EP2514871A1 - System und Verfahren zum Einbauen und Verdichten einer Asphaltschicht - Google Patents

System und Verfahren zum Einbauen und Verdichten einer Asphaltschicht Download PDF

Info

Publication number
EP2514871A1
EP2514871A1 EP11003244A EP11003244A EP2514871A1 EP 2514871 A1 EP2514871 A1 EP 2514871A1 EP 11003244 A EP11003244 A EP 11003244A EP 11003244 A EP11003244 A EP 11003244A EP 2514871 A1 EP2514871 A1 EP 2514871A1
Authority
EP
European Patent Office
Prior art keywords
compaction
asphalt
paver
density module
asphalt layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11003244A
Other languages
English (en)
French (fr)
Other versions
EP2514871B1 (de
Inventor
Arnold Rutz
Martin Dipl.-Ing. Buschmann
Achim Eul
Ralf Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44595286&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2514871(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP11003244.8A priority Critical patent/EP2514871B1/de
Priority to PL11003244.8T priority patent/PL2514871T3/pl
Priority to US13/445,305 priority patent/US9068295B2/en
Priority to JP2012091797A priority patent/JP5453482B2/ja
Priority to CN201220166714.6U priority patent/CN202830716U/zh
Priority to CN201210115686.XA priority patent/CN102747673B/zh
Publication of EP2514871A1 publication Critical patent/EP2514871A1/de
Publication of EP2514871B1 publication Critical patent/EP2514871B1/de
Application granted granted Critical
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ

Definitions

  • the invention relates to a system according to the preamble of patent claim 1 and a method according to the preamble of patent claim 16.
  • a mobile compactor on built asphalt is performed using a digitized target space model in comparison with an also digitized actual place model, in which target densities and actual densities are shown.
  • the respective actual degree of compaction is determined beforehand, eg by assessment.
  • the compactor travels over a test area to determine the compaction power and / or number of necessary crossings required for final compaction.
  • the invention has for its object to provide an economical and efficient system and method for installing an asphalt layer with which to achieve a uniform as possible high final degree of compaction in the installed asphalt layer the real compaction actually produced by the road paver for general operation optimization and monitoring on the site is better considered.
  • the material-density module procures the respective actual degree of compaction generated by at least one compaction tool of the screed, evaluates it, and thus provides meaningful information that can be used for general operation optimization and / or monitoring, wherein either the Operation of the paver can be directly optimized and monitored, or the paver as the central producer of the asphalt layer can cause peripheral accessories also in terms of their operational optimization (pull principle).
  • the compacting device with position data and the respective determined actual degree of compaction so that, starting from the actual degree of compaction later on at this position, despite fluctuations in the actual degree of compaction, it produces only the compaction power which produces the desired final compaction degree.
  • the material-density module can be used to provide the mixing plant with information on the basis of which alarm messages are triggered when the composition (formulation) and / or temperature limits of the asphalt material supplied ascertained or exceeded at the road paver .
  • the mixing plant can then be the composition of the asphalt material, for example, in view of better processability and / or a different composition, promptly, ie, adjusted only with the delay caused by the supply chain to the paver.
  • the result is a high-quality asphalt layer be installed economically and efficiently, since the material-density module functions as a guiding component of a site management system.
  • the information required for economical and efficient operation of the at least one compaction device about the actual compaction degree generated by the compacting tools of the screed paver of the paver need not be estimated inaccurately or separately and only relatively late on the compacting device to be determined and evaluated, since they already at an early stage are available when working the paver.
  • For a sufficiently high and uniform degree of final compaction is a prerequisite for the road or traffic surface to play its desired characteristics, in particular the load capacity, ie the ability to absorb traffic-induced loads and transfer them to the ground, without deforming the built-in asphalt layer and For example, ruts are formed.
  • the compaction apparatus Since, when installed with the screed, the actual degree of compaction achieved may change due to various factors, it is important that the compaction apparatus produce only the compaction power required to achieve the desired final compaction level during subsequent compaction at the particular position.
  • the compaction to the degree of final compaction takes place for example by a roller compaction, ie, for example by static Auflast- or vibration or Oszillationsverdichtung.
  • Compaction equipment such as asphalt rollers compresses two stages per crossing, as they have two drums or wheelsets.
  • rollers in contrast to the paver, usually overrun every position of the asphalt layer several times, so that it is of considerable advantage to carry out the final compaction exactly taking into account the actual compaction generated and communicated by the compaction tools of the screed.
  • the use of the material-density module makes it possible to optimize and monitor the operation of the road paver very efficiently, for example in a regulation that is closed by the actual degree of compaction generated, with regard to the compaction of the asphalt layer determined on the screed Operating parameters, eg automatically, to be changed and the result of the changes is immediately read off the actual degree of compaction. All in all, this greatly reduces the load on the paver, every compactor, and even in the mixing plant.
  • the material-density module is arranged either on the paver, or is at least one data-acquiring part of the material-density module on the paver and another part stationary or mobile placed separately from the paver, in the latter case expedient between the Parts of communication links are provided.
  • the paver itself can optimize operations, and the paver who builds the asphalt layer can act as a master for peripheral accessories and guide them.
  • the screed prefferably has at least actual degree of compactness measuring devices, in particular probes, installed and connected to the material density module, so that the data for the actual degree of compaction can be obtained, evaluated and / or documented practically in real time.
  • the actual degree of compaction of the asphalt layer is determined indirectly by scanning and converting operating parameters of at least one compaction tool via the material-density module, preferably taking into account the composition of the asphalt material delivered by the mixer to the paver.
  • the actual degree of compaction generated by the tamper can be determined, or from the frequency of the provided with the vibration device Glättbleches be closed on the actual degree of compaction generated by the screed plate, or from the hydraulic loading of the respective pressure bar , the frequency of the pressure pulses and / or the penetration depth and / or acceleration of the pressure bar at each stroke, the present according to the pressure bar actual degree of compaction are determined relatively accurately.
  • a computing section is provided for a computational determination of the respective actual degree of compaction of the asphalt layer. This can determine and evaluate the actual degree of compaction from the installed mass per built-in unit length, preferably taking into account the layer thickness and the installation width relatively accurately.
  • the calculation section may be part of the material density module, or may communicate with it remotely.
  • Another possibility is to calculate the actual degree of compaction by numerical means, in particular via at least one neural network, via the material-density module.
  • the paver has a navigation system linked to the material-density module.
  • the actual degree of compaction determined by the material-density module can be combined at least with position data, preferably also with procured layer and / or time and / or temperature information, which is meaningful for the compaction device, for example can take into account an operational delay until final compression at the respective position in the adjustment of the compaction performance.
  • the material-density module is connected to a central computer, preferably a server, which, preferably, is stationary on the road paver or separated therefrom or placed mobile.
  • the material-density module preferably for optimizing the operation of the screed on the material-density module, operating parameters, such as at least frequency, stroke, pressure bars, Beauftschungstik, penetration depth and possibly even the heating power for the like.
  • the compaction tools at least taking into account the temperature of the asphalt material or the predetermined final degree of compaction. This operational optimization achieves a uniformly high, hardly fluctuating actual degree of compaction without appreciable load on the personnel, so that the compacting device only needs to apply less power or execute a few crossings.
  • At least one operating parameter of the paver such as at least the paving speed and / or the material throughput to the screed and / or the auger speed and / or performance varies, which may preferably be done taking into account the temperature of the supplied asphalt material and / or the predetermined final degree of compaction.
  • data communication paths are provided between the material-density module and directly or indirectly to the mixer and / or the compactor to either know in advance on the basis of data communicated the compaction expected compaction performance at the respective position and then set without Zeitnot and / or inform the mixer if the temperature of the delivered asphalt material should be below or above predetermined limits.
  • the screed comprises at least two compacting tools, which act on successive stages in the installation direction, from the following group: at least one tamper, at least one screed plate with a vibration device, at least one hydraulically operated pressure strip, wherein the material-density module the actual degree of compaction is obtainable after at least one or each stage or after the last stage.
  • an efficient construction site management (site management) it may be advantageous to assign at least one information and / or data-storing documentation module to the material density module. In this way records of optimal working conditions or basic settings of parameters can be maintained, which can later be called up at other construction sites and used under similar installation conditions.
  • the compaction device has an on-board or external compaction management system also for processing data communicated by the material-density module of the paver, preferably with a monitoring and / or documentation section at least for the final degree of compaction of the asphalt layer and / or the applied compaction performance.
  • the system either works largely automatically or guides the respective operator.
  • An in Fig. 1 schematically indicated system S for installing an asphalt layer D on a construction site includes, for example, an asphalt material mixer W, at least one paver F with at least one screed E, and at least one mobile compactor V. Between the mixer W and the paver F extends a Delivery line L for asphalt material A prepared in mixing plant W with a specific composition and / or temperature, which is transported via truck 3 and delivered by each truck directly to paver F, or using a feeder B moving in front of paver F At the construction site several road pavers F can be driven simultaneously and / or several compactors V.
