EP3851584B1 - Strassenfertiger mit verdichtungssteuerung - Google Patents

Strassenfertiger mit verdichtungssteuerung Download PDF

Info

Publication number
EP3851584B1
EP3851584B1 EP20152122.6A EP20152122A EP3851584B1 EP 3851584 B1 EP3851584 B1 EP 3851584B1 EP 20152122 A EP20152122 A EP 20152122A EP 3851584 B1 EP3851584 B1 EP 3851584B1
Authority
EP
European Patent Office
Prior art keywords
layer thickness
paving
compaction
control system
screed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20152122.6A
Other languages
English (en)
French (fr)
Other versions
EP3851584A1 (de
Inventor
Martin Buschmann
Ralf Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL20152122.6T priority Critical patent/PL3851584T3/pl
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP20152122.6A priority patent/EP3851584B1/de
Priority to US17/150,121 priority patent/US11746479B2/en
Priority to JP2021005144A priority patent/JP2021113490A/ja
Priority to BR102021000747-8A priority patent/BR102021000747A2/pt
Priority to CN202120151026.1U priority patent/CN216141851U/zh
Priority to CN202110060648.8A priority patent/CN113136772B/zh
Publication of EP3851584A1 publication Critical patent/EP3851584A1/de
Application granted granted Critical
Publication of EP3851584B1 publication Critical patent/EP3851584B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4833Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with tamping or vibrating means for consolidating or finishing, e.g. immersed vibrators, with or without non-vibratory or non-percussive pressing or smoothing means
    • E01C19/4853Apparatus designed for railless operation, e.g. crawler-mounted, provided with portable trackway arrangements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4806Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely rollers for consolidating or finishing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/07Apparatus combining measurement of the surface configuration of paving with application of material in proportion to the measured irregularities

