EP2700950B1 - Method for analyzing protein-protein interaction on single-molecule level within the cellular environment - Google Patents

Method for analyzing protein-protein interaction on single-molecule level within the cellular environment Download PDF

Info

Publication number
EP2700950B1
EP2700950B1 EP12774636.0A EP12774636A EP2700950B1 EP 2700950 B1 EP2700950 B1 EP 2700950B1 EP 12774636 A EP12774636 A EP 12774636A EP 2700950 B1 EP2700950 B1 EP 2700950B1
Authority
EP
European Patent Office
Prior art keywords
proteins
substrate
cell
protein
bound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12774636.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2700950A4 (en
EP2700950A2 (en
Inventor
Tae-Young Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of EP2700950A2 publication Critical patent/EP2700950A2/en
Publication of EP2700950A4 publication Critical patent/EP2700950A4/en
Application granted granted Critical
Publication of EP2700950B1 publication Critical patent/EP2700950B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a method of analyzing protein-protein interactions, and more specifically, to a method of analyzing protein-protein interactions, which can analyze the protein-protein interactions at a single molecular level in the actual intracellular environment, and also can compare and confirm each cell state and activation levels of first proteins by comparing after varying of a type of cell supplying the first proteins for observing interactions between the first proteins and the second proteins.
  • a cell maintains a life phenomenon by performing several biological functions, such as gene expression, cell growth, cell cycle, metabolism, signal transduction, and the like, through various and complex protein-protein interactions. Accordingly, the understandings of intracellular protein-protein interactions and functions of the interactions have been the foundation of the understandings of the life phenomenon and are an essential part for developing new drugs and treating diseases.
  • a representative method of investigating protein-protein interactions in vitro is an affinity chromatography method.
  • a method of investigating the protein-protein interactions analyzes the interactions in the isolation of proteins from other intracellular materials by purifying each of the proteins that exist in the cell for analyzing the protein-protein interactions. Accordingly, there is a limit to analyze the protein-protein interactions at the single molecular level in the actual intracellular environment with co-existing other proteins, and the like.
  • a method of investigating the protein-protein interactions according to the conventional technologies has a problem that the degrees of effects of other proteins on specific protein-protein interactions cannot be analyzed when other proteins are involved with the interactions in the actual intracellular environment.
  • US 2003/186311 A1 discloses methods for detecting molecular interactions comprising arrays (e.g., glass slides coated with PEG on which antibodies are covalently attached). The detection is performed using near field scanning probe microscopy which enables detection at the single molecular level.
  • WO 2009/100442 A2 discloses a nanofluidic device and method for determining molecule-molecule interactions with a single molecule detection system comprising contacting a sample (e.g., breast cancer cell lysate) with a binding moiety (such as an antibody), contacting the binding moiety with a detection moiety, introducing the sample into a microchannel for single fluorescence signal detection, and detecting the complex.
  • a sample e.g., breast cancer cell lysate
  • a binding moiety such as an antibody
  • Sako Y. et al., Nat. Cell Biol., 2000 (2): 168-172 discloses a method and apparatus for single molecule imaging of the EGFR signalling pathway, and in particular of activated EGFR.
  • the detection is performed with total internal reflection (TIR) fluorescence microscopy.
  • TIR total internal reflection
  • Wabuyele M.B. et al., Meth. Mol. Biol., 2005 (300): 437-452 discloses the advantages and usefulness of near-field scanning optical microscopy (NSOM) for imaging biological molecules especially for investigating the colocalization of proteins and for the bioanalysis at nanometer resolution.
  • NSOM near-field scanning optical microscopy
  • US 2007/128665 A1 discloses a method for analysing interactions between two proteins such as small GTPases (exemplified with the interaction between ras and raf) and for identifying a compound capable of inhibiting such interaction. This is realized by following GTP loading on a membrane bound small GTPase (e.g., ras) and following the interaction ras-raf by fluorescence microscopy, especially translocation from the membrane to the cytosol after activation, using a GFP-raf.
  • a membrane bound small GTPase e.g., ras
  • fluorescence microscopy especially translocation from the membrane to the cytosol after activation, using a GFP-raf.
  • an object of the present invention is to provide a method of analyzing protein-protein interactions, which can analyze the protein-protein interactions at a single molecular level in the actual intracellular environment, as well as can compare and confirm each cell state and activation levels of first proteins by comparing after varying of a type of cells supplying the first protein for observing interactions between the first proteins and the second proteins.
  • the present disclosure describes a method of measuring activated protein concentrations in a cell lysate, which can compare and measure quantitatively specific activated protein concentrations in the cell of an experimental group and the cell of a control group.
  • a method of analyzing interactions between first proteins and second proteins by at a single molecular level comprising: (a) preparing at least two substrates, in which first protein-binding molecules that are biomolecules to be bound to the first proteins are attached to each of the substrates; (b) inducing binding between the first proteins and the first protein-binding molecules on the first substrate and the second substrate, respectively, by supplying the first proteins included in the control group-cell to the first substrate among the two substrates and supplying the first proteins included in the experimental group-cell to the second substrate among the two substrates, wherein the concentration of the control group cell should be equal to the concentration of the experimental group cell; (c) supplying cell lysates of cells including the marker-tagged second proteins to the first substrate and the second substrate, respectively, when the first proteins and the first protein-binding molecules are bound to the first substrate and the second substrate, respectively, wherein the concentration of the second proteins in the cytoplasmic cell lysates to