  • the mixer W has feeders 1, 2 for producing a specific composition of the asphalt material A, which is filled with adjustable temperature and composition in the respective truck 3.
  • the delivered asphalt material A has a temperature which depends on, for example, the length of the delivery path L and / or the ambient conditions, and is filled either by the respective truck 3 or by the feeder B into a bunker 5 of the paver F. From the bunker 5, the asphalt material A is brought by a longitudinal conveyor 6 to the rear to a distribution screw 7, which is driven at adjustable speed and / or power, and the discarded asphalt material A across a leveling cylinder on the paver F adjustable screed E across distributed on the ground.
  • the road paver F has a navigation system 8, an electronic control 9 with, for example, a central computer Z, and an appropriate on-board material density module M, with the example of measuring devices such as probes 10 on the paver F and / or the screed E of the screed E real produced actual degree of compaction at a respective position in the asphalt layer D can be procured, evaluated and, for example, in the form of data can be documented.
  • the material-density module M is constituted, for example, by at least one electronic hardware module at a slot, for example in the controller 9 and / or the central computer Z and corresponding software.
  • the respective compactor V also has a navigation system 8, and may have an on-board compression management system K, for example.
  • the road paver F Using at least the, preferably electronic, material-density module M of the road paver F, its operation can be optimized and / or monitored and documented, since the respectively determined and procured actual degree of compaction on the screed gives information on how the screed E works, so that, for example, in a closed loop over the actual degree of compaction operating parameters of the screed E with respect to an optimal and / or desired work result can be varied.
  • Operating parameters of the road paver F can also be optimized, monitored and / or documented, such as the installation speed, the throughput rate of the longitudinal conveyor device 6 and / or the speed and / or performance and / or height adjustment of the transverse distribution screw 7.
  • Further operating parameters to be optimized such as the heat outputs of the asphalt layer D processing compaction tools in the screed E be that produce the respective actual degree of compaction at a certain position P of the asphalt layer D, or height adjustments of the leveling cylinder for the screed E.
  • Measurement devices can determine the temperature of the asphalt material delivered to the paver F and also such data at least to the material density module M, which also communicates with the navigation system 8 in order to combine the respectively determined actual degree of compaction of the asphalt layer D with position and / or time and / or layer and / or temperature information.
  • This allows the compactor V to inform in advance before this reaches the respective position P.
  • the compaction power required based on the actual degree of compaction be determined in advance, without any time pressure, so that the compactor V later just just generates the compaction power or executes number of crossings, starting from the actual degree of compaction to achieve the predetermined final degree of compaction are required.
  • FIG. 12 is a cross-sectional view of an example of the built-in asphalt layer D, which has a layer thickness 13, a paving width 14, and differently inclined portions 11, 12 on both sides of the center.
  • the asphalt layer D is installed by the road paver F and the screed E with a uniform over the installation width 14 actual degree of compaction, and is later densified by the compacting device V, the cross-sectional profile must be maintained as shown, and the compacting device may never end-densify positions in which there is a critical temperature range which does not ensure a final compression. This danger can be safely built up by the communicated information of the material density module M (also temperature information).
  • the screed E in Fig. 3 is a Ausziehbohle with a Grundbohlenteil 15 and laterally movable Ausziehbohlen 16, which allow a change in the installation width 14.
  • a screed E with an invariable paving width could be used (not shown).
  • the base board 15, as well as each Ausziehbohle 16, has a bottom side scarf plate 17, on which at least one operable with selectable speed Vibration device 18 is arranged so that the smoothing plate 17 operates as a compaction tool in a stage of the screed E.
  • a further compaction tool is a tamper having at least one tamper strip 19 with an eccentric drive 20 whose rotational speed and / or eccentricity (ie stroke) can be selected, the tamper 19 being in the installation direction (FIG. Fig. 3 from right to left) frontmost step and before the screed plate 17 is brought to act on the asphalt material A (two compacting tools 17, 19 or stages).
  • Fig. 4 Screed shown is also a Ausziehbohle with a base screed 15 and Ausziehbohlen 16, but could (not shown) also be a screed with fixed pave width.
  • a third stage with another compaction tool which here by at least one pressure bar 21 (here two consecutively) is constituted, which is operable via a hydraulic drive 22 with vertical pressure pulses and optionally adjustable acceleration and in Installation direction behind the screed plate 17 works.
  • at least one pressure bar 21 here two consecutively
  • the screed in Fig. 4 thanks to the at least one pressure bar 21, an actual degree of compaction of even approximately 98% can be generated, in practice, as a rule, however, the built-in asphalt layer D is still protected by at least one compacting device V (FIG. Fig. 1 ).
  • Fig. 5 schematically indicates a part of the construction site on which the paver, not shown, has installed the asphalt layer D, wherein the actual degree of compaction is determined and evaluated via the material density module M at the respective position P.
  • the different actual densities are indicated by different colorations 23, 24.
  • the compacting device V taking recourse to the data communicated by the material-density module M, moves to the respective positions P, only bringing the compaction power required there to reach the predetermined final compaction degree from the communicated actual compaction level.
  • Temperature information can also be supplied to the compression management system K for the respective positions P, for example.
  • actual degree of compactness measuring devices 10 may be, for example, distributed over the paving width probes, which are connected to transmit the Meßwertwert with the material density module M, and expedient measure the actual degree of compaction of each stage of the compaction tools 17, 19, 21 and communicate or after the last stage (screed plate 17 or pressure bar 21) present at the respective position P actual degree of compaction.
  • a plurality of probes can be provided transversely to the mounting direction to determine an average of the actual degree of compaction.
  • the actual degree of compaction can also be determined indirectly by tapping operating parameters of, for example, the compaction tools 17, 19, 21, for example via the stroke and frequency of the tamper 19, the frequency and power of the vibration device 18, or the hydraulic application pressure and / or the frequency the pressure pulses and / or the penetration depth and / or acceleration of each pressure bar 21, for example, based on the built-in per built-in unit length mass of asphalt material A.
  • the composition and optionally temperature of the supplied asphalt material is taken into account.
  • the respective actual degree of compaction can also be calculated numerically, for example via at least one neural network, for example, the central computer Z or Z 'can be used for calculations, and, suitably, the material density module M a not shown documentation module can be assigned, are documented and stored in the data and / or information.
  • the layer thickness 13 and the paving width 14 at the respective position P or on the built-in unit length is expediently taken into account, optionally in turn, taking into account the temperature of the asphalt material delivered to the paver F ,
  • the actual compaction levels obtained by the material density module M after each stage may be optimized, for example the installation speed, the throughput of the longitudinal conveyor 6 and / or the speed and / or power and / or height position of the transverse distributor auger 7 on the paver F, the angle of attack of the screed, for example, via the leveling cylinder, and possibly even the heating power of heaters of the compaction tools.
  • the actual degree of compaction after the first stage is, for example, a meaningful variable for largely keeping the angle of attack of the screed E, which is set via the leveling cylinder, not shown on the paver F and, inter alia, crucial for the flatness of the asphalt layer D.
  • the density of the asphalt material A changes during processing.
  • the asphalt material A has its bulk density after the mixing process, which changes slightly during transport in the supply chain L, before, starting from the bulk density of the screed, a multi-stage compression process takes place.
  • the subsequent final compression by the compactor V may be a static ballast, vibration or oscillation compaction.
  • Asphalt rollers densify in two stages per crossing, as they have two bandages (wheelsets), each roller being able to cover every position of the asphalt layer several times.
  • the temperature and the density or the present actual degree of compaction reached until the action of the respective compaction tool is important information.
  • This information allows the operation of the compaction tools 17, 19, 21 read off, so to speak.
  • at least some of the above-mentioned operating parameters are changed until the result confirms or returns to a desired optimum.
  • This can be, for example, a relatively high and very uniform actual degree of compaction, so that the compacting device V only has to provide relatively little and as uniform a performance as possible.
  • the material density module M determines or procures the actual degree of compaction expediently after each stage and transmits this, for example, with position, layer, time and temperature information to the central computer Z or Z ', which is for example a server.
  • a documentation module can store the information of the material density module M.
  • the central computer Z of the paver F knows, since these data are provided for example via a construction site management system, the processed mass, for example, in kilograms / per meter or kilograms / square meter. Since the central computer Z also knows the layer thickness 13 and the installation width 14, can also these parameters are used to determine the respective actual degree of compaction.
  • the actual degree of compaction generated after the last compression stage is documented in a position-related manner using the navigation system (satellite navigation system G) and communicated to the respective compactor V, for example combined with the time, temperature or shift information.
  • the compression management system K can be used, for example for monitoring and documentation of Endverdichtungsgrades, the compactor V on the communicated data of the material density module M of the paver F, and only the required at the respective position P. Compaction power generated.
  • the compacting device V produces the indicated by the uniform coloring at 24 final compaction.
  • the final work results are, for example, also operating parameters and route information, the processed asphalt material, and the like., Where appropriate, as well as faults and the like, documented and verifiable.
  • the documented data can later be used on a different construction site with similar prerequisites to save time, at least for the basic setting of operating parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