Definitions

  • the present invention relates to a road finisher and a method for operating a road finisher.
  • the EP 2 366 832 A1 describes the installation of a road surface by means of a road finisher, which has a screed with a tamper device, which can be operated transversely to the direction of travel with a variable stroke and variable frequency.
  • the EP 2 325 392 A2 also describes a method for installing a road surface using a road finisher, the stroke of the compaction unit being automatically adjusted as a function of an installation parameter.
  • the object of the present invention is to provide a road finisher with an improved control system and an improved method for operating a road finisher.
  • a road finisher comprises a screed, the screed comprising a tamper.
  • the paver further includes a GNSS (Global Navigation Satellite System) receiver, a material conveyor, and an electronic control system that includes a memory and a data processor.
  • GNSS Global Navigation Satellite System
  • In the memory are digital building data, in particular a target height profile of a road surface to be finished, a target layer thickness of the paving material, a respective degree of pre-compaction dependent on the target layer thickness and, if appropriate, a height profile of a subgrade are stored.
  • the control system is configured to automatically control the compaction performance of the paving screed depending on the target layer thickness in order to pave the paving material for the respective location coordinate point of the road finisher determined with the GNSS receiver with the respective degree of pre-compaction.
  • the target layer thickness is variable, so that an even surface or an even road surface is obtained.
  • the compaction performance of the screed can now be controlled in such a way that where the subgrade has a depression, i.e. a greater layer thickness has to be paved, the material is paved with a higher degree of compaction than in an area where the subgrade is elevated and the layer thickness is therefore smaller.
  • the degrees of compaction are selected in such a way that during subsequent compaction by a roller, all areas are compressed by the same absolute value, i.e. the rolling dimension is the same everywhere, i.e. the areas with a higher layer thickness are compressed and compacted less by the roller than the lower areas layer thickness. This means that the material can be paved with an even surface and this evenness is also retained during post-compacting, since the road surface sinks to the same extent everywhere.
  • a degree of precompression for a respective location coordinate point is preferably stored in the memory of the control system.
  • the values do not have to be calculated first, but the corresponding control signals can be transmitted directly to the components of the road finisher that are relevant for setting the degree of compaction.
  • the road finisher has a sensor for measuring an actual layer thickness of paving material, with the control system being configured to calculate a deviation of the actual layer thickness from the target layer thickness.
  • the paving material can be paved exactly with the desired target layer thickness, i.e. until the deviation between the actual and target layer thickness is equal to zero.
  • Ultrasonic sensors, mechanical tactile sensors, laser sensors or other suitable sensors that work with or without an external reference point can be used for this purpose.
  • the control system is preferably configured to automatically adjust the compaction performance of the screed by controlling the tamper frequency and/or the tamper stroke.
  • the tamper rams the mix under the screed, ensuring there is a sufficient quantity of paving material and compacting it.
  • the screed comprises a screed plate and/or a pressure bar and the control system is configured to automatically adjust the compaction performance of the screed by controlling the vibration frequency and/or amplitude of the screed plate and/or the pressure bar pressure.
  • control system is configured to automatically adjust the compaction performance of the screed by controlling the paving speed.
  • the paving speed determines the duration of the action of the tamper, smoothing plate and pressure bar compaction units and is particularly suitable for adapting the settings to a required working width.
  • the paving material is paved with a known degree of pre-compaction that depends on the layer thickness. This means that the loss of height due to post-compaction with a roller can also be predicted and the paving material can be paved with a layer thickness that is greater by the thickness of the roller. This ensures that the rolling dimension is the same for all spatial coordinate points.
  • one or more target layer thicknesses of the upcoming location coordinate points i.e. those located further ahead in the direction of travel, can also be taken into account to calculate and control the compaction performance.
  • one or more previous values can also be used to ensure a smooth progression of the surface.
  • the installation of the installation material preferably includes the detection of an actual layer thickness by means of a sensor and the calculation of a difference between the actual layer thickness and the target layer thickness and the road finisher being automatically controlled to minimize the difference.
  • the essential paving parameters namely the layer thickness and the degree of pre-compaction
  • the paver operator can devote more attention to other paving tasks to be completed.
  • the current values of the paving parameters, in particular layer thickness and degree of pre-compaction shown on a display so that an operator can read them and also intervene in the automatic control and change the parameters. Since the course, i.e.
  • the electronic control system automatically adjusts the compaction performance of the screed by controlling the tamper frequency and/or the tamper stroke.
  • the tamper can be seen as the first step in screed compaction. On the one hand, it influences the amount of paving material that gets under the screed. On the other hand, the paving material is pre-compacted by it.
  • control system automatically adjusts the compaction performance of the screed by controlling the vibration frequency and/or amplitude of the screed plate and/or the pressure on the pressure bars. This means that high degrees of compaction can also be achieved with greater layer thicknesses.
  • control system automatically adjusts the compaction performance of the screed by controlling the paving speed.
  • the paving speed can be adjusted as a function of the desired layer thickness.
  • the digital building data which include the height profile of the planum, are transferred from an external data processing system at the beginning of the method transferred to the memory of the electronic control system via radio or cable connection.
  • the external data processing system can be, for example, a laptop, tablet, mobile phone, stationary personal computer, server or the like, and radio transmission can take place using RFID, Bluetooth, WLAN, a mobile phone connection or the like.
  • the subgrade data which was previously determined by means of a surface scan with an independent vehicle, for example, can be analyzed, processed and supplemented with dependent, calculated data. This can take place, for example, at a central site monitoring site and the data can then be transmitted to the road finisher on site.
  • the respective compaction performance is calculated by means of an external data processing system as a function of the determined target layer thickness and/or the respective compaction performance is assigned to a location coordinate point as a function of the target layer thickness and the data are then transferred to the memory of the electronic control system.
  • the compression performance and thus the degree of pre-compression can always be calculated or taken from a table-like data record.
  • the calculation using an external system has the advantage that the necessary devices can be easily kept and the data can also be displayed, analyzed and processed using the appropriate EDP devices.
  • the respective compaction performance is calculated by means of the electronic control system as a function of the determined desired layer thickness and/or the respective compaction performance is assigned to a location coordinate point as a function of the desired layer thickness.
  • figure 1 shows a schematic side view of a road finisher 1, with a material bunker 3 with paving material 5 being shown in a sectional view in a lower area, and the paving material 5 being conveyed by means of a material conveyor 7 through a tunnel 9 to the rear in front of a paving screed 11 and there by a auger 12 is evenly distributed.
  • the road finisher 1 also includes a GNSS receiver 13 which is connected to an electronic control system 15 .
  • the electronic control system 15 includes a memory 17 and a data processor 19.
  • the screed 11 includes a tamper 21, a smoothing plate 23, and a pressure bar 25, it also being possible for several of these components to be present.
  • the paving material 5 is pre-compacted by means of the paving screed 11 and paved with a layer thickness d B , which in ideal operation corresponds to the target layer thickness ds, on a planum 27 as a road surface 28, with the target layer thickness ds being a rolling dimension s higher than the desired one Final layer thickness d E , which is present after post-compaction by a roller.
  • a sensor 29, which can be attached to the screed 11 or the chassis of the road finisher 1, is used to measure the actual layer thickness di of the paving material 5.
  • the sensor 29 can also be attached in such a way that it still measures the actual layer thickness di of paving measures, and so the screed 11 can be readjusted.
  • An external data processing system 31 for example a laptop, can be used to send and receive building data, by means of a radio connection via antennas 33 on the road finisher 1 and on the data processing system 31, in which case the antennas 33 can also be suitable for receiving satellite signals for position determination, or via a cable connection 35, may be provided.
  • figure 2 shows a three-dimensional view of digital building data 37.
  • the planum 27 has a height profile 39 which includes height data for individual location coordinate points 41.
  • This height profile 39 can have been obtained by means of a previous surface scan using an external vehicle.
  • a corresponding scanning device is attached to the road finisher 1 itself and the surface scan takes place for a part of the subgrade 27 that is further forward in the direction of travel, while paving material 5 is already in place in a rear part, based on the digital building data 37 already obtained , is installed.
  • the data of the height profile 39 of the planum 27 is enriched with the data of a target height profile 43 of the road surface 28 to be finished.
  • the different desired layer thicknesses ds for the respective location coordinate points 41 are thus stored in accordance with the elevations and depressions of the height profile 39 of the planum 27 .
  • the number of data points or location coordinate points 41 for which subgrade and road surface data are stored can vary depending on the technical specifications for data acquisition and processing, for example the accuracy of the GNSS, and thus represents a form of "resolution". It is also conceivable that the processing of the digital building data 37 includes algorithms that distinguish areas with frequent and/or severe unevenness in the subgrade 27 from areas with few changes and proportionally adjust the number of data points, which on the one hand maintains a high information density and on the other hand the data volume is reduced.
  • the position of the data points 41 in the grid can be influenced by a sensor position.
  • the digital building data 37 includes further data, which was calculated in particular on the basis of the measured data, such as the height profile 39 of the planum 27, such as a desired degree of compaction per location coordinate point 41.
  • figure 3 shows a schematic view of the screed compaction of paving material 5 with level subgrade 27.
  • the paving material 5 is deposited by means of the material conveyor 7 and the auger 12 in front of the paving screed 11 with a bulk density ps.
  • figure 4 shows a schematic view of the rolling compaction of paving material 5 or the road surface 28 laid by the screed 11 with level subgrade 27.
  • the layer thickness d B is reduced by the rolling dimension s to the final layer thickness d E for which the roller 45 completes one or more passes.
  • the density of the mounting material 5 increases to the
  • ⁇ M is the density of the Marshall test body, which is produced with a compaction device under laboratory conditions.
  • the density ⁇ M essentially corresponds to the maximum density of the paving material 5.
  • the degree of compaction k B , kw therefore indicates in each case what percentage of the maximum density ⁇ M the paving material 5 is brought to with the respective machine, screed 11 or roller 45.
  • figure 5 shows the graphical representation of the change in the degree of compaction k B as a function of the layer thickness d B of the screed 11 with a constant rolling dimension s according to equation 1, which is derived as follows:
  • figure 6 shows a schematic view of the screed compaction of paving material 5 with uneven subgrade 27.
  • the layer thicknesses d B1 and d B2 are specified in order to obtain a level road surface 28 at a desired level.
  • the rolling dimension s by which the height of the road surface 28 is reduced by the rolling compaction, is expediently also taken into account.
  • the respective degrees of compaction k B1 and k B2 are calculated according to Equation 1.
  • the electronic control system 15 is able to regulate the compaction performance of the screed 11 by controlling one or more of the compaction units 21, 23, 25 and thus to produce the respective calculated degree of compaction k B at the location known from the three-dimensional structure data 37.
  • the degree of compaction k B and thus the density ⁇ B as a function of the layer thickness d B is therefore incorporated in order to obtain a uniform rolling dimension s everywhere during the subsequent subsequent compaction by the roller 45 .
  • figure 7 shows a schematic view of the rolling compaction of paving material 5 with uneven subgrade 27.
  • the rolling dimension s is the same everywhere due to the adjusted degrees of compaction k B1 , k B2 .
  • the road surface 28 that has already been installed by the screed 11 is thus post-compacted by the roller 45 while maintaining this longitudinal evenness.
  • the road surface 28 is present with a uniform density ⁇ W and a uniform degree of compaction kw as well as the final layer thickness d E that is variable as a function of the planum 27 .