  • control group-cell is a normal cell and the experimental group-cell is a tumor cell.
  • the step (d) includes measuring a fluorescent signal having a specific wavelength generated by the markers tagged to the second proteins bound to the first proteins using an optical apparatus generating a near-field.
  • the fluorescent signal having the specific wavelength is cumulatively measured for a predetermined time period.
  • the fluorescent signal having the specific wavelength is measured in real-time under the presence of the cell lysates supplied to the substrate.
  • the step (b) includes supplying the cell lysates of the control group-cell to the first substrate and supplying the cell lysates of the experimental group-cell to the second substrate.
  • the method further comprises supplying a buffer solution to the substrate before the step (c).
  • the present disclosure further describes a method of measuring activated protein concentration in a cell lysate, comprising: (a) preparing a substrate attaching first protein-binding molecules that are biomolecules to be bound with first proteins; (b) inducing binding of the first proteins and the first protein-binding molecules by supplying the cell lysates including the first proteins to the substrate; (c) supplying the cell lysates including the marker-tagged second proteins when the first proteins are bound to the first protein-binding molecules on the substrate; and (d) analyzing interactions between the first proteins and the second proteins on the substrate.
  • the method further comprises (e) repeating the steps (b) to (d) by increasing the concentration of the cell lysates including the first proteins in the step (b), by a predetermined ratio.
  • the step (d) includes measuring a generation frequency of a fluorescent signal having a specific wavelength generated by the markers tagged to the second proteins bound to the first proteins in any configured observation region on the substrate.
  • the first proteins that interact with the second proteins in the step (d) are activated first proteins among the first proteins bound to the first protein-binding molecules.
  • the step (d) includes measuring a fluorescent signal having a specific wavelength generated by the markers tagged to the second proteins bound to the first proteins using an optical apparatus generating a near-field.
  • the present disclosure further describes a method of measuring activated protein concentration in a cell lysate, comprising: (a) preparing at least two substrates, to which first protein-binding molecules that are biomolecules to be bound to first proteins are attached, respectively; (b) inducing binding between the first proteins and the first protein-binding molecules on the first substrate and the second substrate, respectively, by supplying the first proteins included in the control group-cell to the first substrate among the two substrates and supplying the first proteins included in the experimental group-cell to the second substrate among the two substrates; (c) supplying cell lysates including the marker-tagged second proteins to the first substrate and the second substrate, respectively, when the first proteins and the first protein-binding molecules are bound to the first substrate and the second substrate, respectively; and (d) comparing and analyzing the interactions between the first proteins and the second proteins on the first substrate and the second substrate in the supply of the cell lysates to the first substrate and the second substrate, respectively.
  • the method further comprises (e) repeating the steps (b) to (d) while increasing the concentrations of the control group-cell lysate and the experimental group-cell lysate in the step (b), by a predetermined ratio.
  • the step (d) includes comparing and measuring a generation frequency of a fluorescent signal having a specific wavelength generated by the markers tagged to the second proteins bound to the first proteins in any configured observation region on the substrate.
  • the first proteins that interact with the second proteins in the step (d) are activated first proteins among the first proteins bound to the first protein-binding molecules.
  • the step (d) includes measuring a fluorescent signal having a specific wavelength generated by the markers tagged to the second proteins bound to the first proteins using an optical apparatus generating a near-field.
  • the present invention it is possible to analyze the protein-protein interactions at a single molecular level in the actual intracellular environment, as well as to compare and confirm each cell state and activation levels of first proteins by comparing after varying of a type of cells supplying the first protein for observing interactions between the first proteins and the second proteins.
  • the present disclosure further describes a method of measuring activated protein concentrations in a cell lysate, which can compare and measure quantitatively specific activated protein concentrations in the cell of an experimental group and the cell of a control group.
  • Fig. 1 is a flowchart illustrating a procedure of a method of analyzing protein-protein interactions according to an embodiment of the present invention.
  • an analyst attaches first protein-binding antibodies (Primary antibody) that are antibodies to be bound to the first proteins to a substrate that is a quartz slide coated with polyethylene glycol (PEG), in order to analyze the interactions between the first proteins and the second proteins that are two specific proteins at a single molecular level (S110).
  • first protein-binding antibodies Primary antibody
  • PEG polyethylene glycol
  • the first proteins are h-Ras proteins and the second proteins are Ras-binding domain (RBD) proteins of C-Raf.
  • RBD Ras-binding domain
  • the antibodies to be bound to the first proteins may include biomolecules to be bound to the first proteins, such as DNA, RNA, or liposomes having specific components to be bound to proteins, and the like, in addition to antibodies.
  • the analyst induces bindings between the first proteins and the first protein-binding antibodies by supplying (S120) cytoplasmic lysate of the cell including the first proteins to the substrate (S130).
