actuating force acting on the clamping spring, be optimized.
  • the actuating element of a generic conductor terminal has two spaced-apart side wall sections which are at least partially immersed in the insulating housing with a pivot bearing area and spaced from one another to the pivot bearing area with a transverse web to a lever arm.
  • the pivot bearing portions of the spaced-apart side wall portions of an actuating element form an axis of rotation about which the actuating element is pivotally mounted in the insulating material.
  • An associated spring terminal connection is then at least partially received in the space between the pivot bearing areas of an actuating element.
  • the actuating element thus forms an approximately U-shaped actuating lever in the section, which accommodates the spring force clamping connection at least partially in the free space bounded laterally by the side wall sections.
  • the pivot bearing areas are thus not above, not below, not in front of or not behind the Federkraftklemman gleich, but laterally next to the Federkraftklemman gleich or to be operated clamping spring of Federkraftklemman gleiches.
  • the pivot bearing areas have actuating portions, each for applying an associated clamping spring of a Federkraftklemman gleiches upon pivoting of the actuating element of a closed position in which the actuating element is pivoted with its crosspiece in the direction of insulating material and closed by the spring force clamping connection terminal for clamping an electrical conductor, in an open position, in which the actuating element with its crosspiece pivoted away from the insulating material housing and a clamping point formed by the spring force clamping connection is open for clamping an electrical conductor are formed.
  • Two operating portions are arranged at the pivot bearing portions of the side wall portions at a smaller distance from each other than the distance between the side wall portions.
  • the actuating portions extend parallel to the side wall portions and are integrally formed with the side wall portions so that in each case a guide slot between an actuating portion and the associated, directly adjacent side wall portion is present.
  • a guide web of the insulating housing then immersed in an associated guide slot for guiding the actuating element during pivotal movement about a pivot axis in the pivot bearing area.
  • the actuating element is matched with the insulating material housing and the associated Federkraftklemman- circuit that the pivoting of the actuating element acting from the closed position to the open position on the crosspiece lever pivoting force as well as that of the operating sections upon pivoting of the actuating element from the closed position in the open position acting on the clamping spring acting spring force relative to the axis of rotation on the same side.
  • a particularly compact design with optimum guidance and storage of the actuating elements can be achieved if the adjacent side wall sections of two actuating elements arranged next to one another in the insulating housing adjoin one another directly.
  • the outer walls of the side wall portions of juxtaposed actuators serve for mutual guidance and give the adjacent actuator an additional grip.
  • the insulating housing is preferably designed in two parts with a terminal housing parts and a separate cover part.
  • the terminal housing part and the cover part are connected to one another in the assembled state with the at least one spring force clamping connection and associated actuating element inserted into the terminal housing part.
  • the pivot bearing area is then accommodated in a gap formed between the terminal housing part and cover part.
  • the spring terminal connection and the associated actuating element during assembly can first be inserted into the terminal housing part.
  • the conductor connection terminal is then closed by latching the cover part in the terminal housing part.
  • the pivot bearing area By arranging the pivot bearing area in a gap between the terminal housing part and cover part can then contribute portions of both terminal housing part, and cover part for pivotal mounting of the pivot bearing area.
  • these bearing sections are preferably part-circular curved and adapted to corresponding part-circular curvatures of end faces of the pivot bearing area.
  • the terminal housing part and / or the cover part preferably have part-circular bearing recesses for the pivotable mounting of the actuating element in the insulating material housing.
  • the actuating sections have a part-circular outer circumference with a V-shaped notch to form a shoulder projecting in the direction of the center of the actuating section.
  • the at least one spring terminal connection each has a busbar section and a clamping spring with an actuating tab.
  • the actuating tab of the clamping spring is on pivoting of the actuating element for opening a clamping point formed between a clamping edge of the clamping spring and the busbar section for clamping an electrical conductor on the shoulder.
  • the side wall portions of an actuating element are preferably connected to each other with a transverse web formed in such a way that the transverse web extends in the swung-up state of the actuating element, in which the clamping point is open, from the free end of the side wall sections to the insulating material housing.
  • the transverse web preferably projects beyond the free end of the side wall sections which lies opposite the pivot bearing region. This provides an approach to gripping the crosspiece and applying a lever pivoting force. By the projecting end of the cross bar, the lever arm can be better grasped by hand or with a
  • the conductor terminal is preferred as a cross connection terminal, such. B. as a terminal box, by two or more spring terminal connections are received side by side in the insulating housing, wherein the spring terminal connections have a common busbar.
  • a connected to a spring terminal connection electrical conductor is thus electrically connected to other electrical conductors, which are connected to the other Federkraftklemman remindn.
  • Such a terminal box is extremely compact and can be advantageously integrated into junction boxes of electrical installations. With the help of the operating lever, easy clamping and removal of electrical conductors is possible for a large range of conductor cross sections. Such a conductor terminal can thus be used not only for power distribution installations, but also for communication technology installations.
  • a very stable mounting of the actuating elements in the insulating housing can be achieved if the pivot bearing areas are mounted on a portion of a busbar of the associated spring terminal connection.
  • the usually very stable, massive busbar forms a support for the actuator, so that the busbar with the associated clamping spring and the actuator are essentially self-supporting in terms of force and torque effect, without greater forces and moments acting upon actuation of the spring terminal connection by pivoting the actuating element on the insulating material.
  • the outer contours of the actuating sections lie in the space between the plane spanned by a busbar of the associated spring terminal connection and a plane spanned by a contact leg of the associated spring terminal connection. This allows a very compact design with optimum force action of the actuating element on the spring force clamp connection.
  • Figure 1 perspective view of a first embodiment of a conductor terminal
  • FIG. 3 shows a side sectional view through the conductor connection terminal from FIG. 1 with the actuating element open;
  • Figure 4 side sectional view through the conductor terminal of Figure 1 with a closed actuator;
  • Figure 5 perspective view of a terminal housing part of the insulating material of the conductor terminal of Figures 1 to 4;
