EP2514873B1 - Verfahren und System zum Aufbringen eines Strassenbelages - Google Patents

Verfahren und System zum Aufbringen eines Strassenbelages Download PDF

Info

Publication number
EP2514873B1
EP2514873B1 EP20110003247 EP11003247A EP2514873B1 EP 2514873 B1 EP2514873 B1 EP 2514873B1 EP 20110003247 EP20110003247 EP 20110003247 EP 11003247 A EP11003247 A EP 11003247A EP 2514873 B1 EP2514873 B1 EP 2514873B1
Authority
EP
European Patent Office
Prior art keywords
finishing machine
mixing plant
laying material
road finishing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110003247
Other languages
English (en)
French (fr)
Other versions
EP2514873A1 (de
EP2514873B8 (de
Inventor
Martin Dipl.-Ing. Buschmann
Ralf Weiser
Achim Eul
Arnold Rutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44583573&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2514873(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to PL11003247T priority Critical patent/PL2514873T3/pl
Priority to EP11003247.1A priority patent/EP2514873B8/de
Priority to JP2012090378A priority patent/JP6009202B2/ja
Priority to US13/444,200 priority patent/US9011038B2/en
Priority to CN2012201668261U priority patent/CN202744932U/zh
Priority to CN201210115424.3A priority patent/CN102747671B/zh
Publication of EP2514873A1 publication Critical patent/EP2514873A1/de
Publication of EP2514873B1 publication Critical patent/EP2514873B1/de
Publication of EP2514873B8 publication Critical patent/EP2514873B8/de
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/02Feeding devices for pavers