  • cell lysates such as cytolysate, diluted cytoplasmic lysate, diluted or purified cytolysate, and the like, may be used in addition to the cytoplasmic lysate.
  • the analyst may pre-treat for an expression of predetermined first fluorescent proteins, such as m-Cherry, and the like, to the first proteins.
  • first fluorescent proteins such as m-Cherry, and the like
  • the analyst may confirm whether the first proteins are bound to a plurality of first protein-binding antibodies attached on the substrate from the change of wavelength by the first fluorescent proteins that are expressed to the first proteins (i.e., measuring individual single molecule signal generated from the first fluorescent proteins) by performing an observation of the surface of the substrate using a total internal reflection fluorescence microscope.
  • the first fluorescent proteins when expressed in the first proteins, whether or not the first proteins are bound to the antibodies may be confirmed through the total internal reflection fluorescence microscope, and thus the number of the first proteins bound to the antibodies attached on the substrate and binding density thereof may be accurately measured.
  • the analyst removes the remaining materials included in the cytoplasmic lysate except the first proteins from the substrate by supplying a buffer solution to the substrate (S140).
  • the analyst manipulates for an expression of second fluorescent proteins through a genetic manipulation of second proteins being in different relevant cells among the same cells as the above-described cells (S150).
  • the second fluorescent molecules may be attached or connected to the second proteins by a physical-chemical method.
  • the above described step, S150 may be performed in advance before the above-described step, S110 in order to smoothly progress the analysis.
  • the second fluorescent proteins preferably have wavelength range different from the first fluorescent proteins, when the first fluorescent proteins are m-Cherry proteins, the second fluorescent proteins may be eGFPs (enhanced Green Fluorescent Protein) that is a green fluorescent protein.
  • the analyst supplies the whole cytoplasmic lysate of the cell having the expressed second fluorescent proteins inside the second proteins from the above-described step, S150, to the substrate (S160).
  • At least part of the plurality of the first protein-binding antibodies attached on the surface of the substrate is bound to each first protein.
  • the first proteins (Cellular Ras) on the surface of the substrate interact with the second proteins in the same condition as the intracellular environment in the coexisting with the second proteins (eGFP-cRBD) included in the cytoplasmic lysate and native proteins in the whole cell lysate.
  • each first protein (Cellular Ras) bound to each antibody (Anti-Ras Primary antibody) attached on the surface of the substrate interacts with the second protein (eGFP-cRBD) in the same condition as the intracellular environment at the single molecular level thereby repeating binding and the unbinding.
  • cell lysates such as cytolysate, diluted cytoplasmic lysate, diluted or purified cytolysate, and the like, may be used in addition to the cytoplasmic lysate.
  • the analyst can confirm that the wavelength on the surface of the substrate is changed from 473 nm to 520 nm by eGFP that is a fluorescent protein that is expressed to the second proteins through performing an observation of substrate surface using the total internal reflection fluorescence microscope having 473 nm wavelength.
  • the binding state between the first proteins and the second proteins can be confirmed through a detection of fluorescence signals having a specific wavelength bandwidth (520 nm) generated from the second fluorescent protein (eGFP) located on the surface of the substrate through the binding between the first proteins and the second proteins, and the analyst can analyze the interactions, such as the frequencies of binding and unbinding between the first proteins and the second proteins, and the like, at the single molecular level by continuously observing the change of wavelength at each of antibodies attached on the surface of the substrate (S170).
  • eGFP second fluorescent protein
  • the interactions such as the frequencies of the binding and unbinding between the first proteins and the second proteins, and the like, can be analyzed in the same environment as the intracellular environment by measuring the fluorescence signals having a specific wavelength in real time under the presence of the cytoplamic lysate supplied to the substrate in the above-described step, S160.
  • the analyst may compare and analyze the interactions between the first proteins and the second proteins in the cell of a normal state (cell of a control group) and the interactions between the first proteins and the second proteins in cell of an abnormal state (cell of an experimental group).
  • a normal breast tissue cell is changed to a tumor cell as shown in Fig. 4 by artificially maximizing an activation of Ras protein in the cell isolated from a breast tissue of a human body, and the normal breast tissue cell was used as the cell of a control group and the breast tissue cell to be changed to the tumor cell was used as the cell of an experimental group.
  • Fig. 5 is a flowchart illustrating a procedure of a method of analyzing protein-protein interactions according another embodiment of the present invention.
  • the analyst prepares two quartz slide substrates with the same size coated with polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the analyst attaches the first protein-binding antibodies (Anti-Ras Primary antibody) that are the antibodies to be bound to the first proteins on both of two substrates (first substrate and second substrate) as shown in Fig. 2 (S210).
  • Anti-Ras Primary antibody the first protein-binding antibodies
  • the antibody to be bound to the first proteins may include biomolecules to be bound to the first proteins, such as DNA, RNA, or liposomes having specific components to be bound to proteins, and the like, in addition to antibodies.
  • the analyst induces binding between the first proteins and the first protein-binding antibodies (Anti-Ras Primary antibody) on each of the first substrate and the second substrate by supplying (S220) the cytoplasmic lysate of the cell of the control group including the first proteins to the first substrate and the cytoplasmic lysate of the cell of the experimental group including the first proteins to the second substrate (S230).