  • FIG. 7 perspective view of an actuating element of the conductor connecting terminal of Figures 1 to 4;
  • FIG. 10 shows a longitudinal sectional view through the conductor connection terminal from FIG. 1 with inserted electrical conductor
  • Figure 1 1 - side sectional view through a second embodiment of a conductor terminal with an open actuator
  • Figure 12 side sectional view through the conductor terminal of Figure 1 1 with a closed actuator.
  • FIG. 1 shows a perspective view of a first embodiment Detect a conductor terminal 1.
  • the conductor terminal has an insulating housing 2 with front introduced into the insulating material and juxtaposed conductor insertion openings 3.
  • this can be electrically conductively and mechanically firmly clamped to the associated spring terminal connection.
  • an actuating element 4 is arranged above a respective conductor insertion opening.
  • the actuating elements 4 are each mounted pivotably about an axis of rotation in the insulating housing 2. You have a cross bar 5 at the free end, which is as shown in the closed position within the space formed by the insulating material 2 volume space.
  • the transverse webs 5 of the actuating elements 4 preferably terminate flush with the plane defined by the upper peripheral edge 6 of the insulating housing 2.
  • transverse webs 5 at a free end have a protruding bead 7, which facilitates the gripping of the actuating element 4 by hand or a screwdriver to apply a lever pivoting force in the direction from bottom to top on the actuating element 4 and to pivot this ,
  • the transverse web 5 of an actuating element 4 connects two side wall sections 8a, 8b spaced apart from one another to form a basically U-shaped actuating lever.
  • the space 40 adjacent to the transverse web 5 between two side wall sections 8 a, 8 b is filled in the closed position by a raised section 9 of the insulating housing 2. The space 40 is thus used to hold Isolierstoffmaterial to in this way a compact To achieve construction of the conductor terminal 1.
  • test opening 10 which is open at the front side is provided above the middle conductor insertion opening.
  • a test tool such as a measuring pin or a screwdriver with test light for measuring the voltage potential at the underlying Federkraftklemman gleich be inserted into the test port 10.
  • FIG. 2 shows a cross-sectional view through the conductor connection terminal 1 from FIG. It is clear that the actuating elements 4 in cross-section U-shaped by the spaced-apart side wall sections 8a, 8b and the transverse web 5 connecting them. It will be appreciated that the sidewall portions 8a, 8b dive in a respective gap Z between the raised portion 9 of the insulating housing and either an adjacent raised portion or for the edge portions with the sidewall of the insulating housing 2 in the closed position. This leads to an optimized side guide of the actuating elements 4, which are thus not only stored on the visible pivot bearing.
  • two sidewall portions 8a, 8b of adjacent actuators 4 abut each other and dip in a common space Z, so that the sidewall portions 8a, 8b of the adjacent actuators 4 mutually guide each other.
  • a further intermediate wall between two adjacent side wall sections 8a, 8b space is saved in the width direction.
  • FIG. 3 shows a side sectional view through the conductor connection terminal 1 on FIG. 1 with the actuating element 4 open.
  • a spring-force clamping connection 1 1 is installed together with an associated actuating element 4 in the insulating material 2 is.
  • the insulating housing 2 is made in two parts and has a terminal housing part 12 and a cover part 13. After inserting the actuating element 4 and the spring terminal connection 1 1 in the terminal housing part 2, this is closed with the cover part 13.
  • a pivot bearing portion 14 is guided, inter alia, with a part-circular outer periphery of part-circular bearing recesses 15 of the insulating housing 2 to rotatably support the pivot bearing portion 14 about a rotation axis D.
  • the axis of rotation D is a virtual axis of rotation, which is defined by the part-circular pivot bearing portion 14 and its pivot bearing in Isolierstoffgepit 2.
  • the pivot bearing region 14 has an actuating portion 16 for acting on a lateral portion of the clamping spring 17 of the spring clamp connection 1 1.
  • the clamping spring 17 is formed from a plant leg 18, an adjoining spring bow 19 and a subsequent clamping leg 20.
  • the clamping leg 20 has at its free end a clamping edge 21, which forms a clamping point for clamping an electrical conductor together with a busbar 22 of the spring terminal connection 1 1.
  • the actuating portion 16 exerts a spring actuating force FF, which is seen in Leitereinsteckides L before the axis of rotation D and is directed by the busbar 22 upwards towards the free end of the actuating element in the open position.
  • the bus bar 22 is provided with an integrally formed therewith frame portion 23 which from the plane of the bus bar 22 upwards in the extension direction of the plugged actuating element 4 and the plant leg 17 is directed.
  • a conductor lead-through opening is formed by two spaced apart side webs and a holding web 24 connecting the side webs at the free end.
  • the plant leg 18 engages under the holding web 24 and is defined by a slight curvature in the retaining web 24.
  • a self-supporting spring terminal connection 1 1 is provided, in which the clamping spring 17 is arranged on the busbar 22 and a force acting on the clamping leg 20 force is returned to the busbar 22 via the plant leg 17.
  • pivot bearing portion 14 is mounted opposite to the clamping leg 20 on the busbar 22, out with a teilnikförmigem outer periphery of the bearing wells 15 of the insulating 2 and additionally stored in the rear region opposite to the bearing wells 15 on the side webs of the frame member 23. This ensures that the actuating forces exerted by the pivoting lever are supported on the insulating material housing in a self-supporting manner without exerting significant deformation forces.
  • FIG. 4 shows a side sectional view of the conductor connection terminal 1 from FIGS. 1 to 3.
  • the actuating element 4 is in the closed position, in which the actuating element 4 pivoted with its crossbar 5 in the direction of insulating material 2 and a terminal formed by the spring terminal 1 1 clamping point for clamping an electrical conductor is closed. This rested the
  • lever pivoting force FH and spring actuating force FF are not only rectified in both directions. H. are directed upward regardless of their concrete angle, but also in Leitereinsteckraum L seen in relation to the axis of rotation D on the same page.
  • the actuating element 4 therefore does not form a lever arm in which a spring actuation force FF is exerted on the other, opposite side of the axis of rotation D by a lever pivoting force on one side of the axis of rotation. Rather, lever pivot force FH and spring actuation force FF act relative to the axis of rotation D on the same side.
  • FIG. 5 shows a perspective view of the terminal housing part 12 of the insulating housing 2 of the conductor connection terminal 1 described above.
  • dovetail-like recesses 26 are introduced, dipping into the dovetail-like projections adapted thereto an associated cover member 13 to prevent expansion of the insulating housing 2 under load.
  • the latching of terminal housing part 12 and cover part 13 via not shown locking elements.
  • guide webs 27 and bearing troughs 15 are introduced with part-circular curved end faces 28.
  • part-circular curved end faces 28 each with a bearing recess 15, a pivot bearing of an associated pivot bearing portion 14 is provided to an actuating element 4.
  • the guide webs 27 dip into a guide slot 30 (see FIG. 7) which is present between the inner wall of a side wall section 8 a, 8 b and an actuating section 16 spaced therefrom.