Definitions

  • the present invention relates to a method for applying a road surface according to the preamble of claim 1.
  • the DE 101 51 942 B4 A work machine management system that allows construction vehicles to communicate with each other and with a site office.
  • the exchanged data may relate, for example, to theft information, construction project costs, parts demand forecasts, service requirement forecasts, weather data or fuel consumption.
  • the DE 60 2004 011 968 T2 describes another system for information exchange on construction sites.
  • a data exchange between mobile construction vehicles and a construction site office takes place there by means of an Internet Protocol.
  • the DE 10 2008 054 481 A1 describes an asphalting system in which the navigation of construction vehicles is based on a so-called positional temperature model. Based on the initially estimated and then measured asphalt temperature, the system determines where compactors are used most cheaply.
  • asphalt-related measurement data can be transmitted in a wireless communication system.
  • the DE 101 51 942 B4 describes that each construction vehicle is assigned a specific identification.
  • Another fleet management system for construction vehicles comes from the US Pat. No. 6,862,521 B1 out.
  • the WO 00/70150 A1 describes a measurement of the asphalt temperature on a paver. The measured temperature data is forwarded to a compressor following the paver.
  • the DE 197 44 772 A1 describes the determination of a local compaction level to tell a compressor how often it has to travel over the specified area.
  • the DE 694 16 006 T2 describes a further variant for controlling a compressor, for example a roller.
  • the navigation of a compaction roller as a function of the degree of compaction in road construction is also in the EP 1 897 997 A2 treated.
  • the DE 10 2008 058 481 A1 , the DE 60 2004 011 968 T2 and the DE 101 51 942 B4 reveal the inclusion of climate and weather data in construction site processes.
  • An automatic traffic control system which, however, has no relation to construction site processes, goes out of the DE 195 47 574 out.
  • An automatic navigation of construction vehicles taking into account their position, for example, from the DE 197 44 772 , of the DE 60 2004 011 968 T2 , of the DE 199 40 404 or the DE 197 55 324 A1 out.
  • a fleet management system that displays data from mobile work machines and their location on an Internet site is in the EP 1 314 101 A1 described.
  • the EP 1 550 096 discloses a system that measures the quality of asphalting or the quality of the asphalt.
  • a system for determining the compaction of an asphalt is described in US Pat EP 0 698 152 B2 addressed. This document discloses specifications for a speed of a paver before the subsequent rollers or other compaction machines.
  • the US 3,608,446 discloses another material supply system with trucks that bring asphalt to a paver.
  • the object of the present invention is to improve a method and system for applying a road surface to the effect that road coverings can be produced with even higher quality.
  • the invention is based on the idea that it is much cheaper for the quality of the pavement produced when the site logistics is controlled by the so-called "pull principle".
  • This "pull principle” focuses on the paver. It specifies the paving speed of the road surface and determines the required properties and the amount of paving material. For this purpose, the paver generates request commands and transmits them to the mixer. This is then set up, depending on the respective request commands, to set the rate of production of the paving material in the mixer and / or the temperature of the paving material produced in the mixer.
  • the advantage of the method according to the invention is that influences such as weather, defects, congestion, pauses or work-related changes in the speed of the paver are directly recognized directly on the paver and can now be used to control the mixing plant. For example, if delays in the installation process result from jams or defects, the rate of manufacture of the paving material in the mixer can be slowed or the mass flow delivered to the paver can be reduced. This prevents that too much paving material is produced or transported to the construction site, which can not be installed or jams at the construction site and cools down too much. Conversely, it prevents the paving train comes to a standstill. A significant improvement in quality is achieved by the most uniform installation process possible.
  • a single mixing plant may be used or, alternatively, a plurality of mixing plants may be used which deliver the paving material produced by them to one or more construction sites.
  • a supply chain comprises at least one, preferably several transport vehicles, which transport the installation material from the mixing plant or the mixing plants to the road paver.
  • Another case may involve a transport chain to several road pavers, where the road pavers incorporate different asphalt mix, which must be delivered in the correct order (just-in-sequence).
  • a demand preview is created on the paver, and the request commands are generated in response to this demand preview.
  • the demand preview can be created either manually or by means of a suitable computer program. It estimates what amount of paving material can be processed in a given period of time in the future.
  • this demand preview can take into account a work schedule, faults in the installation process or supply chain, defects, congestion and / or weather data.
  • the work plan specifies the intended work result, ie the location, the dimensions and the quality of the road surface to be produced. It can be taken into account that more complicated geometries, such as manhole covers, tight curves or gyros, will reduce the speed of the paver's installation. This expected, reduced installation speed can be taken into account in the demand preview and lead to changes at the mixing plant and / or in the supply chain by means of the request commands.
  • a change in the requested by the paver amount of paving material is divided according to a key proportional to the maximum capacity of the individual mixing plants or proportional to the ordered by the individual mixers daily amount of paving material to the individual mixing plants. This promotes a smooth operation of the construction process.
  • the road paver in certain situations or at regular intervals, feedback is given about the condition of the mixing plant and / or the supply chain to the road paver.
  • the road paver can be signaled both a smooth operation of the mixing plant or the supply chain, as well as disturbances in the operation of the mixing plant and / or the supply chain.
  • the road paver currently located in the supply chain mass flow is displayed on paving material.
  • An operator of the paver can then adjust the paving speed of the paver to this future incoming mass flow.
  • the speed of installation can be throttled in order to prevent a standstill of the paver and consequent quality losses.
  • At least one operating parameter of the paver is set as a function of a feedback of the mixing plant or the supply chain with respect to the temperature or the amount of paving material present in the feed to the paver.
  • the operating parameters may be a paving speed of the paver and / or an operating parameter of a compaction unit of the paver, for example the speed of tampers or the operating parameters of pressure bars.
  • means of transport of the supply chain at the mixing plant and / or on a construction site can be identified by a marking.
  • This marking may be a mark that can be read optically or with electromagnetic radiation, which is detected automatically in particular.
  • the invention also relates to a system for applying a road surface.
  • the paver comprises a controller having a communication module adapted to generate request commands and to communicate to the mixer via a (preferably wireless) communication channel.
  • the mixer is configured to adjust the temperature of the paving material produced in the mixer and / or the rate of manufacture of the paving material depending on the received request commands.
  • the controller of the road paver has a demand forecast determination module by means of which a future demand of the quantity and / or the temperature of the installation material can be estimated.
  • this demand forecasting module may consider a work schedule stored in the controller.
  • suitable request commands can be generated and transmitted via the communication channel to the mixer.
  • an indicator is provided on the road paver or elsewhere on the construction site, for example, a screen by means of which the currently located in the supply chain mass flow of mounting material can be displayed. This allows the paver operator to see how much paving material will be available in future periods.
  • the controller is set up to automatically adjust the paving speed and / or at least one other operating parameter of the road paver in dependence on a feedback received via the communication channel about the state of the mixing plant or the supply chain. In this way, the operation of the paver and thus ultimately the quality of the road surface can be optimized.
  • the controller may store a plurality of data sets, each representing a group of matched operating parameters. These datasets can cover most of the situations commonly encountered in paver operation and provide an optimized set of operational parameters for each of these situations. In this way, the operation of the paver is further optimized.
  • FIG. 1 shows a schematic view of an inventive system 1 for applying a road surface 2.
  • the system 1 comprises a mixing plant 3, in the paving material 4 (for example, asphalt) is produced.
  • This mounting material 4 has a specific Temperature when it has been produced at the mixer 3. In the case of asphalt, for example, this temperature can be between 130 ° and 170 ° Celsius.
  • the built-in material 4 is transferred to a supply chain 5.
  • This supply chain 5 comprises a plurality of transport vehicles 6, for example trucks.
  • the conveyor chain 5 transports the paving material 4 from the mixer 3 to a paver 7.
  • the paver 7 processes the paving material 4 into a paving 2, which can then optionally be further compacted by compaction vehicles such as rollers (not shown).
  • the inventive system 1 further comprises a communication channel 8, via which the paver 7 wirelessly - for example, via an Internet Protocol, Bluetooth, infrared interfaces or the exchange of SMS messages - can communicate with the mixer 3 and the supply chain 5.