In einem System (S) zum Einbauen einer Asphaltschicht (D) aus Asphalt-Material (A) mit einem eine Einbaubohle (E) mit Verdichtungswerkzeugen (17, 19, 21) aufweisenden Straßenfertiger (F), einem Verdichtungsgerät (V) und einem Mischwerk ist im oder für den Straßenfertiger (F) ein elektronisches Material-Dichte-Modul (M) vorgesehen, welches während des Einbaus Daten zumindest eines im Bereich wenigstens eines Verdichtungswerkzeuges (17, 19, 21) erzeugten Ist-Verdichtungsgrades der Asphaltschicht (D) beschafft und zumindest für eine Betriebs-Optimierung und/oder -Überwachung des Straßenfertigers (F) und/oder Verdichtungsgerätes (V) und/oder Mischwerks auswertet und/oder dokumentiert. Verfahrensgemäß werden die beschafften Daten an das Verdichtungsgerät (V) kommuniziert, das unter Rückgriff auf die kommunizierten Daten den Endverdichtungsgrad der Asphaltschicht (D) ausgehend vom an der Einbaubohle (E) ermittelten Ist-Verdichtungsgrad herstellt.

Description

  • Die Erfindung betrifft ein System gemäß Oberbegriff des Patentanspruchs 1 sowie ein Verfahren gemäß Oberbegriff des Patentanspruchs 16.
  • Bei einem aus DE 10 2008 058 481 A bekannten System wird ein Verfahren angewandt, gemäß welchem ein Positionstemperaturmodell der Baustelle generiert und an Verdichtungsgeräte kommuniziert wird, um zu vermeiden, dass ein Verdichtungsgerät dann eine Position der eingebauten Asphaltschicht endverdichtet, wenn in dieser Position ein für eine Verdichtung ungeeigneter Temperaturbereich vorliegt.
  • Bei einem aus EP 0 733 231 B1 ( DE 694 16 006 T2 ) bekannten Verfahren wird ein mobiles Verdichtungsgerät auf eingebautem Asphalt unter Nutzen eines digitalisierten Soll-Platzmodells im Vergleich mit einem ebenfalls digitalisierten Ist-Platzmodell geführt, in welchem Soll-Verdichtungsgrade und Ist-Verdichtungsgrade dargestellt sind. Der jeweilige Ist-Verdichtungsgrad wird zuvor z.B. durch Begutachten festgestellt. Gegebenenfalls fährt das Verdichtungsgerät über eine Testfläche, um die zur Endverdichtung erforderliche Verdichtungsleistung und/oder Anzahl der notwendigen Überfahrten zu ermitteln.
  • Bei einem aus EP 0 698 152 B1 bekannten Verfahren zum Steuern eines mobilen Verdichtungsgerätes wird der Ist-Verdichtungsgrad in der Asphaltschicht vom Verdichtungsgerät selbst an der zu verdichtenden Position ermittelt, und wird die Verdichtungsleistung unmittelbar im Hinblick auf den gewünschten Endverdichtungsgrad eingestellt. Da der Ist-Verdichtungsgrad erst bei Erreichen der jeweiligen Position ermittelt wird, ist es kaum möglich, auf unvermeidbare Änderungen des Ist-Verdichtungsgrades ausreichend schnell zu reagieren.
  • In der Praxis ist es ferner üblich, Betriebsparameter des Straßenfertigers und/oder der Einbaubohle durch das Personal nach Erfahrung und Inspektion der eingebauten Asphaltschicht zu optimieren bzw. hierzu auf Schätzungen oder Erfahrungswerte zurückzugreifen. Aufgrund der Vielzahl dabei zu berücksichtigender Einflüsse ist diese Vorgangsweise zeitaufwändig und im Resultat häufig unbefriedigend und korrekturbedürftig (Trial-und Error-Methode).
  • Der Erfindung liegt die Aufgabe zugrunde, ein ökonomisches und effizientes System und ein Verfahren zum Einbauen einer Asphaltschicht anzugeben, mit denen zum Erzielen eines möglichst gleichmäßigen hohen Endverdichtungsgrades in der eingebauten Asphaltschicht die vom Straßenfertiger real erzeugte Ist-Verdichtung zur allgemeinen Betriebsoptimierung und Überwachung auf der Baustelle besser berücksichtigbar ist.
  • Die gestellte Aufgabe wird mit den Merkmalen des Patentanspruchs 1 und des Patentanspruchs 16 gelöst.
  • Das Material-Dichte-Modul beschafft gleich beim Einbau den jeweiligen, von wenigstens einem Verdichtungswerkzeug der Einbaubohle erzeugten Ist-Verdichtungsgrad, wertet diesen aus, und stellt somit aussagefähige Informationen bereit, die zur allgemeinen Betriebsoptimierung und/oder -überwachung nutzbar sind, wobei entweder der Betrieb des Straßenfertigers direkt optimierbar und überwachbar ist, oder der Straßenfertiger als zentraler Produzent der Asphaltschicht periphere Zubehöreinrichtungen auch im Hinblick auf deren Betriebsoptimierung führen kann (Pull-Prinzip). So ist es z.B. möglich, das Verdichtungsgerät mit Positionsdaten und dem jeweils ermittelten Ist-Verdichtungsgrad so zu informieren, dass dieses ausgehend von dem Ist-Verdichtungsgrad später an dieser Position trotz Fluktuationen des Ist-Verdichtungsgrades nur die Verdichtungsleistung erbringt, die den gewünschten Endverdichtungsgrad erzeugt, d.h., weder überschüssige Verdichtungsleistung erzeugt, die in einer unzweckmäßigen Energievergeudung oder sogar Beschädigung der Asphaltschicht resultieren könnte, noch zu wenig verdichtet, was die Tragfähigkeit der Asphaltschicht mindern würde. Das Verdichtungsgerät erfährt vom Material-Dichte-Modul frühzeitig, welche Verdichtungsleistung und/oder wie viele Überfahrten an der jeweiligen Position gebraucht werden, und kann ohne Zeitnot entsprechend gefahren und eingestellt werden. Alternativ oder additiv lässt sich über den Material-Dichte-Modul das Mischwerk mit Informationen versorgen, auf deren Basis Alarmmeldungen ausgelöst werden, wenn am Straßenfertiger ermittelte Zusammensetzungs- (Rezeptur) und/oder Temperatur-Grenzwerte des gelieferten Asphalt-Materials unter- oder überschritten werden. Im Mischwerk kann dann auch die Zusammensetzung des Asphalt-Materials, z.B. im Hinblick auf bessere Verarbeitbarkeit und/oder eine andere Zusammensetzung, umgehend, d.h., nur mit der durch die Lieferkette zum Straßenfertiger bedingten Verzögerung, angepasst werden. Im Resultat kann so eine qualitativ hochwertige Asphaltschicht ökonomisch und effizient eingebaut werden, da das Material-Dichte-Modul als leitender Bestandteil eines Baustellen-Management-Systems (Site-Management) fungiert.
  • Verfahrensgemäß brauchen die für einen ökonomischen und effizienten Betrieb des mindestens einen Verdichtungsgerätes erforderlichen Informationen über den von den Verdichtungswerkzeugen der Einbaubohle des Straßenfertigers erzeugten Ist-Verdichtungsgrad nicht ungenau geschätzt oder separat und erst relativ spät am Verdichtungsgerät ermittelt und ausgewertet zu werden, da sie bereits frühzeitig schon beim Arbeiten des Straßenfertigers verfügbar sind. Dies vereinfacht den Betriebsablauf signifikant und resultiert in einem gleichbleibend hohen Endverdichtungsgrad, was eine der wesentlichen Zielgrößen im Asphaltierungsprozess ist. Denn ein ausreichend hoher und gleichförmiger Endverdichtungsgrad ist eine Voraussetzung dafür, dass die Straße oder Verkehrsfläche ihre gewünschten Eigenschaften auszuspielen vermag, insbesondere die Tragfähigkeit, d.h. die Fähigkeit, durch Verkehr hervorgerufene Lasten aufzunehmen und in den Untergrund überzuleiten, ohne dass sich die eingebaute Asphaltschicht verformt und z.B. Spurrillen gebildet werden. Da sich beim Einbau mit der Einbaubohle der erzielte Ist-Verdichtungsgrad aufgrund verschiedener Faktoren ändern kann, ist es wichtig, dass das Verdichtungsgerät bei der nachfolgenden Verdichtung an der jeweiligen Position nur die Verdichtungsleistung erzeugt, die zum Erreichen des gewünschten Endverdichtungsgrades noch erforderlich ist. Die Verdichtung zum Endverdichtungsgrad erfolgt beispielsweise durch eine Walzverdichtung, d.h., z.B. durch statische Auflast- oder Vibrations-oder Oszillationsverdichtung. Verdichtungsgeräte wie Asphaltwalzen verdichten pro Überfahrt zweistufig, da sie über zwei Bandagen oder Radsätze verfügen. Außerdem überfahren Walzen, im Gegensatz zum Straßenfertiger, meist jede Position der Asphaltschicht mehrfach, so dass es von erheblichem Vorteil ist, die Endverdichtung exakt unter Berücksichtigung der von den Verdichtungswerkzeugen der Einbaubohle erzeugten und kommunizierten Ist-Verdichtung vorzunehmen. Außerdem ermöglicht es der Einsatz des Material-Dichte-Moduls, den Betrieb des Straßenfertigers sehr effizient zu optimieren und zu überwachen, z.B. in einer über den erzeugten Ist-Verdichtungsgrad geschlossenen Regelung, bei der im Hinblick auf die jeweils an der Einbaubohle ermittelte Verdichtung der Asphaltschicht Betriebsparameter, z.B. automatisch, geändert werden und das Resultat der Änderungen sofort am Ist-Verdichtungsgrad ablesbar ist. In der Summe kann so das Personal am Straßenfertiger, jedem Verdichtungsgerät, und sogar im Mischwerk, erheblich entlastet werden.
  • Bei einer zweckmäßigen Ausführungsform ist das Material-Dichte-Modul entweder am Straßenfertiger angeordnet, oder ist zumindest ein datenbeschaffender Teil des Material-Dichte-Moduls am Straßenfertiger und ist ein weiterer Teil stationär oder mobil getrennt vom Straßenfertiger platziert, wobei im letztgenannten Fall zweckmäßig zwischen den Teilen Kommunikationsstrecken vorgesehen sind. Auf diese Weise lässt sich der Straßenfertiger selbst betriebsoptimieren, und kann der Straßenfertiger, der die Asphaltschicht einbaut, als Master für periphere Zubehörgeräte fungieren und diese anleiten.
  • Zweckmäßig sind an der Einbaubohle zumindest Ist-Verdichtungsgrad-Messeinrichtungen, insbesondere Sonden, installiert und mit dem Material-Dichte-Modul verbunden, so dass die Daten zum Ist-Verdichtungsgrad praktisch in Echtzeit beschaffbar, auswertbar und/oder dokumentierbar sind.
  • Bei einer alternativen Ausführungsform wird über das Material-Dichte-Modul der Ist-Verdichtungsgrad der Asphaltschicht indirekt durch Abtasten und Umrechnen von Betriebsparametern zumindest eines Verdichtungswerkzeuges ermittelt, vorzugsweise unter Berücksichtigung der Zusammensetzung des vom Mischwerk dem Straßenfertiger gelieferten Asphalt-Materials. So kann beispielsweise aus dem Hub und der Frequenz des Tampers der vom Tamper erzeugte Ist-Verdichtungsgrad ermittelt werden, oder aus der Frequenz des mit der Vibrationseinrichtung versehenen Glättbleches auf den vom Glättblech erzeugten Ist-Verdichtungsgrad geschlossen werden, oder aus dem hydraulischen Beaufschlagungsdruck der jeweiligen Pressleiste, der Frequenz der Druckimpulse und/oder der Eindringtiefe und/oder Beschleunigung der Pressleiste bei jedem Hub, der nach der Pressleiste vorliegende Ist-Verdichtungsgrad relativ genau ermittelt werden.
  • Bei einer weiteren zweckmäßigen Ausführungsform ist zu einer rechnerischen Ermittlung des jeweiligen Ist-Verdichtungsgrades der Asphaltschicht eine Rechensektion vorgesehen. Diese kann den Ist-Verdichtungsgrad aus der eingebauten Masse pro Einbaustrecken-Längeneinheit, vorzugsweise unter Berücksichtigung der Schichtstärke und der Einbaubreite relativ genau ermitteln und auswerten. Die Rechensektion kann Teil des Material-Dichte-Moduls sein, oder dezentral mit diesem kommunizieren.