  • the guide webs 27 additionally serve to stabilize the terminal housing part 12.
  • FIG. 6 shows a rear view of the terminal housing part 12 from FIG. 5. It is clear here that the front-side central inspection opening 10 can be seen not only on the front side as shown in FIG. It is also open to the interior. In this way, a spring-force clamping connection 1 1 built into the interior of the terminal housing part 12 becomes accessible to a testing tool in order to check whether electrical voltage potential is present at the relevant spring terminal connection 1 1.
  • FIG. 7 shows a perspective view of an actuating element 3 in the form of an actuating lever from the underside. From this, the in principle U-shaped configuration with two spaced-apart side wall sections 8a, 8b recognizable, which are connected at their free end to one another via a side edge with a transverse web 5. It will be appreciated that the side wall portions 8a, 8b taper from the pivot bearing portions 14 to the free end. It can be seen that at the free end of the crosspiece 5 an actuating bead 7 is present. It is also clear that the cross bar 5 protrudes with the actuating bead 7 forward over the free ends of the side wall portions 8a, 8b, wherein the inner sides of the transverse web 5 is inclined at the free end edge. This counteracts slippage upon application of a lever actuating force of the actuating element 4.
  • pivot bearing areas 14 have part-circular curved outer end faces 29, with which the actuating element 4 is mounted pivotably about a virtual axis of rotation D in Isolierstoffgeophuse.
  • the axis of rotation D extends through the center of a formed by the outer end face 29 pitch circle.
  • part-circular sections 31 spaced apart from the side wall sections 8a, 8b in the pivot bearing area 14 with a guide slot 30 are arranged with a V-shaped notch 32.
  • an actuating portion 16 is formed in each case, which serves to act on an associated clamping leg 20 of a clamping spring 17 with a spring actuating force.
  • the actuating portions 16, as well as the transverse web 5, on which a lever pivoting force FH is exerted lie on the same side relative to the axis of rotation D.
  • the spring actuation forces FF exerted on the actuation sections 16 act on the same side relative to the axis of rotation D as the lever pivot force FH applied to pivoting on the crossbar 5.
  • a locking lug 42 projects approximately in the direction of the pivot bearing portion 14 and the portion 31.
  • the latching lug 42 serves to latch the actuating element 4 in the closed position with the insulating material 2.
  • FIG. 8 shows a side sectional view through the actuating element 4 from FIG. 7. It is once again clear that the side wall sections 8a, 8b are connected by a transverse web 5 connecting them to the upper side of the actuating element 4. In this case, the crosspiece 5 extends only over a partial region of the length of the side wall sections 8a, 8b and preferably occupies more than half the length of the side wall sections 8a, 8b.
  • Figure 9 shows a longitudinal sectional view through a conductor terminal 1 in the plan view, it is clear that the one another spaced side wall portions 8a, 8b of the respective operating lever 4 in intermediate spaces Z of the insulating housing 2 and immerse there by wall sections of the insulating 2 and optionally by adjacent side wall portions 8a, 8b adjacent actuators 4 are performed. It is clear that in the guide slot 30 between a side wall portion 8a, 8b and an adjacent portion 31 with the operating portion 16, a guide web 27 of the insulating housing 2 is immersed. This creates a pivot bearing guide for the actuating element 4, which also gives it lateral hold before tilting or twisting.
  • the sections 31 with the actuating sections 16 overlap the clamping spring 17 in the width direction and cooperate with edge regions of the associated clamping spring 17 or its clamping leg 20 in order to exert a spring actuating force FF on the clamping leg 20.
  • a guide web 27 which dips into the guide slot 30 of the actuating element 4.
  • Adjacent thereto is then the intermediate space Z for receiving a part of a side wall portion 8a, 8b of the actuating element 4 is provided.
  • the operating portions 16 are integrally connected to the side wall portions 8 a, 8 b via the portion 31.
  • FIG. 10 shows a longitudinal sectional view through the conductor connection terminal 1 from FIGS. 1 and 9 approximately at the level of the axis of an inserted electrical conductor 33.
  • the electrical conductor 33 has a stripped free end 34, which is electrically connected by means of the clamping spring 17 at a terminal point with the electrically conductive busbar 22 below.
  • the busbar 22 extends transversely to the connection direction, that is to say across the illustrated three juxtaposed spring terminal connections 1 1, so as to enable a transverse distribution of the electrical potential at the electrical conductor 33. From this sectional view it becomes clear that laterally adjoining the connection space for the electrical conductor 33 are pivot bearing regions 14, which have sections 31 with actuating sections 16.
  • the operating portions 16 of adjacent pivot bearing portions 14 for the same spring force clamping connection and the same conductor insertion opening 3 are spaced less from each other than the side wall portions 8a, 8b, in which the actuating portions 16 are integrally formed.
  • a guide slot 30 is located between the actuating sections 16 and the side wall sections 8a, 8b. The pivot bearing sections 14 and / or the actuating sections 16 guide the electrical conductor 33 or its stripped end to the clamping point.
  • the projecting from the busbar 22 frame parts 23 each have two spaced-apart edge webs 35, the intermediate space serves as a conductor passage opening for performing the stripped end 34 of an electrical conductor 33.
  • the spring force clamping connections 1 1 are fixed in the clamping housing part 12 by the cover part 13 in that webs 36 of the cover part abut the edge webs 35 of the frame parts 23 and thus fix them in position.
  • the terminal housing part 12 has wall portions 37 made of insulating material with part-circular end faces, which abut the part-circular curved portions 31 of the pivot bearing portions 14 with the actuating portions 16 and form a part-circular bearing recess for this.
  • FIG. 11 shows a side sectional view of a second embodiment of a conductor connection terminal 1 with the actuating element 4 open in the open position.
  • the insulating 2 is made in two parts of a terminal housing part 12 and a guided into this and locked with the clamping housing part 12 lid part 13 in two parts.
  • the pivot bearing region 14 has a first at least part-circular bearing portion 37, to which the section 31 is connected with the actuating portion 16 in the direction of the conductor connection space.
  • this section 31 with the actuating portion 16 has a larger diameter than the part-circular bearing portion 37.
  • the section 31 projects radially with respect to the pivot bearing section 37 with the actuating section 16.
  • the actuating element 4 can then be mounted on the pivot bearing region 37 by means of correspondingly adapted part-circular bearing cavities of the insulating housing 2 and possibly also on the larger part-circular section 31 through the insulating housing.
  • the spring actuating force FF of the actuating portion 16 acts on projecting from the clamping spring actuating tab 38 on the same side of the axis of rotation D and in the same direction as a pivoting of the actuating element 4 from the closed position shown in FIG 12 in the illustrated open position of Figure 1 1 to be applied to the free end of the actuating element 4 lever pivoting force FH.
  • the conductor connection terminal 1 can have a test opening 39 in the insulating housing 2 accessible in the rear region from above.