Description

  • Die vorliegende Erfindung betrifft einen Straßenfertiger sowie ein Verfahren zum Betrieb eines Straßenfertigers.
  • Im Straßenbau findet man häufig ein Planum, also einen für den Auftrag eines Straßenbelags vorbereiteten Untergrund, vor, welcher noch Unebenheiten aufweist. Demzufolge müssen beim Einbau des Straßenbelags diese Unebenheiten ausgeglichen werden, um eine ebene Fahrbahnoberfläche zu erhalten. Dazu ist es bislang bekannt, die Nivellierzylinder eines Straßenfertigers anzusteuern, um mittels konventioneller Nivellierung die Schichtdicke des Straßenbelags zu variieren, so dass Vertiefungen mit einer dickeren und Erhebungen mit einer dünneren Schicht von Einbaumaterial ausgeglichen werden, so dass insgesamt ein vollständig ebener Fahrbahnbelag eingebaut wird. Dies hat sich jedoch als nachteilig erwiesen, da beim anschließenden Nachverdichten mittels einer Walze erneut Unebenheiten im eingebauten Fahrbahnbelag entstehen, da die dickeren Schichten ein höheres Walzmaß, d.h. eine absolute Abnahme der Schichtdicke durch die Verdichtungsleistung der Walze, aufweisen als dünnere Schichten.
  • Aus der US 2010/0129152 A1 ist bekannt, der Problematik eines höheren Walzmaßes bei dickeren Materialschichten zu begegnen, indem in Bereichen von Vertiefungen im Planum das Einbaumaterial stärker erhöht wird als im Bereich von Erhebungen des Planums, die Fahrbahnfläche also durch den Fertiger uneben eingebaut wird. Zur Steuerung werden dabei digitale Planumsdaten verwendet. Das beschriebene Verfahren weist jedoch Nachteile, wie beispielsweise die mitunter schwierig zu steuernde Änderung der Einbauhöhe auf, insbesondere bei Änderungen der Planumshöhe in kleinen Abständen.
  • Die EP 2 366 832 A1 beschreibt den Einbau eines Straßenbelags mittels eines Straßenfertigers, wobei dieser eine Einbaubohle mit Tampervorrichtung aufweist, welche quer zur Arbeitsfahrtrichtung mit variablem Hub und variabler Frequenz betreibbar ist.
  • Die EP 2 325 392 A2 beschreibt ebenso ein Verfahren zum Einbau eines Straßenbelages mittels eines Straßenfertigers, wobei der Hub des Verdichtungsaggregats in Abhängigkeit von einem Einbauparameter automatisch verstellt wird.
  • Aufgabe der vorliegenden Erfindung ist es, einen Straßenfertiger mit einem verbesserten Steuerungssystem sowie ein verbessertes Verfahren zum Betrieb eines Straßenfertigers bereitzustellen.
  • Gelöst wird die Aufgabe durch einen Straßenfertiger mit den Merkmalen des Anspruchs 1 sowie einem Verfahren zum Betrieb eines Straßenfertigers mit den Merkmalen des Anspruchs 7. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Ein erfindungsgemäßer Straßenfertiger umfasst eine Einbaubohle, wobei die Einbaubohle einen Tamper umfasst. Der Straßenfertiger umfasst des Weiteren einen GNSS-Empfänger (Globales Navigations-Satelliten-System Empfänger), einen Materialförderer und ein elektronisches Steuerungssystem, welches einen Speicher und einen Datenprozessor umfasst. In dem Speicher sind digitale Bauwerksdaten, insbesondere ein Soll-Höhenprofil eines zu fertigenden Straßenbelags, eine Soll-Schichtstärke des Einbaumaterials, ein jeweiliger von der Soll-Schichtstärke abhängiger Vorverdichtungsgrad und gegebenenfalls ein Höhenprofil eines Planums gespeichert. Das Steuerungssystem ist dazu konfiguriert, die Verdichtungsleistung der Einbaubohle in Abhängigkeit der Soll-Schichtstärke automatisch zu steuern, um das Einbaumaterial für den jeweiligen mit dem GNSS-Empfänger ermittelten Ortskoordinatenpunkt des Straßenfertigers mit dem jeweiligen Vorverdichtungsgrad einzubauen.
  • Bei einem unebenen Planum ist die Soll-Schichtstärke variabel, so dass eine ebene Oberfläche bzw. ein ebener Fahrbahnbelag erhalten wird. Die Verdichtungsleistung der Einbaubohle kann nun so gesteuert werden, dass dort, wo das Planum eine Vertiefung aufweist, also eine größere Schichtstärke eingebaut werden muss, das Material mit einem höherem Verdichtungsgrad eingebaut wird als in einem Bereich einer Erhöhung des Planums und somit geringerer Schichtstärke. Die Verdichtungsgrade werden dabei erfindungsgemäß so gewählt, dass beim anschließenden Nachverdichten durch eine Walze alle Bereiche um den gleichen Absolutwert komprimiert werden, das Walzmaß also überall gleich groß ist, also die Bereiche höherer Schichtstärke prozentual weniger durch die Walze komprimiert und nachverdichtet werden als die Bereiche niedrigerer Schichtstärke. Somit kann der Einbau des Materials mit einer ebenen Oberfläche erfolgen und diese Ebenheit wird auch beim Nachverdichten beibehalten, da sich der Fahrbahnbelag überall gleich stark absenkt.
  • Vorzugsweise ist in dem Speicher des Steuerungssystems ein Vorverdichtungsgrad für einen jeweiligen Ortskoordinatenpunkt gespeichert. Somit müssen die Werte nicht erst berechnet werden, sondern es können direkt die entsprechenden Steuerungssignale an die zur Einstellung des Verdichtungsgrads relevanten Komponenten des Straßenfertiges übermittelt werden.
  • In einer zweckmäßigen Variante weist der Straßenfertiger einen Sensor zur Messung einer Ist-Schichtstärke von Einbaumaterial auf, wobei das Steuerungssystem dazu konfiguriert ist, eine Abweichung der Ist-Schichtstärke von der Soll-Schichtstärke zu berechnen. So kann mit einem Rückkopplungsmechanismus das Einbaumaterial mit der gewünschten Soll-Schichtstärke, also bis die Abweichung von Ist- und Soll-Schichtstärke gleich Null ist, exakt eingebaut werden. Es sind dazu Ultraschallsensoren, mechanische Tastsensoren, Lasersensoren oder andere geeignete Sensoren, welche mit oder ohne externen Bezugspunkt arbeiten, verwendbar.