  • Anti-Ras Primary antibody the first protein-binding antibodies
  • the concentration of the first proteins included in the cell of the control group should be equal to the concentration of the first proteins included in the cell of the experimental group. To achieve this, it should be confirmed whether both of the concentrations of the first proteins included in the cells of the control group and the experimental group are one and the same by measuring both of the concentrations. When both of the concentrations are not the same as each other, the above-described step, S230, should be performed after both of the concentrations are adjusted to be the same as each other through diluting, and the like.
  • cell lysates such as cytolysate, diluted cytoplasmic lysate, diluted or purified cytolysate, and the like, may be used in addition to the cytoplasmic lysate.
  • the analyst may pre-treat for an expression of predetermined first fluorescent proteins, such as m-Cherry, and the like, to the first proteins.
  • first fluorescent proteins such as m-Cherry, and the like
  • the analyst may confirm whether the first proteins are bound to the plurality of the first protein-binding antibodies attached on the substrate from the change of wavelength by the first fluorescent proteins that are expressed in the first proteins (i.e., measuring single molecule signal generated from the first fluorescent proteins) by performing an observation of the surface of the substrate using the total internal reflection fluorescence microscope.
  • the first fluorescent proteins when expressed in the first proteins, whether or not the first proteins are bound to the antibodies may be confirmed through the total internal reflection fluorescence microscope, and thus the number of the first proteins bound to the antibodies attached on the substrate and binding density thereof may be accurately measured.
  • the analyst removes the remaining materials included in the cytoplasmic lysate except the first proteins from the substrates by supplying a buffer solution to the substrates (S240).
  • the analyst manipulates to express second fluorescent proteins through a genetic manipulation of second proteins that exist in specific cells (S250).
  • the second fluorescent proteins may be attached or connected to the second proteins by a physical-chemical method.
  • the second fluorescent proteins may preferably have a wavelength region different from that of the first fluorescent proteins, and thus when the first fluorescent proteins are m-Cherry proteins, the second fluorescent proteins may be eGFP (enhanced Green Fluorescent Protein) that is a green fluorescent protein.
  • eGFP enhanced Green Fluorescent Protein
  • the analyst supplies the whole cytoplasmic lysates of the cell with the expressed second fluorescent proteins inside the second proteins in the above-described step, S260, to the first substrate and the second substrate, respectively (S260).
  • the concentration of the second proteins in the cytoplasmic lysates to be supplied to the first substrate and the second substrate, respectively, should be the same as each other. To achieve this, it should be confirmed whether both of the concentrations of the second proteins included in two cytoplasmic lysates are one and the same by measuring both of the concentrations. When both of the concentrations are not the same as each other, the above-described step, S260, should be performed after both of the concentrations are adjusted to be the same as each other through diluting, and the like.
  • cell lysates such as cytolysate, diluted cytoplasmic lysate, diluted or purified cytolysate, and the like, may be used in addition to the cytoplasmic lysate.
  • the first proteins of the cell of the control group and the first proteins of the cell of the experimental group are bound to the plurality of the first protein-binding antibodies that are attached to the surfaces of the first substrate and the second substrate, respectively.
  • the first proteins on each surface of the substrates interact with the second proteins in the same state as the intracellular environment that co-exists with the second proteins (eGFP-cRBD) included in the cytoplasmic lysate and native proteins in the whole cell lysate.
  • the analyst may confirm binding state of the first proteins and the second proteins through a detection of the fluorescent signal having a specific wavelength bandwidth (520 nm) generated from the second fluorescent protein (eGFP) to be located on the surface of the substrate through binding between the first proteins and the second proteins, and may compare and analyze the interactions, such as the frequencies of binding and unbinding between the first proteins and the second proteins on the first substrate and the second substrate, and the like, by continuously observing the change of wavelength of each antibody attached on the surface of the substrate (S270).
  • eGFP specific wavelength bandwidth
  • Fig. 6 is a graph showing the signal observed on the first substrate bound with the first proteins in the cell of the control group and Fig. 7 is a graph showing the signal observed on the second substrate bound with the first proteins in the cell of the experimental group.
  • the first proteins interacting with the second proteins may become to be the activated first proteins, and thus the activation levels of the first proteins in the cell of a control group and the first proteins in the cell of a experimental group may be quantitatively measured by comparing the interactions between the first proteins and the second proteins in the cell of the control group and the interactions between the first proteins and the second proteins in the cell of the experimental group as mentioned above.
  • Fig. 8 is a diagram illustrating a method of comparing the activated protein concentrations in the cells of a control group and an experimental group according to another embodiment of the present invention.
  • the analyst prepares two quartz slide substrates with the same size coated with polyethylene glycol (PEG) and attaches the first protein-binding antibodies (Anti-Ras Primary antibody) that are antibodies to be bound to each first protein to two substrates (first substrate and second substrate) as shown in Fig. 2 (S310).
  • PEG polyethylene glycol