Abstract

L'invention concerne une borne de connexion de conducteur (1) comprenant un boîtier en matériau isolant (2) et au moins une connexion par borne à ressort (11) dans le boîtier (2), ainsi qu'au moins un élément actionneur (4) logé de manière à pouvoir pivoter dans le boîtier (2) et adapté pour ouvrir respectivement au moins une connexion par borne à ressort (11) associée. L'élément actionneur (4) possède deux segments de parois latérales (8a, 8b) espacés l'un de l'autre qui pénètrent au moins en partie par une zone de pivot (14) dans le boîtier en matériau isolant (2) et qui sont reliés face à la zone de pivot (14) au moyen d'une traverse (5) pour former un bras de levier. Les zones de pivot (14) des segments de parois latérales (8a, 8b) espacés l'un de l'autre d'un élément actionneur (4) forment un axe de rotation (D) sur lequel l'élément actionneur (4) est supporté en rotation dans le boîtier (2). Une connexion par borne à ressort (11) associée est logée au moins en partie dans l'espace entre les zones de pivot (14) d'un élément actionneur (4). Les zones de pivot (14) possèdent des segments d'actionnement (16) adaptés chacun pour solliciter un ressort de serrage (17) associé d'une connexion par borne à ressort (11) lorsque l'élément actionneur (16) pivote d'une position de fermeture à une position ouverte. Selon l'invention, les segments d'actionnement (4) sont disposés dans les zones de pivot (14) des segments de parois latérales (8a, 8b) avec un écartement entre eux qui est inférieur à l'écartement entre les segments de parois latérales (8a, 8b), les segments d'actionnement (16) sont parallèles aux segments de parois latérales (8a, 8b) et formés d'un seul tenant avec ces derniers en créant une fente de guidage (30) respective entre un segment d'actionnement (16) et le segment de paroi latérale (8a, 8b) associé directement adjacent, et une nervure de guidage (27) respective du boîtier en matériau isolant (2) s'engage dans une fente de guidage (30) associée afin de guider l'élément actionneur (4) lors du pivotement sur un axe de rotation (D) dans la zone de pivot (14).
EP14704142.0A 2013-02-13 2014-02-12 Borne de connexion de conducteur Active EP2956992B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL14704142T PL2956992T3 (pl) 2013-02-13 2014-02-12 Zacisk przyłączeniowy przewodu
EP16173966.9A EP3091615A1 (fr) 2013-02-13 2014-02-12 Borne d'alimentation conductrice