  • Eine weitere Möglichkeit besteht darin, über das Material-Dichte-Modul den Ist-Verdichtungsgrad jeweils auf numerischem Weg, insbesondere über wenigstens ein neuronales Netz, zu errechnen.
  • In einer zweckmäßigen Ausführungsform weist der Straßenfertiger ein mit dem Material-Dichte-Modul verknüpftes Navigationssystem auf. Auf diese Weise kann der vom Material-Dichte-Modul jeweils ermittelte Ist-Verdichtungsgrad zumindest mit Positionsdaten, vorzugsweise auch mit beschafften Schicht- und/oder Zeit- und/oder Temperatur-Informationen kombiniert werden, die beispielsweise für das Verdichtungsgerät aussagefähig sind, das auch eine betriebsbedingte Verzögerung bis zum Endverdichten an der jeweiligen Position bei der Einstellung der Verdichtungsleistung berücksichtigen kann.
  • Um die Daten möglichst rasch und auch viele Daten effizient verarbeiten zu können, kann es zweckmäßig sein, wenn das Material-Dichte-Modul mit einem zentralen Rechner, vorzugsweise einem Server, verbunden ist, der, vorzugsweise, auf dem Straßenfertiger oder von diesem separiert stationär oder mobil platziert ist.
  • Bei einer weiteren Ausführungsform ist es zweckmäßig, vorzugsweise zur Betriebsoptimierung der Einbaubohle über das Material-Dichte-Modul, Betriebsparameter, wie zumindest Frequenz, Hub, Pressleisten-, Beaufschlagungsdruck, Eindringtiefe der und gegebenenfalls sogar die Heizleistung für die dgl. der Verdichtungswerkzeuge zumindest unter Berücksichtigung der Temperatur des Asphalt-Materials oder dem vorbestimmten Endverdichtungsgrad zu variieren. Durch diese Betriebsoptimierung wird ein gleichmäßig hoher, kaum fluktuierender Ist-Verdichtungsgrad ohne nennenswerte Belastung für das Personal erreicht, so dass das Verdichtungsgerät nur mehr wenig Leistung aufzubringen oder wenige Überfahrten auszuführen braucht.
  • Bei einer weiteren Ausführungsform wird zur Betriebsoptimierung des Straßenfertigers und, vorzugsweise, über das Material-Dichte-Modul, zumindest ein Betriebsparameter des Straßenfertigers, wie zumindest die Einbaugeschwindigkeit und/oder der Materialdurchsatz zur Einbaubohle und/oder die Verteilerschneckendrehzahl und/oder -leistung variiert, was vorzugsweise unter Berücksichtigung der Temperatur des gelieferten Asphalt-Materials und/oder des vorbestimmten Endverdichtungsgrades erfolgen kann. Dies ist wiederum im Hinblick darauf von Vorteil, dass später das Verdichtungsgerät nur noch geringe Verdichtungsleistung zu erbringen oder nur wenige Überfahrten auszuführen hat, um möglichst gleichbleibend den gewünschten Endverdichtungsgrad sicherzustellen.
  • Ferner kann es zweckmäßig sein, den jeweiligen Ist-Verdichtungsgrad bei einem Verdichtungswerkzeug als Mittelwert über die oder einen signifikanten Teil der Einbaubreite der Asphaltschicht zu ermitteln. Auf diese Weise können lokale Ausreißer kompensiert werden.
  • Bei einer weiteren Ausführungsform sind zwischen dem Material-Dichte-Modul und direkt oder indirekt dem Mischwerk und/oder dem Verdichtungsgerät Daten-Kommunikationswege vorgesehen, um entweder anhand kommunizierter Daten die vom Verdichtungsgerät erwartete Verdichtungsleistung an der jeweiligen Position vorab zu kennen und dann ohne Zeitnot einzustellen oder/und das Mischwerk zu informieren, falls die Temperatur des gelieferten Asphalt-Materials vorbestimmte Grenzwerte unter- oder überschreiten sollte.
  • In einer zweckmäßigen Ausführungsform weist die Einbaubohle mindestens zwei beim Einbau in in Einbaufahrtrichtung aufeinanderfolgenden Stufen zur Einwirkung kommende Verdichtungswerkzeuge aus folgender Gruppe auf: wenigstens einen Tamper, wenigstens ein Glättblech mit einer Vibrationseinrichtung, wenigstens eine hydraulisch betriebene Pressleiste, wobei über das Material-Dichte-Modul der Ist-Verdichtungsgrad nach zumindest einer oder jeder Stufe oder nach der letzten Stufe beschaffbar ist.
  • Im Hinblick auf ein effizientes Baustellen-Management (Site-Management) kann es vorteilhaft sein, dem Material-Dichte-Modul wenigstens einen informationen- und/oder datenspeicherndes Dokumentationsmodul zuzuordnen. Auf diese Weise lassen sich Datensätze zu optimalen Arbeitsbedingungen oder Grundeinstellungen von Parametern vorhalten, die später an anderen Baustellen abrufbar und bei ähnlichen Einbaubedingungen nutzbar sind.
  • Im Hinblick auf ein effizientes Baustellen-Management kann es von Vorteil sein, wenn das Verdichtungsgerät ein bordeigenes oder externes Verdichtungsmanagement-System auch zur Verarbeitung vom Material-Dichte-Modul des Straßenfertigers kommunizierter Daten aufweist, vorzugsweise mit einer Überwachungs- und/oder Dokumentations-Sektion zumindest für den Endverdichtungsgrad der Asphaltschicht und/oder die aufgebrachte Verdichtungsleistung. Das System arbeitet entweder weitgehend automatisch oder führt den jeweiligen Bediener.
  • Anhand der Zeichnungen werden Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:
  • Fig. 1
    schematisch ein System zum Einbauen einer Asphaltschicht aus Asphalt-Material auf einer Baustelle mit Grundkomponenten eines Baustellen-Management-Systems,
    Fig. 2
    einen Querschnitt einer eingebauten Asphaltschicht,
    Fig. 3
    eine Schnittdarstellung einer Ausführungsform einer Einbaubohle eines Straßenfertigers des Systems,
    Fig. 4
    einen Querschnitt einer anderen Ausführungsform einer Einbaubohle eines Straßenfertigers des Systems, und
    Fig. 5
    eine perspektivische Darstellung eines Teils der Baustelle beispielsweise von Fig. 1.
  • Ein in Fig. 1 schematisch angedeutetes System S zum Einbauen einer Asphaltschicht D auf einer Baustelle umfasst beispielsweise ein Asphalt-Material-Mischwerk W, wenigstens einen Straßenfertiger F mit zumindest einer Einbaubohle E, und wenigstens ein mobiles Verdichtungsgerät V. Zwischen dem Mischwerk W und dem Straßenfertiger F erstreckt sich eine Lieferstrecke L für im Mischwerk W mit einer bestimmten Zusammensetzung und/oder Temperatur vorbereitetes Asphalt-Material A, das über Lastwagen 3 befördert und von jedem Lastwagen direkt an den Straßenfertiger F geliefert wird, oder unter Verwendung eines vor dem Straßenfertiger F fahrenden Beschickers B. Auf der Baustelle können mehrere Straßenfertiger F gleichzeitig gefahren werden und/oder auch mehrere Verdichtungsgeräte V.
  • Das Mischwerk W weist Beschickungsvorrichtungen 1, 2 zum Herstellen einer bestimmten Zusammensetzung des Asphalt-Materials A auf, das mit einstellbarer Temperatur und Zusammensetzung in den jeweiligen Lastwagen 3 eingefüllt wird. Das gelieferte Asphalt-Material A hat eine von z.B. der Länge der Lieferstrecke L und/oder den Umgebungsbedingungen abhängige Temperatur, und wird entweder vom jeweiligen Lastwagen 3 oder vom Beschicker B in einen Bunker 5 des Straßenfertigers F eingefüllt. Vom Bunker 5 wird das Asphalt-Material A durch eine Längsfördervorrichtung 6 nach hinten zu einer Verteilerschnecke 7 gebracht, die mit einstellbarer Drehzahl und/oder Leistung antreibbar ist, und das abgeworfene Asphalt-Material A vor einer über Nivellierzylinder am Straßenfertiger F einstellbaren Einbaubohle E quer auf dem Untergrund verteilt. Der Straßenfertiger F verfügt über ein Navigationssystem 8, eine elektronische Steuerung 9 mit beispielsweise einem Zentralrechner Z, und ein zweckmäßig bordeigenes Material-Dichte-Modul M, mit dem beispielsweise über Messeinrichtungen wie Sonden 10 am Straßenfertiger F und/oder der Einbaubohle E der von der Einbaubohle E real erzeugte Ist-Verdichtungsgrad an einer jeweiligen Position in der Asphaltschicht D beschaffbar, auswertbar und z.B. in Form von Daten dokumentierbar ist. Das Material-Dichte-Modul M wird z.B. durch wenigstens einen elektronischen Hardware-Modul an einem Steckplatz z.B. in der Steuerung 9 und/oder dem Zentralrechner Z und entsprechende Software konstituiert.
  • Das jeweilige Verdichtungsgerät V weist ebenfalls ein Navigationssystem 8 auf, und kann über ein beispielsweise bordeigenes Verdichtungsmanagement-System K verfügen.
  • Alternativ kann das Material-Dichte-Modul M oder ein Teil M' davon stationär oder mobil separat vom Straßenfertiger F platziert sein, wie auch ein weiterer Zentralrechner Z', beispielsweise ein Server, wobei die letztgenannten Komponenten kabelgebunden oder drahtlos miteinander und gegebenenfalls mit dem Verdichtungsgerät V bzw. dem Mischwerk W über Kommunikationsstrecken kommunizieren.
  • Unter Verwendung zumindest des, vorzugsweise elektronischen, Material-Dichte-Moduls M des Straßenfertigers F lässt sich dessen Betrieb optimieren und/oder überwachen und dokumentieren, da der jeweils ermittelte und beschaffte Ist-Verdichtungsgrad an der Einbaubohle Aufschluss gibt, wie die Einbaubohle E arbeitet, so dass beispielsweise in einer über den Ist-Verdichtungsgrad geschlossenen Regelschleife Betriebsparameter der Einbaubohle E im Hinblick auf ein optimales und/oder gewünschtes Arbeitsergebnis variierbar sind. Auch Betriebsparameter des Straßenfertigers F lassen sich so optimieren, überwachen und/oder dokumentieren, wie die Einbaugeschwindigkeit, die Durchsatzleistung der Längsfördervorrichtung 6 und/oder die Drehzahl und/oder -leistung und/oder Höheneinstellung der Querverteilerschnecke 7. Weitere so zu optimierende Betriebsparameter könnten beispielsweise die Heizleistungen von die Asphaltschicht D bearbeitenden Verdichtungswerkzeugen in der Einbaubohle E sein, die den jeweiligen Ist-Verdichtungsgrad an einer bestimmten Position P der Asphaltschicht D erzeugen, oder Höheneinstellungen der Nivellierzylinder für die Einbaubohle E.
  • Nicht dargestellte Messeinrichtungen können die Temperatur des an den Straßenfertiger F gelieferten Asphalt-Materials ermitteln und auch solche Daten zumindest an das Material-Dichte-Modul M liefern, das auch mit dem Navigationssystem 8 kommuniziert, um den jeweils ermittelten Ist-Verdichtungsgrad der Asphaltschicht D mit Positions- und/oder Zeit-und/oder Schicht- und/oder Temperatur-Informationen zu kombinieren. Damit lässt sich das Verdichtungsgerät V vorab informieren, ehe dies die jeweilige Position P erreicht. Auf diese Weise kann für das Verdichtungsgerät V die ausgehend vom Ist-Verdichtungsgrad erforderliche Verdichtungsleistung vorab bestimmt werden, und zwar ohne Zeitnot, so dass das Verdichtungsgerät V später gerade nur die Verdichtungsleistung erzeugt oder Anzahl an Überfahrten ausführt, die ausgehend vom Ist-Verdichtungsgrad zum Erzielen des vorbestimmten Endverdichtungsgrades erforderlich sind. Im Resultat wird effizient und ökonomisch ein außerordentlich gleichförmiger hoher Endverdichtungsgrad der Asphaltschicht erreicht, wobei nicht nur der Betrieb des Straßenfertigers optimiert werden kann, sondern auch der Betrieb des Verdichtungsgerätes, und auch das Mischwerk informiert werden kann, wenn bestimmte Grenzwerte (z.B. der Temperatur des gelieferten Asphalt-Materials A) unter- oder überschritten werden. Im Mischwerk W kann der maßgebliche Betriebsparameter angepasst oder optimiert werden, wobei die Zeitverzögerung zum Tragen kommt, die durch die Lieferstrecke L bedingt ist, bis am Straßenfertiger F wieder optimales Asphalt-Material verfügbar ist.