  • the analyst induces binding between the first proteins and the first protein-binding antibodies (Anti-Ras Primary antibody) on each of the first substrate and the second substrate, respectively, by supplying (S320) the cell lysates of the control group-cell including the first proteins to the first substrate and supplying (S330) the cell lysates of the experimental group-cell including the first proteins to the second substrate.
  • first protein-binding antibodies Anti-Ras Primary antibody
  • the concentration of the first proteins included in the cell of the control group should be equal to the concentration of the first proteins included in the cell of the experimental group. To achieve this, it should be confirmed whether both of the concentrations of the first proteins included in the cells of the control group and the experimental group are one and the same by measuring both of the concentrations.
  • the analyst may pre-treat for an expression of predetermined first fluorescent proteins, such as m-Cherry, and the like, to the first proteins.
  • first fluorescent proteins such as m-Cherry, and the like
  • the analyst may confirm whether the first proteins are bound to the plurality of the first protein-binding antibodies attached on the substrate from the change of wavelength by the first fluorescent proteins that are expressed to the first proteins (i.e., measuring single molecule signal generated from the first fluorescent proteins) by performing an observation of the surface of the substrate using the total internal reflection fluorescence microscope.
  • the first fluorescent proteins when expressed in the first proteins, whether the first proteins are bound to the antibodies may be confirmed through the total internal reflection fluorescence microscope, and thus the number of the first proteins bound to the antibodies attached on the substrate and binding density thereof may be accurately measured.
  • the analyst removes the remaining materials included in the cytoplasmic lysate except the first proteins from the substrates by supplying a buffer solution to the substrates.
  • the analyst manipulates to express second fluorescent proteins through a genetic manipulation of second proteins that exist for specific cells.
  • the second fluorescent proteins may be attached or connected to the second proteins by a physical-chemical method.
  • the second fluorescent proteins may preferably have a wavelength region different from that of the first fluorescent proteins, and thus when the first fluorescent proteins are m-Cherry proteins, the second fluorescent proteins may be eGFP (enhanced Green Fluorescent Protein) that is a green fluorescent protein.
  • eGFP enhanced Green Fluorescent Protein
  • the analyst supplies the whole cell lysate of the cell with the expressed second fluorescent proteins inside the second proteins to the first substrate and the second substrate, respectively (S340).
  • the concentration of the second proteins in the cell lysate to be supplied to the first substrate and the second substrate, respectively should be the same as each other. To achieve this, it should be confirmed whether both of the concentrations of the second proteins included in two cytoplasmic lysates are one and the same by measuring both of the concentrations. When both of the concentrations are not the same as each other, the above-described step, S340, should be performed after both of the concentrations are adjusted to be the same as each other through diluting, and the like.
  • the first proteins of the cell of the control group and the first proteins of the cell of the experimental group are bound to the plurality of the first protein-binding antibodies that are attached to the surfaces of the first substrate and the second substrate, respectively.
  • the whole cell lysates such as the cytoplasmic lysate including the second proteins on the above-mentioned surface of the substrate, and the like, are supplied as shown in Fig. 3
  • the first proteins on each surface of the substrates interact with the second proteins in the same state as the intracellular environment that allows for the coexistence of the second proteins (eGFP-cRBD) included in the cytoplasmic lysate and native proteins in the whole cell lysate.
  • the analyst may confirm binding state of the first proteins and the second proteins through a detection of the fluorescent signal having a specific wavelength bandwidth (520 nm) generated from the second fluorescent protein (eGFP) to be located on the surface of the substrate through binding between the first proteins and the second proteins, and may compare and analyze the interactions, such as the frequencies of binding and unbinding between the first proteins and the second proteins on the first substrate and the second substrate, and the like, by continuously observing the change of wavelength to each antibody attached on the surface of the substrate (S350).
  • a specific wavelength bandwidth 520 nm
  • eGFP second fluorescent protein
  • the analyst repeats the above-described steps, S320 to S350, while gradually and equally increasing the concentration of the first proteins included in the cell lysate of the control group and the concentration of the first proteins included in the cell of the experimental group supplied to the first substrate and the second substrate in the above-described steps, S320 and S330.
  • Fig. 9 is a diagram showing the experimental results of measuring the interaction between the first proteins and the second proteins with gradually increasing the concentration of the first proteins included in the cell of the experimental group.
  • the cell lysate of the cell of the experimental group including the first proteins (HRas) of 1 nM concentration is supplied to the second substrate to induce binding between the first proteins and the first protein-binding molecules and then the generated signal of the fluorescent signal having a specific wavelength generated by markers tagged to the second proteins is measured by using an optical apparatus generating a near-field in the supply of the cell lysates including the marker-tagged second proteins to the second substrate.
  • the optical apparatus can measure a frequency of fluorescent signal generation with each ROI (Region of Interest) as the center after setting ROI of any 1.1 ⁇ m 2 size with the point of sensing the fluorescent signal having a specific wavelength that exceeds a predetermined threshold as the center.
  • ROI Region of Interest