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013101406.2A DE102013101406B4 (de) 2013-02-13 2013-02-13 Leiteranschlussklemme
PCT/EP2014/052715 WO2014124958A1 (fr) 2013-02-13 2014-02-12 Borne de connexion de conducteur

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP16173966.9A Division-Into EP3091615A1 (fr) 2013-02-13 2014-02-12 Borne d'alimentation conductrice
EP16173966.9A Division EP3091615A1 (fr) 2013-02-13 2014-02-12 Borne d'alimentation conductrice

Publications (2)

Publication Number Publication Date
EP2956992A1 true EP2956992A1 (fr) 2015-12-23
EP2956992B1 EP2956992B1 (fr) 2019-07-03

Family

ID=50097687

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16173966.9A Pending EP3091615A1 (fr) 2013-02-13 2014-02-12 Borne d'alimentation conductrice
EP14704142.0A Active EP2956992B1 (fr) 2013-02-13 2014-02-12 Borne de connexion de conducteur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16173966.9A Pending EP3091615A1 (fr) 2013-02-13 2014-02-12 Borne d'alimentation conductrice

Country Status (10)

Country Link
US (2) US9543700B2 (fr)
EP (2) EP3091615A1 (fr)
JP (1) JP6298082B2 (fr)
KR (1) KR102190635B1 (fr)
CN (2) CN104995799B (fr)
DE (3) DE102013101406B4 (fr)
ES (1) ES2745459T3 (fr)
PL (1) PL2956992T3 (fr)
RU (2) RU2740638C2 (fr)
WO (1) WO2014124958A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091615A1 (fr) 2013-02-13 2016-11-09 Wago Verwaltungsgesellschaft mbH Borne d'alimentation conductrice