  • a communication channel 8 is a central server 9 with suitable communication interfaces.
  • This server 9 may be located, for example, in a construction site office. He accepts the road paver 7 sent request commands, manages these request commands and forwards them to the mixer 3 and to the transport vehicles 6 of the supply chain 5 on.
  • the mixer is adapted to adjust the rate of manufacture of the paving material 4 and the temperature of the paving material 4 produced in the mixer 3 in response to the request commands received via the communication channel 8, i. change if necessary.
  • the supply chain 5 is set up to set the mass flow of paving material 4 delivered per unit of time to the road paver 7 as a function of the request commands received.
  • Each transport vehicle 6 of the supply chain 5 is provided with a marking 10 which represents an identification (ID) of the respective transport vehicle 6.
  • the marking 10 can be, for example, an RFID tag, alternatively a visually recognizable marking, for example a one- or two-dimensional barcode or the official identifier.
  • the currently located on the paver 7 truck 6 is provided with the mark "17".
  • suitable detection means or readers 11 are provided both at the mixing plant 3, as well as at the construction site. These detecting means 11 automatically detect the mark 10 of one
  • the identification of the detected transport vehicle 6 and the time at which this transport vehicle 6 has passed the detection means 11 are transmitted by the detection means 11 wirelessly to the central server 9 to be managed there.
  • the identification of the vehicle can also be recorded at other points of interest for the process, eg at construction site accesses.
  • FIG. 2 schematically shows a road finisher used in the system according to the invention 7.
  • This paver comprises in a conventional manner a chassis 12, a Gutbunker 13 for receiving the built-in material 4, an operator's station 14, provided for compacting the road surface 2 screed 15 and a transverse distributor screw 16, in front of the Screed 15 is arranged.
  • a central controller 17 of the paver controls the operation of the paver 7.
  • This controller 17 includes, inter alia, a memory 18, a demand forecasting module 19 and a communication module 20.
  • a display 21 is provided, for example in the form of a screen.
  • one or more temperature sensors 22 are provided which detect the temperature of the paving material 4 at the transverse distributor screw 16 and transmit it to the controller 17.
  • the asphalt temperature distribution may be recorded by a plurality of sensors mounted behind the screed, or by a scanner mounted rearward to the roof of the paver, which scans the roadway width.
  • a work plan is created and stored in a computer.
  • This work plan specifies the geometry, the thickness, the degree of compaction and all other relevant parameters for describing the road surface 2 to be produced.
  • the work plan is transmitted to the paver 7 to be stored there in the memory 18 of the controller 17.
  • the mixer 3 produces paving material 4, such as asphalt.
  • the transport vehicles 6 of the supply chain 5 are loaded at the mixer with the paving material 4, then the paving material 4 to the site and in particular to the road paver 7 to transport.
  • the controller 17 controls the paver 7 so that it can produce the road surface with the fastest possible installation speed.
  • the temperature sensors 22 monitor during installation the temperature of the paving material 4 at the transverse distributor auger 16 (or at any other location on the paver 7, if deemed appropriate). From the current installation speed and the temperature measured at the temperature sensors 22 asphalt temperature and taking into account the stored work plan and possibly external influences such as weather data calculates the demand forecasting module 19 of the controller 17 a demand preview.
  • the demand forecasting module 19 could calculate how much paving material 4 is needed at what temperature within the next 30 minutes, within the subsequent 30 minutes, and so on.
  • request commands are generated in the controller, which are transmitted via the communication channel 8 to the central server 9. From there, the request commands are transmitted via the communication channel 8 on to the mixing plant 3 and / or to the supply chain 5.
  • the mixer 3 may increase or decrease the temperature of the built-in material 4 being produced. For example, the temperature of the paving material 4 can be increased if it appears that the transport vehicles 6 take longer or suspect for transport to the construction site. With this temperature requirement, it can be taken into account that asphalt on a truck, for example, cools down at around 8 ° Celsius per hour.
  • the supply chain 5 would therefore deliver less installation material 4 to the road paver 7.
  • step 30 begins the method with a first temperature measurement at the temperature sensor 22.
  • step 31 an average value T middle (n) is formed from all the previously recorded temperature measurement values .
  • step 32 a query is made as to whether the number n of the previously recorded temperature measured values is already 10 (or another value, if more or less measured values are to be averaged). If this is not the case, a new temperature measurement takes place, the number n of the measurements is increased by 1, and in step 31 averaging is again carried out.
  • step 33 After the predetermined number of temperature measurements (in the example ten), the method proceeds to step 33. There, it is checked whether the average temperature T medium (n) corresponds to a setpoint T soll , at least within predetermined tolerance ranges. If this is the case, the method begins again with a new temperature measurement in step 30. If, however, the average temperature deviates from the predetermined desired value T soll , a temperature correction value T corr is calculated in the following step. This is the difference between the temperature value T set and means the average value T, to which a reserve temperature T res may be added in addition. This temperature reserve T res takes into account a reserve for possible delays in the delivery of the paving material 4 to the paver.
  • the correction value T korr is then transmitted in step 35 from the communication module 20 of the controller 17 via the communication channel 8 to the responsible person on the construction site and to the mixer 3, whereupon the mixer 3 changes the temperature of the paving material 4 produced.
  • the identifiable trucks and their associated mixing plants allow the production temperatures of several mixing plants to be monitored in parallel and the installation temperature to be homogenized.
  • the mixer produces 3 Asphalt 4 at a temperature of 142 ° Celsius.
  • a truck 6 transports this asphalt material 4 to the construction site with a journey time of 45 minutes.
  • the installation material 4 cools during transport by 6 °, so it still has a temperature of 136 ° Celsius when it arrives at the paver.
  • the built-in material 4 could therefore be produced at a temperature lower by 16 ° Celsius at the mixer 3.
  • the mixer 3 thus produces the asphalt 4 4 at a new temperature of 128 ° Celsius.
  • FIG. 4 shows in a temperature-time diagram both the temperature measurement curve 40 at the temperature sensors 22, as well as the time evolution of the averaging according to FIG. 3 41.
  • the temperature measurement curve 40 shows three "break-ins" at which the measured temperature drops sharply. These temperature drops in each case characterize the end of the tilting operation of a transport vehicle 6.
  • the formation of an average value 41 compensates for these temperature drops.
  • the decrease in the mean temperature T medium with time is due to the storage of the manufactured installation material 4 at the mixer 3 and the resulting cooling of the built-in material. 4
  • the current temperature of the installation material 4 at the mixing plant 3 can either be detected at the mixing plant 3 itself during loading and fed via an interface to the system 1, or it can be entered manually later on the information on the delivery note.
  • FIG. 5 shows the development of the mean temperature 50 with time, now the times of arrival of the individual transport vehicles 6 are indicated on the paver 7 by dots.
  • FIG. 6 again shows the time evolution of the mean 41 of the measured temperature.
  • On the X-axis is in FIG. 6 not only the time specified, but also a location. It designates the length (technical term: stationing) a, by which the installation process has already advanced since a certain zero point.
  • a vertical bar at the time of 1:00 pm or at the location "30 m" indicates the current time.
  • From the previous course of the mean temperature curve 41 is now extrapolated into the future, so as to estimate the further development of the average temperature curve 41 'beyond the current time.
  • FIG. 6 a minimum temperature 51.
  • the built-in material 4 can only be processed if it has at least the minimum temperature 51.
  • the intersection of the extrapolated average temperature curve 41 'and the minimum temperature 51 designates the point in time in the future, to which the installation process can be continued.
  • Diagrams like those in the FIGS. 4 to 6 Diagrams shown can be displayed to the operator of the paver 7 on the display device 21, so that the operator receives an overview of the development of the temperature of the paving material 4.
  • the supply chain 5 can provide the paver 7 via the communication channel 8 information about what amount of paving material 4 is currently traveling to the paver 7 and when the arrival of the individual transport vehicles 6 is expected at the site.
  • the mixer 3 may also transmit data relating to the temperature and amount of the built-in material 4 produced as well as the delivery of certain delivery quantities to the transport vehicles 6 by means of the communication channel 8 to the paver 7.
  • the controller 17 of the road paver 7 processes this information and informs the operator of the paver 7 by means of the display device 21 about the amount of paving material 4 expected in future time intervals. Taking this information into account, either the controller 17 can automatically or the operator manually set the paver operating parameters 7 , in particular its installation speed, adapt. If faults occur, such as traffic congestion or failure of trucks 6 along the supply chain 5, or a failure or production bottlenecks at mixers 3, the installation process of the paver 7 can be slowed down to prevent quality-degrading interruptions in the installation process.