  • Fig. 2 ist ein Querschnitt eines Beispiels der eingebauten Asphaltschicht D, die eine Schichtstärke 13, eine Einbaubreite 14 und beiderseits der Mitte unterschiedlich geneigte Abschnitte 11, 12 aufweist. Die Asphaltschicht D wird vom Straßenfertiger F und die Einbaubohle E eingebaut und zwar mit einem über die Einbaubreite 14 möglichst gleichmäßigen Ist-Verdichtungsgrad, und wird später vom Verdichtungsgerät V endverdichtet, wobei das Querschnittsprofil wie gezeigt erhalten bleiben muss, und das Verdichtungsgerät keinesfalls Positionen endverdichten darf, in denen ein eine Endverdichtung nicht gewährleistender kritischer Temperaturbereich vorliegt. Dieser Gefahr lässt sich durch die kommunizierten Informationen des Material-Dichte-Moduls M (auch Temperatur-Informationen) mit Sicherheit vorbauen.
  • Die Einbaubohle E in Fig. 3 ist eine Ausziehbohle mit einem Grundbohlenteil 15 und seitlich verfahrbaren Ausziehbohlen 16, die eine Änderung der Einbaubreite 14 ermöglichen. Alternativ könnte auch eine Einbaubohle E mit unveränderbarer Einbaubreite benutzt werden (nicht gezeigt). Die Grundbohle 15, wie auch jede Ausziehbohle 16, weist ein bodenseitiges Glättblech 17 auf, auf dem wenigstens eine mit wählbarer Drehzahl betreibbare Vibrationseinrichtung 18 angeordnet ist, so dass das Glättblech 17 als Verdichtungswerkzeug in einer Stufe der Einbaubohle E arbeitet. Ein weiteres Verdichtungswerkzeug ist ein wenigstens eine Tamperleiste 19 aufweisender Tamper mit einem Exzenterantrieb 20, dessen Drehzahl und/oder Exzentrizität (d.h. Hub) wählbar sind, wobei der Tamper 19 in Einbaufahrtrichtung (Fig. 3 von rechts nach links) vorderste Stufe und vor dem Glättblech 17 zur Einwirkung auf das Asphalt-Material A gebracht wird (zwei Verdichtungswerkzeuge 17, 19 bzw. Stufen).
  • Die in Fig. 4 gezeigte Einbaubohle ist ebenfalls eine Ausziehbohle mit einer Grundbohle 15 und Ausziehbohlen 16, könnte aber (nicht gezeigt) auch eine Einbaubohle mit fester Einbaubreite sein.
  • In der Einbaubohle E in Fig. 4 weist die Grundbohle 15 wie auch jede Ausziehbohle 16 eine dritte Stufe mit einem weiteren Verdichtungswerkzeug auf, das hier durch wenigstens eine Pressleiste 21 (hier zwei hintereinander) konstituiert wird, die über einen hydraulischen Antrieb 22 mit vertikalen Druckimpulsen und gegebenenfalls einstellbaren Beschleunigung betreibbar ist und in Einbaufahrtrichtung hinter dem Glättblech 17 arbeitet. Hier sind somit drei Stufen zur Verdichtung der Asphaltschicht D vorgesehen. Obwohl mit der Einbaubohle in Fig. 4 dank der wenigstens einen Pressleiste 21 ein Ist-Verdichtungsgrad von sogar annähernd 98 % erzeugbar ist, wird in der Praxis im Regelfall dennoch die eingebaute Asphaltschicht D noch durch wenigstens ein Verdichtungsgerät V (Fig. 1) endverdichtet.
  • Fig. 5 deutet schematisch einen Teil der Baustelle an, auf der der nicht gezeigte Straßenfertiger die Asphaltschicht D eingebaut hat, wobei über das Material-Dichte-Modul M an der jeweiligen Position P der Ist-Verdichtungsgrad ermittelt und ausgewertet ist. Die unterschiedlichen Ist-Verdichtungsgrade sind durch unterschiedliche Einfärbungen 23, 24 angedeutet. Das Verdichtungsgerät V fährt unter Rückgriff auf die vom Material-Dichte-Modul M kommunizierten Daten die jeweiligen Positionen P an, und bringt dabei nur gerade die Verdichtungsleistung auf, die dort zum Erreichen des vorbestimmten Endverdichtungsgrades ausgehend vom kommunizierten Ist-Verdichtungsgrad erforderlich ist. Auch Temperatur-Informationen können für die jeweiligen Positionen P beispielsweise an das Verdichtungs-Management-System K geliefert werden.
  • Die an der Einbaubohle E in Fig. 1 angedeuteten Ist-Verdichtungsgrad-Messeinrichtungen 10 können beispielsweise über die Einbaubreite verteilte Sonden sein, die messwertübertragend mit dem Material-Dichte-Modul M verbunden sind, und zweckmäßig den Ist-Verdichtungsgrad jeder Stufe der Verdichtungswerkzeuge 17, 19, 21 abgreifen und kommunizieren oder den nach der letzten Stufe (Glättblech 17 oder Pressleiste 21) an der jeweiligen Position P vorliegenden Ist-Verdichtungsgrad. Hierbei können quer zur Einbaufahrtrichtung mehrere Sonden vorgesehen sein, um einen Mittelwert des Ist-Verdichtungsgrades zu ermitteln.
  • Der Ist-Verdichtungsgrad kann alternativ auch durch Abgreifen von Betriebsparametern beispielsweise der Verdichtungswerkzeuge 17, 19, 21 indirekt ermittelt werden, beispielsweise über den Hub und Frequenz des Tampers 19, die Frequenz und Leistung der Vibrationseinrichtung 18, oder den hydraulischen Beaufschlagungsdruck und/oder die Frequenz der Druckimpulse und/oder die Eindringtiefe und/oder Beschleunigung jeder Pressleiste 21, beispielsweise ausgehend von der pro Einbaustrecken-Längeneinheit eingebauten Masse an Asphalt-Material A. Hierbei wird, vorzugsweise, auch die Zusammensetzung und gegebenenfalls Temperatur des gelieferten Asphalt-Materials berücksichtigt.
  • Alternativ kann der jeweilige Ist-Verdichtungsgrad auch auf numerischem Weg berechnet werden, beispielsweise über wenigstens ein neuronales Netz, wobei für Rechenvorgänge beispielsweise der Zentralrechner Z oder Z' herangezogen werden kann, und, zweckmäßig, dem Material-Dichte-Modul M ein nicht gezeigter Dokumentationsmodul zugeordnet sein kann, in dem Daten und/oder Informationen dokumentiert und gespeichert werden.
  • Bei der rechnerischen Ermittlung aus der eingebauten Masse pro Einbaustrecken-Längeneinheit wird zweckmäßig auch die Schichtstärke 13 und die Einbaubreite 14 an der jeweiligen Position P oder über die Einbaustrecken-Längeneinheit mitberücksichtigt, gegebenenfalls wiederum unter Einbeziehen der Temperatur des an den Straßenfertiger F gelieferten Asphalt-Materials.
  • Unter Berücksichtigung der durch das Material-Dichte-Modul M beschafften Ist-Verdichtungsgrade nach jeder Stufe können andere Betriebsparameter des Straßenfertigers optimiert werden, beispielsweise die Einbaufahrgeschwindigkeit, der Durchsatz der Längsfördervorrichtung 6 und/oder die Drehzahl und/oder Leistung und/oder Höhenposition der Querverteilerschnecke 7 am Straßenfertiger F, der Anstellwinkel der Einbaubohle, z.B. über die Nivellierzylinder, und gegebenenfalls sogar die Heizleistung von Heizeinrichtungen der Verdichtungswerkzeuge. Der Ist-Verdichtungsgrad nach der ersten Stufe (Tamper 19) ist beispielsweise eine aussagefähige Größe zum weitestgehenden Konstanthalten des Anstellwinkels der Einbaubohle E, der über die nicht gezeigten Nivellierzylinder am Straßenfertiger F eingestellt wird und u.a. entscheidend für die Ebenheit der Asphaltschicht D ist.
  • Wie auch die Temperatur, verändert sich die Dichte des Asphalt-Materials A während der Verarbeitung. Das Asphalt-Material A hat nach dem Mischvorgang seine Schüttdichte, die sich beim Transport in der Lieferkette L geringfügig ändert, ehe, ausgehend von der Schüttdichte an der Einbaubohle, ein mehrstufiger Verdichtungsprozess stattfindet. Die nachfolgende Endverdichtung durch das Verdichtungsgerät V kann eine statische Auflast-, Vibrations- oder Oszillationsverdichtung sein. Asphaltwalzen verdichten pro Überfahrt zweistufig, da sie über zwei Bandagen (Radsätze) verfügen, wobei jede Walze jede Position der Asphaltschicht mehrfach überfahren kann.
  • Um zum Betriebsoptimierung der Einbaubohle E die Betriebsparameter der Verdichtungswerkzeuge 17, 19, 21 optimal wählen zu können, sind die Temperatur und die bis zur Einwirkung des jeweiligen Verdichtungswerkzeuges erreichte Dichte bzw. der vorliegende Ist-Verdichtungsgrad wichtige Informationen. Diese Informationen lassen die Wirkungsweise der Verdichtungswerkzeuge 17, 19, 21 sozusagen ablesen. Somit können z.B. in einer über den Ist-Verdichtungsgrad geschlossenen Regelschleife zumindest einige der oben erwähnten Betriebsparameter geändert werden, bis das Resultat ein gewünschtes Optimum bestätigt oder zu diesem zurückfindet. Dies kann beispielsweise ein relativ hoher und sehr gleichförmiger Ist-Verdichtungsgrad sein, damit das Verdichtungsgerät V nur mehr relativ wenig und möglichst gleichmäßige Leistung zu erbringen hat.
  • Das Material-Dichte-Modul M ermittelt bzw. beschafft den Ist-Verdichtungsgrad zweckmäßig nach jeder Stufe und übermittelt diesen beispielsweise mit Positions-, Schicht-, Zeit- und Temperatur-Informationen an den Zentralrechner Z oder Z', der beispielsweise ein Server ist. Ein Dokumentationsmodul kann die Informationen des Material-Dichte-Moduls M speichern. Der Zentralrechner Z des Straßenfertigers F kennt, da diese Daten z.B. über ein Baustellen-Management-System bereitgestellt werden, die verarbeitete Masse beispielsweise in Kilogramm/pro Meter oder Kilogramm/Quadratmeter. Da der Zentralrechner Z auch die Schichtstärke 13 und die Einbaubreite 14 kennt, können auch diese Parameter zur Bestimmung des jeweiligen Ist-Verdichtungsgrades herangezogen werden. Beispielsweise wird der nach der letzten Verdichtungsstufe erzeugte Ist-Verdichtungsgrad unter Verwendung des Navigationssystems (Satellitennavigationssystem G) positionsbezogen dokumentiert und an das jeweilige Verdichtungsgerät V kommuniziert, beispielsweise kombiniert mit den Zeit-, Temperatur- oder Schicht-Informationen. Von dem Verdichtungsgerät V kann das Verdichtungsmanagement-System K benutzt werden, z.B. zur Überwachung und Dokumentation des Endverdichtungsgrades, wobei das Verdichtungsgerät V auf die kommunizierten Daten des Material-Dichte-Moduls M des Straßenfertigers F zurückgreift, und an der jeweiligen Position P nur die erforderliche Verdichtungsleistung erzeugt. Ausgehend von dem in Fig. 5 mit der schon recht gleichmäßigen Einfärbung bei 23 angedeuteten, ermittelten Ist-Verdichtungsgrad erzeugt das Verdichtungsgerät V die durch die gleichmäßige Einfärbung bei 24 angedeutete Endverdichtung. Auf diese Weise ergibt sich ein reibungsloser Ablauf auf der Baustelle, wobei das Schadensrisiko und Gefahren für Personenschäden minimiert sind, und vor allem das Bedienungspersonal im Mischwerk und/oder am Straßenfertiger F und/oder am jeweiligen Verdichtungsgerät V hinsichtlich der Betriebsoptimierung und -überwachung weitestgehend entlastet wird. Die endgültigen Arbeitsresultate sind wie z.B. auch Betriebsparameter und Fahrstreckeninformationen, das verarbeitete Asphalt-Material, und dgl., gegebenenfalls wie auch Störungen und dgl., dokumentiert und nachprüfbar. Die dokumentierten Daten können später an einer anderen Baustelle bei ähnlichen Voraussetzungen zeitsparend zumindest zur Grundeinstellung von Betriebsparametern genutzt werden.