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005215A1 (fr) * 2014-07-05 2016-01-14 Eaton Electrical Ip Gmbh & Co. Kg Adaptateur de connexion pour appareil électrique pour connecter des lignes d'alimentation électrique et système constitué d'un adaptateur de connexion et d'un appareil
DE102014114026B4 (de) * 2014-09-26 2023-03-30 Wago Verwaltungsgesellschaft Mbh Leiteranschlussklemme und Verfahren zu deren Montage
CN104300304A (zh) * 2014-10-11 2015-01-21 江门市创艺电器有限公司 一种拔盖插接式接线端子
TWM499668U (zh) * 2014-11-06 2015-04-21 Switchlab Inc 接線端子結構之改良
DE102014119421B4 (de) * 2014-12-22 2017-02-02 Wago Verwaltungsgesellschaft Mbh Verbindungsklemme und Verfahren zur Montage einer Verbindungsklemme
DE102015100823B4 (de) * 2015-01-21 2021-12-09 Phoenix Contact Gmbh & Co. Kg Elektrische Anschlussklemme
DE102015104270A1 (de) * 2015-03-23 2016-09-29 Eaton Electrical Ip Gmbh & Co. Kg Kontaktierungsvorrichtung zum Kontaktieren eines elektrischen Leiters an eine elektrische Leiterbahn
DE102015104625B4 (de) 2015-03-26 2022-11-17 Phoenix Contact Gmbh & Co. Kg Leiteranschlussklemme
CN104767045B (zh) * 2015-04-11 2017-03-29 江门市创艺电器有限公司 一种接线端子连接器
DE102015210410B3 (de) 2015-06-08 2016-05-12 Bayerische Motoren Werke Aktiengesellschaft Berührgeschützte Steckverbindung
DE102015115612A1 (de) * 2015-09-16 2017-03-16 Phoenix Contact Gmbh & Co. Kg Anschlussklemme zum Anschließen eines elektrischen Leiters
JP6651393B2 (ja) * 2016-03-25 2020-02-19 日本圧着端子製造株式会社 圧接コンタクト及び圧接コネクタ
JP2017183023A (ja) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 端子装置及びそれを備えた配線器具
USD810693S1 (en) * 2016-08-24 2018-02-20 Jiangmen Krealux Electrical Appliances Co., Ltd. Connector terminals (P04-2P-3P-5P)
LU93183B1 (de) * 2016-08-25 2018-03-28 Phoenix Contact Gmbh & Co Kg Intellectual Property Licenses & Standards Anschlussklemme
JP1587805S (fr) * 2016-09-19 2017-10-10
USD826164S1 (en) * 2016-09-19 2018-08-21 Wago Verwaltungsgesellschaft Mbh Electrical connector
JP1594430S (fr) * 2016-11-14 2018-01-09
DE102016122238A1 (de) * 2016-11-18 2018-05-24 Wago Verwaltungsgesellschaft Mbh Federklemmkontakt zur Kontaktierung elektrischer Leiter, Leiteranschlussklemme und Verfahren zur Herstellung eines Federklemmkontakts
WO2018129359A1 (fr) 2017-01-06 2018-07-12 Hubbell Incorporated Dispositifs de câblage électrique à bornes de connexion sans vis
DE102017109694B4 (de) * 2017-05-05 2022-10-06 Wago Verwaltungsgesellschaft Mbh Anschlussklemme
USD854502S1 (en) * 2017-05-11 2019-07-23 Wago Verwaltungsgesellschaft Mbh Cable connector
DE202017107800U1 (de) * 2017-05-12 2018-08-17 Electro Terminal Gmbh & Co Kg Klemme
JP1601197S (fr) * 2017-06-13 2018-04-09
JP1601196S (fr) * 2017-06-13 2018-04-09
JP1601644S (fr) * 2017-06-13 2018-04-09
JP1601643S (fr) * 2017-06-13 2018-04-09
JP1601642S (fr) * 2017-06-13 2018-04-09
JP1601645S (fr) * 2017-06-13 2018-04-09
EP3460917A1 (fr) * 2017-09-20 2019-03-27 Delphi Technologies, Inc. Connecteur électrique
DE102018124583A1 (de) * 2017-10-19 2019-04-25 Phoenix Contact Gmbh & Co. Kg Klemmenanordnung mit einer Stromschiene
DE202017106710U1 (de) 2017-11-07 2019-02-08 Unger Kabel-Konfektionstechnik GmbH Geräteanschlussterminal für ein Haushaltsgerät sowie Haushaltsgerät
BE1025732B1 (de) * 2017-11-21 2019-06-24 Phoenix Contact Gmbh & Co. Kg Anschlusseinrichtung zum Anschließen einer elektrischen Leitung
CN107834273B (zh) * 2017-12-14 2024-01-23 宁波立腾音频科技有限公司 电线连接处绝缘保护装置
DE102018102699A1 (de) 2018-02-07 2019-08-08 Wago Verwaltungsgesellschaft Mbh Anschlussbaustein zum Anschließen eines elektrischen Leiters sowie Einrichtung mit einem externen Stromschienenstück und einem Anschlussbaustein
DE112019001779A5 (de) * 2018-04-05 2021-03-04 Wago Verwaltungsgesellschaft Mbh Elektrischer Steckverbinder, modulares System und Verfahren zur Bereitstellung eines Steckverbinders
EP3579671B1 (fr) * 2018-06-05 2023-03-15 R. STAHL Schaltgeräte GmbH Boîtier du type de protection à blindage résistant à la pression (antidéflagrant)
DE102018117508B4 (de) * 2018-07-19 2024-01-18 Wago Verwaltungsgesellschaft Mbh Leiteranschlussklemme
CN110890642B (zh) * 2018-09-11 2021-02-02 町洋企业股份有限公司 旋启式夹掣组件及具有该组件的连接装置
USD987572S1 (en) * 2018-10-15 2023-05-30 Wago Verwaltungsgesellschaft Mbh Electrical connector
DE202018004780U1 (de) * 2018-10-16 2020-01-21 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Schutzleiterklemme
DE202018106899U1 (de) * 2018-12-04 2020-03-05 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Federanschlussklemme
DE202018106896U1 (de) * 2018-12-04 2020-03-05 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Federanschlussklemme
DE202018106898U1 (de) * 2018-12-04 2020-03-05 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Federanschlussklemme
DE202018106897U1 (de) * 2018-12-04 2020-03-05 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Federanschlussklemme
DE202018106900U1 (de) * 2018-12-04 2020-03-06 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Federanschlussklemme
DE102018131794B4 (de) 2018-12-11 2023-06-01 Wago Verwaltungsgesellschaft Mbh Leiteranschlussklemme
DE102019101880B4 (de) * 2019-01-25 2023-09-14 Wago Verwaltungsgesellschaft Mbh Klemmfeder und Leiteranschlussklemme
USD929343S1 (en) * 2019-06-27 2021-08-31 Jiangmen Krealux Electric Appliances Co., Ltd. Terminal block
USD937219S1 (en) * 2019-06-27 2021-11-30 Jiangmen Krealux Electrical Appliances Co., Ltd. Wire connector for terminal block
DE202019105009U1 (de) * 2019-09-11 2020-12-14 Wago Verwaltungsgesellschaft Mbh Leiteranschlussklemme
DE102019131653B4 (de) * 2019-11-22 2024-01-18 Wago Verwaltungsgesellschaft Mbh Leiteranschlussklemme
DE102020100218A1 (de) * 2020-01-08 2021-07-08 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Leiteranschlussklemme
USD937783S1 (en) * 2020-01-08 2021-12-07 Xiamen Fucon Electronics Company Co., Ltd. Connector terminals
DE102020104077A1 (de) * 2020-02-17 2021-08-19 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Federkraftklemmanschluss
DE202020100910U1 (de) * 2020-02-19 2021-05-26 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Leiteranschlussklemme
DE102021108316A1 (de) * 2020-04-03 2021-10-07 Phoenix Contact Gmbh & Co. Kg Anschlussklemme und elektronisches Gerät
USD988266S1 (en) * 2020-07-23 2023-06-06 Electro Terminal Gmbh & Co Kg Clamp
TWI732639B (zh) 2020-07-29 2021-07-01 金筆企業股份有限公司 導線連接器
DE202020105715U1 (de) 2020-10-06 2022-01-10 Electro Terminal GmbH & Co. KG Klemme mit Lösehebel
USD1023964S1 (en) * 2020-12-21 2024-04-23 Electro Terminal Gmbh & Co Kg Clamp
USD941251S1 (en) * 2020-12-29 2022-01-18 Dinkle Enterprise Co., Ltd. Terminal socket
US11605908B2 (en) 2021-04-06 2023-03-14 Heavy Power Co., Ltd. Cam-type wire connector
DE102021110424A1 (de) 2021-04-23 2022-10-27 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Leiteranschlussklemme
EP4089857A1 (fr) 2021-05-13 2022-11-16 Heavy Power Co., Ltd. Connecteur de câble de type came
DE102021112960A1 (de) 2021-05-19 2022-11-24 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Leiteranschlussklemme mit wenigstens einem Federkraftklemmanschluss
DE102021112961A1 (de) 2021-05-19 2022-11-24 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Leiteranschlussklemme mit wenigstens einem Federkraftklemmanschluss
WO2024005776A1 (fr) 2022-06-27 2024-01-04 Ideal Industries, Inc. Connecteur à levier pour conducteurs électriques