  • Bevorzugt ist das Steuerungssystem dazu konfiguriert, die Verdichtungsleistung der Einbaubohle durch Steuerung der Tamperfrequenz und/oder des Tamperhubs automatisch einzustellen. Der Tamper stampft das Mischgut unter die Einbaubohle und sorgt damit für eine ausreichende Menge an Einbaumaterial und verdichtet dieses.
  • In einer vorteilhaften Variante umfasst die Einbaubohle ein Glättblech und/oder eine Pressleiste und das Steuerungssystem ist dazu konfiguriert, die Verdichtungsleistung der Einbaubohle durch Steuerung der Vibrationsfrequenz und/oder -amplitude des Glättblechs und/oder des Pressleistendrucks automatisch einzustellen. Durch diese Vorrichtungen können Hochverdichtungsgrade erreicht werden.
  • In einer weiteren Variante ist das Steuerungssystem dazu konfiguriert ist, die Verdichtungsleistung der Einbaubohle durch Steuerung der Einbaugeschwindigkeit automatisch einzustellen. Die Einbaugeschwindigkeit bestimmt die Einwirkdauer der Verdichtungsaggregate Tamper, Glättblech und Pressleiste und ist besonders geeignet zur Anpassung der Einstellungen an eine erforderliche Arbeitsbreite.
  • Ein erfindungsgemäßes Verfahren zum Betrieb eines Straßenfertigers, insbesondere eines Stra-ßenfertigers nach einer der oben beschriebenen Ausführungsformen, umfasst folgende Verfahrensschritte:
    • Vorhalten von digitalen Bauwerksdaten, insbesondere ein Höhenprofil eines Planums, in einem Speicher eines elektronischen Steuerungssystems,
    • Vorhalten von digitalen Bauwerksdaten, insbesondere ein Soll-Höhenprofil eines zu fertigenden Straßenbelags, eine Soll-Schichtstärke eines Einbaumaterials für die Ortskoordinatenpunkte des Planums sowie ein jeweiliger von der Soll-Schichtstärke abhängiger Vorverdichtungsgrad,
    • Einbau des Einbaumaterials, wobei die jeweilige aktuelle Position des Straßenfertigers mittels eines GNSS-Empfängers ermittelt wird und das elektronische Steuerungssystem die Verdichtungsleistung der Einbaubohle in Abhängigkeit der Soll-Schichtstärke automatisch steuert, um das Einbaumaterial mit dem jeweiligen von der Soll-Schichtstärke abhängigen Vorverdichtungsgrad einzubauen.
  • Wie oben bereits erwähnt, erfolgt so der Einbau des Einbaumaterials mit einem bekannten und von der Schichtstärke abhängigen Vorverdichtungsgrad Damit kann auch der Höhenverlust durch die Nachverdichtung mit einer Walze vorhergesagt werden und das Einbaumaterial mit einer um das Walzmaß größeren Schichtstärke eingebaut werden. Dabei wird erreicht, dass das Walzmaß für alle Ortskoordinatenpunkte gleich ist. Zur Berechnung und Steuerung der Verdichtungsleistung können neben der Soll-Schichtstärke des jeweiligen Ortskoordinatenpunkts bzw. der aktuellen Position auch ein oder mehrere Soll-Schichtstärken der kommenden, also in Fahrtrichtung weiter vorne liegenden Ortskoordinatenpunkte, berücksichtigt werden. Ebenso können auch ein oder mehrere zurückliegende Werte verwendet werden, um einen stetigen Verlauf der Oberfläche zu gewährleisten.
  • Vorzugsweise umfasst der Einbau des Einbaumaterials das Erfassen einer Ist-Schichtstärke mittels eines Sensors und das Berechnen einer Differenz der Ist-Schichtstärke mit der Soll-Schichtstärke und dass der Straßenfertiger zur Minimierung der Differenz automatisch gesteuert wird. Somit können die wesentlichen Parameter des Einbaubetriebs, nämlich die Schichtstärke und der Vorverdichtungsgrad automatisch überwacht und gesteuert werden. Damit kann der Bediener des Straßenfertigers mehr Aufmerksamkeit anderen zu erledigenden Aufgaben im Einbaubetrieb widmen. Dabei ist es denkbar, die momentanen Werte der Einbauparameter, insbesondere Schichtstärke und Vorverdichtungsgrad, auf einem Display anzeigen zu lassen, so dass ein Bediener diese ablesen und auch in die automatische Steuerung eingreifen und die Parameter verändern kann. Dadurch, dass der Verlauf, also insbesondere auch die zur aktuellen Position noch folgenden Werte, der Soll-Schichtstärke sowie des Verdichtungsgrads entlang der Einbaustrecke bekannt ist, werden durch das Steuerungssystem alle Einstellungsänderungen automatisch vorgenommen, und Korrekturen werden zumeist nur im Rahmen eines automatischen Rückkopplungsmechanismus zum Erreichen der Sollwerte vorgenommen, wodurch eine ungewünschte Sollwertabweichung bereits verhindert wird.
  • In einer vorteilhaften Variante stellt das elektronische Steuerungssystem die Verdichtungsleistung der Einbaubohle durch Steuerung der Tamperfrequenz und/oder des Tamperhubs automatisch ein. Der Tamper kann als erste Stufe der Bohlenverdichtung angesehen werden. Er beeinflusst zum einen die Menge an Einbaumaterial welches unter die Bohle gelangt. Zum anderen wird durch ihn das Einbaumaterial vorverdichtet.
  • In einer weiteren vorteilhaften Variante stellt das Steuerungssystem die Verdichtungsleistung der Einbaubohle durch Steuerung der Vibrationsfrequenz und/oder -amplitude des Glättblechs und/oder des Pressleistendrucks automatisch ein. Damit können Hochverdichtungsgrade auch bei größeren Schichtstärken erreicht werden.
  • In einer weiteren Variante stellt das Steuerungssystem die Verdichtungsleistung der Einbaubohle durch Steuerung der Einbaugeschwindigkeit automatisch ein. Insbesondere kann die Einbaugeschwindigkeit in Abhängigkeit der Soll-Schichtstärke eingestellt werden.