  • a change in the mass flow of paving material 4 requested by the road paver 7 can be divided among the individual mixing plants 3 according to a key proportional to the maximum capacity of the individual mixing plants 3 or proportional to the daily amount of paving material 4 ordered by the individual mixing plants 3 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Road Repair (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Aufbringen eines Straßenbelages gemäß dem Oberbegriff des Anspruchs 1.
  • Beim Herstellen eines Straßenbelages handelt es sich um einen äußerst komplexen Arbeitsprozess. An diesem Arbeitsprozess sind üblicherweise nicht nur viele unterschiedliche Arbeitsmaschinen beteiligt, wie beispielsweise ein Mischwerk, LKWs, Beschicker, Straßenfertiger und Walzen, sondern auch viele verschiedene Personen mit zum Teil unterschiedlichen Graden von Erfahrung. Darüber hinaus wird die Herstellung eines Straßenbelages von sehr vielen Faktoren beeinflusst, beispielsweise von der Temperatur und der Zusammensetzung des Einbaumaterials, der Dauer des Transports des Einbaumaterials zur Baustelle, der Einbaugeschwindigkeit, der Einstellung der Verdichtungsaggregate am Straßenfertiger oder gegebenenfalls an der nachfolgenden Walze, sowie Umwelteinflüssen wie Wind, Temperatur und Feuchtigkeit. Alle diese Einflüsse können einzeln oder im Zusammenspiel die Qualität des hergestellten Straßenbelages beeinflussen. Ziel ist es jedoch immer, einen Straßenbelag mit möglichst hoher Qualität herzustellen, insbesondere mit einem definierten Verdichtungsgrad des Einbaumaterials beziehungsweise mit einer hohen Stabilität.
  • In der Vergangenheit wurden bereits viele Vorschläge gemacht, wie Verfahren und Systeme zum Aufbringen von Straßenbelag im Hinblick auf einheitlichere Arbeitsergebnisse besser überwacht, gesteuert oder dokumentiert werden könnten. Beispielsweise offenbart die DE 101 51 942 B4 ein Arbeitsmaschinen-Managementsystem, bei dem Baufahrzeuge untereinander und mit einem Baustellenbüro kommunizieren können. Die ausgetauschten Daten können sich beispielsweise auf Diebstahlinformationen, Bauprojektkosten, Teilebedarfsvorhersagen, Servicebedarfsvorhersagen, Wetterdaten oder Kraftstoffverbrauch beziehen. Die DE 60 2004 011 968 T2 beschreibt ein weiteres System zum Informationsaustausch auf Baustellen. Ein Datenaustausch zwischen mobilen Baufahrzeugen und einem Baustellenbüro erfolgt dort mittels eines Internet-Protokolls. Die DE 10 2008 054 481 A1 beschreibt ein Asphaltierungssystem, bei dem die Navigation von Baufahrzeugen auf einem sogenannten Positionstemperaturmodell beruht. Aufgrund der zunächst abgeschätzten und dann gemessenen Asphalttemperatur bestimmt das System, wo Verdichtungsfahrzeuge am Günstigsten eingesetzt werden.
  • Gemäß der US 2004/0260504 A1 können asphaltbezogene Messdaten in einem drahtlosen Kommunikationssystem übertragen werden. Die DE 101 51 942 B4 beschreibt, dass jedem Baufahrzeug eine bestimmte Identifikation zugeteilt wird. Ein weiteres Flottenmanagementsystem für Baufahrzeuge geht aus der US 6,862,521 B1 hervor. Die WO 00/70150 A1 beschreibt eine Messung der Asphalttemperatur an einem Straßenfertiger. Die gemessenen Temperaturdaten werden an einen Verdichter weitergegeben, der dem Straßenfertiger folgt.
  • Die DE 197 44 772 A1 beschreibt die Bestimmung eines lokalen Verdichtungsniveaus, um einem Verdichter mitzuteilen, wie oft er über das angegebenen Gebiet fahren muss. Die DE 694 16 006 T2 beschreibt eine weitere Variante zur Steuerung eines Verdichters, beispielsweise einer Walze. Die Navigation einer Verdichtungswalze in Abhängigkeit vom Verdichtungsgrad beim Straßenbau wird auch in der EP 1 897 997 A2 behandelt.
  • Die DE 10 2008 058 481 A1 , die DE 60 2004 011 968 T2 und die DE 101 51 942 B4 offenbaren das Einbeziehen von Klima- und Wetterdaten bei Baustellenprozessen. Ein automatisches Verkehrsleitsystem, das allerdings keinerlei Bezug zu Baustellenprozessen hat, geht aus der DE 195 47 574 hervor. Eine automatische Navigation von Baustellenfahrzeugen unter Berücksichtigung ihrer Position geht beispielsweise aus der DE 197 44 772 , der DE 60 2004 011 968 T2 , der DE 199 40 404 oder der DE 197 55 324 A1 hervor.
  • Ein Flottenmanagementsystem, das Daten von mobilen Arbeitsmaschinen und deren Position auf einer Internet-Website anzeigt, ist in der EP 1 314 101 A1 beschrieben. Die EP 1 550 096 offenbart ein System, das die Qualität der Asphaltierung oder die Qualität des Asphalts misst. Ein System zur Bestimmung der Verdichtung eines Asphalts wird in der EP 0 698 152 B2 angesprochen. Dieses Dokument offenbart Vorgaben für eine Geschwindigkeit beziehungsweise eines Vorsprungs eines Straßenfertigers vor den nachfolgenden Walzen oder anderen Verdichtungsmaschinen.
  • Die US 3,608,446 offenbart ein weiteres Materialversorgungssystem mit Lastwagen, die Asphalt zu einem Straßenfertiger bringen.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und System zum Aufbringen eines Straßenbelages dahingehend zu verbessern, dass sich Straßenbeläge mit noch höherer Qualität herstellen lassen.
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 beziehungsweise durch ein System mit den Merkmalen des Anspruchs 10. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Herkömmliche Flottenmanagementsysteme für den Baustellenbetrieb können zwar gelegentlich die Position einzelner LKW erfassen, die das Einbaumaterial an die Baustelle liefern. Dies verhindert jedoch nicht, dass sich beispielsweise bei Verzögerungen im Einbauprozess mehrere LKW vor dem Straßenfertiger stauen, so dass das Einbaumaterial auf dem LKW unerwünscht stark abkühlt. Bei einer zu starken Abkühlung kann das Einbaumaterial sogar unbrauchbar werden, so dass es aufwändig entsorgt werden muss. Sofern herkömmlich überhaupt der Logistikprozess der Zulieferkette (die mehrere LKW umfassen kann) gesteuert wird, geschieht dies herkömmlich nach dem sogenannten "Push-Prinzip", bei dem ein Mischwerk eine bestimmte Menge von Einbaumaterial (beispielsweise Asphalt) produziert und diesen Asphalt-Massenstrom über die Zulieferkette beispielsweise im LKW-Pendelverkehr auf die Baustelle transportiert. Der Straßenfertiger muss sich dann nach dem angelieferten Massenstrom des Einbaumaterials richten.
  • Die Erfindung beruht auf der Idee, dass es weitaus günstiger für die Qualität des hergestellten Straßenbelages ist, wenn die Baustellenlogistik nach dem sogenannten "Pull-Prinzip" gesteuert wird. Bei diesem "Pull-Prinzip" steht der Straßenfertiger im Mittelpunkt. Er gibt die Einbaugeschwindigkeit des Straßenbelages vor und bestimmt die dazu benötigten Eigenschaften und die Menge an Einbaumaterial. Zu diesem Zweck erzeugt der Straßenfertiger Anforderungsbefehle und übermittelt sie an das Mischwerk. Dies ist dann dazu eingerichtet, in Abhängigkeit von den jeweiligen Anforderungsbefehlen die Rate der Herstellung des Einbaumaterials im Mischwerk und/oder die Temperatur des im Mischwerk hergestellten Einbaumaterials einzustellen.
  • Der Vorteil des erfindungsgemäßen Verfahrens liegt darin, dass direkt am Straßenfertiger Einflüsse wie Wetter, Defekte, Staus, Pausen oder arbeitsbedingte Änderungen in der Geschwindigkeit des Straßenfertigers unmittelbar erkannt werden und nun zur Steuerung des Mischwerks herangezogen werden können. Wenn sich beispielsweise durch Staus oder Defekte Verzögerungen im Einbauprozess ergeben, kann die Rate der Herstellung des Einbaumaterials im Mischwerk verlangsamt werden, oder der an den Straßenfertiger gelieferte Massenstrom kann verringert werden. Damit wird verhindert, dass zu viel Einbaumaterial produziert oder an die Baustelle transportiert wird, das nicht eingebaut werden kann oder sich an der Baustelle staut und zu stark abkühlt. Umgekehrt wird verhindert, dass der Einbauzug zum Stillstand kommt. Eine deutliche Qualitätsverbesserung wird durch einen möglichst gleichmäßigen Einbauprozess erreicht. Qualitativ ebenso gravierend wie das Abkühlen des Asphalts auf dem LKW sind Versorgungslücken, bei denen kein LKW auf der Baustelle ist. Dadurch kühlt der bereits aufgebrachte Asphalt direkt hinter dem Fertiger ab, ohne dass er nachverdichtet werden kann. Beim Wiederanfahren besteht zudem die Gefahr, dass quer zur Fahrtrichtung Unebenheiten erzeugt werden. Damit können Qualitätseinbußen oder Retouren sowie die aufwändige Entsorgung von überschüssig produziertem Einbaumaterial vermieden werden. Außerdem kann das Einplanen einer im Endeffekt nicht für den Einbau verwendeten Reserve entfallen. Dadurch werden Ressourcen, Kosten und Energie eingespart. Der Einsatz erscheint daher sowohl ökologisch als auch ökonomisch sinnvoll. Wenn am Straßenfertiger erkannt wird, dass ein zügiger Einbau des angelieferten Einbaumaterials erfolgen kann, kann die Temperatur des im Mischwerk hergestellten Einbaumaterials verringert werden, da dieses Material wegen des zügigen Einbaus weniger stark abkühlt. Dadurch lässt sich wiederum Energie einsparen.
  • Im erfindungsgemäßen Verfahren kann ein einziges Mischwerk verwendet werden, oder es können alternativ eine Mehrzahl von Mischwerken verwendet werden, die das von ihnen hergestellte Einbaumaterial an eine oder an mehrere Baustellen liefern. Im Sinne der Erfindung umfasst eine Zulieferkette mindestens eines, vorzugsweise mehrere Transportfahrzeuge, die das Einbaumaterial vom Mischwerk oder den Mischwerken zum Straßenfertiger transportieren. Ein weiterer Fall kann eine Transportkette zu mehreren Straßenfertigern umfassen, wobei die Straßenfertiger unterschiedliches Asphaltmischgut einbauen, das in der richtigen Reihenfolge zugeliefert werden muss (Just-in-Sequence).
  • Vorzugsweise wird am Straßenfertiger eine Bedarfsvorschau erstellt, und die Anforderungsbefehle werden in Abhängigkeit von dieser Bedarfsvorschau erstellt. Die Bedarfsvorschau kann entweder manuell oder mittels eines geeigneten Computerprogramms erstellt werden. Sie schätzt ab, welche Menge von Einbaumaterial in einem bestimmten Zeitabschnitt in der Zukunft verarbeitet werden kann.
  • Diese Bedarfsvorschau kann insbesondere einen Arbeitsplan, Störungen des Einbauvorgangs oder der Zulieferkette, Defekte, Staus und/oder Wetterdaten berücksichtigen. Der Arbeitsplan legt das beabsichtigte Arbeitsergebnis fest, d.h. den Ort, die Abmessungen und die Qualität des herzustellenden Straßenbelages. Dabei kann berücksichtigt werden, dass kompliziertere Geometrien, wie Gullydeckel, enge Kurven oder Kreisel zu einer Verringerung der Einbaugeschwindigkeit des Straßenfertigers führen werden. Diese erwartete, verringerte Einbaugeschwindigkeit kann in der Bedarfsvorschau berücksichtigt werden und mittels der Anforderungsbefehle zu Änderungen am Mischwerk und/oder in der Zulieferkette führen.