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2590886A (en) * 1948-04-08 1952-04-01 Pedersen Svend Laessphie Strain relief for electrical connectors
DE1575118C3 (de) * 1951-01-28 1974-12-19 Elektrotechnische Industrie Gustav Giersiepen, 5608 Radevormwald Schraubenlose Anschlußklemme für elektrische Geräte
US3895635A (en) * 1973-06-20 1975-07-22 Ndm Corp Electrosurgical grounding cable assembly
US4253719A (en) * 1980-01-28 1981-03-03 Methode Electronics, Inc. Electrical edge connector
US4678264A (en) * 1983-03-30 1987-07-07 Amp Incorporated Electrical and fiber optic connector assembly
NL8500161A (nl) * 1985-01-22 1986-08-18 Du Pont Nederland Konnektor voor althans een geleider.
US4761143A (en) * 1987-01-20 1988-08-02 Owens Rick L Electrode clip
DE8704494U1 (fr) 1987-03-26 1987-06-11 Popp + Co Gmbh, 8582 Bad Berneck, De
DE3822980A1 (de) * 1988-07-07 1990-01-11 Lumberg Karl Gmbh & Co Verbinder zum anschluss flacher elektrischer leiter
US5295872A (en) * 1992-07-06 1994-03-22 Christensson Eddy K G Biomedical electrical clasp
US5624281A (en) * 1994-12-14 1997-04-29 Christensson; Eddy K. G. Clasp structure for biomedical electrodes
EP0722203B1 (fr) 1995-01-16 2003-04-16 Molex Incorporated Ensemble d'un connecteur électrique avec un système de came améliorée
DE19654611B4 (de) * 1996-12-20 2004-09-30 Wago Verwaltungsgesellschaft Mbh Federkraftklemmanschluß für elektrische Leiter
US6357089B1 (en) * 1998-02-24 2002-03-19 Sekisui Plastics Co., Ltd. Clip for a sheet electrode
DE29915515U1 (de) 1999-09-03 2001-02-01 Weidmueller Interface Federklemme zum Anschließen elektricher Leiter
JP4527242B2 (ja) * 2000-05-26 2010-08-18 Idec株式会社 接続装置
RU19338U1 (ru) * 2001-04-06 2001-08-20 Закрытое акционерное общество НПО "Инженеры электросвязи" Клеммная колодка
DE10225621B3 (de) * 2002-06-07 2004-01-22 Nicolay Verwaltungs-Gmbh Vorrichtung zum elektrischen Verbinden einer Anschlußleitung mit einer Elektrode, insbesondere einer medizintechnischen Hautelektrode
JP4100234B2 (ja) 2003-04-18 2008-06-11 松下電工株式会社 速結端子装置
JP4289230B2 (ja) 2004-06-25 2009-07-01 パナソニック電工株式会社 速結端子装置
FR2873859B1 (fr) 2004-07-30 2006-12-08 Legrand Sa Appareil electrique comportant une borne a connexion automatique
US8522440B2 (en) * 2005-12-28 2013-09-03 Lucien C Ducret Rotating tool for hardened cable-protective shield
DE202006003400U1 (de) * 2006-03-04 2007-07-12 Weidmüller Interface GmbH & Co. KG Anschlusssystem mit Direktsteckanschluss
DE102008017738A1 (de) * 2007-04-21 2008-10-30 Abb Ag Installationsschaltgerät mit einer Federzugklemmenanordnung
DE102007050936B4 (de) * 2007-10-23 2009-07-16 Wago Verwaltungsgesellschaft Mbh Anschlussklemme
DE102008017245B4 (de) * 2008-04-04 2010-03-25 Moeller Gmbh Steckadapter für ein elektrisches Schaltgerät
JP5324123B2 (ja) * 2008-04-25 2013-10-23 スリーエム イノベイティブ プロパティズ カンパニー プッシュ式コネクタ
US7950971B2 (en) * 2008-08-08 2011-05-31 Cardiodynamics International Corporation Electrical connector apparatus and methods
FR2935201B1 (fr) 2008-08-20 2010-09-24 Legrand France Borne de connexion electrique automatique
DE102008039868A1 (de) * 2008-08-27 2010-03-04 Phoenix Contact Gmbh & Co. Kg Elektrische Anschlußklemme
DK2316150T3 (da) * 2008-08-27 2013-07-15 Phoenix Contact Gmbh & Co Elektrisk forbindelsesklemme
RU2375795C1 (ru) * 2008-08-29 2009-12-10 Андрей Константинович Деревенко Соединитель электрических проводов
DE102008061268B4 (de) * 2008-12-10 2017-02-23 Phoenix Contact Gmbh & Co. Kg Kontaktklemme und Verbinder mit Kontaktklemme
DE102009054373A1 (de) 2009-11-19 2011-05-26 Bimed Teknik A.S., Büyükcekmece Anschlussklemme und Verwendung einer Anschlussklemme zum elektrischen Anschluss von Leitern
JP5491837B2 (ja) 2009-12-04 2014-05-14 パナソニック株式会社 速結端子装置
DE102010014143B4 (de) * 2010-04-07 2016-07-07 Wago Verwaltungsgesellschaft Mbh Betätigungseinrichtung für eine elektrische Anschlussklemme
DE102010024809B4 (de) * 2010-06-23 2013-07-18 Wago Verwaltungsgesellschaft Mbh Anschlussklemme
JP5958680B2 (ja) 2010-09-14 2016-08-02 パナソニックIpマネジメント株式会社 端子装置
DE102010048698B4 (de) * 2010-10-19 2014-12-18 Wago Verwaltungsgesellschaft Mbh Elektrische Verbindungsklemme
US8262422B1 (en) 2011-07-28 2012-09-11 Cheng Uei Precision Industry Co., Ltd. Electrical connector
DE202011106033U1 (de) * 2011-09-23 2013-01-11 Wieland Electric Gmbh Leiteranschluss
DE102011056410B4 (de) * 2011-12-14 2013-06-27 Wago Verwaltungsgesellschaft Mbh Anschlussklemme
DE102013101406B4 (de) 2013-02-13 2018-07-12 Wago Verwaltungsgesellschaft Mbh Leiteranschlussklemme
RU2576463C1 (ru) * 2015-01-20 2016-03-10 Дмитрий Анатольевич Семаков Соединительная клемма для электрических проводов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014124958A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091615A1 (fr) 2013-02-13 2016-11-09 Wago Verwaltungsgesellschaft mbH Borne d'alimentation conductrice