  • In einer zweckmäßigen Variante werden die digitalen Bauwerksdaten, welche das Höhenprofil des Planums umfassen, zu Beginn des Verfahrens von einer externen Datenverarbeitungsanlage in den Speicher des elektronischen Steuerungssystems mittels Funk- oder Kabelverbindung übertragen. Bei der externen Datenverarbeitungsanlage kann es sich beispielsweise um einen Laptop, Tablet, Mobiltelefon, stationären Personalcomputer, Server oder ähnlichem handeln und die Funkübertragung kann mittels, RFID, Bluetooth, WLAN, Mobilfunkverbindung oder ähnlichem erfolgen. So können die Planumsdaten, welche beispielsweise zuvor mittels Oberflächenscan mit einem unabhängigen Fahrzeug ermittelt wurden, analysiert, aufbereitet und um davon abhängige, berechnete Daten ergänzt werden. Das kann beispielsweise an einem zentralen Ort zur Baustellenüberwachung stattfinden und die Daten können dann zum Straßenfertiger auf der Baustelle übertragen werden.
  • In einer bevorzugten Variante wird mittels einer externen Datenverarbeitungsanlage die jeweilige Verdichtungsleistung in Abhängigkeit der ermittelten Soll-Schichtstärke berechnet und/oder die jeweilige Verdichtungsleistung in Abhängigkeit der Soll-Schichtstärke einem Ortskoordinatenpunkt zugewiesen und die Daten werden anschließend in den Speicher des elektronischen Steuerungssystems übertragen. Die Verdichtungsleistung und damit der Vorverdichtungsgrad können also stets berechnet werden oder einem tabellenartigen Datensatz entnommen werden. Das Berechnen mittels einer externen Anlage hat den Vorteil, dass die notwendigen Geräte einfach vorgehalten werden können und die Daten zudem noch mittels entsprechenden EDV-Geräten dargestellt, analysiert und bearbeitet werden können.
  • In einer weiteren Variante wird mittels des elektronischen Steuerungssystems die jeweilige Verdichtungsleistung in Abhängigkeit von der ermittelten Soll-Schichtstärke berechnet und/oder die jeweilige Verdichtungsleistung in Abhängigkeit der Soll-Schichtstärke einem Ortskoordinatenpunkt zugewiesen. Diese und weitere Berechnungen können also direkt auf dem Straßenfertiger ausgeführt werden. Dies könnte sogar während des Betriebs für die jeweils noch folgenden Positionen erfolgen, wodurch Zeit eingespart werden kann. Außerdem werden Übertragungskapazitäten eingespart, je geringer die von extern erhaltenen Datenmengen sind.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Figuren näher beschrieben. Dabei zeigen
  • Figur 1:
    eine schematische Seitenansicht eines Straßenfertigers,
    Figur 2:
    eine dreidimensionale Ansicht von Bauwerksdaten,
    Figur 3:
    eine schematische Ansicht der Bohlenverdichtung von Einbaumaterial bei ebenem Planum,
    Figur 4:
    eine schematische Ansicht der Walzverdichtung von Einbaumaterial bei ebenem Planum,
    Figur 5:
    die graphische Darstellung der Änderung des Verdichtungsgrads der Einbaubohle in Abhängigkeit der Schichtstärke bei konstantem Walzmaß,
    Figur 6:
    eine schematische Ansicht der Bohlenverdichtung von Einbaumaterial bei unebenem Planum,
    Figur 7:
    eine schematische Ansicht der Walzverdichtung von Einbaumaterial bei unebenem Planum.
  • Einander entsprechende Komponenten sind in den Figuren jeweils mit gleichen Bezugszeichen versehen.
    Figur 1 zeigt eine schematische Seitenansicht eines Straßenfertigers 1, wobei in einem unteren Bereich in einer Schnittansicht ein Gutbunker 3 mit Einbaumaterial 5 dargestellt ist, und das Einbaumaterial 5 mittels eines Materialförderers 7 durch einen Tunnel 9 nach hinten vor eine Einbaubohle 11 gefördert und dort von einer Verteilerschnecke 12 gleichmäßig verteilt wird. Der Straßenfertiger 1 umfasst des Weiteren einen GNSS-Empfänger 13 welcher mit einem elektronischen Steuerungssystem 15 verbunden ist. Das elektronische Steuerungssystem 15 umfasst einen Speicher 17 und einen Datenprozessor 19. Die Einbaubohle 11 umfasst einen Tamper 21, ein Glättblech 23, und eine Pressleiste 25, wobei jeweils auch mehrere dieser Komponenten vorhanden sein können. Das Einbaumaterial 5 wird mittels der Einbaubohle 11 vorverdichtet und mit einer Schichtstärke dB, welche im Idealbetrieb der Soll-Schichtstärke ds entspricht, auf einem Planum 27 als Straßenbelag 28 eingebaut, wobei die Soll-Schichtstärke ds um ein Walzmaß s höher ist als die gewünschte Endschichtstärke dE, welche nach der Nachverdichtung durch eine Walze vorliegt. Ein Sensor 29, welcher an der Einbaubohle 11 oder dem Chassis des Straßenfertigers 1 angebracht sein kann, dient zur Messung der Ist-Schichtstärke di des Einbaumaterials 5. Dabei kann der Sensor 29 auch so angebracht sein, dass er die Ist-Schichtstärke di noch während des Einbaus misst, und so die Einbaubohle 11 nachgeregelt werden kann. Eine externe Datenverarbeitungsanlage 31, beispielsweise ein Laptop, kann zum Senden und Empfangen von Bauwerksdaten, mittels Funkverbindung über Antennen 33 am Straßenfertiger 1 und an der Datenverarbeitungsanlage 31, wobei die Antennen 33 auch zum Empfang von Satellitensignalen zur Positionsbestimmung geeignet sein können, oder über eine Kabelverbindung 35, vorgesehen sein.