  • Wenn mehrere Mischwerke vorgesehen sind, wird vorzugsweise eine Änderung der vom Straßenfertiger angeforderten Menge an Einbaumaterial nach einem Schlüssel proportional zur Maximalkapazität der einzelnen Mischwerke oder proportional zu der von den einzelnen Mischwerken bestellten Tagesmenge an Einbaumaterial auf die einzelnen Mischwerke aufgeteilt. Damit wird ein gleichmäßiger Betrieb des Bauprozesses begünstigt.
  • In einer vorteilhaften Ausführungsform des Verfahrens erfolgt in bestimmten Situationen oder in regelmäßigen Intervallen eine Rückmeldung über den Zustand des Mischwerks und/oder der Lieferkette an den Straßenfertiger. Auf diese Weise kann dem Straßenfertiger sowohl ein reibungsloser Betrieb des Mischwerks oder der Zulieferkette signalisiert werden, als auch Störungen im Betrieb des Mischwerks und/oder der Zulieferkette.
  • Besonders günstig ist es dabei, wenn am Straßenfertiger der momentan in der Zulieferkette befindliche Massenstrom an Einbaumaterial angezeigt wird. Ein Bediener des Straßenfertigers kann dann die Einbaugeschwindigkeit des Straßenfertigers an diesen zukünftig eintreffenden Massenstrom anpassen. Auf diese Weise kann beispielsweise bei einer drohenden Unterversorgung mit Einbaumaterial die Einbaugeschwindigkeit gedrosselt werden, um einen Stillstand des Straßenfertigers und dadurch bedingte Qualitätseinbußen zu verhindern.
  • Zweckmäßig ist es, wenn wenigstens ein Betriebsparameter des Straßenfertigers in Abhängigkeit von einer Rückmeldung des Mischwerks oder der Zulieferkette bezüglich der Temperatur oder der Menge des im Zulauf an den Straßenfertiger befindlichen Einbaumaterials eingestellt wird. Bei den Betriebsparametern kann es sich um eine Einbaugeschwindigkeit des Straßenfertigers und/oder um einen Betriebsparameter eines Verdichtungsaggregats des Straßenfertigers handeln, beispielsweise um die Drehzahl von Tampern oder um die Betriebsparameter von Pressleisten. Auf diese Weise führt das erfindungsgemäße Verfahren zu einem primär nach dem "Pull-Prinzip" arbeitenden System, das jedoch eine Rückkopplung und eine dadurch bedingte Optimierung des Betriebs des Straßenfertigers erlaubt.
  • In einer weiteren Variante des Verfahrens können Transportmittel der Zulieferkette am Mischwerk und/oder auf einer Baustelle durch eine Markierung erkannt werden. Bei dieser Markierung kann es sich um eine optisch oder mit elektromagnetischer Strahlung auslesbare Markierung handeln, die insbesondere automatisch erfasst wird. Dadurch kann der Einbauprozess weiter optimiert werden, da genauere Informationen über die Position der einzelnen Transportmittel sowie über die Dauer des Transports vom Mischwerk zum Straßenfertiger gewonnen werden können.
  • Die Erfindung bezieht sich auch auf ein System zum Aufbringen eines Straßenbelages. In diesem System umfasst der Straßenfertiger eine Steuerung mit einem Kommunikationsmodul, das dazu eingerichtet ist, Anforderungsbefehle zu erzeugen und über einen (vorzugsweise drahtlosen) - Kommunikationskanal an das Mischwerk zu übermitteln. Das Mischwerk ist dazu eingerichtet, in Abhängigkeit von den empfangenen Anforderungsbefehlen die Temperatur des im Mischwerk hergestellten Einbaumaterials und/oder die Rate der Herstellung des Einbaumaterials einzustellen. Damit ergeben sich die oben bezüglich des erfindungsgemäßen Verfahrens beschriebenen Vorteile.
  • Zweckmäßig ist es, wenn die Steuerung des Straßerfertigers ein Bedarfsvorschauermittlungsmodul aufweist, mittels dessen ein zukünftiger Bedarf der Menge und/oder der Temperatur von Einbaumaterial abschätzbar ist. Dieses Bedarfsvorschauermittlungsmodul kann beispielsweise einen in der Steuerung gespeicherten Arbeitsplan berücksichtigen. Je nach dem ermittelten Bedarf der Menge und/oder der Temperatur von Einbaumaterial können geeignete Anforderungsbefehle erzeugt und über den Kommunikationskanal an das Mischwerk übermittelt werden.
  • Vorzugsweise ist am Straßenfertiger oder anderswo auf der Baustelle eine Anzeige vorgesehen, beispielsweise ein Bildschirm, mittels derer der momentan in der Zulieferkette befindliche Massenstrom an Einbaumaterial anzeigbar ist. Damit kann dem Bediener des Straßenfertigers angezeigt werden, wie viel Einbaumaterial in zukünftigen Zeitabschnitten zur Verfügung steht.
  • Besonders günstig ist es, wenn die Steuerung dazu eingerichtet ist, die Einbaugeschwindigkeit und/oder mindestens einen anderen Betriebsparameter des Straßenfertigers automatisch einzustellen in Abhängigkeit von einer über den Kommunikationskanal empfangenen Rückmeldung über den Zustand des Mischwerks oder der Zulieferkette. Auf diese Weise kann der Betrieb des Straßenfertigers und dadurch letztendlich die Qualität des Straßenbelages optimiert werden.
  • In der Steuerung können eine Vielzahl von Datensätzen gespeichert sein, die jeweils eine Gruppe von aufeinander abgestimmten Betriebsparametern repräsentieren. Diese Datensätze können die meisten der üblicherweise beim Betrieb des Straßenfertigers auftretenden Situationen abdecken und für jede diese Situationen einen optimierten Satz von Betriebsparametern zur Verfügung stellen. Auf diese Weise wird der Betrieb des Straßenfertigers weiter optimiert.
  • Im Folgenden wird ein vorteilhaftes Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Im Einzelnen zeigen:
  • Figur 1
    eine vereinfachte Darstellung des erfindungsgemäßen Systems,
    Figur 2
    eine Darstellung des Straßenfertigers im erfindungsgemäßen System,
    Figur 3
    ein Flussdiagramm bezüglich der Erfassung von Temperaturwerten,
    Figur 4
    das Ergebnis einer Asphalttemperaturmessung und Mittlung am Straßenfertiger,
    Figur 5
    die zeitliche Entwicklung der Verladetemperatur am Mischwerk, und
    Figur 6
    die gemessene Auslieferungstemperatur des Einbaumaterials an der Baustelle.
  • Gleiche Komponenten sind in den Zeichnungen jeweils mit gleichen Bezugszeichen versehen.
  • Figur 1 zeigt in schematischer Ansicht ein erfindungsgemäßes System 1 zum Aufbringen eines Straßenbelages 2. Das System 1 umfasst ein Mischwerk 3, in dem Einbaumaterial 4 (beispielsweise Asphalt) hergestellt wird. Dieses Einbaumaterial 4 hat eine bestimmte Temperatur, wenn es am Mischwerk 3 produziert worden ist. Bei Asphalt kann diese Temperatur beispielsweise zwischen 130° und 170° Celsius liegen.
  • Am Mischwerk 3 wird das Einbaumaterial 4 an eine Zulieferkette 5 übergeben. Diese Zulieferkette 5 umfasst mehrere Transportfahrzeuge 6, beispielsweise LKW. Die Zulieferkette 5 transportiert das Einbaumaterial 4 vom Mischwerk 3 zu einem Straßenfertiger 7. Der Straßenfertiger 7 verarbeitet das Einbaumaterial 4 zu einem Straßenbelag 2, der anschließend optional durch Verdichtungsfahrzeuge wie beispielsweise Walzen (nicht dargestellt) weiter verdichtet werden kann.
  • Das erfindungsgemäße System 1 umfasst ferner einen Kommunikationskanal 8, über den der Straßenfertiger 7 drahtlos - beispielsweise über ein Internet-Protokoll, Bluetooth, Infrarotschnittstellen oder den Austausch von SMS-Nachrichten - mit dem Mischwerk 3 und der Zulieferkette 5 kommunizieren kann. Teil dieses Kommunikationskanals 8 ist ein zentraler Server 9 mit geeigneten Kommunikationsschnittstellen. Dieser Server 9 kann sich beispielsweise in einem Baustellenbüro befinden. Er nimmt vom Straßenfertiger 7 ausgesandte Anforderungsbefehle entgegen, verwaltet diese Anforderungsbefehle und leitet sie an das Mischwerk 3 beziehungsweise an die Transportfahrzeuge 6 der Zulieferkette 5 weiter. Das Mischwerk ist dazu ausgebildet, die Rate der Herstellung des Einbaumaterials 4 sowie die Temperatur des im Mischwerk 3 hergestellten Einbaumaterials 4 in Abhängigkeit von den über den Kommunikationskanal 8 empfangenen Anforderungsbefehlen einzustellen, d.h. gegebenenfalls zu verändern. Die Zulieferkette 5 ist hingegen dazu eingerichtet, in Abhängigkeit von den erhaltenen Anforderungsbefehlen den pro Zeiteinheit an den Straßenfertiger 7 gelieferten Massenstrom an Einbaumaterial 4 einzustellen.
  • Jedes Transportfahrzeug 6 der Zulieferkette 5 ist mit einer Markierung 10 versehen, die eine Identifizierung (ID) des jeweiligen Transportfahrzeuges 6 darstellt. Bei der Markierung 10 kann es sich beispielsweise um einen RFID-Tag handeln, alternativ um eine optisch erkennbare Markierung, beispielsweise einen ein- oder zweidimensionalen Barcode oder um das amtliche Kennzeichen. Im dargestellten Ausführungsbeispiel ist der momentan am Straßenfertiger 7 befindliche LKW 6 mit der Markierung "17" versehen.
  • Zum Auslesen der Markierung 10 des jeweiligen Transportfahrzeugs 10 sind sowohl am Mischwerk 3, als auch an der Baustelle geeignete Erfassungsmittel bzw. Lesegeräte 11 vorgesehen. Diese Erfassungsmittel 11 erfassen automatisch die Markierung 10 eines an ihnen vorbeifahrenden Transportfahrzeugs 6. Die Identifizierung des erfassten Transportfahrzeugs 6 sowie der Zeitpunkt, zu dem dieses Transportfahrzeug 6 das Erfassungsmittel 11 passiert hat, werden vom Erfassungsmittel 11 drahtlos an den zentralen Server 9 übermittelt, um dort verwaltet zu werden. Die Identifizierung des Fahrzeugs kann zusätzlich auch an anderen für den Prozess interessanten Punkten erfasst werden, z.B. an Baustellenzufahrten.
  • Figur 2 zeigt schematisch einen im erfindungsgemäßen System eingesetzten Straßenfertiger 7. Dieser Straßenfertiger umfasst in üblicher Weise ein Fahrwerk 12, einen Gutbunker 13 zur Aufnahme des Einbaumaterials 4, einen Bedienstand 14, eine zum Verdichten des Straßenbelages 2 vorgesehene Einbaubohle 15 sowie eine Querverteilerschnecke 16, die vor der Einbaubohle 15 angeordnet ist. Eine zentrale Steuerung 17 des Straßenfertigers steuert den Betriebsablauf des Straßenfertigers 7. Diese Steuerung 17 umfasst unter anderem einen Speicher 18, ein Bedarfsvorschauermittlungsmodul 19 sowie ein Kommunikationsmodul 20. An dem Bedienstand 14 ist eine Anzeige 21 vorgesehen, beispielsweise in Form eines Bildschirms. In der Nähe der Querverteilerschnecke 16, beispielsweise an der Einbaubohle 15, sind ein oder mehrere Temperatursensoren 22 vorgesehen, die die Temperatur des Einbaumaterials 4 an der Querverteilerschnecke 16 erfassen und an die Steuerung 17 übermitteln. Alternativ lässt sich die Verteilung der Asphalttemperatur von mehreren Sensoren aufnehmen, die hinter der Einbaubohle montiert sind, oder von einem rückwärtig zum Dach des Fertigers montierten Scanner, der die Fahrbahnbreite abscannt.