Claims (17)

  1. System (S) zum Einbauen einer Asphaltschicht (D) aus Asphalt-Material (A), mit wenigstens einem wenigstens eine Einbaubohle (E) mit Verdichtungswerkzeugen (17, 19, 21) aufweisenden Straßenfertiger (F), wenigstens einem selbstfahrenden Verdichtungsgerät (V), und gegebenenfalls wenigstens einem Asphalt-Material-Mischwerk (W), dadurch gekennzeichnet, dass für den Straßenfertiger (F) ein elektronisches Material-Dichte-Modul (M) vorgesehen ist, mit welchem während des Einbaus Daten zumindest eines im Bereich wenigstens eines Verdichtungswerkzeuges (17, 19, 21) erzeugten Ist-Verdichtungsgrades der Asphaltschicht (D) beschaffbar und zumindest zur Betriebs-Optimierung und/oder -Überwachung des Straßenfertigers (F) und/oder Verdichtungsgerätes (V) und/oder Mischwerks (W) auswertbar und/oder dokumentierbar sind.
  2. System nach Anspruch 1, dadurch gekennzeichnet, dass das Material-Dichte-Modul (M) am Straßenfertiger (F) angeordnet ist, oder zumindest ein datenbeschaffender Teil des Material-Dichte-Moduls (M) am Straßenfertiger (F) und ein weiterer Teil (M') des Material-Dichte-Moduls stationär oder mobil getrennt vom Straßenfertiger (F) angeordnet sind.
  3. System nach Anspruch 1, dadurch gekennzeichnet, dass an der Einbaubohle (E) zumindest Ist-Verdichtungsgrad-Messeinrichtungen (10), insbesondere Sonden, installiert und mit dem Material-Dichte-Modul (M) messwertübertragend verbunden sind.
  4. System nach Anspruch 1, dadurch gekennzeichnet, dass mit dem Material-Dichte-Modul (M) der Ist-Verdichtungsgrad der Asphaltsicht (D) indirekt durch Abtasten und Umrechnen von Betriebsparametern zumindest eines Verdichtungswerkzeuges (17, 19, 21) ermittelbar ist, vorzugsweise unter Berücksichtigung der Zusammensetzung und/oder Temperatur des dem Straßenfertiger (F) vom Mischwerk (W) gelieferten Asphalt-Materials (A).
  5. System nach Anspruch 1, dadurch gekennzeichnet, dass zur rechnerischen Ermittlung des Ist-Verdichtungsgrades der Asphaltschicht (D) aus der eingebauten Masse pro Einbaustrecken-Längeneinheit, vorzugsweise unter Berücksichtigung der Schichtstärke (13) und Einbaubreite (14) der Asphaltschicht (D), eine Rechensektion im Material-Dichte-Modul (M) vorgesehen oder mit diesem verbunden ist.
  6. System nach Anspruch 1, dadurch gekennzeichnet, dass der Ist-Verdichtungsgrad der Asphaltschicht (D) direkt oder indirekt über das Material-Dichte-Modul (M) auf numerischem Weg, insbesondere in wenigstens einem neuronalem Netz, rechnerisch ermittelbar ist.
  7. System nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Straßenfertiger (F) ein mit dem Material-Dichte-Modul (M) verknüpftes Navigationssystem (8) aufweist, und dass über das Material-Dichte-Modul (M) der jeweils ermittelte Ist-Verdichtungsgrad der Asphaltschicht (D) zumindest mit Positionsdaten, vorzugsweise auch mit beschafften Schicht- und/oder Zeit- und/oder Temperatur-Informationen kombinierbar ist.
  8. System nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Material-Dichte-Modul (M) mit einem Zentralrechner (Z, Z'), vorzugsweise einem Server, kommunikationsfähig verbunden ist, der, vorzugsweise, auf dem Straßenfertiger (F) oder von diesem separiert stationär oder mobil platziert ist.
  9. System nach Anspruch 1, dadurch gekennzeichnet, dass zur Betriebsoptimierung der Einbaubohle (E), vorzugsweise über das Material-Dichte-Modul (M) und anhand der ermittelten und verarbeiteten Daten, Betriebsparameter wie zumindest die Frequenz und/oder der Hub und/oder der Pressleisten-Beaufschlagungsdruck und/oder die Pressleisten-Beschleunigung und/oder die Heizleistung für Verdichtungswerkzeuge (17, 19, 21), vorzugsweise zumindest unter Berücksichtigung zumindest der Zusammensetzung und/oder Temperatur des gelieferten Asphalt-Materials (A) und/oder des vom Verdichtungsgerät (V) zu erzeugenden Endverdichtungsgrades der Asphaltschicht (D) variierbar sind.
  10. System nach Anspruch 1, dadurch gekennzeichnet, dass zur Betriebsoptimierung des Straßenfertigers (F), vorzugsweise über das Material-Dichte-Modul (M) und anhand der ermittelten und verarbeiteten Daten, Betriebsparameter wie zumindest die Einbaugeschwindigkeit und/oder der Material-Durchsatz zur Einbaubohle (E) und/oder die Verteilerschnecken-Drehzahl und/oder -Leistung und/oder der Anstellwinkel der Einbaubohle (E), vorzugsweise zumindest unter Berücksichtigung der Zusammensetzung und/oder Temperatur des gelieferten Asphalt-Materials (A) und/oder des vom Verdichtungsgerät (V) zu erzeugenden Endverdichtungsgrades der Asphaltschicht (D) variierbar sind.
  11. System nach Anspruch 1, dadurch gekennzeichnet, dass der Ist-Verdichtungsgrad als Mittelwert über die oder einen signifikanten Teil der Einbaubreite (14) der Asphaltschicht (D) ermittelt wird.
  12. System nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Material-Dichte-Modul (M) und dem Mischwerk (W) und/oder dem Verdichtungsgerät (V) Daten-Kommunikationswege vorgesehen sind, um anhand kommunizierter Daten die vom Verdichtungsgerät (V) zum Erreichen des Endverdichtungsgrades an der jeweiligen Position (P) der Asphaltschicht (D) erforderliche Verdichtungsleistung vorab einzustellen und/oder das Mischwerk (W) zumindest bezüglich einer Zusammensetzungs- und/oder-Temperatur-Änderung des zu produzierenden Asphalt-Materials (A) zu informieren.
  13. System nach Anspruch 1, dadurch gekennzeichnet, dass die Einbaubohle (E) mindestens zwei beim Einbau in in Einbaufahrtrichtung aufeinanderfolgenden Stufen zur Einwirkung kommende Verdichtungswerkzeuge (17, 19, 21) aus folgender Gruppe aufweist: wenigstens einen Tamper (19, 20), wenigstens ein Glättblech mit einer Vibrationseinrichtung (17, 18), wenigstens eine hydraulisch betriebene Pressleiste (21, 22), und dass mit dem Material-Dichte-Modul (M) der Ist-Verdichtungsgrad zumindest einer Stufe oder nach der letzten Stufe beschaffbar ist.
  14. System nach Anspruch 1, dadurch gekennzeichnet, dass dem Material-Dichte-Modul (M) wenigstens ein Informationen in Form der beschafften Daten speichernder Dokumentationsmodul zugeordnet ist.
  15. System nach Anspruch 1, dadurch gekennzeichnet, dass das Verdichtungsgerät (V) ein bordeigenes oder externes Verdichtungs-Management-System (K) zur Verarbeitung auch vom Material-Dichte-Modul (M) des Straßenfertigers (F) kommunizierter Daten aufweist, vorzugsweise mit einer Überwachungs- und/oder Dokumentations-Sektion zumindest für den Verdichtungsgrad der eingebauten Asphaltschicht (D).
  16. Verfahren zum Einbauen einer Asphaltschicht (D) aus Asphalt-Material (A) wählbarer Schichtstärke (13) und Einbaubreite (14) unter Verwendung eines Systems (S), das wenigstens einen wenigstens eine Einbaubohle (E) mit Verdichtungswerkzeugen (17, 19, 21) aufweisenden Straßenfertiger (F), wenigstens ein selbstfahrendes Verdichtungsgerät (V), und gegebenenfalls ein Asphalt-Material-Mischwerk (W) umfasst, wobei ausgehend von einer bekannten Zusammensetzung und/oder Temperatur des dem Straßenfertiger (F) gelieferten Asphalt-Materials (A) jedes Verdichtungswerkzeuges (17, 19, 21) einen Ist-Verdichtungsgrad in der Asphaltschicht (D) und nachfolgend das Verdichtungsgerät (V) einen vorbestimmten Endverdichtungsgrad der Asphaltschicht (D) erzeugen, gekennzeichnet durch folgende Schritte:
    ein Material-Dichte-Modul (M) beschafft während des Einbaus Daten zum in der Asphaltschicht (D) von zumindest einem Verdichtungswerkzeug (17, 19, 21) erzeugten Ist-Verdichtungsgrad,
    diese Daten werden zumindest auf Positionen (P) der Asphaltschicht (D) oder einer Baustelle bezogen verarbeitet und vorab an das Verdichtungsgerät (V) kommuniziert, ehe das Verdichtungsgerät die jeweilige Position (P) der Asphaltschicht (D) erreicht,
    das Verdichtungsgerät (V) oder mehrere Verdichtungsgeräte (V) stellt bzw. stellen unter Rückgriff auf die kommunizierten Daten an der jeweiligen Position (P) den Endverdichtungsgrad ausgehend von den kommunizierten Daten zum Ist-Verdichtungsgrad her.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass beim Einbau der von jedem Verdichtungswerkzeug (17, 19, 21) erzeugte Ist-Verdichtungsgrad oder ein von allen Verdichtungswerkzeugen summarisch erzeugter Ist-Verdichtungsgrad für das Material-Dichte-Modul (M) rechnerisch oder durch direkte oder indirekte Messungen ermittelt wird.
EP11003244.8A 2011-04-18 2011-04-18 Verfahren zum Einbauen und Verdichten einer Asphaltschicht Revoked EP2514871B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11003244.8A EP2514871B1 (de) 2011-04-18 2011-04-18 Verfahren zum Einbauen und Verdichten einer Asphaltschicht
PL11003244.8T PL2514871T3 (pl) 2011-04-18 2011-04-18 Sposób wbudowywania I zagęszczania warstwy asfaltowej
US13/445,305 US9068295B2 (en) 2011-04-18 2012-04-12 System and method for laying down and compacting an asphalt layer
JP2012091797A JP5453482B2 (ja) 2011-04-18 2012-04-13 アスファルト層を敷き均し締固めるためのシステムおよび方法
CN201220166714.6U CN202830716U (zh) 2011-04-18 2012-04-18 用于铺设和压实沥青层的系统
CN201210115686.XA CN102747673B (zh) 2011-04-18 2012-04-18 用于铺设和压实沥青层的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11003244.8A EP2514871B1 (de) 2011-04-18 2011-04-18 Verfahren zum Einbauen und Verdichten einer Asphaltschicht