Also Published As

Publication number Publication date
EP2956992B1 (fr) 2019-07-03
DE102013101406A1 (de) 2014-08-14
EP3091615A1 (fr) 2016-11-09
PL2956992T3 (pl) 2019-12-31
ES2745459T3 (es) 2020-03-02
RU2017133673A (ru) 2019-02-07
DE202014011234U1 (de) 2018-09-17
JP6298082B2 (ja) 2018-03-20
WO2014124958A1 (fr) 2014-08-21
RU2017133673A3 (fr) 2020-11-17
US20170047680A1 (en) 2017-02-16
DE102013101406B4 (de) 2018-07-12
CN107069246A (zh) 2017-08-18
RU2015134849A (ru) 2017-03-20
US20160006176A1 (en) 2016-01-07
US9543700B2 (en) 2017-01-10
CN107069246B (zh) 2019-04-30
KR102190635B1 (ko) 2020-12-15
CN104995799A (zh) 2015-10-21
RU2633519C2 (ru) 2017-10-13
DE202014010783U1 (de) 2016-08-18
RU2740638C2 (ru) 2021-01-19
CN104995799B (zh) 2017-11-14
US9825402B2 (en) 2017-11-21
KR20150116847A (ko) 2015-10-16
JP2016507144A (ja) 2016-03-07

Similar Documents

Publication Publication Date Title
EP2956992B1 (fr) Borne de connexion de conducteur
EP3238306B1 (fr) Borne de connexion et procédé de montage d'une borne de connexion
EP2956995B1 (fr) Borne de connexion de conducteur
EP2956993B1 (fr) Contact à serrage par ressort et borne de connexion de conducteurs électriques
EP1798819B1 (fr) Borne électrique
EP3460919B1 (fr) Pince de raccordement de conducteur
EP2605335B2 (fr) Borne de connexion
DE102012110895B4 (de) Anschlussklemme
WO2018036898A1 (fr) Connexion serrée à ressort
EP3667825B1 (fr) Borne de connexion de conducteur
EP3776741B1 (fr) Borne de connexion de conducteur
EP3776743B1 (fr) Borne de connexion de conducteur, ressort de serrage d'une borne de connexion de conducteur et bloc de jonction
EP1523065B1 (fr) Borne électrique
WO2023078502A1 (fr) Appareil de support de contact, dispositif de connexion, actionneur, insert de connecteur enfichable et procédé d'installation, et système de connexion de câble
DE102020115991B4 (de) Leiteranschlussklemme mit Betätigung durch ein Leiteranschlussmodul
DE202015009940U1 (de) Leiteranschlussklemme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1152099

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012102

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190703

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191103

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191004

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2745459

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014012102

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: FI

Ref legal event code: MDE

Opponent name: PHOENIX CONTACT GMBH & CO. KG

26 Opposition filed

Opponent name: PHOENIX CONTACT GMBH & CO. KG

Effective date: 20200403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502014012102

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014012102

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230216

Year of fee payment: 10

Ref country code: FR

Payment date: 20230223

Year of fee payment: 10

Ref country code: FI

Payment date: 20230223

Year of fee payment: 10

Ref country code: ES

Payment date: 20230321

Year of fee payment: 10

Ref country code: CZ

Payment date: 20230210

Year of fee payment: 10

Ref country code: CH

Payment date: 20230307

Year of fee payment: 10

Ref country code: AT

Payment date: 20230215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230201

Year of fee payment: 10

Ref country code: SE

Payment date: 20230222

Year of fee payment: 10

Ref country code: IT

Payment date: 20230220

Year of fee payment: 10

Ref country code: GB

Payment date: 20230214

Year of fee payment: 10

Ref country code: DE

Payment date: 20230227

Year of fee payment: 10

Ref country code: BE

Payment date: 20230222

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240226

Year of fee payment: 11

Ref country code: ES

Payment date: 20240307

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240226

Year of fee payment: 11

Ref country code: DE

Payment date: 20240228

Year of fee payment: 11

Ref country code: CZ

Payment date: 20240130

Year of fee payment: 11

Ref country code: GB

Payment date: 20240220

Year of fee payment: 11

Ref country code: CH

Payment date: 20240301

Year of fee payment: 11