  • the cell lysate of the cell of the experimental group including the first proteins (HRas) of 2 nM concentration is supplied to the second substrate to induce binding between the first proteins and the first protein-binding molecules and then the generated signal of the fluorescent signal with a specific wavelength generated by a marker tagged to the second proteins is measured by using an optical apparatus generating a near-field in the supply of the cell lysate including the marker-tagged second proteins to the second substrate.
  • the frequency of the fluorescent signal generation averagely measured in eight ROI in Fig. 9(b) is equal to that of Fig. 9(a) .
  • the average value of the frequency of the fluorescent signal generation becomes to increase in each ROI and then the average value of the frequency of the fluorescent signal generation is continuously increased with an increasing concentration of the experimental group-cell lysate, continuously.
  • the threshold of the experimental group-cell lysate of the tumor cell including the first proteins (HRas), in which the average value of the frequency of the fluorescent signal generation is started to increase in each ROI with the size of 1.1 ⁇ m 2 is measured to be 5 nM.
  • the cell lysate of the experimental group-cell including the first proteins (HRas) with 3 nM concentration is supplied to the second substrate to induce binding between the first proteins and the first protein-binding molecules. From that point, when the frequency of the fluorescent signal generation with specific wavelength generated by the markers tagged to the second proteins is measured by using an optical apparatus in a plurality of ROIs as its average value in the supply of the cell lysate including the marker-tagged second proteins to the second substrate, the frequency of the fluorescent signal generation is just 8 times in 30 seconds.
  • the cell lysate of the experimental group-cell including the first proteins (HRas) with 41.3 nM concentration that exceeds a threshold concentration (5 nM) is supplied to the second substrate to induce binding between the first proteins and the first protein-binding molecules.
  • a threshold concentration 5 nM
  • the average value of the frequency of the fluorescent signal in a plurality of ROIs is measured.
  • Fig. 14 it has been seen that it is constantly maintained at 5 nM that is a threshold concentration value, and then increased after exceeding the threshold concentration value.
  • the analyst may calculate the ratio of activated first proteins among the first proteins included in the cell lysate of the experimental group-cell.
  • the analyst may quantitatively calculate the ratio of activated first protein concentration included in the cell of the control group and the activated first protein concentration included in the cell of the experimental group by comparing the threshold concentration values in the control group-cell and the experimental group-cell by repeating the experiments as mentioned above in the control group-cell.
  • the analyst measures the threshold concentration value in the control group-cell under the same condition while slowly increasing the concentration of the cell lysate of the control group-cell including the first proteins (HRas) along with the experimental procedure as mentioned above, or before and after the experimental procedure to the experimental group-cell in order to achieve the threshold concentration value in the experimental group-cell.
  • HRas first proteins
  • the analyst induces binding between the first proteins and the first protein-binding molecules by supplying the cell lysate of the control group-cell including the first proteins (HRas) with 3.5 nM concentration to the second substrate. From that point, when the frequency of the fluorescent signal generation having a specific wavelength generated by the markers tagged to the second proteins is measured by using an optical apparatus generating a near-field in a plurality of ROIs as its average value in the supply of the cell lysate including the marker-tagged second proteins to the second substrate, the frequency of the fluorescent signal generation is just 6 times in 30 seconds.
  • the frequency of the fluorescent signal generation measured in a plurality of ROIs as its average value is constant at 6 times in 30 seconds.
  • the cell lysate of the control group-cell including the first proteins (HRas) with 49 nM concentration is supplied to the second substrate to induce binding between the first proteins and the first protein-binding molecules.
  • the frequency of the fluorescent signal generation with a specific wavelength generated by a marker tagged to the second proteins is measured by using an optical apparatus generating a near-field in a plurality of ROIs as its average value in the supply of the cell lysate including the marker-tagged second proteins to the second substrate, the frequency of the fluorescent signal generation is measured to be 7 times in 30 seconds, that is increased.
  • the analyst can confirm the fact that the activated first proteins included in the experimental group-cell that is a tumor cell are 10 times larger than those of the activated first proteins included in the control cell that is a normal cell based on the fact that the threshold concentration value in the experimental group-cell is measured to be 5 nM and the threshold concentration value in the control group-cell is measured to be 50 nM
  • each cell state and activation levels of first proteins can be compared and confirmed by comparing after varying of a type of cells supplying the first proteins for observing interactions between the first proteins and the second proteins.
  • the protein-protein interactions can be analyzed at a single molecular level in the actual intracellular environment.
  • specific activated protein concentrations can be quantitatively measured in the cell of an experimental group and the cell of a control group.
  • the present invention can be used in medical industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
EP12774636.0A 2011-04-20 2012-04-20 Method for analyzing protein-protein interaction on single-molecule level within the cellular environment Active EP2700950B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20110036942 2011-04-20
KR1020110120653A KR101162919B1 (ko) 2011-04-20 2011-11-18 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 방법 및 세포 용액에서의 활성화된 단백질 농도 측정 방법
PCT/KR2012/003087 WO2012144861A2 (ko) 2011-04-20 2012-04-20 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 방법 및 세포 용액에서의 활성화된 단백질 농도 측정 방법