Publications (2)

Publication Number Publication Date
EP2514871A1 true EP2514871A1 (de) 2012-10-24
EP2514871B1 EP2514871B1 (de) 2016-05-11

Family

ID=44595286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003244.8A Revoked EP2514871B1 (de) 2011-04-18 2011-04-18 Verfahren zum Einbauen und Verdichten einer Asphaltschicht

Country Status (5)

Country Link
US (1) US9068295B2 (de)
EP (1) EP2514871B1 (de)
JP (1) JP5453482B2 (de)
CN (2) CN202830716U (de)
PL (1) PL2514871T3 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046459A (zh) * 2012-12-21 2013-04-17 中铁四局集团有限公司 一种应用毫米gps摊铺高精度路面的方法
EP2514871B1 (de) 2011-04-18 2016-05-11 Joseph Vögele AG Verfahren zum Einbauen und Verdichten einer Asphaltschicht
EP3214222A1 (de) * 2016-03-02 2017-09-06 Joseph Vögele AG Einbaubohlenbaugruppe und verfahren zum betrieb deren
CN108867272A (zh) * 2018-07-11 2018-11-23 汤程凯 一种新型道路用铺路装置
CN112853875A (zh) * 2021-01-11 2021-05-28 云南途睿建设工程有限公司 一种用于市政工程的沥青道路摊平装置
CN114357587A (zh) * 2022-01-12 2022-04-15 内蒙古路桥集团有限责任公司 一种基于路面工程3d数字化铺筑方法及系统
US20220275590A1 (en) * 2017-06-21 2022-09-01 United Utilities Plc Pavement reinstatement
EP4428303A1 (de) 2023-03-08 2024-09-11 Joseph Vögele AG Verfahren und strassenbausystem zum dynamischen steuern einer einbaugeschwindigkeit eines strassenfertigers

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431925A1 (de) * 2014-03-18 2019-01-23 MOBA Mobile Automation AG Strassenfertiger mit schichtdickenerfassungsvorrichtung und verfahren zum erfassen der dicke einer eingebauten materialschicht
DE102014005077A1 (de) * 2014-04-04 2015-10-08 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US10739287B2 (en) * 2015-01-15 2020-08-11 Transtech Systems, Inc. Measurement and monitoring of physical properties of material under test (MUT) from a vehicle
CN104695309B (zh) * 2015-03-13 2016-08-17 哈尔滨理工大学 一种带有检测的道路压实机
PL3075909T3 (pl) * 2015-03-30 2018-02-28 Joseph Vögele AG Maszyna do budowy dróg z siecią do transmisji danych i zastosowanie części przewodu prądowego
PL3124698T3 (pl) 2015-07-28 2018-01-31 Joseph Voegele Ag Wykańczarka z urządzeniem wskazującym wskazówkę odnośnie walcowania
US10316476B2 (en) 2016-04-11 2019-06-11 Caterpillar Paving Products Inc. Screed assembly for a paving machine
CN106596659B (zh) * 2016-12-20 2017-11-07 张志生 一种带有检测的道路压实机
US10228293B2 (en) * 2017-05-11 2019-03-12 Caterpillar Paving Products Inc. Control system for determining temperature of paving material
US10280572B1 (en) 2017-11-07 2019-05-07 Caterpillar Paving Products Inc. System for heating a paving screed
CN110275454A (zh) * 2018-03-13 2019-09-24 南京信息职业技术学院 一种振动压紧机构的过程自动控制方法
PL3564440T3 (pl) * 2018-05-04 2022-07-04 Joseph Vögele AG Pociąg do układania nawierzchni
US10480131B1 (en) 2018-06-29 2019-11-19 Caterpillar Paving Products Inc. System and method for controlling paving machine speed
CN108920867B (zh) * 2018-07-23 2023-06-16 江苏瑞沃建设集团有限公司 一种沥青路面就地热再生施工方案多目标优化方法
EP3660598B1 (de) * 2018-11-30 2021-10-20 MOBA Mobile Automation AG Automatische anwendung von lokaler spezifikation
US11536827B2 (en) * 2019-02-08 2022-12-27 Geophysical Survey Systems, Inc. Method for assessing the amount of rolling required to achieve optimal compaction of pre-rolled asphalt pavement
US11313086B2 (en) * 2019-12-16 2022-04-26 Caterpillar Paving Products Inc. Material density measurement for paver application
CN112083152B (zh) * 2020-08-27 2022-07-05 深圳市卓宝科技股份有限公司 一种模拟沥青铺设的测试方法
JPWO2022210978A1 (de) * 2021-03-31 2022-10-06
JP7000617B1 (ja) 2021-04-30 2022-01-19 世紀東急工業株式会社 アスファルトフィニッシャの速度管理システム及びアスファルトフィニッシャの速度自動制御装置
CN116008516B (zh) * 2023-02-21 2024-06-14 哈尔滨工业大学 一种基于智能集料的沥青路面压实临界阈值确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530000B2 (ja) * 1988-05-23 1996-09-04 株式会社トキメック 舗装敷きならし厚さの計測管理システム
EP0733231B1 (de) 1993-12-08 1999-01-13 Caterpillar Inc. Methode und vorrichtung zum arbeitsfeldbezogenen betrieb eines verdichtungsgerätes
DE20010498U1 (de) * 2000-06-13 2000-09-28 Joseph Voegele Ag, 68163 Mannheim Straßenfertiger
US6749364B1 (en) * 1999-05-19 2004-06-15 Blaw-Knox Construction Equipment Corporation Temperature sensing for controlling paving and compaction operations
EP0698152B1 (de) 1993-04-29 2006-02-15 Geodynamik Ht Aktiebolag Verfahren und Vorrichtung zum Messen des Verdichtungsgrads einer Bodenfläche
DE102008058481A1 (de) 2007-11-30 2009-07-30 Caterpillar Inc., Peoria Asphaltierungssystem und Asphaltierungsverfahren