  • Figur 2 zeigt eine dreidimensionale Ansicht von digitalen Bauwerksdaten 37. Das Planum 27 weist ein Höhenprofil 39 auf, welches Höhendaten für einzelne Ortskoordinatenpunkte 41 umfasst. Dieses Höhenprofil 39 kann durch einen vorangegangenen Oberflächenscan mittels eines externen Fahrzeugs erhalten worden sein. Ebenso ist es jedoch auch möglich, dass eine entsprechende Scanvorrichtung am Straßenfertiger 1 selbst angebracht ist und der Oberflächenscan für einen in Fahrtrichtung weiter vorne gelegenen Teil des Planums 27 geschieht, während in einem hinteren Teil bereits Einbaumaterial 5, basierend auf den bereits gewonnenen digitalen Bauwerksdaten 37, eingebaut wird. Die Daten des Höhenprofils 39 des Planums 27 werden mit den Daten eines Soll-Höhenprofils 43 des zu fertigenden Straßenbelags 28 angereichert. Entsprechend den Erhebungen und Vertiefungen des Höhenprofils 39 des Planums 27 sind somit die unterschiedlichen Soll-Schichtstärken ds für die jeweiligen Ortskoordinatenpunkte 41 gespeichert. Die Anzahl der Datenpunkte bzw. Ortskoordinatenpunkte 41, für die Planums- und Straßenbelagsdaten gespeichert sind, kann je nach technischen Vorgaben zur Datenerfassung und -verarbeitung, beispielsweise der Genauigkeit des GNSS, variieren und stellt somit eine Form der "Auflösung" dar. Dabei ist es auch denkbar, dass die Aufbereitung der digitalen Bauwerksdaten 37 Algorithmen umfasst, welche Bereiche mit häufigen und/oder stärkeren Unebenheiten im Planum 27 von Bereichen mit wenig Änderungen unterscheidet und die Anzahl an Datenpunkten proportional anpasst, wodurch einerseits eine hohe Informationsdichte erhalten bleibt und andererseits das Datenvolumen reduziert wird. Die Lage der Datenpunkte 41 im Gitternetz kann von einer Sensorposition beeinflusst sein. Die digitalen Bauwerksdaten 37 umfassen weitere Daten, welche insbesondere auf Basis der gemessenen Daten, wie dem Höhenprofil 39 des Planums 27, berechnet wurden, wie beispielsweise einen gewünschten Verdichtungsgrad pro Ortskoordinatenpunkt 41.
  • Figur 3 zeigt eine schematische Ansicht der Bohlenverdichtung von Einbaumaterial 5 bei ebenem Planum 27. Das Einbaumaterial 5 wird mittels dem Materialförderer 7 und der Verteilerschnecke 12 vor der Einbaubohle 11 mit einer Schüttdichte ps abgelegt. Die Einbaubohle 11, welche in Fahrtrichtung F von dem Straßenfertiger 1 gezogen wird, verdichtet das Einbaumaterial 5 auf eine Bohlendichte ρB und eine Schichtstärke dB welche gleich der Soll-Schichtstärke ds für den Bohleneinbau ist und baut somit den Straßenbelag 28 ein. Im Falle eines ebenen Planums 27 kann die Einbaubohle 11 ohne wesentliche Änderungen der einmal eingestellten Einbauparameter eingesetzt werden.
  • Figur 4 zeigt eine schematische Ansicht der Walzverdichtung von Einbaumaterial 5 bzw. des durch die Einbaubohle 11 eingebauten Straßenbelags 28 bei ebenem Planum 27. Die Schichtstärke dB reduziert sich dabei um das Walzmaß s auf die Endschichtstärke dE wofür die Walze 45 eine oder mehrere Überfahrten vollzieht. Die Dichte des Einbaumaterials 5 erhöht sich auf die
  • Walzdichte ρW. Entsprechend kann ein Verdichtungsgrad für die Einbaubohle 11 und die Walze 45 angegeben werden: Verdichtungsgrad k B der Einbaubohle = k B = ρ B ρ M 100 %
    Figure imgb0001
    Verdichtungsgrad k W der Walze = k W = ρ W ρ M 100 %
    Figure imgb0002
  • Dabei ist ρM die Dichte des Marshall-Probekörpers, welcher mit einem Verdichtungsgerät unter Laborbedingungen hergestellt ist. Die Dichte ρM entspricht im Wesentlichen der maximalen Dichte des Einbaumaterials 5. Der Verdichtungsgrad kB, kw gibt also jeweils an, auf wieviel Prozent der Maximaldichte ρM das Einbaumaterial 5 mit der jeweiligen Maschine, Einbaubohle 11 oder Walze 45, gebracht wird.
  • Figur 5 zeigt die graphische Darstellung der Änderung des Verdichtungsgrads kB in Abhängigkeit der Schichtstärke dB der Einbaubohle 11 bei konstantem Walzmaß s nach Gleichung 1, die sich wie folgt herleitet:
    Es gilt allgemein: ρ = m V = m b x d
    Figure imgb0003
    mit m, b, x = konst. und m = Masse, b = Breite, x = Länge in Fahrtrichtung und d = Schichtstärke des betrachteten Abschnitts des Fahrbahnbelags 28.
  • Weiter gilt somit: k = ρ 1 ρ 2 = d 1 d 2
    Figure imgb0004
  • Daraus folgt, unter der Annahme, dass nach Endverdichtung des Belags durch die Walze die Materialdichte ρW etwa der Marshalldichte ρM entspricht, für den Verdichtungsgrad kB des Belags k B = ρ B ρ W = ρ B ρ M = d W d B mit ρ W ρ M
    Figure imgb0005
  • Mit Walzmaß s = d B d W d W = d B s
    Figure imgb0006
    folgt: k B = d B s d B
    Figure imgb0007
  • Da die Schichtstärke dB wegen der Unebenheiten des Planums 27 vorgegeben ist und variiert, muss der Verdichtungsgrad kB entsprechend Figur 5 angepasst werden, um für alle Schichtstärken dB ein gleiches Walzmaß s zu erhalten, d.h. auf der entsprechenden Funktionskurve (s = 10 mm, 20 mm, 30 mm) in Figur 5 zu bleiben.
  • Figur 6 zeigt eine schematische Ansicht der Bohlenverdichtung von Einbaumaterial 5 bei unebenem Planum 27. Die Schichtstärken dB1 und dB2 sind vorgegeben, um einen ebenen Straßenbelag 28 auf einem gewünschten Niveau zu erhalten. Dabei wird das Walzmaß s, um das sich die Höhe des Straßenbelags 28 durch die Walzverdichtung verringert, zweckmäßig mitberücksichtigt. Die jeweiligen Verdichtungsgrade kB1 und kB2 werden nach Gleichung 1 berechnet. Das elektronische Steuerungssystem 15 ist in der Lage durch Ansteuern von einem oder mehreren der Verdichtungsaggregate 21, 23, 25 die Verdichtungsleistung der Einbaubohle 11 zu regeln und so den jeweiligen berechneten Verdichtungsgrad kB an der aus den dreidimensionalen Bauwerksdaten 37 bekannten Stelle herzustellen. Es wird also der Verdichtungsgrad kB und damit die Dichte ρB in Abhängigkeit der Schichtstärke dB eingebaut, um bei der anschließenden Nachverdichtung durch die Walze 45 überall ein einheitliches Walzmaß s zu erhalten.
  • Figur 7 zeigt eine schematische Ansicht der Walzverdichtung von Einbaumaterial 5 bei unebenem Planum 27. Das Walzmaß s ist aufgrund der angepassten Verdichtungsgrade kB1, kB2 überall gleich. Der durch die Einbaubohle 11 bereits eben eingebaute Straßenbelag 28 wird also unter Beibehaltung dieser Längsebenheit durch die Walze 45 nachverdichtet. Nach der Walzverdichtung liegt der Straßenbelag 28 mit einheitlicher Dichte ρW und einheitlichem Verdichtungsgrad kw sowie der in Abhängigkeit des Planums 27 variablen Endschichtstärke dE vor.