Publications (3)

Publication Number Publication Date
EP2700950A2 EP2700950A2 (en) 2014-02-26
EP2700950A4 EP2700950A4 (en) 2015-01-07
EP2700950B1 true EP2700950B1 (en) 2020-07-22

Family

ID=46689228

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12774636.0A Active EP2700950B1 (en) 2011-04-20 2012-04-20 Method for analyzing protein-protein interaction on single-molecule level within the cellular environment
EP12774021.5A Active EP2700947B1 (en) 2011-04-20 2012-04-20 Method for analyzing protein-protein interaction on single-molecule level within the cellular environment

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12774021.5A Active EP2700947B1 (en) 2011-04-20 2012-04-20 Method for analyzing protein-protein interaction on single-molecule level within the cellular environment

Country Status (6)

Country Link
US (6) US9423400B2 (ko)
EP (2) EP2700950B1 (ko)
JP (4) JP5767746B2 (ko)
KR (5) KR101167649B1 (ko)
CN (3) CN103582817B (ko)
WO (2) WO2012144859A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167649B1 (ko) 2011-04-20 2012-07-20 한국과학기술원 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 장치
CA3198619A1 (en) * 2012-07-25 2014-01-30 Theranos Ip Company, Llc Image analysis and measurement of biological samples
KR101415166B1 (ko) * 2013-06-05 2014-07-07 한국과학기술원 전반사 형광 시스템에 사용하는 비특이적 결합방지 기판, 이의 제조방법 및 이를 이용한 단일 분자 수준의 분석 시스템
KR101527797B1 (ko) * 2014-06-03 2015-06-15 한국과학기술원 신호전달경로의 활성화 상태 분석방법 및 이를 이용한 개인 맞춤형 치료제의 선정방법
KR20180117529A (ko) * 2017-04-19 2018-10-29 주식회사 프로티나 단백질-단백질 상호작용 분석에 의한 약물 반응성 예측 방법
CN108195801B (zh) * 2017-11-17 2020-11-24 北京林业大学 单分子水平观测气孔保卫细胞膜蛋白分布和动态的方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593486A (ja) 1982-06-29 1984-01-10 ヤマハ株式会社 自動リズム演奏装置
AU667743B2 (en) 1992-08-12 1996-04-04 Astellas Pharma Inc. Monoclonal antibody recognizing FK506-binding protein, method of assaying FK506-binding protein level, and kit thereof
DE19548028A1 (de) * 1995-12-21 1997-06-26 Bayer Ag Verfahren zur Herstellung eines synthetischen Kalibrators für den Einsatz in Sandwich-Immunoassays, bestehend aus einem Antikörper gegen einen der im Assay benutzten Antikörper und einer Sequenz des Analyten
DE19631395A1 (de) * 1996-08-02 1998-02-05 Basf Ag Verfahren zum Wirkstoff-Screening
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
US20030186311A1 (en) * 1999-05-21 2003-10-02 Bioforce Nanosciences, Inc. Parallel analysis of molecular interactions
JP4845073B2 (ja) * 1999-07-30 2011-12-28 全国農業協同組合連合会 再構築受精卵の作製方法及びそれを用いたトランスジェニック胚の作製方法
US9335328B2 (en) * 2000-02-03 2016-05-10 Instant Medical Diagnostics, Llc Method and apparatus for signal transduction pathway profiling
JP2001242116A (ja) 2000-03-02 2001-09-07 Fuji Photo Film Co Ltd タンパクチップおよびタンパク質の検出方法
JP2002253240A (ja) * 2001-02-27 2002-09-10 Gencom Co 分子間の相互作用の分析方法
US20050182242A1 (en) * 2001-05-11 2005-08-18 Michael Snyder Global analysis of protein activities using proteome chips
KR100455762B1 (ko) 2001-11-29 2004-11-06 네오바이오다임 주식회사 아사이알로당단백질 수용체 재조합 단백질을 이용한 아사이알로당단백질의 농도 측정방법
JP2003294631A (ja) 2002-03-29 2003-10-15 Olympus Optical Co Ltd エバネッセント照明を用いる分子蛍光解析方法
JP2004012176A (ja) * 2002-06-04 2004-01-15 Hitachi Software Eng Co Ltd 蛋白質検出方法
KR100523212B1 (ko) * 2003-01-04 2005-10-24 한국과학기술원 반응 단백질과 그의 기질 펩타이드간의 반응분석을 위한단백질 칩
GB0314980D0 (en) * 2003-06-26 2003-07-30 Babraham Inst Methods for identifying compounds
KR100567768B1 (ko) 2003-09-04 2006-04-05 한국생명공학연구원 시료 중 재조합 단백질의 농도를 정량적으로 측정 가능한 바이오칩과 그를 이용한 측정 방법
JP2005257274A (ja) * 2004-03-09 2005-09-22 National Institute Of Advanced Industrial & Technology 近接場光を用いた生体分子の相互作用の検出方法および検出装置
WO2005089409A2 (en) * 2004-03-17 2005-09-29 University Of Hawaii Sensor constructs and detection methods
WO2006107864A1 (en) * 2005-04-04 2006-10-12 Blueshift Biotechnologies, Inc. Screening using polarization anisotropy in fret emissions
KR100886312B1 (ko) 2006-01-20 2009-03-04 연세대학교 산학협력단 단백질-단백질의 상호작용을 분석하는 방법
CA2645663C (en) * 2006-03-13 2013-11-05 The Board Of Trustees Of The Leland Stanford Junior University Detection of molecular interactions using a reduced affinity enzyme complementation reporter system
KR100783670B1 (ko) * 2006-05-22 2007-12-07 한국표준과학연구원 도메인 단백질을 이용한 생리활성물질의 검색 방법
KR20070114660A (ko) * 2006-05-29 2007-12-04 한국생명공학연구원 Plk1 기반 단백질칩, 이를 이용한 항암물질의 초고속스크리닝 방법 및 상기 방법에 의해 얻어진 항암물질
KR100815504B1 (ko) 2006-09-12 2008-03-20 (주) 디지탈바이오텍 혈액 내 트렌스티레틴 단백질의 농도를 측정하여 알츠하이머병을 진단하기 위한 혈액용 진단키트
JP2008082715A (ja) * 2006-09-26 2008-04-10 Fujifilm Corp 特定物質と相互作用するペプチドのスクリーニング方法
KR100741160B1 (ko) 2006-10-11 2007-07-20 충북대학교 산학협력단 단백질 나노어레이 상에서 단백질-단백질 상호작용의고성능 분석법
CN101303354A (zh) * 2006-12-08 2008-11-12 中国科学院上海微系统与信息技术研究所 表面等离子体共振的生物传感器的生物芯片、制备及应用
KR100845139B1 (ko) * 2006-12-13 2008-07-09 전북대학교산학협력단 단백질-단백질 상호작용 측정을 위한 실시간 이중 색상분석방법 및 그 장치