  • Im Folgenden werden der Betrieb des erfindungsgemäßen Systems 1 beziehungsweise der Ablauf des erfindungsgemäßen Verfahrens anhand eines Beispiels erläutert.
  • Vor Beginn der Baumaßnahme wird ein Arbeitsplan erstellt und in einem Computer gespeichert. Dieser Arbeitsplan legt die Geometrie, die Dicke, den Verdichtungsgrad und alle anderen relevanten Parameter zum Beschreiben des herzustellenden Straßenbelages 2 fest. Der Arbeitsplan wird an den Straßenfertiger 7 übermittelt, um dort im Speicher 18 der Steuerung 17 gespeichert zu werden.
  • Das Mischwerk 3 produziert Einbaumaterial 4, beispielsweise Asphalt. Die Transportfahrzeuge 6 der Zulieferkette 5 werden am Mischwerk mit dem Einbaumaterial 4 beladen, um anschließend das Einbaumaterial 4 an die Baustelle und insbesondere zum Straßenfertiger 7 zu transportieren. Die Steuerung 17 regelt den Straßenfertiger 7 so, dass dieser mit möglichst konstanter Einbaugeschwindigkeit den Straßenbelag herstellen kann. Die Temperatursensoren 22 überwachen während des Einbaus die Temperatur des Einbaumaterials 4 an der Querverteilerschnecke 16 (oder an irgendeiner anderen Stelle am Straßenfertiger 7, wenn dies zweckmäßig erscheinen sollte). Aus der momentanen Einbaugeschwindigkeit und der an den Temperatursensoren 22 gemessenen Asphalttemperatur sowie unter Berücksichtigung des gespeicherten Arbeitsplans und gegebenenfalls äußerer Einflüsse wie Wetterdaten berechnet das Bedarfsvorschauermittlungsmodul 19 der Steuerung 17 eine Bedarfsvorschau. Diese gibt an, wie viel Einbaumaterial 4 mit welcher Temperatur in welchen zukünftigen Zeitabschnitten erforderlich ist, um den Einbauprozess möglichst gleichmäßig ablaufen zu lassen. Beispielsweise könnte das Bedarfsvorschauermittlungsmodul 19 berechnen, wie viel Einbaumaterial 4 mit welcher Temperatur innerhalb der nächsten 30 Minuten, innerhalb der sich daran anschließenden 30 Minuten usw. jeweils benötigt wird.
  • Aus der Bedarfsvorschau werden in der Steuerung 17 Anforderungsbefehle generiert, die über den Kommunikationskanal 8 an den zentralen Server 9 übermittelt werden. Von dort werden die Anforderungsbefehle über den Kommunikationskanal 8 weiter an das Mischwerk 3 und/oder an die Zulieferkette 5 übermittelt. In Reaktion auf die Anforderungsbefehle kann das Mischwerk 3 die Temperatur des hergestellten Einbaumaterials 4 erhöhen oder verringern. Beispielsweise kann die Temperatur des Einbaumaterials 4 erhöht werden, wenn sich zeigt, dass die Transportfahrzeuge 6 für den Transport zur Baustelle länger brauchen oder vermutet. Bei dieser Temperaturanforderung kann berücksichtigt werden, dass sich Asphalt auf einem LKW beispielsweise mit zirka 8° Celsius pro Stunde abkühlt. Wenn die Bedarfsvorschau zeigt, dass in zukünftigen Zeitabschnitten ein langsamerer Einbau des Straßenbelages 2 zu erwarten ist, beispielsweise an engen Kurven oder komplizierten Straßengeometrien, kann für diesen zukünftigen Zeitabschnitt ein geringerer Massenstrom an Einbaumaterial 4 angefordert werden, um unnötige Wartezeiten des Einbaumaterials 4 an der Baustelle zu vermeiden. In diesen zukünftigen Zeiträumen würde die Zulieferkette 5 also weniger Einbaumaterial 4 an den Straßenfertiger 7 liefern.
  • Zur Temperaturmessung am Straßenfertiger wird vorzugsweise eine Mittelwertbildung herangezogen, die anhand von Figur 3 erläutert wird. Diese Mittelwertbildung hat den Zweck, eine Anforderungsänderung durch Ausreißer zu unterbinden. Im Schritt 30 beginnt das Verfahren mit einer ersten Temperaturmessung an dem Temperatursensor 22. Der Zähler n erhält den Wert n = 1.
  • Im Schritt 31 wird aus allen n bisher erfassten Temperaturmesswerten ein Mittelwert Tmittel (n) gebildet. Im Schritt 32 erfolgt eine Abfrage, ob die Zahl n der bisher erfassten Temperaturmesswerte bereits 10 beträgt (oder einen anderen Wert, sofern über mehr oder weniger Messwerte gemittelt werden soll). Wenn dies nicht der Fall ist, erfolgt eine neue Temperaturmessung, die Zahl n der Messungen wird um 1 erhöht, und im Schritt 31 erfolgt abermals eine Mittelwertbildung.
  • Nachdem die vorgegebene Zahl von Temperaturmessungen (im Beispiel zehn) erfolgte, schreitet das Verfahren weiter zum Schritt 33. Dort wird überprüft, ob der Temperaturmittelwert Tmittel (n) einem Sollwert Tsoll entspricht, zumindest innerhalb vorgegebener Toleranzbereiche. Wenn dies der Fall ist, beginnt das Verfahren wieder mit einer neuen Temperaturmessung im Schritt 30. Wenn die gemittelte Temperatur hingegen von dem vorgegebenen Sollwert Tsoll abweicht, wird im nachfolgenden Schritt 34 ein Temperaturkorrekturwert Tkorr berechnet. Dieser besteht aus der Differenz zwischen dem Temperaturwert Tsoll und dem Mittelwert Tmittel, zu dem zusätzlich eine Temperaturreserve Tres addiert werden kann. Diese Temperaturreserve Tres berücksichtigt eine Reserve für mögliche Verzögerungen bei der Anlieferung des Einbaumaterials 4 an den Straßenfertiger. Der Korrekturwert Tkorr wird anschließend im Schritt 35 vom Kommunikationsmodul 20 der Steuerung 17 über den Kommunikationskanal 8 dem Verantwortlichen auf der Baustelle und an das Mischwerk 3 übermittelt, woraufhin das Mischwerk 3 die Temperatur des hergestellten Einbaumaterials 4 ändert. Über die identifizierbaren LKW und ihre zugehörigen Mischwerke lassen sich die Produktionstemperaturen mehrerer Mischwerke parallel überwachen und die Einbautemperatur homogenisieren.
  • In einem Beispiel produziert das Mischwerk 3 Asphalt 4 mit einer Temperatur von 142° Celsius. Ein LKW 6 transportiert dieses Asphaltmaterial 4 mit einer Fahrtzeit von 45 Minuten an die Baustelle. Bei einer Abkühlungsrate von 8° Celsius pro Stunde kühlt sich das Einbaumaterial 4 während des Transports um 6° ab, so dass es beim Eintreffen am Straßenfertiger noch eine Temperatur von 136° Celsius hat. Die Solltemperatur am Straßenfertiger 7 beim Einbau beträgt jedoch Tsoll = 120° Celsius. Das Einbaumaterial 4 könnte also mit einer um 16° Celsius niedrigeren Temperatur am Mischwerk 3 hergestellt werden. Allerdings wird nun eine Temperaturreserve Tres von 2° für mögliche Verzögerungen in der Fahrtzeit des LKWs 6 um 15 Minuten berücksichtigt. Der ans Mischwerk 3 übermittelte Korrekturwert Tkorr beträgt daher (120 - 136 + 2) Grad Celsius = -14° Celsius. In Reaktion auf den Erhalt dieses Anforderungsbefehls stellt das Mischwerk 3 den Asphalt 4 also nun mit einer neuen Temperatur von 128° Celsius her.
  • Insbesondere bei sogenanntem Niedrigtemperaturasphalt spielt das Einhalten der richtigen Temperatur sowohl in qualitativer, als auch in ökologischer Hinsicht eine bedeutende Rolle.
  • Figur 4 zeigt in einem Temperatur-Zeit-Diagramm sowohl die Temperaturmesskurve 40 an den Temperatursensoren 22, als auch die zeitliche Entwicklung des durch die Mittelwertbildung gemäß Figur 3 erhaltenen Mittelwerts 41. Die Temperaturmesskurve 40 zeigt drei "Einbrüche", an denen die gemessene Temperatur stark absinkt. Diese Temperatureinbrüche kennzeichnen jeweils das Ende des Abkippvorgangs eines Transportfahrzeuges 6. Die Bildung eines Mittelwerts 41 gleicht diese Temperatureinbrüche aus. Das Absinken der mittleren Temperatur Tmittel mit der Zeit ist bedingt durch die Speicherung des hergestellten Einbaumaterials 4 am Mischwerk 3 und die sich dadurch ergebene Abkühlung des Einbaumaterials 4.
  • Die aktuelle Temperatur des Einbaumaterials 4 am Mischwerk 3 kann entweder am Mischwerk 3 selbst beim Verladen erfasst und über eine Schnittstelle dem System 1 zugeführt werden, oder sie kann nachträglich über die Angaben auf dem Lieferschein manuell eingegeben werden.
  • Figur 5 zeigt die Entwicklung der mittleren Temperatur 50 mit der Zeit, wobei nun die Zeitpunkte des Eintreffens der einzelnen Transportfahrzeuge 6 am Straßenfertiger 7 durch Punkte angegeben sind.
  • Figur 6 zeigt wiederum die zeitliche Entwicklung des Mittelwerts 41 der gemessenen Temperatur. Auf der X-Achse ist in Figur 6 nicht nur die Uhrzeit angegeben, sondern auch eine Ortsangabe. Sie bezeichnet die Länge (Fachbegriff: Stationierung)a, um die der Einbauprozess seit einem bestimmten Nullpunkt bereits vorangeschritten ist. Ein vertikaler Balken bei der Uhrzeit 13.00 Uhr beziehungsweise bei der Ortsangabe "30 m" bezeichnet den aktuellen Zeitpunkt. Aus dem bisherigen Verlauf der Temperaturmittelwertkurve 41 wird nun in die Zukunft extrapoliert, um so jenseits des aktuellen Zeitpunkts die weitere Entwicklung der Temperaturmittelwertkurve 41' abzuschätzen. Gleichzeitig zeigt Figur 6 eine Minimaltemperatur 51. Das Einbaumaterial 4 kann nur verarbeitet werden, wenn es mindestens die Minimaltemperatur 51 hat. Der Schnittpunkt der extrapolierten Temperaturmittelwertkurve 41' und der Minimaltemperatur 51 bezeichnet den Zeitpunkt in der Zukunft, bis zu dem der Einbauprozess fortgesetzt werden kann.
  • Diagramme wie die in den Figuren 4 bis 6 dargestellten Diagramme können dem Bediener des Straßenfertigers 7 auf der Anzeigevorrichtung 21 angezeigt werden, damit der Bediener eine Übersicht über die Entwicklung der Temperatur des Einbaumaterials 4 erhält. Zusätzlich kann die Zulieferkette 5 dem Straßenfertiger 7 über den Kommunikationskanal 8 Informationen darüber zukommen lassen, welche Menge an Einbaumaterial 4 derzeit unterwegs ist zum Straßenfertiger 7 und wann das Eintreffen der einzelnen Transportfahrzeuge 6 an der Baustelle erwartet wird. Das Mischwerk 3 kann ebenfalls Daten bezüglich der Temperatur und Menge des hergestellten Einbaumaterials 4 sowie über die Zeitpunkte der Abgabe bestimmter Liefermengen an die Transportfahrzeuge 6 mittels des Kommunikationskanal 8 an den Straßenfertiger 7 übermitteln. Die Steuerung 17 des Straßenfertigers 7 verarbeitet diese Informationen und informiert den Bediener des Straßenfertigers 7 mittels der Anzeigevorrichtung 21 über die in zukünftigen Zeitintervallen erwartete Menge an Einbaumaterial 4. Unter Berücksichtigung dieser Informationen können entweder die Steuerung 17 automatisch oder der Bediener manuell die Betriebsparameter des Straßenfertigers 7, insbesondere dessen Einbaugeschwindigkeit, anpassen. Falls Störungen auftreten, beispielsweise Verkehrsstaus oder ein Ausfall von LKWs 6 entlang der Zulieferkette 5, oder ein Ausfall oder Produktionsengpässe bei Mischwerken 3, kann der Einbauprozess des Straßenfertigers 7 verlangsamt werden, um qualitätsverschlechternde Unterbrechungen des Einbauprozesses zu verhindern.
  • Wenn mehrere Mischwerke 3 vorgesehen sind, kann eine Änderung des vom Straßenfertiger 7 angeforderten Massenstroms an Einbaumaterial 4 nach einem Schlüssel proportional zur Maximalkapazität der einzelnen Mischwerke 3 oder proportional zu der von den einzelnen Mischwerken 3 bestellten Tagesmenge an Einbaumaterial 4 auf die einzelnen Mischwerke 3 aufgeteilt werden.