Claims (14)

  1. Straßenfertiger (1) mit einer Einbaubohle (11), wobei die Einbaubohle (11) einen Tamper (21) umfasst, und der Straßenfertiger (1) des Weiteren einen GNSS-Empfänger (13) sowie einen Materialförderer (7) umfasst, wobei der Straßenfertiger (1) gekennzeichnet ist durch ein elektronisches Steuerungssystem (15), welches einen Speicher (17) und einen Datenprozessor (19) umfasst, wobei in dem Speicher (17) digitale Bauwerksdaten (37), umfassend ein Soll-Höhenprofil (43) eines zu fertigenden Straßenbelags (28), eine Soll-Schichtstärke (ds) des Einbaumaterials (5), ein jeweiliger von der Soll-Schichtstärke (ds) abhängiger Vorverdichtungsgrad (kB) und gegebenenfalls ein Höhenprofil (39) eines Planums (27) gespeichert sind, und das Steuerungssystem (15) dazu konfiguriert ist, die Verdichtungsleistung der Einbaubohle (11) in Abhängigkeit der Soll-Schichtstärke (ds) automatisch zu steuern, um das Einbaumaterial (5) für den jeweiligen mit dem GNSS-Empfänger (13) ermittelten Ortskoordinatenpunkt (41) des Straßenfertigers (1) mit dem jeweiligen Vorverdichtungsgrad (kB) einzubauen.
  2. Straßenfertiger nach Anspruch 1, dadurch gekennzeichnet, dass in dem Speicher (17) des Steuerungssystems (15) der Vorverdichtungsgrad (kB) für einen jeweiligen Ortskoordinatenpunkt (41) gespeichert ist.
  3. Straßenfertiger nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, einen Sensor (29) zur Messung einer Ist-Schichtstärke (di) von Einbaumaterial (5) aufzuweisen, wobei das Steuerungssystem (15) dazu konfiguriert ist, eine Abweichung der Ist-Schichtstärke (dI) von der Soll-Schichtstärke (dS) zu berechnen.
  4. Straßenfertiger nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Steuerungssystem (15) dazu konfiguriert ist, die Verdichtungsleistung der Einbaubohle (11) durch Steuerung der Tamperfrequenz und/oder des Tamperhubs automatisch einzustellen.
  5. Straßenfertiger nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Einbaubohle (11) ein Glättblech (23) und/oder eine Pressleiste (25) umfasst und das Steuerungssystem (15) dazu konfiguriert ist, die Verdichtungsleistung der Einbaubohle (11) durch Steuerung der Vibrationsfrequenz und/oder -amplitude des Glättblechs (23) und/oder des Pressleistendrucks automatisch einzustellen.
  6. Straßenfertiger nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Steuerungssystem (15) dazu konfiguriert ist, die Verdichtungsleistung der Einbaubohle (11) durch Steuerung der Einbaugeschwindigkeit automatisch einzustellen.
  7. Verfahren zum Betrieb eines Straßenfertigers (1) nach einem der vorangegangenen Ansprüche, umfassend folgende Verfahrensschritte:
    - Vorhalten von digitalen Bauwerksdaten (37), insbesondere ein Höhenprofil (39) eines Planums (27), in dem Speicher (17) des elektronischen Steuerungssystems (15),
    - Vorhalten von digitalen Bauwerksdaten (37), umfassend ein Soll-Höhenprofil (43) eines zu fertigenden Straßenbelags (28), eine Soll-Schichtstärke (ds) eines Einbaumaterials (5) für die Ortskoordinatenpunkte (41) des Planums (27) sowie ein jeweiliger von der Soll-Schichtstärke (ds) abhängiger Vorverdichtungsgrad (kB),
    - Einbau des Einbaumaterials (5), wobei die jeweilige aktuelle Position des Straßenfertigers (1) mittels eines GNSS-Empfängers (13) ermittelt wird und das elektronische Steuerungssystem (15) die Verdichtungsleistung der Einbaubohle (11) in Abhängigkeit der Soll-Schichtstärke (ds) automatisch steuert, um das Einbaumaterial (5) mit dem jeweiligen von der Soll-Schichtstärke (ds) abhängigen Vorverdichtungsgrad (kB) einzubauen.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Einbau des Einbaumaterials (5) das Erfassen einer Ist-Schichtstärke (dI) mittels eines Sensors (29) umfasst und eine Differenz der Ist-Schichtstärke (di) mit der Soll-Schichtstärke (ds) berechnet und der Straßenfertiger (1) zur Minimierung der Differenz automatisch gesteuert wird.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass das elektronische Steuerungssystem (15) die Verdichtungsleistung der Einbaubohle (11) durch Steuerung der Tamperfrequenz und/oder des Tamperhubs automatisch einstellt.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Steuerungssystem (15) die Verdichtungsleistung der Einbaubohle (11) durch Steuerung der Vibrationsfrequenz und/oder -amplitude des Glättblechs (23) und/oder des Pressleistendrucks automatisch einstellt.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Steuerungssystem (15) die Verdichtungsleistung der Einbaubohle (11) durch Steuerung der Einbaugeschwindigkeit automatisch einstellt.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die digitalen Bauwerksdaten (37), welche das Höhenprofil (39) des Planums (27) umfassen, zu Beginn des Verfahrens von einer externen Datenverarbeitungsanlage (31) in den Speicher (17) des elektronischen Steuerungssystems (15) mittels Funk- oder Kabelverbindung (33, 35) übertragen werden.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass mittels einer externen Datenverarbeitungsanlage (31) die jeweilige Verdichtungsleistung in Abhängigkeit der ermittelten Soll-Schichtstärke (ds) berechnet wird und/oder die jeweilige Verdichtungsleistung in Abhängigkeit der Soll-Schichtstärke (ds) einem Ortskoordinatenpunkt (41) zugewiesen wird und die Daten (37) anschließend in den Speicher (17) des elektronischen Steuerungssystems (15) übertragen werden.
  14. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass mittels des elektronischen Steuerungssystems (15) die jeweilige Verdichtungsleistung in Abhängigkeit der ermittelten Soll-Schichtstärke (ds) berechnet wird und/oder die jeweilige Verdichtungsleistung in Abhängigkeit der Soll-Schichtstärke (ds) einem Ortskoordinatenpunkt (41) zugewiesen wird.
EP20152122.6A 2020-01-16 2020-01-16 Strassenfertiger mit verdichtungssteuerung Active EP3851584B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20152122.6A EP3851584B1 (de) 2020-01-16 2020-01-16 Strassenfertiger mit verdichtungssteuerung
PL20152122.6T PL3851584T3 (pl) 2020-01-16 2020-01-16 Wykańczarka ze sterowaniem zagęszczenia
JP2021005144A JP2021113490A (ja) 2020-01-16 2021-01-15 締固め制御を伴う道路舗装機械
BR102021000747-8A BR102021000747A2 (pt) 2020-01-16 2021-01-15 Pavimentadora de estrada e método para operar a mesma
US17/150,121 US11746479B2 (en) 2020-01-16 2021-01-15 Road paver with compaction control
CN202120151026.1U CN216141851U (zh) 2020-01-16 2021-01-18 具有摊铺熨平板的道路摊铺机
CN202110060648.8A CN113136772B (zh) 2020-01-16 2021-01-18 具有压实控制的道路摊铺机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20152122.6A EP3851584B1 (de) 2020-01-16 2020-01-16 Strassenfertiger mit verdichtungssteuerung