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608446A (en) 1969-08-22 1971-09-28 Arkansas Rock & Gravel Co Material delivery system
US5100277A (en) 1989-12-08 1992-03-31 Cedarapids, Inc. Method of and apparatus for transferring materials
US5385426A (en) * 1993-03-05 1995-01-31 Omann; James S. Apparatus, method and use for reduced shingles
JP2530000Y2 (ja) 1994-09-09 1997-03-26 株式会社伊藤製作所 沈殿槽
US6122601A (en) * 1996-03-29 2000-09-19 The Penn State Research Foundation Compacted material density measurement and compaction tracking system
DE19836269C1 (de) * 1998-08-11 1999-08-26 Abg Allg Baumaschinen Gmbh Straßenfertiger
US6460006B1 (en) * 1998-12-23 2002-10-01 Caterpillar Inc System for predicting compaction performance
DE19956943B4 (de) * 1999-11-26 2020-03-19 Bomag Gmbh Vorrichtung zur Kontrolle der Verdichtung bei Vibrationsverdichtungsgeräten
DE10038943A1 (de) * 2000-08-09 2002-02-21 Joseph Voegele Ag Strassenfertiger und Einbauverfahren
US6915216B2 (en) * 2002-10-11 2005-07-05 Troxler Electronic Laboratories, Inc. Measurement device incorporating a locating device and a portable handheld computer device and associated apparatus, system and method
CA2461017C (en) * 2001-09-19 2012-01-10 Ingersoll-Rand Company System for measuring material properties from a moving construction vehicle
US20070150147A1 (en) 2005-12-23 2007-06-28 Rasmussen Terry L Compactor using compaction value targets
DE102006019841B3 (de) 2006-04-28 2007-12-20 Moba-Mobile Automation Ag Vorrichtung und Verfahren zur Ermittlung der Position einer Straßenwalze relativ zu einem Straßenfertiger
US7591608B2 (en) * 2006-06-29 2009-09-22 Hall David R Checking density while compacting
US7588388B2 (en) * 2006-09-06 2009-09-15 Hall David R Paved surface reconditioning system
US8116950B2 (en) * 2008-10-07 2012-02-14 Caterpillar Inc. Machine system and operating method for compacting a work area
BRPI1013739A2 (pt) * 2009-04-20 2016-04-05 Volvo Constr Equip Ab sistema e método de pavimentação integrados.
EP2366831B1 (de) * 2010-03-18 2014-12-24 Joseph Vögele AG Verfahren zum Steuern des Prozesses beim Einbauen eines Belages und Strassenfertiger
PL2514871T3 (pl) * 2011-04-18 2016-12-30 Sposób wbudowywania I zagęszczania warstwy asfaltowej
US8371770B1 (en) * 2012-04-09 2013-02-12 Caterpillar Inc. Apparatus for tamping paving material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530000B2 (ja) * 1988-05-23 1996-09-04 株式会社トキメック 舗装敷きならし厚さの計測管理システム
EP0698152B1 (de) 1993-04-29 2006-02-15 Geodynamik Ht Aktiebolag Verfahren und Vorrichtung zum Messen des Verdichtungsgrads einer Bodenfläche
EP0733231B1 (de) 1993-12-08 1999-01-13 Caterpillar Inc. Methode und vorrichtung zum arbeitsfeldbezogenen betrieb eines verdichtungsgerätes
DE69416006T2 (de) 1993-12-08 1999-08-19 Caterpillar Inc. Methode und vorrichtung zum arbeitsfeldbezogenen betrieb eines verdichtungsgerätes
US6749364B1 (en) * 1999-05-19 2004-06-15 Blaw-Knox Construction Equipment Corporation Temperature sensing for controlling paving and compaction operations
DE20010498U1 (de) * 2000-06-13 2000-09-28 Joseph Voegele Ag, 68163 Mannheim Straßenfertiger
DE102008058481A1 (de) 2007-11-30 2009-07-30 Caterpillar Inc., Peoria Asphaltierungssystem und Asphaltierungsverfahren

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514871B1 (de) 2011-04-18 2016-05-11 Joseph Vögele AG Verfahren zum Einbauen und Verdichten einer Asphaltschicht
CN103046459A (zh) * 2012-12-21 2013-04-17 中铁四局集团有限公司 一种应用毫米gps摊铺高精度路面的方法
CN103046459B (zh) * 2012-12-21 2014-10-22 中铁四局集团有限公司 一种应用毫米gps摊铺高精度路面的方法
EP3214222A1 (de) * 2016-03-02 2017-09-06 Joseph Vögele AG Einbaubohlenbaugruppe und verfahren zum betrieb deren
US10316477B2 (en) 2016-03-02 2019-06-11 Joseph Voegele Ag Screed assembly with automatic start-stop system
US20220275590A1 (en) * 2017-06-21 2022-09-01 United Utilities Plc Pavement reinstatement
CN108867272A (zh) * 2018-07-11 2018-11-23 汤程凯 一种新型道路用铺路装置
CN112853875A (zh) * 2021-01-11 2021-05-28 云南途睿建设工程有限公司 一种用于市政工程的沥青道路摊平装置
CN114357587A (zh) * 2022-01-12 2022-04-15 内蒙古路桥集团有限责任公司 一种基于路面工程3d数字化铺筑方法及系统
EP4428303A1 (de) 2023-03-08 2024-09-11 Joseph Vögele AG Verfahren und strassenbausystem zum dynamischen steuern einer einbaugeschwindigkeit eines strassenfertigers

Also Published As

Publication number Publication date
CN102747673B (zh) 2015-05-20
JP2012225153A (ja) 2012-11-15
JP5453482B2 (ja) 2014-03-26
CN202830716U (zh) 2013-03-27
CN102747673A (zh) 2012-10-24
US20120263531A1 (en) 2012-10-18
US9068295B2 (en) 2015-06-30
EP2514871B1 (de) 2016-05-11
PL2514871T3 (pl) 2016-12-30

Similar Documents

Publication Publication Date Title
EP2514871B1 (de) Verfahren zum Einbauen und Verdichten einer Asphaltschicht
EP2366830B1 (de) System und Verfahren zum Aufbringen eines Strassenbelages
EP2514872B1 (de) Strassenfertiger zum Einbauen eines Strassenbelags
EP2514873B1 (de) Verfahren und System zum Aufbringen eines Strassenbelages
EP2366831B1 (de) Verfahren zum Steuern des Prozesses beim Einbauen eines Belages und Strassenfertiger
DE69728549T2 (de) Verfahren zum verdichten von asphalt und verdichtervorrichtung
EP2852707B1 (de) Verfahren zur planung und durchführung von bodenverdichtungsvorgängen, insbesondere zur asphaltverdichtung
EP2679767B1 (de) Fräsmaschine sowie Verfahren zum Abbauen von Fräsgut einer Verkehrsfläche
DE2330102C2 (de) Verfahren und Maschine zum Verdichten der Schotterbettung eines Gleises, insbesondere unter gleichzeitiger Verbringung dieses Gleises in die Soll-Höhenlage
EP3498914B1 (de) Anpassung der nivellierzylindereinstellung bei einem strassenfertiger
EP3670748A1 (de) Bodenbearbeitungsmaschine und verfahren zum verschleissoptimierten betrieb einer bodenbearbeitungsmaschine
DE112009001610T5 (de) Pflastersystem und Pflasterverfahren
EP1705293A1 (de) Verfahren und Vorrichtung zur Verdichtung eines Bodenbereichs
DE102008058481A1 (de) Asphaltierungssystem und Asphaltierungsverfahren
DE102016114037A1 (de) Strassenfertiger mit Produktionsüberwachungssystem
EP3851584B1 (de) Strassenfertiger mit verdichtungssteuerung
DE102017206050A1 (de) Glättbohlen-baueinheit für eine strassenbaumaschine
DE112015003743T5 (de) Vorrichtung und Verfahren zum Steuern der Verdichtung auf der Grundlage zuvor kartierter Daten
EP2696173A1 (de) Baumaschine mit Sensoreinheit
DE102016114046A1 (de) Überwachungssystem für ein Fördersystem eines Strassenfertigers
WO2021151511A1 (de) Messsystem und steuerung
DE60303303T2 (de) Fallgewichtverdichtung
DE10038943A1 (de) Strassenfertiger und Einbauverfahren
DE102008033565A1 (de) Verfahren zum Betrieb eines Straßenfertigers
EP3252233B1 (de) Strassenfertiger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20130322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009680

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011009680

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: CATERPILLAR INC.

Effective date: 20170208

Opponent name: BOMAG GMBH

Effective date: 20170213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170418

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180326

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 798784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170418

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180425

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180426

Year of fee payment: 8

Ref country code: IT

Payment date: 20180430

Year of fee payment: 8

PLAT Information related to reply to examination report in opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDORE3

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502011009680

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502011009680

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20181206

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20181206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190326

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 798784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511