Claims (14)

  1. Verfahren zum Aufbringen eines Straßenbelages (2) unter Verwendung mindestens eines Mischwerks (3) zur Herstellung eines Einbaumaterials (4), eines das Einbaumaterial (4) zu einem Straßenbelag (2) verarbeitenden Straßenfertigers (7) und einer Zulieferkette (5), die das Einbaumaterial (4) vom Mischwerk (3) zum Straßenfertiger (7) transportiert,
    dadurch gekennzeichnet, dass vom Straßenfertiger (7) an das Mischwerk (4) Anforderungsbefehle übermittelt werden, und dass in Abhängigkeit von diesen Anforderungsbefehlen die Rate der Herstellung des Einbaumaterials (4) im Mischwerk (3) und/oder die Temperatur des im Mischwerk (3) hergestellten Einbaumaterials (4) eingestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Bedarfsvorschau erstellt wird und die Anforderungsbefehle in Abhängigkeit von der Bedarfsvorschau erstellt werden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Bedarfsvorschau einen Arbeitsplan, Störungen des Einbauvorgangs oder der Zulieferkette, Defekte, Staus und/oder Wetterdaten berücksichtigt.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass, wenn mehrere Mischwerke (3) vorgesehen sind, eine Änderung des vom Straßenfertiger (7) angeforderten Massenstroms (5) an Einbaumaterial (4) nach einem Schlüssel proportional zur Maximalkapazität der einzelnen Mischwerke (3) oder proportional zu der von den einzelnen Mischwerken (3) bestellten Tagesmenge an Einbaumaterial auf die einzelnen Mischwerke (3) aufgeteilt wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Rückmeldung über den Zustand des Mischwerks (3) und/oder der Zulieferkette (5) an den Straßenfertiger (7) erfolgt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass am Straßenfertiger (7) der momentan in der Zulieferkette (5) befindliche Massenstrom an Einbaumaterial (4) angezeigt wird.
  7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass wenigstens ein Betriebsparameter des Straßenfertigers (7) in Abhängigkeit von einer Rückmeldung des Mischwerks (3) oder der Zulieferkette (5) über die Temperatur oder die Menge des im Zulauf an den Straßenfertiger (7) befindlichen Einbaumaterials (4) eingestellt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Betriebsparameter eine Einbaugeschwindigkeit des Straßenfertigers (7) und/oder ein Betriebsparameter eines Verdichtungsaggregats (15) des Straßenfertigers (7) ist.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Transportmittel (6) der Zulieferkette (5) am Mischwerk (3) und/oder auf einer Baustelle durch eine Markierung (10) erkannt werden.
  10. System (1) zum Aufbringen eines Straßenbelages (2) mit einem Straßenfertiger (7) zum Aufbringen eines Straßenbelages (2) aus Einbaumaterial (4), einem Mischwerk (3) zur Herstellung des Einbaumaterials (4) und einer Zulieferkette (5) zum Transport des Einbaumaterials (4) vom Mischwerk (3) an den Straßenfertiger (7), dadurch gekennzeichnet, dass der Straßenfertiger (7) eine Steuerung (17) mit einem Kommunikationsmodul (20) aufweist, das dazu eingerichtet ist, Anforderungsbefehle zu erzeugen und über einen Kommunikationskanal (8) an das Mischwerk (3) zu übermitteln, und dass das Mischwerk (3) dazu eingerichtet ist, in Abhängigkeit von diesen Anforderungsbefehlen die Temperatur des im Mischwerk (3) hergestellten Einbaumaterials (4) und/oder die Rate der Herstellung des Einbaumaterials (4) im Mischwerk (3) einzustellen.
  11. System nach Anspruch 10, dadurch gekennzeichnet, dass die Steuerung (17) ein Bedarfsvorschauermittlungsmodul (19) aufweist, das dazu eingerichtet ist, einen zukünftigen Bedarf der Menge und/oder der Temperatur von Einbaumaterial (4) abzuschätzen.
  12. System nach einem der Anspruche 10 oder 11, dadurch gekennzeichnet, dass am Straßenfertiger (7) eine Anzeige (21) vorgesehen ist, mittels derer am Straßenfertiger (7) der momentan in der Zulieferkette (5) befindliche Massenstrom an Einbaumaterial (4) anzeigbar ist.
  13. System nach einem der Anspruche 10 bis 12, dadurch gekennzeichnet, dass die Steuerung (17) dazu eingerichtet ist, die Einbaugeschwindigkeit und/oder mindestens einen anderen Betriebsparameter des Straßenfertigers (7) automatisch einzustellen in Abhängigkeit von einer über den Kommunikationskanal (8) empfangenen Rückmeldung über einen Zustand des Mischwerks (3) oder der Zulieferkette (5).
  14. System nach einem der Anspruche 10 bis 13, dadurch gekennzeichnet, dass in der Steuerung (17) eine Vielzahl von Datensätzen gespeichert sind, die jeweils eine Gruppe von aufeinander abgestimmten Betriebsparametern repräsentieren.
EP11003247.1A 2011-04-18 2011-04-18 Verfahren und System zum Aufbringen eines Strassenbelages Active EP2514873B8 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL11003247T PL2514873T3 (pl) 2011-04-18 2011-04-18 Sposób i system do nanoszenia nawierzchni drogowej
EP11003247.1A EP2514873B8 (de) 2011-04-18 2011-04-18 Verfahren und System zum Aufbringen eines Strassenbelages
JP2012090378A JP6009202B2 (ja) 2011-04-18 2012-04-11 路面を塗布する方法及びシステム
US13/444,200 US9011038B2 (en) 2011-04-18 2012-04-11 Method and system for applying a road surface
CN2012201668261U CN202744932U (zh) 2011-04-18 2012-04-18 用于铺设道路表面的系统
CN201210115424.3A CN102747671B (zh) 2011-04-18 2012-04-18 用于铺设道路表面的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11003247.1A EP2514873B8 (de) 2011-04-18 2011-04-18 Verfahren und System zum Aufbringen eines Strassenbelages