JP4702298B2 (ja) * 2007-01-31 2011-06-15 株式会社豊田中央研究所 生体分子の解析方法
KR100908641B1 (ko) 2007-03-20 2009-07-21 강원대학교산학협력단 칩 기술을 기반으로 하는 경쟁적 상호작용을 이용한 비표지혈액 단백질의 분석방법
CN101105493B (zh) * 2007-06-27 2011-06-22 中国人民解放军军事医学科学院放射与辐射医学研究所 基于蛋白芯片的免疫共沉淀检测蛋白相互作用的方法以及一种蛋白相互作用检测试剂盒
EP2245462B1 (en) * 2008-01-22 2017-05-31 Koninklijke Philips N.V. Detection of target components with the help of indicator particles
US8586316B2 (en) * 2008-02-07 2013-11-19 The Board Of Regents Of The University Of Texas System Methods for detecting molecule-molecule interactions with a single detection channel
WO2010123608A2 (en) * 2009-01-29 2010-10-28 The Regents Of The University Of California A spatial biomarker of disease and detection of spatial organization of cellular recptors
KR20100012714A (ko) 2008-07-29 2010-02-08 재단법인서울대학교산학협력재단 Rna 분자와 단백질 사이의 상호작용을 조절하는 물질을동정하기 위한 분석 방법
KR20120003903A (ko) * 2009-03-31 2012-01-11 니뽄 다바코 산교 가부시키가이샤 생물학적 시료중의 물질을 검출하는 방법
GB0912231D0 (en) 2009-07-14 2009-08-26 Imp Innovations Ltd Method and apparatus for determining an analyte parameter
KR101235978B1 (ko) 2010-01-28 2013-02-21 현대제철 주식회사 연속 주조용 몰드의 용강 유동 측정장치
KR101167649B1 (ko) * 2011-04-20 2012-07-20 한국과학기술원 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9964544B2 (en) 2018-05-08
CN103582817A (zh) 2014-02-12
US10401367B2 (en) 2019-09-03
KR101158362B1 (ko) 2012-06-22
KR101162919B1 (ko) 2012-07-05
JP2018059942A (ja) 2018-04-12
EP2700950A4 (en) 2015-01-07
JP2014514569A (ja) 2014-06-19
KR101339819B1 (ko) 2013-12-10
KR101249456B1 (ko) 2013-04-03
US9423400B2 (en) 2016-08-23
JP5767746B2 (ja) 2015-08-19
KR101167649B1 (ko) 2012-07-20
US20160266139A1 (en) 2016-09-15
KR20120119989A (ko) 2012-11-01
CN103582817B (zh) 2016-02-10
CN103608677A (zh) 2014-02-26
EP2700947A4 (en) 2015-01-07
EP2700947B1 (en) 2020-06-03
WO2012144861A3 (ko) 2013-03-07
US9739785B2 (en) 2017-08-22
KR20120120092A (ko) 2012-11-01
JP6543681B2 (ja) 2019-07-10
JP6258915B2 (ja) 2018-01-10
US9377462B2 (en) 2016-06-28
WO2012144859A2 (ko) 2012-10-26
JP2016105094A (ja) 2016-06-09
WO2012144861A2 (ko) 2012-10-26
US9733255B2 (en) 2017-08-15
EP2700950A2 (en) 2014-02-26
CN105928915B (zh) 2019-05-28
US20170299603A1 (en) 2017-10-19
JP5903486B2 (ja) 2016-04-13
US20180284127A1 (en) 2018-10-04
WO2012144859A3 (ko) 2013-03-21
JP2014512537A (ja) 2014-05-22
US20140113309A1 (en) 2014-04-24
WO2012144859A9 (ko) 2013-01-31
US20140113307A1 (en) 2014-04-24
CN105928915A (zh) 2016-09-07
EP2700947A2 (en) 2014-02-26
CN103608677B (zh) 2016-09-07
US20160327566A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
EP2700950B1 (en) Method for analyzing protein-protein interaction on single-molecule level within the cellular environment
RU2681822C2 (ru) Детекция целевой последовательности путем нанопорового сенсорного обнаружения синтетических зондов
JP2002525603A (ja) 細胞ベースのスクリーニングのためのシステム
KR101285363B1 (ko) 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 장치
Comeau et al. Accurate measurements of protein interactions in cells via improved spatial image cross-correlation spectroscopy
EP3853242B1 (en) High throughput method and system for mapping intracellular phase diagrams
Wilson et al. Monitoring proteins and protein networks using reverse phase protein arrays
US11459598B2 (en) Multiplex DNA immuno-sandwich assay (MDISA)
EP3371605B1 (en) Protein quantitation in multicellular tissue specimens
Croop et al. Recent advancement of light‐based single‐molecule approaches for studying biomolecules
EP3153587A1 (en) Method for analyzing activation state of signaling pathway and method for selecting personalized medicine using same
JP7019171B2 (ja) 細胞表面に存在する分子の結合による細胞間相互作用を計測する方法
JP2005207823A (ja) 蛍光分光分析の方法
WO2006013109A1 (en) Method for testing a substance interacting with a target molecule
JP4684915B2 (ja) 生体分子の親和性解析装置及び該装置を使用する生体分子間の親和性を解析する方法
WO2023107011A2 (en) A method for detecting clustering of a protein

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131111

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20141204

RIC1 Information provided on ipc code assigned before grant

Ipc: G01Q 30/14 20100101ALI20141128BHEP

Ipc: G01Q 60/20 20100101ALI20141128BHEP

Ipc: G01N 21/64 20060101ALI20141128BHEP

Ipc: G01N 33/68 20060101AFI20141128BHEP

Ipc: G01N 33/574 20060101ALI20141128BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191025

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200604

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012071374

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293898

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1293898

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012071374

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120420

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722