Publications (2)

Publication Number Publication Date
EP3851584A1 EP3851584A1 (de) 2021-07-21
EP3851584B1 true EP3851584B1 (de) 2022-11-09

Family

ID=69174338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20152122.6A Active EP3851584B1 (de) 2020-01-16 2020-01-16 Strassenfertiger mit verdichtungssteuerung

Country Status (6)

Country Link
US (1) US11746479B2 (de)
EP (1) EP3851584B1 (de)
JP (1) JP2021113490A (de)
CN (2) CN113136772B (de)
BR (1) BR102021000747A2 (de)
PL (1) PL3851584T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737614B (zh) * 2021-09-24 2023-08-29 中交二公局萌兴工程有限公司 一种路面基层无人驾驶机群碾压系统
CN113970295B (zh) * 2021-09-28 2024-04-16 湖南三一中益机械有限公司 一种摊铺厚度测量方法、装置及摊铺机
DE102022201294A1 (de) 2022-02-08 2023-08-10 Moba Mobile Automation Aktiengesellschaft Nivelliersystem für eine Baumaschine
CN114808619A (zh) * 2022-06-06 2022-07-29 保利长大工程有限公司 一种水泥稳定层3d摊铺工艺及3d摊铺系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6520715B1 (en) 2001-08-10 2003-02-18 John Paul Smith Asphalt delivery and compaction system
US7172363B2 (en) 2004-08-31 2007-02-06 Caterpillar Paving Products Inc Paving machine output monitoring system
US20100129152A1 (en) 2008-11-25 2010-05-27 Trimble Navigation Limited Method of covering an area with a layer of compressible material
PL3375936T3 (pl) 2009-11-20 2022-01-10 Joseph Vögele AG Belka równająca do układarki
EP2366832B1 (de) * 2010-03-18 2015-09-23 Joseph Vögele AG Verfahren und Strassenfertiger zum Einbauen einer verdichteten Deckenschicht
US8371769B2 (en) 2010-04-14 2013-02-12 Caterpillar Trimble Control Technologies Llc Paving machine control and method
PL2535457T3 (pl) 2011-06-15 2014-06-30 Voegele Ag J Wykańczarka z urządzeniem pomiarowym do ustalania grubości warstwy
DE102012001289A1 (de) * 2012-01-25 2013-07-25 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US8655593B1 (en) * 2013-03-12 2014-02-18 United Parcel Service Of America, Inc. Concepts for defining travel paths in parking areas
EP3431925A1 (de) * 2014-03-18 2019-01-23 MOBA Mobile Automation AG Strassenfertiger mit schichtdickenerfassungsvorrichtung und verfahren zum erfassen der dicke einer eingebauten materialschicht
DE102014005077A1 (de) * 2014-04-04 2015-10-08 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
DE102014012831B4 (de) * 2014-08-28 2018-10-04 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US9551115B2 (en) * 2014-12-19 2017-01-24 Wirtgen Gmbh Transition on the fly
US10990245B2 (en) * 2016-01-15 2021-04-27 Caterpillar Paving Products Inc. Mobile process management tool for paving operations
CN105780634B (zh) 2016-03-07 2018-04-24 戴纳派克(中国)压实摊铺设备有限公司 摊铺厚度测量系统、方法及摊铺机
EP3594409B1 (de) * 2018-07-13 2022-03-09 Joseph Vögele AG Baumaschine mit einer förderbandanlage mit gewichtssensor

Also Published As

Publication number Publication date
US20210222379A1 (en) 2021-07-22
CN113136772A (zh) 2021-07-20
US11746479B2 (en) 2023-09-05
CN216141851U (zh) 2022-03-29
JP2021113490A (ja) 2021-08-05
PL3851584T3 (pl) 2023-03-20
CN113136772B (zh) 2022-12-23
BR102021000747A2 (pt) 2021-07-27
EP3851584A1 (de) 2021-07-21

Similar Documents

Publication Publication Date Title
EP3851584B1 (de) Strassenfertiger mit verdichtungssteuerung
EP3741914B1 (de) Maschinenzug aus einer strassenfräsmaschine und einem strassenfertiger und verfahren zum betreiben einer strassenfräsmaschine und eines strassenfertigers
EP2514871B1 (de) Verfahren zum Einbauen und Verdichten einer Asphaltschicht
EP3594409B1 (de) Baumaschine mit einer förderbandanlage mit gewichtssensor
EP3498914B1 (de) Anpassung der nivellierzylindereinstellung bei einem strassenfertiger
DE112009001610T5 (de) Pflastersystem und Pflasterverfahren
DE112015000363T5 (de) Asphaltiermaschien-Temperaturwarnsystem für Bediener eines Asphaltverdichters
DE112015003743T5 (de) Vorrichtung und Verfahren zum Steuern der Verdichtung auf der Grundlage zuvor kartierter Daten
EP4056758B1 (de) Verfahren zum fertigen eines strassenbelags und asphaltiersystem
DE102019121492A1 (de) System und verfahren zum steuern von autonomen baufahrzeugen
DE102016004298A1 (de) Temperaturabhängige autoadaptive Verdichtung
EP3480362B1 (de) Strassenwalze und verfahren zur bestimmung der einbauschichtdicke
EP3702532B1 (de) Fertiger und verfahren zum betreiben dessen
DE102017206050A1 (de) Glättbohlen-baueinheit für eine strassenbaumaschine
DE112015004191T5 (de) System und Verfahren zum Validieren der Verdichtung einer Arbeits- bzw. Baustelle
DE102016114037A1 (de) Strassenfertiger mit Produktionsüberwachungssystem
EP3892777B1 (de) Strassenfertiger und verfahren mit querprofilsteuerung
EP3147406B1 (de) Messsystem und verfahren zur verdichtungskontrolle eines belages und computerprogramm mit einem programmcode zur durchführung des verfahrens
DE102019131353B4 (de) Selbstfahrende Baumaschine und Verfahren zur Bestimmung der Nutzung einer Baumaschine
DE102020117095A1 (de) Automatische breiteneingabe für strassenfertigungsvorgänge
EP1876297B1 (de) Vorrichtung und Verfahren zur Ermittlung der Position einer Straßenwalze relativ zu einem Straßenfertiger
EP3896223A1 (de) Verfahren zum fertigen eines strassenbelags und asphaltierungssystem
DE102016124106A1 (de) Einstellung des verdichtungsaufwands unter verwendung von vibrationssensoren
DE3823917A1 (de) Fertiger fuer grosse arbeitsbreiten und hohe einbauleistungen fuer den asphalt- und betonstrassenbau
DE102020133436A1 (de) Materialdichtemessung für Straßenfertigeranwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530443

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001939

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221228

Year of fee payment: 4

Ref country code: IT

Payment date: 20230131

Year of fee payment: 4

Ref country code: DE

Payment date: 20230126

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001939

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

26N No opposition filed

Effective date: 20230810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240124

Year of fee payment: 5

Ref country code: GB

Payment date: 20240123

Year of fee payment: 5

Ref country code: GB

Payment date: 20240123

Year of fee payment: 4