Publications (3)

Publication Number Publication Date
EP2514873A1 EP2514873A1 (de) 2012-10-24
EP2514873B1 true EP2514873B1 (de) 2014-02-26
EP2514873B8 EP2514873B8 (de) 2020-05-06

Family

ID=44583573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003247.1A Active EP2514873B8 (de) 2011-04-18 2011-04-18 Verfahren und System zum Aufbringen eines Strassenbelages

Country Status (5)

Country Link
US (1) US9011038B2 (de)
EP (1) EP2514873B8 (de)
JP (1) JP6009202B2 (de)
CN (2) CN202744932U (de)
PL (1) PL2514873T3 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246833B2 (en) * 2017-02-23 2019-04-02 Roadtec, Inc. Asphalt paving machine operational reporting system
EP2514873B8 (de) * 2011-04-18 2020-05-06 Joseph Vögele AG Verfahren und System zum Aufbringen eines Strassenbelages
US8930092B2 (en) 2011-05-10 2015-01-06 Mark MINICH Integrated paving process control for a paving operation
CN104532724A (zh) * 2014-11-21 2015-04-22 安徽省库仑动力自动化科技有限公司 一种利用视觉循迹的道路铺砖机
DE102014018533B4 (de) * 2014-12-12 2023-09-28 Bomag Gmbh Verfahren zur Steuerung eines Arbeitszuges
US9481964B1 (en) 2015-08-25 2016-11-01 Caterpillar Paving Products Inc. System for communications between plant and machines
US9611595B2 (en) 2015-08-25 2017-04-04 Caterpillar Paving Products Inc. System for communications between plant and machines
US9845578B2 (en) 2015-08-25 2017-12-19 Caterpillar Paving Products Inc. System for wireless communications between machines
US9879386B2 (en) 2015-12-10 2018-01-30 Caterpillar Paving Products Inc. System for coordinating milling and paving machines
US10474338B2 (en) 2016-01-15 2019-11-12 Caterpillar Paving Products Inc. Control system for coordinating paving operations
US10990245B2 (en) 2016-01-15 2021-04-27 Caterpillar Paving Products Inc. Mobile process management tool for paving operations
US10613524B2 (en) * 2016-01-15 2020-04-07 Caterpillar Paving Products Inc. Truck process management tool for transport operations
US9803324B2 (en) 2016-01-26 2017-10-31 Deere & Company Ejector control for spreading material according to a profile
US9903078B2 (en) * 2016-02-08 2018-02-27 The Florida International University Board Of Trustees Three dimensional paving
US10316476B2 (en) 2016-04-11 2019-06-11 Caterpillar Paving Products Inc. Screed assembly for a paving machine
GB2558250B (en) * 2016-12-23 2020-05-27 Caterpillar Sarl A method of determining the compaction of a terrain of a worksite
JP6905345B2 (ja) * 2017-02-01 2021-07-21 世紀東急工業株式会社 舗装材用管理装置
US10280572B1 (en) * 2017-11-07 2019-05-07 Caterpillar Paving Products Inc. System for heating a paving screed
PL3569764T3 (pl) * 2018-05-15 2021-12-27 Joseph Vögele AG Sposób przewidywanego sterowania układarką
US10480131B1 (en) * 2018-06-29 2019-11-19 Caterpillar Paving Products Inc. System and method for controlling paving machine speed
PL3594409T3 (pl) 2018-07-13 2022-08-08 Joseph Vögele AG Maszyna budowlana z układem przenośnika taśmowego z czujnikiem wagowym
US11243531B2 (en) * 2018-08-09 2022-02-08 Caterpillar Paving Products Inc. Navigation system for a machine
US11052807B2 (en) 2018-10-24 2021-07-06 Weiler, Inc. Hopper cleanout
US10685564B1 (en) * 2019-02-06 2020-06-16 Caterpillar Paving Products Inc. Reducing paver mat variation during supply machine interface
US11560676B2 (en) 2019-02-13 2023-01-24 Caterpillar Paving Products Inc. Determine optimal frequency to load haul truck
CN113646484B (zh) * 2019-03-25 2023-06-13 住友建机株式会社 道路机械的显示系统
US11292411B2 (en) * 2019-11-25 2022-04-05 Caterpillar Paving Products Inc. Adjustable rotary brush
WO2021182556A1 (ja) 2020-03-11 2021-09-16 住友建機株式会社 施工管理システム及びアスファルトフィニッシャ
CN114901909A (zh) * 2020-03-27 2022-08-12 住友建机株式会社 沥青滚平机及机器学习装置
CN112323578B (zh) * 2020-10-24 2021-12-24 中铁十六局集团路桥工程有限公司 一种沥青混凝土路面摊铺方法、系统、终端及存储介质
CN113463456B (zh) * 2021-06-11 2023-11-14 华能国际电力股份有限公司河南清洁能源分公司 一种山地风电道路通过大型冲沟的方法
CN114481759B (zh) * 2022-01-27 2023-07-25 中国建筑第二工程局有限公司 一种小半径连接急弯摊铺方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608446A (en) * 1969-08-22 1971-09-28 Arkansas Rock & Gravel Co Material delivery system
JPS528629A (en) * 1975-07-08 1977-01-22 Masayoshi Okuyama Asphalt pavement
US5100277A (en) * 1989-12-08 1992-03-31 Cedarapids, Inc. Method of and apparatus for transferring materials
JP2903719B2 (ja) * 1991-01-09 1999-06-14 株式会社新潟鉄工所 敷均し機械の運転方法
SE501234C2 (sv) 1993-04-29 1994-12-12 Thurner Geodynamik Ab Förfarande och anordning för mätning och dokumentation av packningsresultat och styrning av en vält vid packning av ett utlagt underlag
US5471391A (en) 1993-12-08 1995-11-28 Caterpillar Inc. Method and apparatus for operating compacting machinery relative to a work site
JPH07252804A (ja) * 1994-03-10 1995-10-03 Nikko Co Ltd アスファルトプラントの総合管理装置
DE19547574A1 (de) 1995-04-06 1996-10-10 Deutsche Telekom Mobil Verfahren für ein Fahrzeugleit- und Informationssystem
US5935192A (en) 1996-12-12 1999-08-10 Caterpillar Inc. System and method for representing parameters in a work site database
DE19755324A1 (de) 1997-12-12 1999-06-17 Michael Dipl Ing Sartori Verfahren und Vorrichtung zum Steuern eines Fahrzeugs
US6244782B1 (en) * 1998-03-20 2001-06-12 Bitelli Spa Finishing machine with a weighing device for the asphalt
EP1185738A4 (de) 1999-05-19 2004-03-03 Ingersoll Rand Co Temperaturmessung für die kontrolle von pflaster- und verdichtungsarbeiten
CA2382972C (en) 1999-08-23 2016-03-01 General Electric Company Apparatus and method for managing a fleet of mobile assets
DE19940404C2 (de) 1999-08-25 2001-07-12 Moba Mobile Automation Gmbh Verfahren und Vorrichtung zum dreidimensionalen Steuern einer Baumaschine
JP2002188183A (ja) 2000-10-12 2002-07-05 Komatsu Ltd 作機機械の管理装置
US6915216B2 (en) 2002-10-11 2005-07-05 Troxler Electronic Laboratories, Inc. Measurement device incorporating a locating device and a portable handheld computer device and associated apparatus, system and method
JP4667635B2 (ja) * 2001-04-25 2011-04-13 東急建設株式会社 運搬システム、運搬方法及び運搬管理装置
US6805516B2 (en) * 2001-06-04 2004-10-19 E.D. Etnyre & Co. Roadway paving system and method including roadway paving vehicle and supply truck
US20080249729A1 (en) * 2002-05-24 2008-10-09 David Frederick Martinez Systems and methods for real time hot mix asphalt production
JP2003346024A (ja) * 2002-05-27 2003-12-05 Ricoh Co Ltd 受発注管理システム
US6862521B1 (en) 2003-01-29 2005-03-01 Trimble Navigation Limited Method for inferring useful information from position-related vehicular events
CN1871835B (zh) 2003-10-22 2010-07-21 莱卡地球系统公开股份有限公司 用于管理工地中的装置之间的信息交换的方法和装置
EP1837442B2 (de) * 2006-03-24 2016-04-13 Joseph Vögele AG Einbauzug
US7484911B2 (en) * 2006-08-08 2009-02-03 Caterpillar Inc. Paving process and machine with feed forward material feed control system
US7731450B2 (en) 2006-09-07 2010-06-08 Caterpillar Inc. Method of operating a compactor machine via path planning based on compaction state data and mapping information
CN101029469B (zh) * 2006-09-30 2010-07-14 徐州工程机械科技股份有限公司 一种带有二次搅拌和温度补偿功能的抗离析沥青摊铺机
US8099218B2 (en) 2007-11-30 2012-01-17 Caterpillar Inc. Paving system and method
JP5213163B2 (ja) * 2008-02-01 2013-06-19 株式会社演算工房 トンネル施工におけるコンクリートの打設管理方法
DE102008054481B4 (de) 2008-12-10 2021-11-25 Robert Bosch Gmbh Sensor und Verfahren zu dessen Herstellung
US8282312B2 (en) * 2009-01-09 2012-10-09 Caterpillar Inc. Machine system operation and control strategy for material supply and placement
KR20120007047A (ko) * 2009-04-20 2012-01-19 볼보 컨스트럭션 이큅먼트 에이비 통합 포장 시스템 및 방법
EP2514873B8 (de) * 2011-04-18 2020-05-06 Joseph Vögele AG Verfahren und System zum Aufbringen eines Strassenbelages
US8930092B2 (en) * 2011-05-10 2015-01-06 Mark MINICH Integrated paving process control for a paving operation

Also Published As

Publication number Publication date
CN102747671A (zh) 2012-10-24
EP2514873A1 (de) 2012-10-24
US20120263530A1 (en) 2012-10-18
PL2514873T3 (pl) 2014-08-29
JP6009202B2 (ja) 2016-10-19
EP2514873B8 (de) 2020-05-06
JP2012229605A (ja) 2012-11-22
US9011038B2 (en) 2015-04-21
CN202744932U (zh) 2013-02-20
CN102747671B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
EP2514873B1 (de) Verfahren und System zum Aufbringen eines Strassenbelages
EP2366830B1 (de) System und Verfahren zum Aufbringen eines Strassenbelages
DE112016003367B4 (de) System zur drahtlosen kommunikation zwischen maschinen
EP2514872B1 (de) Strassenfertiger zum Einbauen eines Strassenbelags
EP3594409B1 (de) Baumaschine mit einer förderbandanlage mit gewichtssensor
EP2514871A1 (de) System und Verfahren zum Einbauen und Verdichten einer Asphaltschicht
DE112017000242T5 (de) Kontrollsystem zur koordination von einbauvorgängen
EP3564440B1 (de) Einbauzug
EP2990531A1 (de) System für Straßenfertiger mit einer Temperaturmessvorrichtung, Verfahren zur Bestimmung eines Abkühlverhaltens und computerlesbares Speichermedium
DE102019116853A1 (de) System und verfahren zur steuerung der geschwindigkeit einer asphaltiermaschine
DE102008058481A1 (de) Asphaltierungssystem und Asphaltierungsverfahren
DE112016003213T5 (de) Materialtransportbedienungssystem für kaltfräsen
DE112016003424T5 (de) System zur Kommunikation zwischen Werksanlagen und Maschinen
DE112016003365T5 (de) System zur Kommunikation zwischen Werksanlagen und Maschinen
DE102020101775A1 (de) System und verfahren zur steuerung der meldefrequenz
DE102018127353A1 (de) System zur beheizung einer einbaubohle
EP3851584B1 (de) Strassenfertiger mit verdichtungssteuerung
DE102020117095A1 (de) Automatische breiteneingabe für strassenfertigungsvorgänge
EP3205773B1 (de) Steuereinrichtung zum betrieb von strassenfräsmaschinen
EP4056758A1 (de) Verfahren zum fertigen eines strassenbelags und asphaltiersystem
DE102019126742A1 (de) System und verfahren zur überwachung von komponenten von belagseinbausystemen
EP3946866B1 (de) Computergestütztes verfahren und einrichtung zur optimierten steuerung der förderleistung einer betonpumpe oder dergleichen
DE102019135926A1 (de) Strassenfertiger-lastkraftwagen-gruppierung
EP3872258A1 (de) Kontaktlose materialübergabe zwischem einem lkw und einem fahrenden strassenbaufahrzeug
EP1544354B1 (de) Verfahren zum Steuern eines Strassenfertigers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/48 20060101ALI20130821BHEP

Ipc: E01C 19/00 20060101AFI20130821BHEP

INTG Intention to grant announced

Effective date: 20130909

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 653698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002182

Country of ref document: DE

Effective date: 20140410

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002182

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

26N No opposition filed

Effective date: 20141127

REG Reference to a national code

Ref country code: GB

Ref legal event code: S72

Free format text: APPLICATION FILED; APPLICATION UNDER SECTION 72 BY CATERPILLAR INC. FILED ON 17 DECEMBER 2014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002182

Country of ref document: DE

Effective date: 20141127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110418

REG Reference to a national code

Ref country code: GB

Ref legal event code: S72

Free format text: IN A DECISION OF THE COMPTROLLER DATED 1 MARCH 2016, THE COMPTROLLER FOUND THAT THE CLAIMANT'S ATTACKS ON THE PATENT AS PROPOSED TO BE UNCONDITIONALLY AMENDED FAIL AND ORDERED THAT THE PATENT BE SO AMENDED. THE APPLICATION FOR REVOCATION UNDER SECTION 72 FILED ON 17 DECEMBER 2014 WAS THEREFORE REFUSED.

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 653698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160418

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

R26N No opposition filed (corrected)

Effective date: 20141127

RIN2 Information on inventor provided after grant (corrected)

Inventor name: RUTZ, ARNOLD

Inventor name: WEISER, RALF

Inventor name: PAWLIK, CHRISTIAN, DR.

Inventor name: BUSCHMANN, MARTIN, DIPL.-ING.

Inventor name: EUL, ACHIM

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230331

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230428

Year of fee payment: 13

Ref country code: FR

Payment date: 20230425

Year of fee payment: 13

Ref country code: DE

Payment date: 20230425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 13